
Glasgow Math. J. 60 (2018) 695–701. C© Glasgow Mathematical Journal Trust 2018.
doi:10.1017/S0017089517000404.

FINITE GROUPS WITH ENGEL SINKS OF BOUNDED RANK

E. I. KHUKHRO
University of Lincoln, Lincoln, LN6 7TS, United Kingdom

and Sobolev Institute of Mathematics,
Novosibirsk, 630090, Russia

e-mail: khukhro@yahoo.co.uk

and P. SHUMYATSKY
Department of Mathematics, University of Brasilia,

DF 70910-900, Brazil
e-mail: pavel@unb.br

(Received 13 July 2017; accepted 29 November 2017; first published online 28 January 2018)

Abstract. For an element g of a group G, an Engel sink is a subset E (g) such that
for every x ∈ G all sufficiently long commutators [. . . [[x, g], g], . . . , g] belong to E (g).
A finite group is nilpotent if and only if every element has a trivial Engel sink. We
prove that if in a finite group G every element has an Engel sink generating a subgroup
of rank r, then G has a normal subgroup N of rank bounded in terms of r such that
G/N is nilpotent.

2010 Mathematics Subject Classification. 20F45, 20D10, 20D06.

1. Introduction. A group G is called an Engel group if for every x, g ∈ G the
equation [x, g, g, . . . , g] = 1 holds, where g is repeated in the commutator sufficiently
many times depending on x and g. (Throughout the paper, we use the left-normed
simple commutator notation [a1, a2, a3, . . . , ar] = [. . . [[a1, a2], a3], . . . , ar].) Of course,
any locally nilpotent group is an Engel group. In some classes of groups, the converse
is also known to be true. For example, a finite Engel group is nilpotent by Zorn’s
theorem [19]. Wilson and Zelmanov [18] proved that profinite Engel groups are locally
nilpotent, and Medvedev [14] extended this result to compact (Hausdorff) groups.

As a next step, it is natural to consider groups that are ‘almost Engel’ in the sense
of restrictions on so-called Engel sinks. An Engel sink of an element g ∈ G is a set E (g)
such that for every x ∈ G all sufficiently long commutators [x, g, g, . . . , g] belong to
E (g), that is, for every x ∈ G, there is a positive integer n(x, g) such that

[x, g, g, . . . , g︸ ︷︷ ︸
n

] ∈ E (g) for all n � n(x, g).

Engel groups are precisely the groups for which we can choose E (g) = {1} for all g ∈ G.
In [9], we considered finite, profinite, and compact groups in which every element has
a finite Engel sink. We proved in [9] that compact groups with this property are finite-
by-(locally nilpotent).

Results for finite groups have to be of quantitative nature. Obviously, in a finite
group, every element has the smallest Engel sink, so from now on we use the term Engel
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sink for the minimal Engel sink of g, denoted by E (g), thus eliminating ambiguity in
this notation. We proved in [9, Theorem 3.1] that if G is a finite group and there is a
positive integer m such that |E (g)| � m for all g ∈ G, then G has a normal subgroup N
of order bounded in terms of m such that the quotient G/N is nilpotent.

In this paper, we consider finite groups in which there is a bound for the rank
of the subgroups generated by the Engel sinks. Here, the rank of a finite group is the
minimum number r such that every subgroup can be generated by r elements.

THEOREM 1.1. Suppose that G is a finite group such that for every g ∈ G the Engel
sink E (g) generates a subgroup of rank at most r. Then G has a normal subgroup N of
rank bounded in terms of r such that the quotient G/N is nilpotent.

Clearly, the conclusion can also be stated as ‘Then the rank of the nilpotent residual
γ∞(G) is bounded in terms of r’. Here, γ∞(G) = ⋂

i γi(G) is the intersection of all terms
of the lower central series.

First, we prove the theorem for soluble finite groups. Then, we consider the
nonsoluble case (where we use the classification of finite simple groups).

2. Preliminaries. The following result was obtained by Kovács [10] for soluble
groups, and extended independently by Guralnick [5] and Lucchini [13] using the
classification (improving a bound 2d of Longobardi and Maj [12]).

LEMMA 2.1. If d is the maximum of the ranks of the Sylow subgroups of a finite
group, then the rank of this group is at most d + 1.

The following lemma appeared independently and simultaneously in the papers of
Gorchakov [3], Merzlyakov [15], and as ‘P. Hall’s lemma’ in the paper of Roseblade [17].

LEMMA 2.2. Let p be a prime number. The rank of a p-group of automorphisms of
an abelian finite p-group of rank r is bounded in terms of r.

The next two lemmas must also be well known. For brevity, we say that a quantity
is a-bounded if it is bounded above in terms of a parameter a.

LEMMA 2.3. A finite p′-group Q of linear transformations of a vector space of
dimension n over a field of characteristic p has n-bounded rank.

Proof. By Lemma 2.1, we can assume that Q is a q-group for a prime q. Choose
a maximal abelian normal subgroup A in Q. Since Q/A acts faithfully on A, by
Lemma 2.2, it suffices to bound the rank of A. After extension of the field, A is
diagonalizable, which gives the result since finite multiplicative subgroups of fields are
cyclic. �

Let F(G) denote the Fitting subgroup of a group G, the largest normal nilpotent
subgroup. The Fitting series starts with F1(G) = F(G), and then by induction Fi+1(G)
is the inverse image of F(G/Fi(G)). The Fitting height of a soluble finite group G is the
minimum h such that Fh(G) = G. We also use the usual notation Op′ (G) for the largest
normal p′-subgroup of G, and Op′,p(G) for the inverse image of the largest normal
p-subgroup of G/Op′ (G).

LEMMA 2.4. A finite soluble group G of rank r has r-bounded Fitting height.
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Proof. For every prime p, the quotient G/Op′,p(G) acts faithfully on the Frattini
quotient of Op′,p(G)/Op′(G) and therefore is a linear group of dimension at most r.
By Zassenhaus’ theorem [16, 15.1.3], the derived length of G/Op′,p(G) is r-bounded.
Hence, the same is true for G/F(G) = G/

⋂
p Op′,p(G). �

The next technical lemma is also a well-known fact (see, for example, [8,
Lemma 10]).

LEMMA 2.5. For any finite group H = F2(H) of Fitting height 2, we have

γ∞(H) =
∏

q

[Fq, Hq′ ],

where Fq is the Sylow q-subgroup of F(H) and Hq′ is a Hall q′-subgroup of H.

The following elementary lemma will be used several times.

LEMMA 2.6. Suppose that a group A acts by automorphisms on a group G. If
A = 〈a1, . . . , ak〉, then [G, A] = [G, a1] · · · [G, ak].

Proof. The product [G, a1] · · · [G, ak] is a normal subgroup of G. This product is
also A-invariant, since it is invariant under every generator ai of A:

[
[G, a1] · · · [G, ak], ai

]
� [G, ai] � [G, a1] · · · [G, ak].

Furthermore, A acts trivially on the quotient by this product, since so does every
generator of A. Hence, [G, A] � [G, a1] · · · [G, ak]. The reverse inclusion is obvious. �

The following lemma relates Engel sinks in finite groups to coprime actions. We
denote the derived subgroup of a group X by X ′.

LEMMA 2.7. Let P be a finite p-subgroup of a group G, and g ∈ G a p′-element
normalizing P. Then [P, g] � 〈E (g)〉.

Proof. For the abelian p-group V = [P, g]/[P, g]′, we have V = [V, g] and CV (g) =
1 because the action of g on V is coprime. Then V = {[v, g] | v ∈ V} and therefore also

V = {[v, g, . . . , g︸ ︷︷ ︸
n

] | v ∈ V}

for any n. Hence, V is contained in the image of E (g) ∩ [P, g] in [P, g]/[P, g]′, whence
the result. �

3. Soluble groups. Throughout what follows, let r(X) denote the rank of a finite
group X .

PROPOSITION 3.1. Let q be a prime, let Q be a finite q-group, and U a q′-group of
automorphisms of Q. Suppose that r([Q, u]) � r for every u ∈ U. Then,

(a) r(U) is r-bounded;
(b) r([Q, U ]) is r-bounded;
(c) if U is soluble, then the derived length of U is r-bounded.

https://doi.org/10.1017/S0017089517000404 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000404


698 E. I. KHUKHRO AND P. SHUMYATSKY

Proof. (a) First, suppose that U is abelian. We consider the Frattini quotient
V = Q/�(Q) as a faithful �qU-module. Pick u1 ∈ U such that [V, u1] 	= 0. By
Maschke’s theorem, V = [V, u1] ⊕ CV (u1), where both summands are U-invariant,
since U is abelian. If CU ([V, u1]) = 1, then r(U) is r-bounded by Lemma 2.3.
Otherwise pick 1 	= u2 ∈ CU ([V, u1]), then V = [V, u1] ⊕ [V, u2] ⊕ CV (〈u1, u2〉). If
1 	= u3 ∈ CU ([V, u1] ⊕ [V, u2]), then V = [V, u1] ⊕ [V, u2] ⊕ [V, u3] ⊕ CV (〈u1, u2, u3〉),
and so on. If CU ([V, u1] ⊕ · · · ⊕ [V, uk]) = 1 at some step k � r, then again r(U)
is r-bounded by Lemma 2.3. However, if there are too many steps, say, k
steps for k > r, then for the element w = u1u2 · · · uk we shall have 0 	= [V, ui] =
[[V, ui], w], so that [V, w] = [V, u1] ⊕ · · · ⊕ [V, uk] will have rank greater than r, a
contradiction.

We now consider the general case. Let P be a Sylow p-subgroup of U and M a
maximal normal abelian subgroup of P. By the above, r(M) is r-bounded. Then, r(P)
is r-bounded by Lemma 2.2, since P/M acts faithfully on M. Thus, the rank of a
Sylow p-subgroup of U is r-bounded for every p, which implies that the rank of U is
r-bounded by Lemma 2.1.

(b) By part (a), in particular, U = 〈a1, . . . , af 〉 for some r-bounded f . Then,
[Q, U ] = [Q, a1] · · · [Q, af ] by Lemma 2.6. Since each of the normal subgroups
[Q, ai] has rank at most r and f is r-bounded, the rank of [Q, U ] is also
r-bounded.

(c) The group U acts faithfully on the Frattini quotient [Q, U ]/�([Q, U ]), which
can be regarded as a vector space over �q, the dimension of which is r-bounded by part
(b). If U is soluble, then its derived length is r-bounded by Zassenhaus’ theorem [16,
15.1.3]. �

THEOREM 3.2. Suppose that G is a finite soluble group such that for every g ∈ G the
Engel sink E (g) generates a subgroup of rank at most r. Then r(γ∞(G)) is r-bounded.

Proof. Note that the hypothesis is inherited by all sections. By Lemma 2.7, the
hypothesis implies that for any p-subgroup P of any section of G and a p′-element g of
this section normalizing P, the rank of [P, g] is at most r.

First, we prove that the Fitting height h(G) is r-bounded. Since F(G) = ⋂
p Op′,p(G),

it is sufficient to bound the Fitting height of each quotient Ḡ = G/Op′,p(G). Since a
Hall p′-subgroup of Ḡ acts faithfully on the Frattini quotient of Op′,p(G)/Op′ (G), the
rank of a Hall p′-subgroup of Ḡ is r-bounded by Proposition 3.1(a). Then the Fitting
height of a Hall p′-subgroup of Ḡ is also r-bounded by Lemma 2.4. Therefore, in order
to bound the Fitting height h(Ḡ), it remains to bound the p-length of Ḡ.

Let P be a Sylow p-subgroup of Ḡ. Then P acts faithfully on F(Ḡ) = Q1 × · · · × Qs,
where Qi is a qi-subgroup and qi 	= p for all i. For every i, the derived length of P/CP(Qi)
is r-bounded by Proposition 3.1(c). Since

⋂
i CP(Qi) = 1, the derived length of P is r-

bounded, and therefore the p-length of Ḡ is r-bounded by the theorems of Hall and
Higman [6, Theorem A] for p 	= 2, and of Berger and Gross [1] and Bryukhanova [2]
for p = 2.

Thus, the Fitting height h(G) is r-bounded. We now use induction on h(G) to prove
that r(γ∞(G)) is r-bounded. Clearly, we only need to consider the case G = F2(G).
Then, by Lemma 2.5, we have γ∞(G) = ∏

q[Fq, Hq′ ], where Fq is a Sylow q-subgroup
of F(G) and Hq′ is a Hall q′-subgroup of G/CG(Fq). The rank of each subgroup
[Fq, Hq′ ] is r-bounded by Proposition 3.1(b). Therefore the rank of γ∞(G) is also
r-bounded. �
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4. Nonsoluble groups. In the interests of brevity, with a slight abuse of
terminology, we say that in a finite group G all Engel sinks are of rank r if for every
g ∈ G the Engel sink E (g) generates a subgroup of rank at most r.

LEMMA 4.1. Let G be a finite nonabelian simple group with all Engel sinks of rank r.
Then G has r-bounded rank.

Proof. We can assume that G is either an alternating group or a group of Lie type.
For an alternating group G = An, it is easy to see that n is r-bounded. Indeed, every
finite group of order m can be embedded in An with m-bounded n, and there are groups
of r-bounded order with r(〈E (g)〉) = r + 1 for some element g. (For example, in the
semidirect product A〈b〉 of an elementary abelian 3-group A of rank r + 1 and its group
of automorphisms 〈b〉 of order 2 that acts fixed-point-freely, we have r(〈E (b)〉) = r + 1,
and |A〈b〉| = 2 · 3r+1.)

So, let G be a finite simple group of Lie type G = Ln(�pk ) of degree n over a field of
order pk, where p is a prime. It is sufficient to show that both n and k are r-bounded.
Indeed, then the linear covering group Ĝ = L̂n(�pk ) in its natural representation of
dimension n over �pk can be regarded as a linear group of r-bounded dimension nk
over �p. Therefore the rank of a Sylow p-subgroup of Ĝ is r-bounded by Lemma 2.2,
and the rank of a Sylow t-subgroup for t 	= p is r-bounded by Lemma 2.3. Then the
rank of Ĝ is bounded by Lemma 2.1.

For G = Ln(�pk ), to obtain a bound for k in terms of r, it is sufficient to show that G
has an element g such that E (g) contains a subgroup isomorphic to the additive group
of the field �pk . This follows from the well-known facts about simple groups of Lie type.
To be specific, one of the ways to show this is to use the fact that G = Ln(�pk ) either
contains a subgroup isomorphic to SL2(pk) or PSL2(pk) or is a Suzuki group (over the
field �pk ). For example, even stronger statements are proved in [11]. In SL2(pk), put

g =
(

ζ−1 0
0 ζ

)
,

where ζ is a nontrivial p′-element of the multiplicative group of the field �pk such that
ζ 2 	= 1 (the latter condition can always be satisfied for k > 1). This element normalizes
and acts fixed-point-freely on the abelian p-subgroup of upper-triangular matrices

T =
{(

1 a
0 1

)∣∣∣∣ a ∈ �pk

}
,

which is isomorphic to the additive group of �pk . Then T ⊆ E (g) by Lemma 2.7. In the
quotient PSL2(pk) of SL2(pk) by the centre, the image of T is isomorphic to T . Finally,
the case of G being a Suzuki group is dealt with in similar fashion, by considering the
action of a diagonal 2′-element on a Sylow 2-subgroup. Thus, k is r-bounded.

For G = Ln(�pk ), to obtain a bound for n, it suffices to consider the Weyl subgroup,
which, for large n, contains a subgroup isomorphic to a symmetric group of large
degree, which in turn contains Engel sinks of large rank, as explained at the beginning
of the proof.

As explained above, bounds in terms of r for n and k imply that the rank of
G = Ln(�pk ) is r-bounded. �

LEMMA 4.2. Given a prime p, any nonabelian finite simple group T of rank s can be
generated by s-boundedly many p′-elements.
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Proof. If p 	= 2, then we can use Guralnick’s result [4, Theorem A] that T is
generated by an involution and a Sylow 2-subgroup, which has rank at most s by
hypothesis. If p = 2, we can use King’s result [7] that T = 〈i, a〉, where |i| = 2 and |a|
is an odd prime; then T = 〈a, ai〉, since this is an a-invariant and i-invariant subgroup,
which is therefore normal. �

PROPOSITION 4.3. Let G be a finite group such that G = [G, G] and G/F(G) is a
nonabelian simple group. Suppose that all Engel sinks of G have rank r. Then, G has
r-bounded rank.

Proof. By Lemma 4.1, the quotient G/F(G) has r-bounded rank. Thus, we need
to show that the rank of F(G) is r-bounded. It suffices to show that the rank of each
Sylow p-subgroup of F(G) is r-bounded. Considering the quotient of G by the Hall
p′-subgroup of F(G), we can assume that F(G) is a p-group.

Using Lemma 4.2, we write G/F(G) = 〈ā1, . . . , āk〉, where all the āi are p′-elements,
while k is r-bounded. We can choose some p′-elements a1, . . . , ak that are preimages of
ā1, . . . , āk in G. Let S = 〈a1, . . . , ak〉; then, G = F(G)S.

We have

[F(G), S] = [F(G), a1] · · · [F(G), ak]

by Lemma 2.6. The rank of each of the normal subgroups [F(G), a1] is at most r by
Lemma 2.7. Since k is r-bounded, the rank of [F(G), S] is r-bounded.

Therefore, factoring out [F(G), S], we can assume that [F(G), S] = 1. Then S is a
normal subgroup of G. Since G = G′ and F(G) is nilpotent, it follows that G = S.

Under our assumption [F(G), S] = 1, the group G = S is a perfect group that is
a central extension of the finite simple group G/F(G). Hence F(G) is isomorphic to
a subgroup of the Schur multiplier of the simple group G/F(G). Therefore, F(G) has
rank at most 3, as follows from the classification. �

We are now ready to prove the main result in the general case.

THEOREM 4.4. If G is a finite group with all Engel sinks of rank r, then γ∞(G) has
r-bounded rank.

Proof. By Theorem 3.2 applied to the soluble radical R(G), the rank of γ∞(R(G)) is
r-bounded. Factoring out γ∞(R(G)) we can assume that the soluble radical is nilpotent:
R(G) = F(G). Let the socle of G/F(G) be S1 × · · · × Sm, where Si are nonabelian
simple groups. We claim that the number of factors m is at most r. Indeed, by the
Feit–Thompson theorem and Frobenius’ theorem, each Si has a nontrivial 2-subgroup
Ti normalized but not centralized by a 2′-element ai ∈ Si. Then, 〈E (a1a2 · · · am)〉 has
rank at least m, so m � r.

Let Ḡ = G/F(G) and let N = ⋂
NḠ(Si). Since m � r and the quotient Ḡ/N acts

faithfully by permutations of the factors S1, . . . , Sm, the order |Ḡ/N| is r-bounded.
By the usual argument, since

⋂
CḠ(Si) = 1, the group N embeds in the direct product

of m almost simple groups that are extensions of Si by outer automorphisms. By
Lemma 4.1, each Si has r-bounded rank. It follows from the classification that the
order of the outer automorphism group of every Si is r-bounded. Indeed, alternating
groups of r-bounded rank have r-bounded order. For a group of Lie type Ln(pf ), the
order |Out Ln(pf )| is bounded in terms of n and f , and both these parameters are
r-bounded, as we saw in Lemma 4.1. Hence |N/(S1 × · · · × Sm)| is r-bounded.
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As a result, the composition length of G/F(G) is r-bounded. We now complete
the proof by induction on this composition length. Let G1 be a normal subgroup
of G containing F(G) with G/G1 simple (abelian or nonabelian). By the induction
hypothesis, γ∞(G1) has r-bounded rank. By passing to G/γ∞(G1), we can assume that
G/F(G) is simple. If it is abelian, then Theorem 3.2 applies to G. If it is nonabelian,
then Proposition 4.3 applies to γ∞(G). �
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