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Abstract. There are presented some generalizations and extensions of results
for rings which are sums of two or tree subrings. It is provided a new proof of

the well-known Kegel’s result stating that a ring being a sum of two nilpotent

subrings is itself nilpotent. Moreover, it is proved that if R is a ring of the
form R = A + B, where A is a subgroup of the additive group of R satisfying

Ad ⊆ B for some positive integer d and B is a subring of R such that B ∈ S,
where S is N -radical contained in the class of all locally nilpotent rings, then

R ∈ S.

1. Introduction

In this paper, we study the rings of the form R = R1 + · · · + Rn where Ri are
subrings or additive subgroups of R and R1 + · · ·+Rn denotes the set of all sums
r1 + · · · + rn with r1 ∈ R1, . . . , rn ∈ Rn. We focus mainly on the case n = 2 and
n = 3. We also consider somewhat more general situation in which R = A+B, B
is a subring of R, and A is a subgroup of the additive group of R.

Many interesting results concerning the subject of this paper were focused on
rings which are sums of two subrings (e.g. [3, 6, 8, 10, 12, 11, 14, 15]). In particular,
Kegel proved that a ring which is a sum of two nilpotent subrings is nilpotent
itself (see [6]). In his next paper [7] Kegel presented various generalizations of this
theorem. Among others, he showed that the prime radical β of a ring that is a
sum of two subrings contains a product of the hyperanihilators of these subrings
(Theorem 1), while assuming that one of the subrings is a β radical he showed that
the Levitzki radical of this ring contains the hyperanihilator of the second subring
(Theorem 3). These results were generalized in [11]. In addition, answers to most
of the questions raised in [7] are presented in [11].

It turned out (see [10]) that if R = R1 + R2 is a ring, R1 and R2 are nil of
bounded index subrings of R (i.e. they satisfy an identity xn = 0), then so is R.
In addition, in [1], it was shown that if Ri are left (right) T -nilpotent, then R is
left (right) T -nilpotent, too. However, in [9, 16] Kelarev and independently Salwa
provided examples of a rings that are the sums of two β-radical subrings, which
itself are not β-radical.

Another direction of research concerning the Kegel’s Theorem is related to the
class of PI rings. In [13] it was shown that a ring that is the sum of two PI rings
is a PI ring. A more effective combinatorial proof in the special case of this fact
can be found in the paper [5], in which Felzenszwalb, Giambruno and Leal showed
that if R = A + B, A and B are PI rings and for some positive integer n ≥ 1
either (AB)n ⊆ A or (BA)n ⊆ A, then R is a PI ring. In this paper using the
concept of one-sided accessible subrings defined in the Section 2 (cf. [4]) we prove
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that R ∈ M if and only if AnBm ∈ M for some positive integers n,m, where M
is a fairly general left (right) strong class of rings containing the class of nilpotent
rings (Section 2). Moreover we will present a new proof of Kegel’s result and some
it’s extensions.

On the other hand, Bokut’ proved in [2] that every algebra over a field can be
embedded into a simple algebra which is a sum of three nilpotent subalgebras of
index three, which shows that the cases related to the sums of two and three subrings
are totally different. We will present a generalization of the result from [14] stating
that a ring is nilpotent if it is a sum of three subrings with zero multiplication.

In [8], it was proved that if R = A + B, A2 ⊆ B, B is locally nilpotent subring
of R and A is a subgroup of the group R+, then the ring R is locally nilpotent.
We generalize this result proving the claim under the assumption Ad ⊆ B for some
positive integer d and B ∈ S, where S is a N -radical contained in the class of all
locally nilpotent rings. We will complete the article with open problems for further
studies.

All the rings considered in this paper are associative, but are not assumed to
have an identity. By R1 we denote a ring R with an identity adjoined. We follow
the convention that if S ⊆ R, then S0 = {1}. If A is an ideal (left ideal or right
ideal) of a ring R, then we write ACR (A <l R or A <r R). If it is not necessary
to distinguish the side of a one-sided ideal A of R, then we simple write A < R. For
any subset C, the symbols lR(C) and rR(C) stand for the left and a right anihilator
of C in R, respectively.

The prime, Levitzki, and Jacobson radicals are denoted by β, L, J , respectively.
The symbol N stands for the class of all nilpotent rings. The set of all positive
integers is denoted by N.

2. New propositions

Let’s start with following simple observations.

Remark 2.1. Suppose that R = L + B, where L <l R and B is a subring of the
ring R. If the rings L and B are nilpotent, then so is R. Indeed, there exists n ∈ N
such that Ln = {0}. Let I = L+LR. Then I CR and I = LR1, whence In = {0}.
Moreover, R/I = (B + I)/I ∼= B/(B ∩ I) is a nilpotent ring. Consequently, the
ring R is nilpotent too.

Remark 2.2. Let A and B be nilpotent subrings of a ring R such that R = A+B.
If S is a subring of the ring R such that A <l S, then S is also a nilpotent ring.
Indeed, from the modularity of the lattice of subgroups of the group (R,+) and
the fact that A ⊆ S and R = A+B, we get S = A+ (S ∩B). But the rings A and
S ∩ B are nilpotent and A <l S, so if follows from Remark 2.2 that the ring S is
nilpotent.

Let A and B be subrings of the ring R such that R = A+B. By repeatedly using
Remark 2.2 we infer that if An = {0}, then A <l A + RAn−1 <l A + RAn−2 <l
. . . <l A + RA <l R. Therefore, if subrings A and B of the ring R = A + B are
nilpotent, then R is also nilpotent. Thus we obtain a simple proof of the well-known
Kegel Theorem from [6].

This provides the motivation for us to consider subrings one-sided accessible. We
say that a subring A of a ring R is one-sided accessible in R if there exist subrings
A0 = A,A1, . . . , An = R such that Ai < Ai+1 for i = 0, 1, . . . , n−1. It is equivalent
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to AmRAk ⊆ A for some m, k ∈ N ∪ {0}. Hence, for example, every nilpotent
subring of the ring R is one-sided accessible in R.

Lemma 2.3. Let A and B be subrings of a ring R such that R = A + B. Then
S = Ak1Bl1 . . . AksBls and T = Ak1Bl1 . . . AksBlsAks+1 are one-sided accessible in
R for all s, k1, . . . , ks, ks+1, l1, . . . , ls ∈ N. Moreover, SRS ⊆ S2 and TRT ⊆ T .

Proof. Since S2 ⊆ Ak1Bl1 · . . . ·Aks−1Bls−1RAksBls ⊆ Ak1Bl1 · . . . ·Aks−1Bls−1(A+
+B)AksBls = Ak1Bl1 · . . . · Aks+1Bls + Ak1Bl1 · . . . · Bls−1+1AksBls ⊆ S, S is
a subring of R. Moreover, SRS = S(A + B)S = SAS + SBS ⊆ S2, because of
AS ⊆ S and SB ⊆ S. Hence S <r S +RS <l R, which means that S is one-sided
accessible ring in R.

Furthermore, T = SAks+1 i Aks+1S ⊆ S, so T 2 ⊆ S2Aks+1 ⊆ T and TRT ⊆
SRSAks+1 ⊆ SAks+1 = T , whence T is one-sided accessible ring in R too. �

Throughout the paper, by M we denote an arbitrary homomorphically closed
class of rings which satisfy the following conditions: N ⊆ M, M is closed under
extensions, i.e. if I C H and I, H/I ∈ M, then H ∈ M, M is hereditary for
subrings, i.e. if I is a subring of H and H ∈ M, then I ∈ M and I is one-sided
strong, i.e. if I < H and I ∈M, then the ideal of H generated by I belongs toM.
The classes N , β, and L can be considered as M.

Recall that a ring A is said to be left T -nilpotent if for each sequence (an) of
elements of A, there exists n ∈ N such that a1 · a2 · . . . · an = 0. Let l0(A) = {0}
and lα(A) = {x ∈ A |xA ⊆

⋃
β<α lβ(A)} for any ordinal number α > 0. It is well

known that a ring A is left T -nilpotent if and only if l(A) = A, where l(A) is the
union

⋃
α≥0 lα(A). The ideal l(A) is collded a left hiperanihilator of A. The right

hiperanihilator r(A) of A is defined analogously. It is easy to see that a ring A is
left T -nilpotent if and only if every non-zero homomorphic image of A has non-zero
left annihilator. Clearly, the class of all left T -nilpotent rings is homomorphically
closed, hereditary for subrings, closed under extensions, and by [1, Lema 2.4], one-
sided strong. Therefore, the class of all left T -nilpotent rings can be considered as
M.

We obtain the following

Proposition 2.4. Let R1 and R2 be subrings of a ring R such that R = R1 +R2.
If R1 is a nilpotent ring and R2 ∈M, then R ∈M.

Proof. Clearly, R1 <l R1 +RRn−1
1 <l R1 +RRn−2

1 <l . . . <l R1 +RR1 <l R, where
n is the index of nilpotency of R1. Hence R1 is one-sided accessible in R. As in
Remark 2.2, we infer that R ∈M. �

Proposition 2.5. Let A and B be subrings of a ring R such that R = A + B. If
A ∈M and B ∈M, then the following subrings of R belong to M: Idl(A) = {x ∈
R : xA ⊆ A}, A + lR(An), and A + Rln(A) for n ∈ N. Moreover, Idr(B) = {x ∈
R : Bx ⊆ B}, B + rR(Bn), and B + rn(B)R ∈M for n ∈ N.

Proof. Clearly, S = Idl(A) is a subring of R and A <l S. Furthermore S =
A + B ∩ S, B ∩ S ∈ M, and M is one-side strong, so S ∈ M. Since L =
lR(An) <l R and (LA)An ⊆ LAn = 0, we infer that L + A is a subring of R. But
(L+A)An = An+1 ⊆ A, so A is one-sided accessible in L+A. Hence L+A ∈M,
and consequently lR(A) ∈ M. Moreover for every n ∈ N, we have ln(A)An = {0},
whence (A+Rln(A))An = An+1 ⊆ A, i.e. A is one-sided accessible in A+Rln(A).
Therefore A+Rln(A) ∈M. The rest of the proof runs analogously. �
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Proposition 2.6. Let A and B be subrings of a ring R such that R = A + B,
A ∈M, and B ∈M. Then the following conditions are equivalent:

(i) AnBm ∈M for some n,m ∈ N,
(ii) AB ∈M,
(iii) R ∈M.

Proof. (i) ⇒ (ii). Let S = AnBm. Then by Lemma 2.3 we have SRS ⊆ S2.
Hence S <r S + RS, so S + RS2 ∈ M. Consequently, RS2 ∈ M. Moreover,
(RS)2 = R(SRS) ⊆ RS2, so RS ∈ M. Furthermore, RS C S + RS, whence
S +RS ∈M. Thus I = S +RS + SR+RSR ∈M whereas I CR. Let R = R/I,
A = (A + I)/I, and B = (B + I)/I. Then R = A + B, whereas A is left T

nilpotent and B ∈ M. Moreover, A
n
B
m

= 0, so A
n
B ⊆ lR(B

m−1
). Therefore,

by Proposition 2.5, A
n
B = (AnB + I)/I ∈ M. But I ∈ M, so AnB ∈ M. The

analogous reasoning based on the the right-side version of Proposition 2.5 leads to
the conclusion that AB ∈M.

(ii)⇒ (iii). Let P = A+AR. Then P <r R and P = A+AB, since R = A+B.
Notice that AB <l P , so combining this with A ∈ M, we infer that P ∈ M.
Consequently, R ∈M.

The implication (iii)⇒ (i) is obvious. �

Proposition 2.7. Let A ∈ M and B ∈ M be subrings of a ring R such that
R = A + B. If there exist positive integers s, k1, . . . , ks, ks+1, l1, . . . , ls such that
S = Ak1Bl1 . . . AksBls ∈M or T = Ak1Bl1 . . . AksBlsAks+1 ∈M, then R ∈M.

Proof. Suppose that S ∈M, and define n = max{k1, l1, . . . , ks, ls}. Then (AnBn)s ⊆
S, so (AnBn)s ∈ M, whence AnBn ∈ M. Therefore, it follows from Proposition
2.6, that R ∈M.

Now suppose that T ∈ M. In view of Lemma 2.3, TRT ⊆ T , so T <l T + TR.
It follows T + T 2R ∈M. Hence T 2R ∈M. In particular, T 2B ∈M. Substituting
T 2B for S in the first part of the proof, we obtain R ∈M. �

In [1, Theorem 2.9], it was shown that a ring which is a sum of two left T -
nilpotent subrings is left T -nilpotent. The question arises whether this result can
be generalized like Kegel’s theorem in the Proposition 2.4.

Problem 1. Let A and B be subrings of a ring R such that R = A+B. Is it true
that if A is a left T -nilpotent and B ∈ M, where M contains the class of all left
T -nilpotent rings, then R ∈M?

As was mentioned before, by a result of Bokut’, Kegel’s theorem cannot be gen-
eralized to rings that are sums of more than two nilpotent subrings. Nevertheless,
in [14, Theorem 3.1] it was proved that a ring which is a sum of three subrings with
zero multiplication is nilpotent. Now we will show, on the basis of the results from
[2], that it is not possible to increase a sum of three to a sum of four subrings with
zero multiplication or index nilpotency two to three in [14, Theorem 3.1].

Definition 2.8. Let K be associative algebra over a field k of dimension dimkK =
α > ℵ0. We say that K satisfies a condition (∗) if there exists in K a countable
sequence of subalgebras 0 ⊂ K(1) ⊂ K(2) ⊂ . . . such that K =

⋃∞
n=1K

(n) and

dimK(n) = dimK(n+1)/K(n) = α for every n > 1.
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Example 2.9. Let K be an algebra over a field k of dimension ℵ0 with zero
multiplication. We will show that K satisfies the condition (∗) for α = ℵ0. Indeed,
let X be an arbitrary base of algebra K. Since |X| = ℵ0, there exists pairwise
disjoint countable subsets X1, X2, . . . of X such that X =

⋃∞
n=1Xn. Let K(n) be

a k-subspace of a linear space K generated by X1 ∪ . . .∪Xn for n ≥ 1. Then K(n)

is a subalgebra of an algebra K and dimK(n) = dimK(n+1)/K(n) = ℵ0 for every
n > 1. Clearly, K =

⋃∞
n=1K

(n).

Theorem 2.10. ([2, Theorem 2]) Let K1, K2, K3, K4 be algebras over a field k
of dimension α ≥ |k|, where α > ℵ0 which satisfy the condition (∗). Then any
associative k-algebra A of dimension ≤ α can be embedded into a certain simple
associative k-algebra A such that A = A1 +A2 +A3 +A4 for some its subalgebras
Ai ∼= Ki, where i = 1, 2, 3, 4.

Using Theorem 2.10 and Example 2.9 we get straight away the following

Corollary 2.11. Let p be a prime number and let A be a Zp-algebra with zero
multiplication of dimension ℵ0. Then, every at most countable ring R such that
pR = 0 can be embedded in some simple ring A such that pA = 0 and A is a sum
of four subrings Ai ∼= A. In particular, there exist a simple idempotent countable
ring P such that pP = 0 and P = P1 +P2 +P3 +P4 for some its countable subrings
P1, P2, P3, P4 with zero multiplication.

Now we will present in more detail mentioned in the introduction very important
result of Bokut’.

Theorem 2.12. ([2, Theorem 3]) Any associative k-algebra can be embedded into
a simple k-algebra being an algebraic sum of its three nilpotent k-subalgebras, each
of which is a free nilpotent algebra of index nilpotency three.

Corollary 2.13. Let p be a prime number and let A be a free nilpotent Zp-algebra
of index nilpotency three and dimension ℵ0. Then, every at most countable ring R
such that pR = 0 can be embedded in some countable simple ring A such that pA = 0
and A is a sum of three subrings Ai ∼= A. In particular, there exist an idempotent
countable simple ring P such that pP = 0 and P = P1 +P2 +P3 for some nilpotent
countable subrings P1, P2, P3 (each of which is isomorphic to A).

It turns out that the following generalization of [14, Theorem 3.1] holds.

Proposition 2.14. Let R1, R2, and R3 be subrings of a ring R such that R =
R1 + R2 + R3. If R1 is a nilpotent ring, R2

2 = {0}, and R2
3 = {0}, then R is

a nilpotent ring.

Proof. We proceed by induction with respect to the index n of nilpotency of R1.
For n = 1, we get R1 = {0}, so the assertion follows from [6]. Suppose that n > 1
and the assertion holds for any smaller index of nilpotency.

Consider the subring S = R1 +Rn−1
1 R of R. By the modularity of the lattice of

subgroups of the group R+ we obtain that S = S ∩R = R1 + (R2 +R3) ∩ S. Now
we show that S is nilpotent. Since R1 is a nilpotent right ideal of S, the ideal I of
S generated by R1 is nilpotent too. Moreover, S = I + (R2 + R3) ∩ S. First we
prove that ((R2 +R3)∩S)m = {0} for some positive integer m. Let m = n+ 3 and
let ai = bi+ ci be elements of (R2 +R3)∩S, where bi ∈ R2, ci ∈ R3 and 1 ≤ i ≤ m.
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Notice that the condition R1ai ⊆ R2
1 implies that for every r ∈ R1, there exists

r ∈ R2
1 such that

(2.1) rbi = −rci + r.

To show that a1a2 · · · am = 0, it is enough to prove that

(2.2) x1y2x3y4 · · · zm = 0,

where zm = xm if m = 2k + 1 or zm = ym if m = 2k for some k ∈ N. We have the
following two cases related to (2.2)

(1) x1, x3, . . . ∈ R2 and y2, y4, . . . ∈ R3,
(2) x1, x3, . . . ∈ R3 and y2, y4, · · · ∈ R2.

First assume (1). Clearly, y2x3 = t1 + x + y for some t1 ∈ R1, x ∈ R2, and
y ∈ R3. Furthermore, by (2.1) we have t1y4 ∈ t1R2 +R2

1. Hence x1y2x3y4 · · · zm =
x1(y2x3)y4 · · · zm = x1t1y4x5 · · · zm ∈ x1(t1R

2
2 + R2

1x5) · · · zm = x1R
2
1x5y6 · · · zm.

Therefore, x1y2x3y4 · · · zm = x1t2x5y6 · · · zm for some t2 ∈ R2
1. Consequently, by

(2.1), t2x5 ∈ t2R3 + R3
1, so x1y2x3y4 · · · zm = x1t3y6 · · · zm for some t3 ∈ R3

1.
Similarly, after n steps, we get x1y2x3y4 · · · zm = x1tnzm, where tn ∈ Rm1 , which
gives x1y2x3y4 · · · zm = 0. The proof of (2.2) for (2) runs analogously.

It follows that ((R2 +R3)∩S)m = {0}, and consequently, S is nilpotent. There-
fore, a subring T = Rn−1

1 + Rn−1
1 R ⊆ S is nilpotent too. But T is a right

ideal of R, so the ideal J of R generated by T is nilpotent. Moreover, R/J =
(R1 +J)/J+(R2 +J)/J+(R3 +J)/J . It is easy to see that ((R1 +J)/J)n−1 = {0}.
Now we apply the induction hypothesis to infer that the ring R/J is nilpotent and
consequently R is nilpotent too. �

In the context of the presented results, the following question arises.

Problem 2. Let R1, R2, and R3 be subrings of a ring R such that R = R1+R2+R3.
Is it true that if R1 and R2 are nilpotent rings, R2

3 = {0}, then R is a nilpotent
ring?

By above proposition and [14, Theorem 3.1] we obtain the following

Proposition 2.15. Let R1, R2, and R3 be subrings of a ring R such that R =
R1 +R2 +R3. If R1 is a nil PI ring, R2

2 = {0} and R2
3 = {0}, then R ∈ β.

The next two problems are naturally associated with foregoing propositions.

Problem 3. Let R1, R2, and R3 be subrings of a ring R such that R = R1+R2+R3.
Is it true that if R1 is a nil PI ring, R2

2 = {0}, and R2
3 = {0}, then R is a nil PI

ring?

Problem 4. Let R1, R2, and R3 be subrings of a ring R such that R = R1+R2+R3.
Is it true that if R1 is a left (right) T -nilpotent, R2

2 = {0}, and R2
3 = {0}, then R

is a left (right) T -nilpotent?

To present another result recall some standard properties concerning radicals.
A radical R is called left hereditary or right hereditary if for every ring S ∈ R,
I <l S or I <r S implies I ∈ R. Furthermore, R is called left strong or right strong
if for every ring S, R(S) contains all the left or right S-ideals of S, respectively.
A radical R containing β, left (or right) hereditary, and left (or right) strong is
called N -radical (for detals see [17]). Examples of N -radicals are β, L and J .
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Lemma 2.16. Let B and A be an R-radical subring of a ring R, where R is an N -
radical, and a subgroup of the additive group of R, respectively. If R = A+B and
Ad ⊆ B for some positive integer d, and R(R) = 0, then AB ⊆ A and BA ⊆ A.

Proof. Since R(R) = 0, rR(R)2 = {0} and rR(R) <r R we have rR(R) = {0}. Note
that if AB * A, then there exists x ∈ AB such that x = a + b, where a ∈ A and

b ∈ B. Hence Ad−1b ⊆ B. Therefore, Ab ⊆ B for some 0 6= b ∈ B. Consequently,
Rb ⊆ B, whence Rb ∈ R because of Rb <l B. But Rb <l R and R(R) = 0,
so Rb = {0}, and consequently rR(R) 6= {0}, a contradiction. Thus AB ⊆ A.
Similarly, we show that BA ⊆ A. �

Proposition 2.17. Let A be a subgroup of the additive group of R, and B be a R-
radical subring of R, where R is an N -radical such that R ⊆ L. If R = A+B and
Ad ⊆ B for some positive integer d, then R ∈ R.

Proof. Without loss of generality we can assume thatR(R) = 0. Moreover, A 6= {0}
and B 6= {0}, so there exists b ∈ B such that the left ideal Rb = Ab + Bb of R
is non-zero. Furthermore, R(R) = 0, whence Rb /∈ R. By Lemma 2.16, Ab ⊆ A,
so (Ab)d ⊆ Bb. Clearly, Bb ∈ R. Suppose that Bb * R(Rb). Take any x ∈ B
such that xb /∈ R(Rb). Since R ⊆ L, the subring G generated by {b, x} in B is
nilpotent. Hence there exists a positive integer n ≥ 1 which is maximal with respect
to the condition Gnb * R(Rb). As b ∈ G, we get bGnb ⊆ R(Rb), and consequently
RbGnb ⊆ R(Rb). Therefore, if S = Rb/R(Rb), then rS(S) 6= {0}, a contradiction.
Hence Bb ⊆ R(Rb). Whence S = (Ab+R(Rb))/R(Rb). But (Ab)d ⊆ Bb ⊆ R(Rb),
so S is nilpotent. Therefore, Rb ∈ R once again gives a contradiction. �

In this way, we obtained some generalization and simpler proof of [8, Lemma
3.9], where the assertion of Proposition 2.17 has been proved for R = L under
the assumption d = 2, and [14, Proposition 2.4], where R = β. Furthermore, the
assertion of Proposition 2.17 has been obtained for R = J in [15, Theorem 2.2],
although is known that L ⊆ J .

This motivates the next following question:

Problem 5. Let A be a subgroup of the additive group of a ring R, and let B be
an R-radical subring of R, where R is an N -radical. Is it true that if R = A + B
and Ad ⊆ B for some positive integer d, then R ∈ R?

Proposition 2.18. Let A be a subgroup of the additive group of a ring R, and let
B be a non-zero left T -nilpotent subring of R. If R = A+B and lR(R) = {0}, then
lR(An) ∩ lR(B) = {0} for every n ∈ N.

Proof. Since lR(R) = {0}, it follows from Proposition 2.4 that An 6= {0} for every
n ∈ N. Let L = lR(B). Since B 6= {0} and B is left T -nilpotent, lB(B) 6= {0}, so
L 6= {0}. For 0 6= x ∈ L we have 0 6= xR = xA. Let X be the set of all positive
integers n such that xAn 6= {0} for every x ∈ L \ {0}. Clearly, 1 ∈ X.

Suppose that X is finite. Then there exists the largest number n in X. Hence
for some non-zero x ∈ L, we have xAn+1 = {0}. But xAn 6= {0}, lR(R) = {0}, and
R = A+B, so xAnB 6= {0}. Hence xAnb1 6= {0} for some b1 ∈ B. Suppose that for
a certain k ∈ N there are elements b1, . . . , bk ∈ B such that xAnb1 · . . . · bk 6= {0}.
Since xAnBAn ⊆ x(A + B)An = xAn+1 = {0}, xAnb1 . . . bkAn = {0}, whence
xAnb1 . . . bkB 6= {0}, that is xAnb1 . . . bkbk+1 6= {0} for some bk+1 ∈ B. Thus, we
constructed a sequence (bk) of elements of B such that xAnb1 . . . bk 6= {0}, and
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consequently, b1 · . . . · bk 6= 0 for all k ∈ N. This contradicts the fact that the ring
B is left T -nilpotent.

Thus the set X is infinite. Take any m ∈ N. Then there exists k > m such that
k ∈ X. Take any non-zero x ∈ L. Then 0 6= xAk ⊆ xAm, so xAm 6= {0}, and
consequently m ∈ X. Hence X = N. This means that L ∩ lR(Am) = {0} for every
m ∈ N. �

As a consequence of Proposition 2.18 we get a simple proof of [1, Theorem 2.6].
Namely, we have the following

Corollary 2.19. Let B and A be a left T -nilpotent subring of a ring R and a sub-
group of the additive group of R, respectively. If R = A+B and Ad ⊆ B for some
positive integer d, then the ring R is left T -nilpotent.

Proof. Since Ad ⊆ B, we have lR(B) ⊆ lR(Ad). But from the left T -nilpotence
of B it follows that lR(B) 6= {0}, so lR(Ad) ∩ lR(B) 6= {0}. By Proposition 2.18,
lR(R) 6= {0}. Now it is easy to see that every non-zero homomorphic image of R
has the non-zero left annihilator, so R is a left T -nilpotent ring. �
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