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Another generalisation of Stewart's Theorem

PANAGIOTIS T. KRASOPOULOS

Introduction
The aim of this Article is to present a natural generalisation of a well-

known result from plane geometry, called Stewart's Theorem. We will
present our result in the Euclidean space , but we will prove it only for

. Since its proof for  is involved, our intention is to give the
details in another Article. A search in the relative literature returns many
articles which generalise Stewart's Theorem in different directions. We first
refer the reader to [1], where a collection of generalisations of Stewart's
theorem is presented. In [2], two results are given, which describe a relation
between  points in the Euclidean space  and their weighted average. If
we apply these theorems to the plane, we straightforwardly get Stewart's
Theorem. Another result is given in [3], which is also reproduced in [1].
This result considers  points in  which belong to a hyperplane  of
dimension  and another point , and presents an interesting
relation that combines distances between each of these points and ,
hypervolumes of simplices and powers of points with respect to
hyperspheres. Another relative result which involves convex quadrilaterals
on the plane is proved in [4]. Lastly, in [5], a generalisation of [4] is proved
for  points in , and a relation is found between distances of these points
and the distance of two corresponding averages (of these points). These
articles support the fact that there can be many interesting generalisations of
Stewart's Theorem in different directions.
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Let us now first recall Stewart's Theorem from plane geometry:
Theorem 1 (Stewart's Theorem): Let a triangle  and let a point

 on , where  and . Then
ABC

G = u1B + u2C BC u1, u2 ≥ 0 u1 + u2 = 1

[AG]2 = u1 [AB]2 + u2 [AC]2 − u1u2 [BC]2 . (1)
Where  denotes the length of the line segment . We should note here
that if  is the midpoint of  then Stewart's Theorem
becomes Apollonius' Theorem, a result known from antiquity. In the next
Section we will present and prove by using only elementary tools, our result
in the Euclidean space .

[AB] AB
G = 1

2 (B + C) BC

�3

Generalisation in �3

In order to present a generalisation in  we first need to consider the
generalisation of a triangle in the Euclidean space . This can be a
tetrahedron, and so we consider a non-degenerate tetrahedron  with
faces , ,  and . Note that now , ,  and  are points in
the Euclidean space . We also consider a point  on the face  such
that  with  and .

�3

�3

ABCD
ABC ABD ACD BCD A B C D

�3 G BCD
G = u1B + u2C + u3D u1, u2, u3 ≥ 0 u1 + u2 + u3 = 1
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Let us also denote by  the area of the triangle . Finally, we use the
notation of a vector as . Therefore, our result is stated as
follows:

[ABC] ABC
B − A = AB

→

Theorem 2: Let a tetrahedron  and let a point  on the face  such
that , where  and . Then

ABCD G BCD
G = u1B + u2C + u3D u1, u2, u3 ≥ 0 u1 + u2 + u3 = 1

(2)
u1 [ABG]2 + u2 [ACG]2 + u3 [ADG]2

= u1u2 [ABC]2 + u2u3 [ACD]2 + u3u1 [ADB]2 − u1u2u3 [BCD]2 .

Proof: We find it convenient to use the cross product and its properties. It is
known that the cross product gives the area of the parallelogram which is
spanned by two non-collinear vectors  and . The area of a triangle
is the half of the area of the corresponding parallelogram and so is given by

. Let us first define the following:

AB
→

AC
→

ABC

[ABC] = 1
2 |AB

→
× AC

→|
b
→

= AC
→

× AD
→

,  c
→

= AD
→

× AB
→

,  d
→

= AB
→

× AC
→

.
From the above we get

[ACD] =
1
2

|b→| ,  [ADB] =
1
2

|c→| ,  [ABC] =
1
2

|d→| . (3)

Our aim now is to write all the areas which appear in (2) as functions of the
vectors ,  and . We first need to express  as followsb

→
c
→

d
→

AG
→

AG
→

= G − A = u1B + u2C + u3D − (u1 + u2 + u3)A = u1AB
→

+ u2AC
→

+ u3AD
→

.
Now we can calculate,

[ABG] =
1
2

|AB
→

× AG
→| .

By substituting  in the above equation and using the fact that
 where  is the zero vector and also the fact that the cross

product distributes over addition, we get

AG
→

AB
→

× AG
→

= O
→

O
→

[ABG] =
1
2

|u2d
→

− u3c
→| ,

where we have also used the anti-commutative property of the cross
product, i.e.  Similarly, we calculate the
areas of  and . Thus, we have

AB
→

× AD
→

= −AD
→

× AB
→

= −c
→
.

[ACG] [ADG]
[ABG] =

1
2

|u2d
→

− u3c
→|,  [ACG] =

1
2

|u3b
→

− u1d
→|,  [ADG] =

1
2

|u1c
→

− u2b
→|.  (4)

Finally we want to express  as a function of ,  and . Thus[BCD] b
→

c
→

d
→

[BCD] =
1
2

|BC
→

× BD
→| .
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But we have  and . HenceBC
→

= BA
→

+ AC
→

BD
→

= BA
→

+ AD
→

BC
→

× BD
→

= (BA
→

+ AC
→) × (BA

→
+ AD

→)
= BA

→
× AD

→
+ AC

→
× BA

→
+ AC

→
× AD

→
= b

→
+ c

→
+ d

→
.

Where we have used the fact that  and again the anti-
commutative property of the cross product. Thus, we have shown that

BA
→

= −AB
→

[BCD] =
1
2

|b→ + c
→

+ d
→| . (5)

As the next step, we need to square all these areas. For this we need the
dot product and its properties. Recall that the dot product is commutative
and like the cross product distributes over addition. We will also use freely
the fact that . Therefore squaring (3), (4) and (5) we gets

→2 = s
→
s
→

= |s→|2

[ACD]2 =
1
4

b
→2,  [ADB]2 =

1
4

c
→2,  [ABC]2 =

1
4

d
→2,

[ABG]2 =
1
4

(u2
2d

→2 + u2
3c

→2 − 2u2u3c
→
d
→) ,

[ACG]2 =
1
4

(u2
1d

→2 + u2
3b

→2 − 2u1u3b
→
d
→) , (6)

[ADG]2 =
1
4

(u2
1c

→2 + u2
2b

→2 − 2u1u2b
→
c
→) ,

[BCD]2 =
1
4

(b→ + c
→

+ d
→)2

.

Now using (6) we will prove (2). First, we rewrite (2) as

u1u2u3 [BCD]2

= u1u2[ABC]2 + u2u3[ACD]2 + u3u1[ADB]2 − u1[ABG]2 − u2 [ACG]2 − u3[ADG]2 .
Using (6), the right-hand side of the above equation can be written as

u1u2 [ABC]2 + u2u3[ACD]2 + u3u1[ADB]2 − u1 [ABG]2 − u2[ACG]2 − u3[ADG]2

=
1
4

u1u2d
→2 +

1
4

u2u3b
→2 +

1
4

u3u1c
→2 −

1
4

u1u
2
2d

→2 −
1
4

u1u
2
3c

→2 −
1
4

u2u
2
1d

→2

−
1
4

u2u
2
3b

→2 −
1
4

u3u
2
1c

→2 −
1
4

u3u
2
2b

→2 +
1
4

2u1u2u3(c→d
→

+ b
→
d
→

+ b
→

c
→)

=
1
4

u1u2 (1 − u1 − u2)d
→2 +

1
4

u2u3(1 − u2 − u3)b
→2

+
1
4

u3u1 (1 − u3 − u1)c
→2 +

1
4

2u1u2u3(c→d
→

+ b
→
d
→

+ b
→
c
→)

=
1
4

u1u2u3(b→2 + c
→2 + d

→2 + 2(c→d
→

+ b
→

d
→

+ b
→
c
→))

=
1
4

u1u2u3(b→ + c
→

+ d
→)2

= u1u2u3[BCD]2 .

Thus we have shown (2) and the proof is complete.
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We have now proved the generalisation of Stewart's Theorem in . In
the proof, we used only elementary tools like the cross product and the dot
product. In the next Section, we will present our generalisation in the
Euclidean space .

�3

�n

Generalisation in �n

We have seen that Stewart's Theorem is a result in  which involves
lengths of line segments, and Theorem 2 is a result in  which involves
areas of triangles. Respectively, we expect that a result in  will involve
volumes of tetrahedra and in  will involve hypervolumes of simplices.
Therefore in order to present a generalisation in  we need to consider
simplices in . A simplex  in  is defined by  points in
general position, . Let us also note that a simplex
in  has as its facets (like the sides of a triangle or the faces of a
tetrahedron) objects in , which are simplices of dimension . Thus,
any combination of  points of its  vertices  is a facet of
this simplex. In order to generalise the concept of length, area and volume in
more dimensions, we say that a facet, e.g. , of this simplex has
as its content (hypervolume) the quantity . In this
respect, a triangle  is a simplex in  and its side  has 1 content
(length) equal to . A tetrahedron  is a simplex in  and a face
e.g.  of it, has 2 content (area) equal to . A simplex  in
has as its facets tetrahedra and a facet of it, e.g. the tetrahedron , has
3 content (volume) equal to . As we saw, the same concept holds for
simplices in . So a simplex  in , and a facet of it e.g.

, has content (hypervolume) equal to .
Having all this in mind, we are now ready to present our theorem in :

�2

�3

�4

�n

�n

�n AA1… An �n n + 1
A, A1, … , An ∈ �n AA1… An

�n

�n n − 1
n n + 1 A, A1, … , An

AA1… An − 1
(n − 1) [AA1… An −1]

ABC �2 AB
[AB] ABCD �3

BCD [BCD] ABCDE �4

ABCD
[ABCD]

�n AA1… An �n

AA1… An −1 (n − 1) [AA1… An −1]
�n

Theorem 3: Let a simplex  in  and a point  which
belongs to the facet , where  and . Then

AA1… An �n G = ∑n
i =1 uiAi

A1… An u1, … , un ≥ 0 u1 +  … + un = 1

∑
{x1,…,xn − 2} ∈ X

ux1… uxn − 2 [AAx1… Axn − 2G]2

= ∑
{y1,…,yn − 1} ∈ Y

uy1… uyn − 1 [AAy1… Ayn − 1]
2 − (∏n

i = 1

ui) [A1… An]2 . (7)

Where the set  contains the sets of all the combinations of  elements

from . Its cardinality is .

Correspondingly, the set  contains the sets of all the combinations of

 elements from . Its cardinality is .

X n − 2

{1, … , n} |X| = ( ) =
n (n − 1)

2
n

n − 2
Y

n − 1 {1, … , n} |Y| = ( ) = nn
n − 1

As we have said, we will not prove Theorem 3 here. Our intention is to
present its proof in another article. But for now, we will see how Theorem 3
becomes Stewart's Theorem for  and Theorem 2 for .n = 2 n = 3

https://doi.org/10.1017/mag.2024.116 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.116


482 THE MATHEMATICAL GAZETTE

Let , then the simplex  becomes the triangle  and
we have a point  with  and . In
this case we have that , and the left-hand side of (7) trivially
becomes . We also have that , and so the right-hand
side of (7) becomes . Therefore

n = 2 AA1… An AA1A2
G = u1A1 + u2A2 u1 + u2 = 1 u1, u2 ≥ 0

X = ∅
[AG]2 Y = {{1} , {2}}

u1 [AA1]2 + u2 [AA2]2 − u1u2 [A1A2]2

[AG]2 = u1 [AA1]2 + u2 [AA2]2 − u1u2 [A1A2]2 ,

and we observe that this equation is identical to (1), if we just set
and .

A1 = B
A2 = C
For  we have a tetrahedron  and a point

 with  and . In
this case we have  and the left-hand side of (7)
becomes

n = 3 AA1A2A3
G = u1A1 + u2A2 + u3A3 u1 + u2 + u3 = 1 u1, u2, u3 ≥ 0

X = {{1} , {2} , {3}}

u1 [AA1G]2 + u2 [AA2G]2 + u3 [AA3G]2 .

Moreover,  and the right-hand side of (7) becomesY = {{1,2}, {2,3}, {3,1}}
u1u2 [AA1A2]2 + u2u3 [AA2A3]2 + u3u1 [AA3A1]2 − u1u2 u3 [A1A2A3]2 .

Hence

u1 [AA1G]2 + u2 [AA2G]2 + u3 [AA3G]2

= u1u2 [AA1A2]2 + u2u3 [AA2A3]2 + u3u1 [AA3A1]2 − u1u2u3 [A1A2A3]2 ,

and this equation is identical to (2) if we set ,  and .
Consequently, Theorem 3 for  is Stewart's Theorem and for  it
is Theorem 2, as was expected.

A1 = B A2 = C A3 = D
n = 2 n = 3

Acknowledgement
I would like to thank Professor Mowaffaq Hajja for stimulating

discussions about this work and simplex geometry generally.

References
1. F. Bellot Rosado, Quelques généralisations du théoréme de Stewart,

40e Congrés de la SBPMef Namur (août 2014).
2. T. M. Apostol, M.A. Mnatsakanian, Sums of squares of distances in -

space, Amer. Math. Monthly 110 (June-July 2003) pp. 516-526.
m

3. O. Bottema, Eine Erweiterung der Stewartschen Formel, Elem. Math. 34

(1979) pp. 138-140.
4. Ali R. Amir-Moez, J. D. Hamilton, A generalized parallelogram law,

Math. Mag. 49 (March 1976) pp. 88-89.

https://doi.org/10.1017/mag.2024.116 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.116


ANOTHER GENERALISATION OF STEWART'S THEOREM 483

5. A. J. Douglas, A generalization of Apollonius theorem, Math. Gaz. 65

(March 1981) pp. 19-22.

10.1017/mag.2024.116 PANAGIOTIS T. KRASOPOULOS
©  The Authors, 2024 Department of Informatics, KEAO
Published by Electronic National Social Security Fund
Cambridge University Press 12 Patision Street,
on behalf of The Mathematical Association  10677 Athens, Greece

e-mail: pan_kras@yahoo.gr

Nemo (continued from page 477)

3. But one day, after standing for a while at the window, looking down on
the street where he had first seen the beloved form of Ericson, a certain
old mood began to revive in him. He had been working at quadratic
equations all the morning; he had been foiled in the attempt to find the
true algebraic statement of a very tough question involving various
ratios.

4. And how I did cram! I had two years' new work to do in a third of a year.
For five weeks I crammed, until simultaneous quadratic equations and
chemical formulas fairly oozed from my ears. And then the master of the
academy took me aside. He was very sorry, but he was compelled to
give me back my tuition fee and to ask me to leave the school.

5. I asked this great creature in what other branches of education she
instructed her pupils? 'The modern languages,' says she modestly:
'French, German, Spanish, and Italian, Latin and the rudiments of Greek
if desired. English of course; the practice of Elocution, Geography, and
Astronomy, and the Use of the Globes, Algebra (but only as far as
quadratic equations); for a poor ignorant female, you know, Mr. Snob,
cannot be expected to know everything.

6. The equation on the page of his scribbler began to spread out a widening
tail, eyed and starred like a peacock's; and, when the eyes and stars of its
indices had been eliminated, began slowly to fold itself together again.
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