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Abstract We prove a general formula that relates the parity of the Langlands parameter of a conjugate
self-dual discrete series representation of GLn to the parity of its Jacquet-Langlands image. It gives
a generalization of a partial result by Mieda concerning the case of invariant 1/n and supercuspidal
representations. It also gives a variation of the result on the self-dual case by Prasad and Ramakrishnan.

Introduction

Let F be a p-adic field. We have two parametrizations of the isomorphism classes of the

discrete series representations of GLn(F ), the local Jacquet-Langlands correspondence

and the local Langlands correspondence. If we fix an inner form GLm(D) of GLn(F ),
the former associates each discrete series representation of GLn(F ) with a discrete series

representation of the inner form in such a way that a certain character relation holds

(see [8, 21]). The latter is a Galois-theoretic parametrization which associates each
discrete series representation of GLn(F ) with a discrete Langlands parameter, that is,

an irreducible n-dimensional representation of the Weil-Deligne group WF × SL2(C),

where WF is the Weil group of F. These two correspondences preserve the notion
of contragredient representations and hence preserve the notion of self-duality. An

irreducible self-dual representation π is an orthogonal or a symplectic representation,

and the parity c(π) is defined to be 1 if it is orthogonal and to be −1 otherwise. Hence,

there arises a natural question, whether the composite of these correspondences preserves
the parity or not.
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2 Y. Takanashi

Prasad and Ramakrishnan [19] have proved a precise result below by using a globalizing

method.

Theorem 0.1 [19, Theorem A]. Let D be a central division algebra over F of rank d, G

be GLm(D), and π be a discrete series representation of G. Let σ denote its Langlands

parameter. Then there exists a parity relation

(−1)mdc(π) = (−1)mc(σ)m.

In particular, the parity inversion occurs if G is the unit group of a division algebra of
even rank.

One can consider its conjugate self-dual analog if one can define a Galois involution

on the set of isomorphism classes of irreducible representations of GLm(D). Mieda [15]
has formulated and proved a special case of this variant by constructing the involution

explicitly. We state here the unramified quadratic case of his result in detail.

Let E/F be an unramified quadratic extension and D be a central division algebra over
E whose Hasse invariant is 1/n. In this case, we can write D in the form En[Π], where

En is the unramified extension of the p-adic field E of degree n, and Π is a prime element

of D, such that Πn is equal to a uniformizer of F. We define the automorphism τ of D by

declaring that it fixes Π and it coincides with the Frobenius map over F on En = F2n,
where F2n is the degree 2n unramified extension of F.

In this situation, we define that a smooth irreducible representation (π,V ) of G is

said to be conjugate self-dual if we have πτ ∼= π∨, where πτ (g) = π(τ(g)) and π∨ is the
contragredient representation of π. In addition, we have the notion of parity c(π), defined

in a similar way as the self-dual case (for the details, see [15, Section 2.1]).

Theorem 0.2 [15, Theorem 1.2]. Let π be a conjugate self-dual representation of D×

and σ be its Langlands parameter. We also assume that σ is a supercuspidal parameter.

Then we have

c(π) = (−1)n−1c(σ).

His proof is based on p-adic geometry. Furthermore, he conjectured that this result
could be extended to all the discrete series representations [15, Remark 2.13]. We use

the global method to generalize his result. One of the keys of the proof of Prasad and

Ramakrishnan is the automorphic descent theorem for orthogonal and symplectic groups

proved by Jiang and Soudry [19, Appendix]. Hence, we can consider the conjugate self-
dual analog of their method if we establish the notion of self-duality in general and use

the automorphic base change theorem for unitary groups by Mok [16]. In this paper, we

will show that this idea works indeed.
To state our main theorem, we introduce some notations. Let E/F be a quadratic

extension of p-adic local fields, and let D be a central division algebra of rank d over E.

For simplicity, we assume that D is not split. We write the Hasse invariant of D in the
form s/d, where 0< s < d and gcd(s,d) = 1. Let A=Mm(D) be a central simple algebra

over E, and let n=md be its rank over E. Then, if we take the central simple algebra A′

over F of rank 2n whose Hasse invariant is s/2d, we have an inclusion φ : A→A′ over F.
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Parity of conjugate self-dual representations 3

Furthermore, if we put G = A× and G′ = NormA′×(A×), the normalizer of A× in A′×,
we have an exact sequence

1→G
φ−→G′ → Z/2Z→ 1.

We have the notion of conjugate self-duality and parity c(G,G′,π) ∈ {±1} with respect
to the inner automorphism Int(τ) induced by τ ∈G′ \G. The details are given in Section

1.2. We also have the notion of conjugate self-duality and parity for inclusion of the Weil

groups WE → WF . The well-definedness and the dependence on τ of these notions are
proved in Lemma 1.7 (see also Remark 5.3 on the actual dependence of the parity on our

choice of τ).

We now state our main theorem.

Theorem 0.3 (Main Theorem, see Theorem 5.2 for the complete statement). Let

(G,G′) be the pair associated with A above. Let π be a conjugate self-dual discrete series
representation of G = A×, and let σ denote its Langlands parameter. Then we have

c(G,G′,π) = (−1)(n−1)msc(WE,WF ,σ)
ms.

At the moment, there seem few explicit descriptions of the local Jacquet-Langlands
correspondence for general noncuspidal discrete series representations, as mentioned in

the introduction in [22]. Our main theorem is valid in the case that we do not have explicit

descriptions. Also, the equation depends on the number s which comes from the Hasse
invariant of D, and this is a significant difference between our main theorem and the

result of Prasad-Ramakrishnan.

The referee kindly informed the author, and the author checked that in the special case
that we have m = 1, d is odd and τ2 = 1, the result follows from Theorem 0.2 and the

proof of Theorem 1 in [18, p.337, l.6].

Outline of the proof

We will follow the globalizing method used in [19] to prove their main theorem. Here, we
give the method of our proof in a nutshell.

1. We first define the notion of conjugate self-duality, which generalizes the notion

defined by Mieda [15, Section 2.10]. In the literature, the only local quadratic cases

are treated. To apply the global method, we need to extend the notion to quadratic
extensions of both local and global fields. The extension will be done by means of

the theory of central division algebras in Sections 1 and 2, especially in Construction

2.10.
This construction comes from Mieda’s construction in the unramified quadratic

case. It indicates that the automorphism τ in the setting of our main theorem is

derived from the inclusion of the division algebras En[Π] =D→D′ = F2n[Π
′]. Here,

D′ is the central division algebra over F of Hasse invariant 1/2n and Π′ is a prime

element of D′ whose square is Π. Indeed, the automorphism τ above is the inner

automorphism induced by Π′.
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4 Y. Takanashi

2. We then introduce some global theorems by Mok and Badulescu-Jacquet-Langlands
in Section 3. We use these theorems in a similar way as the globalizing method of

Prasad and Ramakrishnan.

3. We then prove some local results in Section 4 which will be used to obtain a product

formula of the parity, which is an analog of the [19, Theorem C].
We introduce some notations in order to state our product formula. Let L/K

be a quadratic extension of number fields and G denote A×(AL), where A is a

central simple algebra over L. Furthermore, let B be a central simple algebra over
K which satisfies B⊗K L ∼= M2(A). In this situation, we have an inclusion of K -

algebras A → B, and if we define G′ to be NormB×(A×)(K)G, then we have an

exact sequence

1→G
φ−→G′ → Z/2Z→ 1.

The proof of these facts will be given in Section 2.1. Hence, we obtain the notion

of self-duality again.

Proposition 0.4 (Proposition 5.1). Let Π =
⊗′

wΠw be an automorphic conjugate

self-dual representation which appears in the discrete spectrum of G with a unitary
central character ω. Let also S be the set of places of K where B does not split and

put Πv =
⊗

w|vΠw for each place v of K. Then we have∏
v∈S

c(Gv,G
′
v,Πv) = 1.

By using this product formula and by controlling the places at which B splits, we

can reduce the general case to the case already proved. The method of this reduction

is the same as the one used in [19], and the idea is stated right after the statement

of Theorem C loc. cit.

4. We finally prove the main theorem by combining the globalizing results introduced

in Section 3 and the product formula above.

Notations

All the underlying spaces of representations of a group are assumed to be C-vector spaces
in this paper. We also assume that representations of locally compact totally disconnected

groups are smooth (i.e., nondegenerate).

1. A notion of conjugate self-duality

In this section, we recall a notion of conjugate self-dual representations and their parity.
The notion presented here is a special case of the definition in [15, Section 2.1].

1.1. Basic definitions

Definition 1.1. A pair of locally compact groups (G,G′) is said to be a conjugating pair

if G is an open subgroup of G′ and the index [G :G′] of this pair is equal to two.
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Example 1.1 (Inclusion of the Weil groups associated with quadratic extensions). We

take a quadratic extension of local fields E/F and let G be the Weil group WE of E and

G′ be the Weil group WF of F. Then (WE,WF ) is a conjugating pair (see [10, Section 2]).

Example 1.2 (Component-wise conjugation). We take a quadratic extension of local

fields E/F , and let conj be the nontrivial element of the Galois group of E/F .

Furthermore, let G be GLn(E) and G′ be the semi-direct product of G and Z/2Z defined
by the component-wise conjugating action induced by conj. Then, (G,G′) is a conjugating

pair.

Example 1.3 (Switching components). Let E be a quadratic split étale algebra F ×F
over a local field F. Then, GLn(E) is canonically isomorphic to GLn(F )×GLn(F ) by

the product of two projections from E to F. We define an action of Z/2Z on GLn(E) by

switching those two components. This action defines a conjugating pair, as in Example 1.2.

Example 1.4 (Nontrivial construction over local fields). See [15, Definition 2.10] for

nontrivial constructions of conjugating pairs from division algebras over non-Archimedean

local fields. We have already introduced the case of unramified quadratic extensions in

our Introduction. In Construction 2.10, we generalize this construction using the theory
of central simple algebras over fields.

We have the notion of conjugate self-dual representations for every conjugating pair of

locally profinite groups. Let (G,G′) be a conjugating pair of locally profinite groups. For
an element τ of G′, let Int(τ) denote the inner automorphism induced by τ . If we take

a smooth representation (π,V ) of G, we write (πτ ,V ) for the representation defined by

πτ (g) = π(Int(τ)(g)) and π∨ for the contragredient representation of π.

Definition 1.2. A smooth irreducible representation (π,V ) of G is said to be conjugate

self-dual with respect to (G,G′) if there exists an element τ ∈G′ \G, such that πτ ∼= π∨.

Remark 1.5. If (π,V ) is conjugate self-dual in the above sense, then πτ ∼= π∨ for all
τ ∈ G′ \G. In addition, the second dual π∨∨ of π is equivalent to π because we have

τ2 ∈G. Hence, (π,V ) is an admissible representation in this case.

1.2. Parity associated with a conjugating pair

We fix τ ∈G′ \G for a moment, and we recall the definition of parity in [15, Section 2.1].

Let (G,G′) be a conjugating pair and (π,V ) be a conjugate self-dual representation with

respect to (G,G′). Then, there exists a nondegenerate bilinear pairing 〈·,·〉 : V ×V → C

satisfying 〈π(τ(g))(x),π(g)(y)〉 = 〈x,y〉 for all x,y ∈ V and g ∈G. By Schur’s lemma, such

a pairing is unique up to scalar multiplication.

Since our setting is now a special case of [15, Section 2.1], we can use the results proved
there.

Lemma 1.6 [15, Lemmas 2.1, 2.5]. Let G be a totally disconnected locally compact

topological group. We fix a continuous automorphism τ : G → G of G and t ∈ G, such
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6 Y. Takanashi

that

τ2 = Int(t),τ(t) = t.

Let π be a smooth irreducible representation of G, such that πτ ∼= π∨. We take an invariant
bilinear pairing 〈·,·〉 : πτ ×π → C.

1. Then, there exists Cπ(τ,t) ∈ ±1, such that

〈π(t)y,x〉= Cπ(τ,t)〈x,y〉.

2. We take h∈G, and set τ ′ = Int(h)◦τ and t′ = hτ(h)t. Then, we have πτ ∼= π∨ if and

only if πτ ′ ∼= π∨. If this condition holds, we also have Cπ(τ,t) = Cπ(τ
′,t′).

Lemma 1.7. There exists C(G,G′,π) ∈ {±1}, such that

〈π(τ2)y,x〉= C(G,G′,π)〈x,y〉.

It does not depend on which τ ∈G′ \G we take.

Proof. If we take τ2 ∈G as the element t, it follows from Lemma 1.6

Definition 1.3. We call the above constant C(G,G′,π) the parity of π with respect to

(G,G′). The representation π is said to be conjugate orthogonal (respectively, conjugate

symplectic) if the parity is equal to 1 (respectively, −1).

The next lemma follows trivially from the definition of parity.

Lemma 1.8 [15, Lemma 2.5]. Let (G,G′) and (H,H ′) be conjugating pairs, and let π
and ρ be conjugate self-dual representations of G and H, respectively. Then, the exterior

tensor product π� ρ is a conjugate self-dual representation of G×H, and furthermore,

the parity of π�ρ is the product of the parity of π and ρ.

Example 1.9. If we take a conjugating pair as in Example 1.1, we obtain the notion of

conjugate self-duality and parity defined in [10, Section 2]. Similarly, if we take such a
pair as in Example 1.2, we obtain the usual notion of conjugate self-duality and parity.

Remark 1.10. We also treat conjugate self-dual representations of Archimedean groups
(strictly speaking, (g,K)-modules) in this paper. The definition above is easily extended

to the Archimedean case, that is, the case where G and G′ are reductive Lie groups, by

applying Dixmier’s lemma instead of Schur’s lemma.

2. Central simple algebra settings

2.1. A construction of conjugating pairs

In this section, we construct conjugating pairs from quadratic extensions of fields and
central simple algebras over those fields. As we noted in the Introduction, we need to

construct conjugating pairs in both local and global situations to apply the globalizing

results. For this reason, we consider general quadratic extensions.
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Let E/F be a field extension of finite degree n ∈ Z>0. We do not assume that E or F

be local fields or global fields. In addition, let A be a central simple algebra over E and

B be a central simple algebra over F.
The special case A= E of the following lemma is related to the splitting subfield of a

central simple algebra.

Lemma 2.1. Assume that we have an E-algebra isomorphism B⊗F E ∼=Mn(A). Then,

we have an F-algebra homomorphism A→B.

Proof. We take a basis of E over F to obtain a homomorphism of F -algebras E→Mn(F ).

By composing this map to the given isomorphism, we obtain an F -algebra homomorphism

φ : A⊗F Mn(F )∼=B⊗F E →B⊗F Mn(F ).

We use the Skolem-Noether theorem for central simple F -algebras to take c ∈ (B⊗F

Mn(F ))×, such that

(Int(c)◦φ)(F ⊗F Mn(F )) = F ⊗F Mn(F ).

By considering the centralizers of F ⊗F Mn(F ) both in A⊗F Mn(F ) and B⊗F Mn(F ),

we finally get an F -algebra homomorphism

Int(c)◦φ : A→B.

Remark 2.2. By the Skolem-Noether theorem for central simple F -algebras, two

homomorphisms as in this lemma are conjugate under an inner automorphism of B.

In the following of this section, we take E/F as a quadratic extension of fields (hence,

we take n=2), and we assume that the pair (A,B) satisfies the assumption of Lemma 2.1.

Under this assumption, we obtain a homomorphism φ : A→B over F, and for a moment,
we fix that homomorphism.

Let G denote the reductive group ResE/F (A
×) over F, and H denote the reductive

group B× over F.

Lemma 2.3. There exists an exact sequence of algebraic F-groups

1→G
φ−→NormHG→ Z/2Z

F
→ 1.

Here, Z/2Z
F

denotes the constant group scheme associated with Z/2Z.

Proof. Let Q denote the quotient of the second map of sequences. Then we obtain the

exact sequence

1→G
φ−→NormHG→Q→ 1.

We consider the base change of this sequence to an algebraic closure F of F. Then this

sequence becomes

1→GLn(F )×GLn(F )
φF−−→NormGL2n(F )(GLn(F )×GLn(F ))→QF → 1,

where n is the rank of A over E.
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8 Y. Takanashi

We claim that QF is isomorphic to Z/2Z
F
. By using the Skolem-Noether theorem over

F , we may assume that φF is the diagonal embedding. Then the image of this embedding

in GL2n(F ) is a maximal Levi subgroup, the claim then follows easily.

The lemma follows from this claim and the fact that Q has the identity element as an
F -valued point.

Furthermore, we assume that F is infinite in the following argument. Let G denote G(F )

and also H denote H(F ). Then, by taking the long exact sequence of Galois cohomology
of the above and applying Hilbert’s Theorem 90 [11, Lemma 2.7.4], we obtain :

Corollary 2.4. Assume that F is infinite. Then there exists an exact sequence

1→G
φ−→NormH G→ Z/2Z→ 1.

Proof. It suffices to check that NormH G = (NormHG)(F ). This equality follows from
the density result in [24, Corollary 13.3.9].

Hence, in the above setting, we can obtain the conjugating pair (G,NormH G).

Definition 2.1. The above conjugating pair is said to be associated with (A,B,φ).

Remark 2.5. By the theorem of Skolem-Noether over F, the notion of parity and

conjugate self-duality with respect to (G,NormH G) does not depend on how to take

φ. So in the following argument, we omit φ.

By the Zariski density of G in A, that is A viewed as a scheme over F, NormH G =

NormH A = NormH A. Hence, each element of NormH G induces an automorphism of A

and hence of its center Z(A) = E. So we have a map

NormH G→Gal(E/F ).

Lemma 2.6. The map above is surjective.

Proof. Since E is a simple algebra over F and B is a central simple algebra over F, we

have a dimension formula [E : F ][CentB(E) : F ] = [B : F ] (see [14, Theorem 2.43]). As

CentB(E) contains A, the equation above shows that they have the same dimensions over
F. It follows that CentB(E) = A. Hence, all the elements of NormH G \G map to the

nontrivial element of the Galois group, and the map above is surjective.

By Corollary 2.4 and Lemma 2.6, we have obtained an automorphism of A that induces
the nontrivial Galois involution on Z(A) = E.

Remark 2.7. Note that this automorphism induces a nontrivial Galois action on the

set of isomorphism classes of the irreducible discrete series representations of GLn(E)

through the local Jacquet-Langlands correspondence.

Remark 2.8. The local Langlands correspondence preserves the notions of conjugate

self-dual representations.
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Remark 2.9. The sequence in Lemma 2.4 does not split in general. Indeed, if the
sequence splits, it is necessary that A has an involution that induces the nontrivial Galois

involution on Z(A) = E. Then, by the Galois descent, A has to be a base change of a

central simple algebra over F. However, that cannot be true if we take any quaternion
algebra over E.

2.2. Notations in local and global settings

In this subsection, we fix notations for pairs of central simple algebras over both local

fields and number fields used in our globalizing method.

In the following of this paper, we only treat number fields and p-adic and Archimedean
local fields, so all the fields below are assumed to be of characteristic zero unless otherwise

stated.

First, we treat the case of extensions of local fields.

Construction 2.10. Let E/F be a quadratic extension of local fields. In addition, let
A = Mm(D) be a central simple algebra of rank n = md over E. If the rank d of D is

strictly larger than one, we write s/d for the Hasse invariant of A in the way that s

satisfies 0 < s < d and gcd(s,d) = 1. Let B be the central simple algebra over F of rank

2n whose Hasse invariant is s/2d. If d= 1, we take s= 0 and let B be the central simple
algebra M2n(F ) over F.

Then, we have B⊗F E ∼= M2(A) and obtain the conjugating pair (G,G′) associated

with (A,B) using the results in the previous subsection.

Next, we treat the case of quadratic split étale algebras. Let E be a quadratic split
étale algebra F ×F over F.

Construction 2.11. We associate the conjugating pair of Example 1.3.

Finally, we consider a conjugating pair in a global setting. We only use the following

special constructions.
Let L/K be a quadratic extension of number fields and v be a finite place of K that

does not split in this extension. Let Lv denote the completion of L with respect to the

place v of L. We assume that we are given a central simple algebra A over Lv of rank
n=md over Lv. We write s/d for the Hasse invariant of A as in Construction 2.10.

We also assume that we are given ms finite places v1, . . . vms that also do not split and

unramified in L, and central division algebras Ai over Lvi
whose Hasse invariant is equal

to −1/n.

Construction 2.12. By the theorem of Brauer-Hasse-Noether ([17, p.184 Theorem],

[27, Chapter XIII Section 6, Theorem 4]), we can globalize (A,{Ai}) uniquely to a central

division algebra D over L by declaring that we take split central simple algebras at other

places.
Moreover, by the similar construction taking B of Construction 2.10 at v and taking

central division algebras Bi over Kvi
whose Hasse invariant is equal to −1/2n for

i= 1,2, . . . ,ms, we obtain a central division algebra E over K.
Then we have E⊗K L ∼= M2(D), so we associate the conjugating pair (G,G′), where

G=D×(AL) and G′ =NormE×(D×)(K)G, with L/K.
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Remark 2.13. In general, if we have a quadratic extension of number fields L/K and

central simple algebras A over L and B over K, which satisfy B⊗K L∼=M2(A), we can

do the same construction as above.

Unless otherwise stated, we will use these notations of conjugating pairs and only

consider the conjugate self-duality with respect to them.

3. Global results that we use

3.1. A globalizing result

We review a globalizing result for conjugate self-dual discrete series representations due
to Mok [16].

Lemma 3.1. Let E/F be a quadratic extension of p-adic fields. There exists a quadratic

extension L/K of number fields, such that K is totally real, L is totally imaginary, and

also it has a finite place v of K that does not split in L and the completion of L/K at v
is E/F .

Proof. This is an easy consequence of Krasner’s lemma.

Following [16, Sections 2.1 and 2.4], we introduce some notations about the base change

map for the quasi-split unitary group.

We first define Langlands parameters for reductive groups following [3] and [6].

Definition 3.1. Let F be a non-Archimedean local field. We define LF as the direct
product WF ×SL2(C), where WF be a Weil group of F. Let G be a connected reductive

group over F. We write LG for the L-group of G. It is defined as follows: Let Φ =

(X,Δ,X∨,Δ∨) be the based root datum of G and Φ∨ = (X∨,Δ∨,X,Δ) be its dual. There
exists the reductive group G∨ over C whose root datum is equal to Φ∨. It is defined up

to isomorphism and called the dual group of G. If we fix a splitting of G∨, the action of

WF on Φ induces an action of WF on G∨. The semi-direct product defined by this action
is the L-group of G.

Definition 3.2. A Langlands parameter for LG is a continuous homomorphism

φ : LF → LG,

such that

• φ commutes with the projections to WF .
• φ(w) is semi-simple for all w ∈WF .
• φ|SL2(C) is algebraic.

We define Φ(LG) as the set of G∨-conjugacy classes of Langlands parameters for LG.

Definition 3.3. A parabolic subgroup P∨ of G∨ is F -relevant if the set of simple roots

attached to P∨ corresponds to a parabolic subgroup of G defined over F. A parabolic

subgroup P∨ of G∨ is said to be WF -quasi-stable if NormLG(P
∨)→WF is surjective.
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Let φ be a Langlands parameter for LG. Let P∨ be a WF -quasi-stable parabolic

subgroup with Levi factor L∨, such that Im(φ) is contained in NormLP (L
∨), where LP =

WF �P∨, and P∨ is minimal with this property. The parameter φ is said to be G-relevant
if P∨ is F -relevant.

Let Φ(G) be the subset of G-relevant Langlands parameters for Φ(LG).

Definition 3.4. A Langlands parameter φ for LG is said to be discrete if there exists

no proper WF -stable Levi subgroup L∨, such that LL contains φ(LF ). It is said to be
bounded if the projection of φ(WF ) to G∨ is bounded.

Remark 3.2. The discreteness of a parameter φ is equivalent to finiteness of
CentG∨(Imφ)/Z(G∨)WF , where CentG∨(Imφ) is the centralizer of Imφ in G∨ (see the

remark before [12, Lemma 3.1] and the proof of [6, Proposition 3.6]).

Let E/F be a local or global quadratic extension, and CE be E× in the local case

and A
×
E/E

× in the global case. Let ZE be the set of unitary characters of CE which
are conjugate self-dual with respect to the Galois action. We define Z+1

E (respectively,

Z−1
E ) as the set of elements of ZE whose restriction to CF is trivial (respectively, the

quadratic character corresponding to E/F ). It is easily seen that these sets Z+1
E and Z−1

E

are nonempty as follows:

Lemma 3.3. Let E/F be a quadratic extension of number fields. Then, the sets Z+1
E and

Z−1
E are nonempty.

Proof. The statement about Z+1
E is trivial because the trivial character belongs to Z+1

E .

Hence, it suffices to show the claim that we can extend the quadratic character of A×
F /F

×

to A
×
E/E

×. If we can prove that A×
E/E

×NmE/F (A
×
E) is locally compact Hausdorff, then

the claim follows from [9, Theorem 4.39]. There is a canonical homeomorphism

A
1
E/E

×NmE/F (A
1
E)→ A

×
E/E

×NmE/F (A
×
E)

induced from a canonical inclusion

A
1
E/E

× → A
×
E/E

×.

Hence, it suffices to show that A1
E/E

×NmE/F A
1
E is Hausdorff. However, this follows from

the fact that A
1
E/E

× is Hausdorff and NmE/F (A
1
E)E

×/E× = Im(NmE/F : A1
E/E

× →
A

1
E/E

×) is compact.

Furthermore, let UE/F (n) be the quasi-split unitary group of n-variables for a quadratic

extension E/F .

Definition 3.5 [16, Section 2.1]. Let κ belong to {±1} and E/F be a local quadratic
extension. Furthermore, let χκ belong to Zκ

E . We define the base change map

ξχκ
: Φ(UE/F (n)(F ))→ Φ(GLn(E)) as

φ 	→ ((pr1 ◦φ|LE
)⊗χκ, pr2 ◦φ|LE

),
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12 Y. Takanashi

where pr1, pr2 are the projections from LUE/F (n) to UE/F (n)
∨ and WF , respectively,

and we identify an element of Zκ
E with a character of the Weil group of E via the local

class field theory.

Remark 3.4. The map is induced from an L-embedding LU(n)→ LResE/F (GLn) (see

[16, (2.1.9)]).

Lemma 3.5.

1. The base change map is injective, and its image equals the set of conjugate self-dual

parameters with parity (−1)n−1κ.

2. Let φ be an element of Φ(UE/F (n)) and φ′ = ξχκ
(φ) be its base change. If φ′ is a

bounded and discrete parameter, then φ is also bounded and discrete.

Proof.

1. It is [16, Lemma 2.2.1].

2. It easily follows from the criterion of Remark 3.2 and Schur’s lemma.

The local Langlands classification for tempered representations of the quasi-split unitary

group is proved by Mok (see [16, Theorem 2.5.1]). Roughly speaking, for each bounded
Langlands parameter φ, there exists a finite set of tempered irreducible representations

Πφ called an L-packet associated to φ. We will use the following consequence of the local

classification theorem by Mok.

Theorem 3.6 [16, Section 7.7, (7.7.17)]. Let E/F be a local quadratic extension. If a
Langlands parameter φ for UE/F (n) is discrete and bounded, the associated L-packet Πφ

consists of square-integrable representations.

Proof. It follows from the construction of L-packets in [16, Section 7.7] and especially
remarks after [16, Proposition 7.7.4].

Theorem 3.7. Let L/K be a quadratic extension of number fields, such that K is totally

real and L is totally imaginary. Let also v1, . . . ,vm be a set of finite places which does not

split in L/K, and we fix a place v of K which splits in L/K. Furthermore, let π1, . . . ,πm

be discrete series representations of the groups ULvi
/Kvi

(n)(Kvi
). Then there exists a

cuspidal automorphic representation Π of UL/K(n)(AK), whose local component at each

vi is isomorphic to πi and supercuspidal at v.

Proof. It follows directly from [23, Corollary 4.5] by taking S as the set v1, . . . ,vm and U

as the point corresponding to discrete series representations and taking the restriction of a

matrix coefficient of a supercuspidal representation to 0G (see [20, Chapter V.2.3]) as the

test function at v. We can replace it with a modification of the proof of [7, Theorem 1B].

We also use a corollary of the global classification theorem by Mok [16]. We recall some

notations to state it.
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Parity of conjugate self-dual representations 13

Definition 3.6 [16, Section 2.3]. Let E/F be a quadratic extension of number fields.

1. We define a simple global parameter of GLN (AE) to be a formal tensor product

μ�ν,

where μ is a unitary cuspidal automorphic representation of GLm(AE) and ν is an

n-dimensional algebraic representation of SL2(C), such that mn=N .

2. A finite formal direct sum

l1(μ1�ν1)� · · ·� lr(μr�νr)

is called a global parameter of GLN (AE) if each li is a positive integer and each formal
summand is a simple global parameter of GLmi

(AE), such that
∑r

i=1 limi =N .

3. A global parameter is said to be elliptic if all the numbers li above are equal to 1

and all the simple global parameters μi are conjugate self-dual.

Remark 3.8 [16, Remarks after (2.3.3)]. There exists a bijection between the set of

global parameters of GLN (AE) and the full automorphic spectrum of GLN (AE). A simple

parameter corresponds to a discrete automorphic representation.

We now state a corollary of the global classification theorem by Mok [16].

Theorem 3.9 [16, Theorem 2.5.2]. Let E/F be a quadratic extension of number fields
and χκ be a character in Zκ

E. Then, there is a map

Π 	→ BC(Π)

from the set of representations in the discrete automorphic spectrum of UE/F (N) to the

set of elliptic global parameters of GLN (AE). If Π is supercuspidal at one place v of F

which splits in E/F , it induces the local base change map associated to χκ at all the places

and also BC(Π) is conjugate self-dual and cuspidal.

Remark 3.10. See [16, Definitions 2.4.5, 2.4.7] for the definition of discrete global

parameter for the quasi-split unitary group, and also see [16, Theorem 2.5.2] for a more
precise statement.

Proof. The first assertion is in the statement of [16, Theorem 2.5.2]. We prove the second
assertion. We use the notation of [16, Chapter 2]. It suffices to show that the global

parameter ψ associated to Π is generic, and hence the localization of global parameter

at each place associated with Π is a Langlands parameter (not just an A-parameter). It

follows from our hypothesis about supercuspidality at v and the definition of localization
of global parameters at a split place in [16, p. 24] that the A-parameter ψv attached to Π

at v is generic, because the associated Langlands parameter φψv
corresponds to a unitary

supercuspidal representation of GLn(Ev). Hence, the global parameter ψ associated to Π
is also generic and BC(Π) is cuspidal.

Theorem 3.11. Let L/K be a global quadratic extension and v1, . . . ,vm be a finite set of

finite places which do not split in this extension. Furthermore, let π1, . . . ,πm be discrete
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14 Y. Takanashi

conjugate self-dual representations of GLn(Lvi
), such that their Langlands parameters

have the same parity.

Then, there exists a conjugate self-dual cuspidal automorphic representation Π of
GLn(AL) whose local component at each vi is isomorphic to πi.

Proof. First, we fix an element χ of Zκ
E , such that (−1)n−1κ is equal to the parity of the

Langlands parameter of π1. We use the local components of this character χ to define the

local base change map. By using Lemma 3.5 (i), we can attach the given representations

πi to discrete bounded Langlands parameters φi of the quasi-split unitary group. Here,
we use the hypothesis that the parameters have the same parity.

We then choose representations π′
i from the L-packets associated with φi. By Theorem

3.6, they are discrete series representations. We can now globalize the representations π′
i

to cuspidal automorphic representation Π′ of UL/K by the method of Theorem 3.7.
By applying Theorem 3.9, we obtain the cuspidal conjugate self-dual automorphic

representation Π = BC(Π′) of GLn(AL) whose each localization at vi is isomorphic to πi.

Hence, the theorem.

Remark 3.12. Recently, Wakatsuki and the author gave a different proof of the

Theorem 3.11 in the preprint [25, Theorem 1.6], which does not depend on Arthur’s
endoscopic classification for quasi-split unitary groups.

3.2. Special cases of the global Jacquet-Langlands correspondence

We also use the Badulescu-Jacquet-Langlands correspondence [4], which also has been

used in [19, Theorem 1.2].

Definition 3.7 [2, Definition 1.5]. Let G be a connected reductive group over a p-adic

field F. The Aubert-Zelevinsky involution of a smooth representation π of G of finite

length is defined to be

DG(π) =
∑

P⊆G : standard parabolic

(−1)dim(AP )iGP (r
G
P (π)),

where iGP (π), r
G
P (π) are the normalized induction and the normalized Jacquet module of

π with respect to P, and AP is the split component of the center of a Levi component

of P. It is an element of the Grothendieck group of smooth representations of G of finite

length (for example, see [20, Chapters VI.6.2 and VI.6.4]).

Theorem 3.13 [2, Corollaire 3.9]. If π is irreducible, then there exists a sign ε, such that

εDG(π) is an irreducible representation. We denote this representation by |DG(π)|.

Remark 3.14. The map π 	→ |DG(π)| is said to be induced from the Aubert-Zelevinsky

involution in this paper.

Now, we recall the Badulescu-Jacquet-Langlands correspondence, which is one of the

main tools for our proof.

Definition 3.8 [4, p.385, l.8]. Let F be a local field. Let D be a central division algebra

over F of rank d. Then, the group G′ =GLm(D) is an inner form of G=GLmd(F ) over F.
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We define the subset Gmd,d as the set of g ∈ G, such that there exists a regular semi-
simple element g′ ∈G′ whose characteristic polynomial is equal to that of g. Let π be an

irreducible representation of G. We say a representation π d-compatible if there exists an

element g ∈Gmd,d, such that the character χπ of π satisfies χπ(g) 
= 0.

Definition 3.9. Let K be a number field. Let D be a central division algebra over K

of rank d, and let V be the set of places of K which D is not split. Let G′ = GLm(D)
be an inner form of G = GLmd(K). Let DS(G) (respectively, DS(G′)) be the set of

discrete automorphic representations for G (respectively, G′). For any v ∈ V , we have

G′
v = GLmv

(Dv) for some mv and Dv of rank dv. We say an element Π ∈ DS(G) is

D-compatible if, for all v ∈ V , Πv is dv-compatible.

Theorem 3.15. Let K be a number field. Let D be a central division algebra over K of
rank d, and let V be the set of places of K which D is not split. We assume that the set V

does not contain any infinite places. Let G′ =GLm(D) be an inner form of G=GLmd(K).

Let DS(G) (respectively, DS(G′)) be the set of discrete automorphic representations for

G (respectively, G′).

1. There exists a unique injective map LJ : DS(G′)→DS(G), such that for any Π′ ∈
DS(G′) and for any v /∈ V , we have Π′

v = LJ(Π′)v. The image of LJ consists of the

set of D-compatible discrete automorphic representations of G.

2. Let Π∈DS(G) be a D-compatible discrete automorphic representation, such that the
representations Πv are Speh representations or generalized Steinberg representations

for all v ∈ V . Then, either the representation LJ(Π)v or its Aubert-Zelevinsky

involution has the same Langlands parameter with Πv for any v ∈ V .

3. The multiplicity one and the strong multiplicity one theorem hold for DS(G′).

Proof.

1. This is (a) of [4, Theorem 5.1].

2. This follows from [4, Proposition 3.7].

3. This is (b), (c) of [4, Theorem 5.1].

4. Local results that we use

In this section, following the globalizing method of [19], we prove some local results which

will be combined with the global results above.

4.1. Triviality of parity at almost all places

First, we prove that the local components of a global conjugate self-dual representation
are conjugate orthogonal in almost all places.

Lemma 4.1. Let G be a totally disconnected locally compact Hausdorff topological group

and K be an open compact subgroup of G. We also assume that there exists an involution

θ of G which stabilizes K. Let also π be an irreducible representation that is conjugate
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16 Y. Takanashi

self-dual with respect to θ and satisfies dimCπ
K = 1. Then π is conjugate orthogonal with

respect to θ.

Proof. Let G′ be a semi-direct product of G and Z/2Z defined by θ. Then, we have a

conjugating pair (G,G′) and use the notation in Section 1.2. Note that in this case, we

have τ2 = 1. Let 〈·,·〉 be the invariant form in Section 1.2. Then the restriction of this
form to πK is nondegenerate and symmetric, hence, by the definition of the parity, we

have C(G,G′,π) = 1.

Lemma 4.2. Let U(n) be the closed subgroup of GLn(C) consisting of unitary matrices.

Then all the unitary finite-dimensional representations of U(n) are conjugate self-dual
representations with respect to component-wise complex conjugation conj on U(n).

Proof. Let δ be a unitary finite-dimensional representation and χδ be its character. Then
we have χδ(conj(k)

−1) = χδ(
tk), and this is equal to χδ(k) by the conjugation theorem

for connected compact Lie groups.

We use the notations of Section 2.2.

Lemma 4.3.

1. Let E/F be a quadratic extension of p-adic fields. We take the conjugating pair (G,G′)
associated with (Mn(E),M2n(F )). Then all the conjugate self-dual representations of

G are orthogonal.

2. Let C/R be the quadratic extension of Archimedean local fields. Let the conjugating

pair (G,G′) be associated with (Mn(C),M2n(R)), and also let K = U(n). Then all

the conjugate self-dual (g,K)-modules of G are orthogonal.

3. Let E be a quadratic split étale algebra over a local field F. Then all the conjugate
self-dual representations of G=GLn(E) are orthogonal.

Proof.

1. This follows from Lemma 4.1 above and [1, Theorem 1.1] for E.

2. We prove this in a similar fashion as Lemma 4.1. Note that K is stable under the

complex conjugation. We use the same notation as Lemma 4.1 (see also Remark

1.10).
Let (π,V ) be a conjugate self-dual (g,K)-module of G. By [26, Theorem 4.9], there

exists a K -type δ that appears in π with multiplicity one. Let V (δ) be the δ-isotypic

component of π.
Then, it suffices to show that the restriction of a nondegenerate invariant form in

Section 1.2 to V (δ) is nondegenerate. This follows from Lemma 4.2.

3. Let π = π1 ⊗π2 be an irreducible conjugate self-dual representation of G. In this

case, we have π2
∼= π∨

1 . We identify these representations.
Then we can explicitly give a symmetric invariant form by 〈x1 ⊗ x2,y1 ⊗ y2〉 =

〈y2,x1〉〈x2,y1〉, where the pairing of the right-hand side is the canonical pairing

between π1 and π∨
1 .
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4.2. A special case of the main theorem

In this subsection, we introduce a special case of the main theorem that has already been

proven by Mieda and that we will use later.

Theorem 4.4 [15, Theorem 1.2 and Proposition 4.5].

1. The main theorem 0.3 is valid for the case where E/F is at worst tamely ramified

and the Hasse invariant of D is 1/n, and the representation is supercuspidal.

2. In the situation of (i) and if E/F is unramified, there exist both conjugate orthogonal
and conjugate symplectic simple supercuspidal representations.

For references about simple supercuspidal representations, see the beginning of [15,

Section 4.1]. Mieda computed the parity of those representations using an explicit

description of the local Jacquet-Langlands correspondence for simple supercuspidal

representations proved in [13].

Remark 4.5. In our conjugate self-dual case, we cannot utilize the supercuspidal
representations of depth zero as in [19], because there is no such representation if E/F is

unramified and the rank of the division algebra is even. We can deduce this claim from

the classification of such representations stated in [19, Section 4] as follows.

We first take an unramified quadratic extension E/F and a division algebra D over E
of rank n. Let π be a depth zero irreducible representation of D× with a supercuspidal

parameter. This representation is obtained from the following procedure. We take the

unramified extension En over E of degree n and a character χ : E×
n → C

× regular with
respect to Gal(En/E). Note that the field En is equal to the unramified extension F2n over

F of degree 2n. Let E×
n (1) be the first congruence subgroup for E×

n . We assume that the

character χ is trivial on E×
n (1). Let Dn be the centralizer of En. Then, we can obtain the

character χ̃= χ◦NrdDn/En
of the group D×

nD
×(1), where D×(1) is the first congruence

subgroup of D×. Then, we have the induced representation π = indD
×

D×
n D×(1)

(χ̃) and all

the representations we are considering are obtained in this manner.
If this representation is conjugate self-dual, then we have πτ ∼= π∨. By the construction,

we may assume the element τ stabilizes En = F2n. Hence, by the argument as in [19,

Proof of Proposition 4.1], there exists an integer i ∈ Z, such that we have χ= χFrobE
2i−1

.
However, the Galois group Gal(En/E) is an even cyclic group as we assume that n is

even, so the element Frob2i−1
E is not trivial. This contradicts the fact that χ is regular.

Hence, the claim follows.

4.3. Parity invariance under the Aubert-Zelevinsky involution

We will use Theorem 3.15, but in this correspondence, a discrete series representation π
at a nonsplit place might be switched its place with |DG(π)|. In this subsection, we prove

that the map induced from the Aubert-Zelevinsky involution does not change the parity

for conjugate self-dual representations of the group of units of central simple algebras
over non-Archimedean local fields, following the method of Prasad-Ramakrishnan [19].

We use the notation fixed in Construction 2.10 and only consider the cases of nonsplit

places. Note, firstly, that in this situation, we may assume (and do assume) that the
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conjugate action of a conjugating pair preserves all the parabolic and Levi subgroups
over F by the Skolem-Noether theorem. We give the details.

Remark 4.6.

1. Let E/F be a quadratic extension of p-adic fields. We take the central simple algebra
A over E as in Construction 2.10 and use the notation in the construction. Then, we

write A in the form that A = Mm(D), where D is a division algebra over E whose

Hasse invariant is s/d. In this case, B can be written in the form that Mm(B′), where
B′ is a central simple algebra over F whose Hasse invariant is s/2d.

We obtain an F -algebra homomorphism D → B′ by Lemma 2.1, and Mm(D) →
Mm(B′) by applying Mm(·). We take this homomorphism as A→B. So, if we take
an element h ∈ B′× \D× which normalizes D×, we can take τ = diag(h, . . . ,h) as

an element of G′ \G, where diag(. . .) denotes an element of the diagonal subgroup

(B′×)n ≤GLm(B′).

2. It is easily seen that Int(τ) above fixes a Haar measure ofG, soG′ is unimodular. Also,
Int(τ) preserves all the parabolic subgroups of G over E and their Haar measures.

Definition 4.1.

1. For each parabolic subgroup P of G over F, we define P ′ as NormG′(P ). It is equal

to the semi-direct product defined by the action of τ on P. We define M ′ as the

group generated by τ and M for all the Levi subgroups M of G over F.

2. We define the normalized induction functor iG
′

P ′ and the normalized Jacquet module
functor rG

′

P ′ for a parabolic subgroup P of G over F in the similar fashion as the case

of G.

Remark 4.7. If ρ is a representation of Levi subgroup M of a parabolic subgroup P of

G over F, we easily obtain a natural isomorphism iG
′

P ′(ind
M ′

M (ρ))∼= indG
′

G (iGP (ρ)). We have
the similar isomorphism for the Jacquet functors.

Proposition 4.8. In the situation of Construction 2.10, the map induced from the

Aubert-Zelevinsky involution does not change the parity of a unitary conjugate self-dual
representation π of G, such that |DG(π)| is also unitary.

We prove this proposition by using some lemmas proved below. The following lemma

is essentially the same statement as [10, Lemma 3.5].

Lemma 4.9. For the conjugating pair (G,G′) and a conjugate self-dual representation

(π,V ), indG
′

G (π) is a multiplicity-free, has length at most 2, and self-dual representation
of G′ with the same parity as (π,V ). It is unitary if π is unitary.

Proof. The statement about multiplicity-freeness and the length follows from the

Frobenius reciprocity. The second and third assertions are obvious by the definition of

conjugate self-duality and parity.

Definition 4.2. A representation of a group G is said to be defined over R if it has a

real form.
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Lemma 4.10. Let π′ be an admissible unitary multiplicity-free self-dual representation

of G′ with parity c ∈ {±1}. Then, c = 1 if and only if π′ is a representation of G′ defined
over R.

Proof. The proof of [19, Lemma 2.2] works similarly in this case.

Lemma 4.11. The composite of the normalized Jacquet functor and the normalized

induction for a parabolic subgroup P of G over F induces an endomorphism of the
Grothendieck group of the category of representations of G′ of finite length and defined

over R.

Proof. It suffices to show that the normalized Jacquet functor and the normalized

induction preserve the finiteness of length. Considering the Clifford theory (for example,
see [5, Lemma 2.9]) and the Frobenius reciprocity, it suffices to show the finiteness for

representations of the form indG
′

G (ρ), where ρ is an irreducible representation of G. In this

case, we have iG
′

P ′(rG
′

P ′ (ind
G′

G (ρ))) ∼= indG
′

G (iGP (r
G
P (ρ))). Hence, it follows from [20, VI.6.2,

VI.6.4] and the Clifford theory above.

Lemma 4.12. Let G be a totally disconnected group. A semi-simple representation
π of finite length of G is defined over R if its image in the Grothendieck group of

representations of G of finite length lies in the subgroup generated by representations

of G of finite length and defined over R.

Proof. In this situation, π can be written as

π =
∑
ρ

mρρ

in the Grothendieck group, where ρ runs through a finite set of representations of finite

length and defined over R and each mρ is an integer. We also have ρ= ρ0⊗RC, where ρ0
is a real form of ρ. By decomposing ρ0 into irreducible representations of G on R-vector
spaces, we assume that each ρ0 is irreducible and mutually nonisomorphic. Note that if

we take different ρ0 and ρ′0, the sets of irreducible subquotients of ρ and ρ′ are disjoint,

since each subquotient of ρ (respectively, ρ′) is ρ0-isotypic (respectively, ρ′0-isotypic) as a
representation of G over an R-vector space. So, if we can prove that each ρ is semi-simple,

then our lemma follows. We prove this. We may assume that ρ is not irreducible. Then,

the length of ρ is equal to 2, and we have ρ= ρ1⊕ρ2, where ρ1, ρ2 are some irreducible
representations of G. In this case, we have an isomorphism ρ0 ∼= ρ1 by considering the

composition series of ρ as a representation over an R-vector space. So, we have

ρ∼= ρ1⊗RC
∼= ρ1⊗C (C⊗RC)∼= ρ1⊕ρ1.

Hence, the lemma.

Proof of the Proposition 4.8. The map induced from the Aubert-Zelevinsky involu-
tion is an automorphism of order two on the set of the equivalence classes of irreducible

representations of G. Hence, it suffices to show that it sends conjugate orthogonal

representations to conjugate orthogonal ones.
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Let π be a unitary conjugate orthogonal representation of G. Then, π′ = indG
′

G (π) is a
unitary orthogonal representation of G′. Hence, by Lemmas 4.9 and 4.10, π′ is defined over

R. Applying Lemmas 4.9 and 4.11 to π′, we conclude that indG
′

G (|DG(π)|) is a multiplicity-

free unitary representation and belongs to the Grothendieck group of the category of
representations of finite length and defined over R. Then, Lemmas 4.10 and 4.12 show that

indG
′

G (|DG(π)|) is defined over R and orthogonal. Hence, |DG(π)| is conjugate orthogonal
by Lemma 4.10.

4.4. An auxiliary lemma

When G is a group, let Gop denote its opposite group. We use the following trick.

Lemma 4.13. Let π be a conjugate self-dual representation with respect to (G,G′). Then
πop defined by πop(g) = π(g−1) is conjugate self-dual with respect to (Gop,G′op), and has

the same parity as π.

Proof. It easily follows from the definition of parity.

5. Proof of the main theorem

In this section, we finally prove the main theorem. We first prove the following product

formula for the parity of automorphic conjugate self-dual representations. We use the

notation of Remark 2.13 which is a generalization of Construction 2.12.

5.1. A product formula for parity

Proposition 5.1. Let L/K be a quadratic extension of number fields, and let (A,B) be
as in Construction 2.13 and take the associated conjugating pair (G,G′). Let Π=

⊗′
wΠw

be an automorphic conjugate self-dual representation of A×(AL) which appears in the

discrete spectrum with a unitary central character ω. Let also S be the set of places at
which B does not split, and put Πv =

⊗
w|vΠw for each place v of K. Then we have∏

v∈S

c(Gv,G
′
v,Πv) = 1.

Proof. If we can show that Π is conjugate orthogonal for the pair (G,G′), then this

proposition follows from Lemmas 1.8, 4.1, and 4.3. The desired orthogonality results

from the same argument as [19, Section 3] using the multiplicity one theorem (Theorem

3.15). We give the details.
First, we take a K -valued point τ in G′ \G. Since Π appears in the discrete spectrum

with multiplicity one, we can consider Π as a space of functions on A×(L)\A×(AL). This

space has an invariant bilinear form, namely,

〈f1,f2〉=
∫
ZA× (AL)A×(L)\A×(AL)

f1(Int(τ)(g))f2(g)dg.

We claim that it is nondegenerate. Because Π is conjugate self-dual, unitary and also

the multiplicity one theorem for Π (Theorem 3.15) holds, we have f ◦ Int(τ) ∈Π for every
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element f in Π. Hence, the claim. Furthermore, it is an invariant form. By the direct
computation below, we can prove that this form is also conjugate orthogonal, hence, the

theorem

〈Π(τ2)f2,f1〉=
∫
ZA× (AL)A×(L)\A×(AL)

f2(τgτ)f1(g)dg

=

∫
ZA× (AL)A×(L)\A×(AL)

f2(τ
2g)f1(Int(τ)g)dg

=

∫
ZA× (AL)A×(L)\A×(AL)

f2(g)f1(Int(τ)g)dg

= 〈f1,f2〉

(first, we change the variable, then we use the left invariance of f2 for rational points

secondly).

5.2. The proof of the main theorem

We use the notation of Constructions 2.10, 2.12.

Theorem 5.2. Let E/F be a p-adic quadratic extension and A = Mm(D) be a central

simple algebra over E of rank n whose Hasse invariant is s/d. We take the pair (s,d) in
the way that d > 1, 0 < s < d, and gcd(d,s) = 1, or d = 1 and s = 0. Let (G,G′) be the

conjugating pair associated with it in Construction 2.12. Let π be a conjugate self-dual

discrete series representation of G = A×, and let σ denote its Langlands parameter. Then
we have

c(G,G′,π) = (−1)(n−1)msc(WE,WF ,σ)
ms.

Proof. We first apply (i) of Lemma 3.1 to globalize E/F to a quadratic extension of

number fields L/K. Then we take ms finite places v1, . . . ,vms which are inert in L/K,
and construct D and E as Construction 2.12.

We then take conjugate self-dual simple supercuspidal representations πi of D×
vi

for

i = 1, . . . ,ms, whose Langlands parameters have the same parity as σ (see Theorem 4.4

(ii)). Applying Theorem 3.11 to the images of π,π1, . . . ,πms by the local Jacquet-Langlands
correspondence, we get a conjugate self-dual cuspidal automorphic representation Π′

of GLn(AL). Lastly, we use the Badulescu-Jacquet-Langlands correspondence (Theorem

3.15) to obtain the transfer Π of Π′. Note that the strong multiplicity one theorem for
A×(AL) is valid (Theorem 3.15), and the Badulescu-Jacquet-Langlands correspondence

is identity at split places, so Π is conjugate self-dual. By applying the product formula

above and Proposition 4.8, we have the equality

c(G,G′,π) =
ms∏
i=1

c(Gvi
,G′

vi
,πi).

Furthermore, we apply Theorem 4.4, Proposition 4.8, and Lemma 4.13 to obtain

c(Gvi
,G′

vi
,πi) = (−1)n−1c(WE,WF ,σ).
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Substituting this to the first equality, we have

c(G,G′,π) = ((−1)n−1c(WE,WF ,σ))
ms.

This is the very statement of our main theorem.

Remark 5.3. The same argument works if we replace A′ with the central division algebra

A′′ with Hasse invariant (s+d)/2d. We write (G,G′′) for the associated pair in this case.
Then, we obtain the equality

c(G,G′′,π) = (−1)(n−1)m(s+d)c(WE,WF ,σ)
m(s+d)

= c(WE,WF ,σ)
nc(G,G′,π).

By the inflation-restriction sequence for Gm, there are only these two possibilities for

A′ which satisfy the hypothesis of Lemma 2.1. The occurrence of this parity change comes

from the central character of a representation (see [15, Remark 2.2]).
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lisses de longueur finie d’un groupe réductif p-adique, Trans. Amer. Math. 347(6) (1995),
2179–2189.

[3] A.-M. Aubert, Local Langlands and Springer correspondences, in Representa-
tions of Reductive p-Adic Groups, Progress in Mathematics, vol. 328, pp. 1–37
(Birkhauser/Springer, Singapore, 2019).

[4] A. I. Badulescu, Global Jacquet-Langlands correspondence, multiplicity one and
classification of automorphic representations, Invent. Math. 172(2) (2008), 383–438. With
an appendix by Neven Grbac.

[5] J. Bernstein and A. V. Zelevinsky, Representations of the group GLn(F ), where F
is a local non-Archimedean field, Uspehi. Mat. Nauk 31(3(189)) (1976), 5–70.

[6] A. Borel, Automorphic L-functions, in Automorphic Forms, Representations and
L-Functions, Proceedings of Symposia in Pure Mathematics Part 2 XXXIII (Oregon State
University, Corvallis, OR, 1977), 27–61.

[7] L. Clozel, On limit multiplicities of discrete series representations in spaces of automor-
phic forms, Invent. Math. 83(2) (1986), 265–284.

[8] P. Deligne, D. Kazhdan and M.-F. Vigneras, Représentations des algébres centrales
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