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and the proof of the theorem. However, we should remind the reader that
when two theorems, P, Q say, are equivalent (i.e, a proof of P can be
deduced from Q and vice versa) they need not be generalisations of one
another. For example, Pythagorean theorem and Law of Cosines are
equivalent, and the latter is a generalisation of the former but not necessarily
vice versa (note, no generalisation of Law of Cosines is known in the
literature that is proved via Pythagorean theorem, up to now). We like to
remind the reader that in [2, Prob. 15(c). p. 58] it is observed that Euler's
theorem can be deduced from Fermat's theorem. However, in [2], and also in
the literature, in general, the peculiar and simple fact that Fermat's theorem
is, indeed, a generalisation of Euler's theorem too, is overlooked (note, as
John Conway once said, see [1], [3]: All the easy things, at first sight,
appear to have been said already, but you can find that they have not been
said). Finally, we would like to record the following equivalence, also as a
corollary to Theorem B.

Corollary 3: The following theorems are equivalent.
(1) Fermat's theorem.
(2) Euler's theorem.
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108.21 An amazing quartet of integrals

Introduction: Some time ago I stumbled upon the following four related
integral representations of well-known mathematical constants:

π2 = 2J (−2) ,  ζ (3) = 2
7J (−1) ,  π3 = 8J (0) ,  G = 1

4J (1)
where                              

J (k) = ∫
π
2

0
arctanh2 (cos t) cosk t  dt
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and  (Catalan's constant) and  (Apéry's constant) are given by:G ζ (3)

G = ∑
∞

n = 0

(−1)n

(2n + 1)2
,  ζ (3) = ∑

∞

n = 1

1
n3

.

Note that .arctanh x = 1
2 log

1 + x
1 − x

In this Note we will prove these results in an Eulerian way, by turning the
integrals into series which sum to the corresponding constants. This technique,
using integrals to sum series and vice versa, was a favourite of Leonhard Euler.
For instance, when he tried to solve the Basel problem, the problem of
summing the series of the reciprocals of the square numbers (see [1])

1 +
1
22

+
1
32

+  …  +
1
n2

+  … =?

he made use of the integral

∫
log (1 − t)

t
 dt = ∫

1
t (t +

t2

2
+

t3

3
+  …  +

tn

n
+  … ) dt

= t +
t2

22
+

t3

32
+  …  +

tn

n2
+  …  + C.

Solving the Basel problem made Euler famous, and during his lifetime
he gave several proofs of the result. Note that this problem, which had been
around since 1650, was probably tackled by every mathematician of that
time. One of them was Niklaus I. Bernoulli, who used another approach,
leading to a new kind of series. The idea was the following: why not square
the well-known Leibniz series for ? See [2] for the whole story. In doing so
he needed the sum of the series

π
4

1 −
1
2 (1 +

1
3) +

1
3 (1 +

1
3

+
1
5) −  …  +

(−1)n − 1

n ∑
n

i = 1

1
2i − 1

+  …

or, with the notation , the sum ofhn = ∑
n

i = 1

1
2i − 1

∑
∞

n = 1

(−1)n − 1 hn

n
. (1)

Leonhard Euler had no problem summing this series. In a letter to
Johann Bernoulli, uncle of Niklaus, dated July 30, 1738, Euler gave the
formula

2 ∫
arctan x
1 + x2

 dx = ∑
∞

n = 1

(−1)n − 1 hn

n
 x2n (2)

which solves Niklaus' problem since the integral on the left-hand side is
equal to . (Note that Euler didn't write the constant of integration.)arctan2 x

Similar sums to the one in (1) were later studied extensively by Euler,
and are called Euler sums. Using the same method we are able to find Euler-
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like sums for the constants , ,  and , starting from the value of the
integrals  for .

π π2 ζ (3) G
J (k) k = −2, −1,  0,  1

Calculating the integrals: We now prove the four results from the
introduction. The calculation of these integrals proves to be an interesting
and not too difficult exercise in integration. For  the obvious partial
integration leads to a cousin of :

J (−2)
J (−1)

J (−2) = ∫
π
2

0

arctanh (cos t)
cos t

 dt = ∫
π
2

0

log 1 + cos t
1 − cos t

cos t
 dt

which, using the half-angle formulas, reduces to

−2 ∫
π
2

0

log tan t
2

(1 − tan2 t
2) cos2 t

2
 dt = −4 ∫

1

0

log x
1 − x2

 dx.

We calculate this last integral using the substitution  and the
formula

v = log x

∫ v eav dv =
(av − 1) eav

a2
+ C.

Indeed, we have 

∫
1

0

log x
1 − x2

 dx = ∫
 0

−∞

v ev

1 − e2v
 dv = ∫

 0

−∞
v ev ∑

∞

n = 0

e2nv dv

= ∫
 0

−∞
v ∑

∞

n = 0

e(2n + 1)vdv = − ∑
∞

n = 0

1
(2n + 1)2

.

This last sum is equal to . Hence .−π2

8 J (−2) = π2

2

The value of  is found in a similar way:J (−1)

J (−1) = ∫
π
2

0
log2 tan

t
2

 · 
1 + tan2 t

2

1 − tan2 t
2
 dt = 2 ∫

1

0

log2 x
1 − x2

 dx.

Again we use the substitution  and the formulav = log x

∫ v2 eav dv =
(a2v2 − 2av + 2) eav

a3
+ C

leading to

∫
1

0

log2 x
1 − x2

 dx = ∫
0

−∞
v2 ∑

∞

n = 0

e(2n + 1)vdv = ∑
∞

n = 0

2
(2n + 1)3

.

The last series sums to . This proves that .7
4ζ (3) J (−1) = 7

2ζ (3)
In the same way we can rewrite  asJ (0)

J (0) = 2 ∫
1

0

log2 x
1 + x2

 dx = 2 ∫
0

−∞
v2 ∑

∞

n = 0

(−1)n e(2n + 1)vdv

= 4 ∑
∞

n = 0

(−1)n

(2n + 1)3
=

π3

8
.
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Finally, for  we use partial integration to obtainJ (1)

J (1) = ∫
π
2

0
(log2 tan

t
2) cos t dt = −2 ∫

π
2

0
log tan

t
2

 dt.

The same substitution as before leads to

∫
π
2

0
log tan t

2 dt = 2 ∫
0

−∞
v ∑

∞

n= 0

(−1)ne(2n+ 1)vdv = −2 ∑
∞

n= 0

(−1)n

(2n + 1)2
= −2G.

We may ask ourselves if the integral  produces other fundamental
constants for other integers . This is not the case. For  the integral
diverges. For  we use the following set of recurrences. Let  be
defined by

J (k)
k k ≤ −3

k ≥ 1 I (k)

I (k) = ∫
π
2

0
log (tan t

2) cosk t dt,

and note that  can be written asJ (k)

J (k) = ∫
π
2

0
log2 (tan t

2) cosk t dt.

Then we have for  thatk = 1,  2,  3, …

I (k) = −
1
k ∫

π
2

0
cosk − 1 t dt +

k − 1
k

I (k − 2)

J (k) = −
2
k

I (k − 1) +
k − 1

k
J (k − 2) .

These recurrences are reminiscent of the Wallis integral formulas, and it is
an interesting basic calculus exercise to prove them. In addition we have

,  and . It now follows immediately that
all , with  even, have values of the form , and for
odd they have the form .

I (0) = −2G I (1) = −π
2 J (0) = π3

8
J (k) k ≥ 0 C1π + C2π3 k

C3 + C4 · G

The corresponding Euler-like sums: Mimicking Euler we can associate with
each of the four integrals an Euler-like sum. To do this we need a series for

,arctanh2 x

arctanh2 x = ∑
∞

n = 1

hn

n
 x2n

which is very similar to (2). To prove it, note that the derivative should satisfy

2 arctanh x
1 − x2

= 2 ∑
∞

n = 1

hnx
2n − 1

and this is easily checked by multiplying both sides by  and using the
Maclaurin series

1 − x2

arctanh x = 1
2 log

1 + x
1 − x

= ∑
∞

n = 0

x2n + 1

2n + 1
.
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We now use this series in the four integrals. For instance, if we take ,
we can write

J (−2)

J (−2) = ∫
π
2

0

arctanh2 (cos t)
cos2 t

 dt = ∫
π
2

0
∑
∞

n = 1

hn cos2n − 2 t dt.

Hence

J (−2) = ∑
∞

n = 1

hn

n ∫
π
2

0
cos2n − 2 t dt = π ∑

∞

n = 1

hn

(2n − 1) ( ) 1
22n

2n
n

using Wallis' integral formulas, gives the first of the following four Euler-
like sums

,π = 2 ∑
∞

n = 1

( ) hn

(2n − 1) 22n

2n
n

,ζ (3) =
1
7 ∑

∞

n = 1

22nhn

n2 ( )2n
n

,π2 = 4 ∑
∞

n = 1

( ) hn

n22n

2n
n

G =
1
4 ∑

∞

n = 1

22nhn

n (2n + 1) ( ).
2n
n

Note that the first appearance in the literature of this series for  seems to
be in 2018 [3]. The series for Catalan's constant appears to be new.

ζ (3)
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