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Abstract

We show that for arrival processes, the ‘harmonic new better than used in expectation’
(HNBUE) (or ‘harmonic new worse than used in expectation’, HNWUE) property is
a sufficient condition for inequalities between the time and customer averages of the
system if the state of the system between arrival epochs is stochastically decreasing and
convex and the lack of anticipation assumption is satisfied. HNB(W)UE is a wider class
than NB(W)UE, being the largest of all available classes of distributions with positive
(negative) aging properties. Thus, this result represents an important step beyond existing
result on inequalities between time and customer averages, which states that for arrival
processes, the NB(W)UE property is a sufficient condition for inequalities.
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1. Introduction

Measuring the bandwidth utilization of a communication link or the number of packets
in an output buffer of a router, often called traffic measurement, is an important task for the
operation and management of a communication network. Since traffic measurement is usually
performed at regular intervals, it is equivalent to examining the time average of the network
states (e.g. bandwidth utilization or the number of packets in an output buffer). Note that the
time averages of the network states are measured by an observer outside the system. In a
communication network, the average of the network states at packet arrival instants is called
the customer average. The customer average, which is a state of the communication network
experienced by user packets, is directly related to the quality of service (QoS) experienced by
users. Packets from users do not always arrive at regular intervals, so the time average and the
customer average are generally different. The formal definitions of time and customer averages
are given in Section 2.

The relationship between the time and customer averages for a queueing system, especially
the condition under which the time and customer averages are identical, has been extensively
studied [4, 12, 14, 16, 18, 29]. For example, [29] showed that if customers arrive according

Received 19 August 2022; accepted 4 December 2023.
∗ Postal address: Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
∗∗ Email address: shioda@faculty.chiba-u.jp
∗∗∗ Email address: gkn.bb.e@gmail.com

© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust.

1199

https://doi.org/10.1017/jpr.2023.120 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.120
https://orcid.org/0000-0001-5112-4933
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2023.120&domain=pdf
https://doi.org/10.1017/jpr.2023.120


1200 S. SHIODA AND K. NAKANO

to a Poisson process and the lack of anticipation assumption holds, then the two averages are
identical, which is widely known as the ‘Poisson arrivals see time averages’ (PASTA) property.

In general, time and customer averages are not identical. Several studies have attempted
to identify the conditions under which time averages are larger (or smaller) than customer
averages for a queue with a renewal arrival process. For example, [15, 17] showed that if the
inter-arrival times for customers are ‘new better than used in expectation’ (NBUE) (or ‘new
worse than used in expectation’, NWUE) for GI/G/1 queues, the time averages for some states
of the system (e.g. workload) are larger (or smaller) than their customer averages. The same
conclusion has been proved to hold for GI/G/c/K queues [13]. The relationship between time
and customer averages based on the martingale approach in [29] was discussed in [20], which
showed that the time averages for queueing systems are larger (or smaller) than their customer
averages if the following three conditions hold: (i) the inter-arrival time for customers is NBUE
(or NWUE), (ii) the states of the system observed at time t depend only on the past arrival
epochs and what happened at those time points, and (iii) the sample path of the state of the
system is decreasing between arrival epochs. It was shown in [26] that the second condition
can be replaced with a weaker condition, referred to as the lack of anticipation assumption,
and also that the state of the system between arrival epochs is not necessarily decreasing with
respect to the sample path; it is sufficient that it be stochastically decreasing. The same results
were derived in [21] using the ‘coupling from the past’ (CFTP) algorithm. Related results can
also be found in [3, 6, 24, 28].

According to these existing studies, the conclusion that, for arrival processes, the NB(W)UE
property is a sufficient condition for the above inequalities between the time and customer
averages might seem to be the last word on the relationship between the time and customer
averages. Here, we give an intuitive explanation for how the NB(W)UE property of the inter-
arrival times yields the inequalities between the time and customer averages. Let us consider
the change over time of the workload, or the amount of work remaining in the system, of
a single-server queue. Assume that a customer arrives at the queue at time 0 and let W(t)
denote the workload at time t under the condition that no customer arrives in the interval
(0, t]. Since each customer brings a certain amount of work, the workload rises at the instant
a customer arrives. After that, it continuously decreases until the arrival of the next customer,
that is, W(t) is decreasing in the interval (0, t]. Now, let τ be a random variable describing the
inter-arrival time for customers, and let τ (e) denote a random variable following an equilibrium
distribution of τ ; τ (e) corresponds to the time interval between an arbitrarily chosen time and
the arrival time for a customer who arrived just before that arbitrarily chosen time. Note that
E[W(τ−)] is the so-called customer average and E[W(τ (e))] is the so-called time average.
Since W(t) is decreasing for t > 0, the customer-averaged workload should be smaller than the
time-averaged workload if τ is larger than τ (e) (Figure 1). In fact, if τ is NB(W)UE, then τ

is stochastically larger (smaller) than τ (e) in the usual stochastic-order sense (Definition 2.2),
and thus the customer average is smaller (larger) than the time average, which is precisely the
conclusion found in previous studies.

In this paper, we focus on the fact that if τ is the ‘harmonic new better than used in expec-
tation’ (HNBUE) (or ‘harmonic new worse than used in expectation’, HNWUE), then τ is
stochastically larger (smaller) than τ (e) in the following sense: E[g(τ )] ≤ (≥) E[g(τ (e))] for all
decreasing and convex functions g(t). Since W(t) is a decreasing and convex function of t for
GI/G/c/K queueing systems, the customer average of the workload for GI/G/c/K queueing sys-
tems is smaller (larger) than the time average of the workload if τ is HNB(W)UE. The aim of
the present paper is to formally show that if the state (e.g. the workload) of the system between
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FIGURE 1. Comparison of W(τ−) and W(τ (e)).

arrival epochs is stochastically decreasing and convex and the lack of anticipation assumption
is satisfied, then the arrival process having the HNB(W)UE property is a sufficient condition
for the inequalities between the time and customer averages. HNB(W)UE is a wider class than
NB(W)UE [19], being the largest of all available classes of distributions with positive (nega-
tive) aging properties [8]. In addition to this, as shown in this paper, there are a considerable
number of systems in which the state of the system between arrival epochs is stochastically
decreasing and convex. Thus, the result of this paper represents a small but important step
beyond existing results on inequalities between time and customer averages.

The rest of this paper is organized as follows. Section 2 shows the notation and defini-
tions used in the paper. Section 3 gives proofs of the main results. Section 4 applies the main
results to derive the inequalities between the time and customer averages of the workload for
GI/G/c/K queues, the number of customers in GI/M/c/K queues, the workload for GI+G/GI/1
queues, and the age process of the superposition of two independent point processes. Section 5
shows some numerical examples, which support the theoretical findings of this paper, using
two piecewise exponential distributions; one is not NBUE but HNBUE, and the other is not
NWUE but HNWUE.

2. Notation and definitions

2.1. Time and customer averages

Consider a real-valued stochastic process {X(t); t ∈R} with left-continuous sample paths
and a point process {Tn; n ∈Z}. X(t) represents the state of a system just prior to time t (because
of its left continuity) and {Tn} represents arrivals of customers to the system. Customers
are labeled following the standard convention such that T0 ≤ 0 < T1. We assume no batch
arrivals; that is, Tn < Tn+1 for all n ∈Z. The ‘state’ of the system may represent the number of
customers or the total workload for the queueing systems.

The time average of {X(t)} from time 0 up to time t is defined by

Tt = 1

t

∫ t

0
X(s) ds,

and the customer average of {X(t)} from time 0 to time t is defined by

Ct = 1

N(t)

N(t)∑
n=1

X(Tn), N(t)
def=

∞∑
n=1

1Tn≤t,
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where 1A is an indicator function, which is equal to 1 (0) if A is true (false). The analysis in
this paper is conducted in the stationary and ergodic framework like [22, 26]; that is, {X(t)}
and {Tn; n ∈Z} are assumed to be jointly stationary and ergodic under probability measure P.
Under this framework,

lim
t→∞ Tt = lim

t→∞
1

t

∫ t

0
X(s) ds =E[X(0)],

where E denotes the expectation with respect to P, and

lim
t→∞ Ct = lim

t→∞
1

N(t)

N(t)∑
n=1

X(Tn) =E
0[X(0)],

where E0 denotes the expectation with respect to P
0, which is the Palm transformation [1] of P

with respect to {Tn}. Similarly, the time-averaged probability that {X(t)} is in any measurable
set A is equal to P(X(0) ∈ A) because

P(X(0) ∈ A) = lim
t→∞

1

t

∫ t

0
1X(s)∈A ds,

and the customer-averaged probability that {X(t)} is in A is equal to P
0(X(0) ∈ A) because

P
0(X(0) ∈ A) = lim

t→∞
1

N(t)

N(t)∑
n=1

1X(Tn)∈A.

Thus, the issue of the inequalities between time and customer averages becomes one on the
inequalities between the expectations by P and P

0.

2.2. Lack of anticipation assumption

We define a process X0(t) (t ∈ (0, ∞)) to be the state of the above system at time t given
that it is initiated at time 0 by a customer arrival and according to the Palm measure, so that
P(X0(0) ∈ A) = P

0(X(0) ∈ A), but it continues without allowing any further arrivals to enter the
system after time 0 [22].

The distribution function for the inter-arrival times for customers is denoted by Fτ (t)
def=

P
0(T1 ≤ t), and τ denotes a random variable with distribution function Fτ . The inter-arrival

time for customers is assumed to have a finite mean; that is, E
0[T1] =E[τ ] = 1/λ < ∞.

Throughout this paper, the following lack of anticipation assumption is made.

Definition 2.1. The state of the system X(t) is said to satisfy the lack of anticipation assumption
if, for any positive bounded real function h, X(t) satisfies

E
0[h(X(t)) | T1 > t] =E

0[h(X(t)) | T1 = t] =E[h(X0(t))] for t > 0. (2.1)

According to [26], (2.1) is equivalent to the following condition:

E
0[h(X(t)) | T1 ≥ t] =E

0[h(X(t)) | T1 = t] =E[h(X0(t))] for t > 0. (2.2)

The lack of anticipation assumption was introduced in [26] and used in [22]. This assumption
intuitively states that, when customer 0 arrives at time 0 ( = T0), the state of the system at
time t > 0 is conditionally independent of T1, which is the arrival time for the next customer
(customer 1), given that T1 > t. The lack of anticipation assumption holds for a queue driven
by a renewal arrival process [22].
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2.3. Stochastic order

Since the main results of this paper are stated using the notions of usual stochastic order,
(increasing) convex order, NB(W)UE, and HNB(W)UE, their definitions and related results
used here are summarized below. Concerning the details of these definitions and related results,
please see a textbook on stochastic orders, such as [19, 24, 25].

Definition 2.2. Let Z1 and Z2 be random variables with distribution functions FZ1 and FZ2 ,
respectively. Assume that Z1 and Z2 have finite means. Then, we say that

(i) Z1 is less than Z2 with respect to usual stochastic order (written Z1 ≤st Z2 or FZ1 ≤st FZ2 )
if E[f (Z1)] ≤E[f (Z2)] for all increasing functions f .

(ii) Z1 is less than Z2 with respect to convex order (written Z1 ≤cx Z2 or FZ1 ≤cx FZ2 ) if
E[f (Z1)] ≤E[f (Z2)] for all convex functions f .

(iii) Z1 is less than Z2 with respect to increasing convex order (written Z1 ≤icx Z2 or FZ1 ≤icx
FZ2 ) if E[f (Z1)] ≤E[f (Z2)] for all increasing convex functions f .

Proposition 2.1. Let Z1 and Z2 be random variables. The following statements are equivalent:

(i) Z1 ≤icx Z2;

(ii) E[(Z1 − x)+] ≤E[(Z2 − x)+] for all x ∈R,

where

(x)+ =
{

x if x ≥ 0,

0 otherwise.

In the following two definitions, Zt denotes a random variable with distribution function

FZt (x)
def= P(Z ≤ x + t | Z > t), which is the distribution of the residual lifetime of Z after time t.

Definition 2.3. If E[Zt] ≤ (≥)E[Z] for all t > 0, then we say that Z is NBUE (NWUE).

Definition 2.4. If

1

t

∫ t

0

ds

E[Zs]
≥ (≤)

1

E[Z]

for all t > 0, then we say that Z is HNBUE (HNWUE).

The notion of HNBUE (HNWUE) was introduced in [23] and studied in [10]. Although
HNBUE (HNWUE) seems to be less familiar than NBUE (NWUE), it will take a main role in
this paper. Note that the expression in Definition 2.4 can be written as

{
1

t

∫ t

0

ds

E[Zs]

}−1

≤ (≥) E[Z],

which means that the integral harmonic mean of E[Zt] is less than (greater than) or equal to
E[Z] for all t if Z is HNBUE (HNWUE). It follows from Definitions 2.3 and 2.4 that if Z is
NBUE (NWUE), then Z is HNBUE (HNWUE). That is, the HNBUE (HNWUE) class is larger
than the NBUE (NWUE) class. The following result will be used in the next section.
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Proposition 2.2. Let Z be a random variable with mean a. The following statements are
equivalent:

(i) Z is HNBUE (HNWUE);

(ii) Z(e) ≤st (≥st) Exp(a);

(iii) Z ≤cv (≥cv) Exp(a),

where Z(e) is a random variable with the equilibrium distribution of Z defined by

F(e)
Z (x)

def= 1

E[Z]

∫ x

0
(1 − FZ(t)) dt,

and Exp(a) denotes an exponential random variable with mean a.

In what follows, we say {Tn} is HNBUE (HNWUE) if its inter-arrival time τ is HNBUE
(HNWUE). According to Proposition 2.2, {Tn} is HNBUE (HNWUE) if and only if

1

E0[T1]

∫ t

0
P

0(T1 > s) ds ≤ (≥) exp

{
− t

E0[T1]

}
.

2.4. Total time on test transform

For its use in Section 5, we describe the scaled total time on test (TTT) transform of a life
distribution (that is, a distribution function with F(0−) = 0) [2, 10, 11].

Definition 2.5. Let F(t) be a life distribution with mean λ−1. The scaled TTT-transform, ϕF ,
of F is then defined by

ϕF(x) = λ

∫ F−1(x)

0
(1 − F(t)) dt for 0 ≤ x ≤ 1,

where F−1(x) = inf{x : F(t) ≥ x}.
The scaled TTT-transform is defined for values of x ∈ [0, 1], and the transformed values are

also in [0,1]. This means that the scaled TTT-transform can be illustrated by a curve within the
unit square. It is easy to see that ϕF(x) = x if F(t) = 1 − e−μt. That is, the diagonal of the unit
square corresponds to an exponential distribution.

The shape of the scaled TTT-transform of a life distribution shows the aging properties of
the distribution [10, 11]. For example, whether a random variable is NBUE or NWUE can be
seen from the scaled TTT-transform of its distribution function, as shown in the next theorem.

Theorem 2.1. ([10].) A random variable Z with distribution function F is NBUE (NWUE) if
and only if ϕF(x) ≥ (≤)x for all x ∈ [0, 1].

Whether a random variable is HNBUE or HNWUE can also be seen from the scaled TTT-
transform of its distribution function, as shown in the next theorem.

Theorem 2.2 ([10].) A random variable Z with distribution function F is HNBUE (HNWUE)
if and only if ϕF(x) ≥ (≤)1 − exp{−(1/E[Z])F−1(x)} for all x ∈ [0, 1].
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3. Main results

Proposition 3.1. Let g(t) and h(t) be decreasing convex and increasing concave func-
tions, respectively. If Z is HNBUE (HNWUE), then E[g(Z)] ≤ (≥) E[g(Z(e))] and E[h(Z)] ≥
(≤) E[h(Z(e))].

Proof. Assume that Z is HNBUE. It follows from Proposition 2.2 that Z ≤cx Exp(E[Z]) and
Z(e) ≤st Exp(E[Z]). Thus, we obtain

E[g(Z)] ≤E[g(Exp(E[Z]))] ≤E[g(Z(e))],

where the first inequality follows from Z ≤cx Exp(E[Z]) and the assumption that g(t) is con-
vex, and the second inequality follows from Z(e) ≤st Exp(E[Z]) and the assumption that g(t) is
decreasing. In the same way, we also obtain

E[h(Z)] ≥E[h(Exp(E[Z]))] ≥E[h(Z(e))].

The result when Z is HNWUE can be proved by reversing the inequalities at appropriate places
in the above argument. �

Theorem 3.1. If E[h(X0(t))] is a decreasing convex function of t ( > 0) and {Tn} is HNBUE
(HNWUE), then E

0[h(X(0))] ≤ (≥) E[h(X(0))].

Proof. We first assume that {Tn} (and thus τ ) is HNBUE. The stationarity and the lack of
anticipation assumption yield

E
0[h(X(0))] =E

0[h(X(T0))] =E
0[h(X(T1))] =

∫ ∞

0
E

0[h(X(t)) | T1 = t] Fτ (dt)

=
∫ ∞

0
E[h(X0(t))] Fτ (dt), (3.1)

where E
0[h(X(T0))] =E

0[h(X(T1))] follows from the stationarity, and the second line follows

from the lack of anticipation assumption (2.1) (or (2.2)). Letting g(t)
def= E[h(X0(t))], we have∫ ∞

0
E[h(X0(t))] Fτ (dt) =

∫ ∞

0
g(t) Fτ (dt) =E[g(τ )] ≤E[g(τ (e))], (3.2)

where the last inequality follows from Proposition 3.1 and the assumption that g(t) is a decreas-
ing convex function of t( > 0). Note that g(0) may be larger than g(0 + ) but this does not
matter, because τ (e) does not have probability mass at τ (e) = 0. The last term of (3.2) can be
expressed as

E[g(τ (e))] =
∫ ∞

0
E[h(X0(t))] F(e)

τ (dt)

=
∫ ∞

0
E

0[h(X(t)) | T1 > t] F(e)
τ (dt)

= λ

∫ ∞

0

E
0[h(X(t))1{T1>t}]

1 − Fτ (t)
(1 − Fτ (t)) dt

= λ

∫ ∞

0
E

0[h(X(t))1{T1>t}] dt

= λE0
[ ∫ ∞

0
h(X(t))1{T1>t} dt

]

= λE0
[ ∫ T1

0
h(X(t)) dt

]
=E[h(X(0))], (3.3)
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FIGURE 2. Change of workload over time (c ≥ 4).

where the second line follows from the lack of anticipation assumption (2.1) and the last equal-
ity follows from the Palm inversion formula [1]. Combining (3.1), (3.2), and (3.3) completes
the proof. The result when τ is HNWUE can be proved by reversing inequalities at appropriate
places in the above argument. �

The arguments used in the proof of Theorem 3.1 yield the next result.

Corollary 3.1. If E[h(X0(t))] is an increasing concave function of t ( > 0) and τ is HNBUE
(HNWUE), then E

0[h(X(0))] ≥ (≤) E[h(X(0))].

Remark 3.1. Assuming that E[h(X0(t))] is decreasing and convex is equivalent to assuming
that the state of a system between arrival epochs is stochastically decreasing and convex.
In fact, as shown in Section 4, the workload of GI/G/c/K queues between arrival epochs is
decreasing and convex with respect to sample path, and the number of customers in GI/M/c/K
queues between arrival epochs is stochastically decreasing and convex.

4. Examples

4.1. Workload of GI/G/c/K queue

Consider a GI/G/c/K queue, where an arriving customer is assigned to an empty server
or waits in a queue if all servers are busy. Once assigned to a server, a customer is served
at the unit rate until completion. Let W(t) and L(t) respectively denote the workload and the
number of customers in the queue at time t. The time- and customer-stationary distribution

functions of the workload are respectively denoted by FW (x)
def= P(W(0) ≤ x) and F0

W (x)
def=

P
0(W(0−) ≤ x), where W(0−)

def= limt↓0 W(−t) is the left-hand limit of W(0). Let {W0(t); t ∈
[0, ∞)} denote a process which represents the workload of a virtual queue without allowing
any further arrivals to enter the system after time 0 and satisfies P(W0(0) ≤ x) = P

0(W(0) ≤ x)
for all x ≥ 0. Likewise, let {L0(t); t ∈ [0, ∞)} denote a process which represents the number of
customers in the virtual queue and satisfies P(L0(0) = x) = P

0(L(0) = x) for all x ≥ 0.

Let Ls(t)
def= min{s, L0(t)}. Since Ls(t) is the number of busy servers for the virtual queue,

W0(t) can be expressed as (Figure 2)

W0(t) = W0(0) −
∫ t

0
Ls(t) dt. (4.1)

Using this fact, we first show the following result.
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Lemma 4.1. If {Tn} is HNBUE (HNWUE), then F0
W ≤icx (≥icx) FW.

Proof. We define g(t)
def= E[(W0(t−) − x)+]. Note that E[(W0(t−) − x)+] is equal to

E[(W0(t) − x)+] because there are no arrivals after time 0 in the virtual queue, and thus W0(t)
is continuous for t > 0. It follows from (4.1) that, for t > 0,

d

dt
(W0(t) − x)+ = −Ls(t)1W0(t)≥x ≤ 0.

In addition to this, d
dt (W0(t) − x)+ is increasing because Ls(t) is decreasing. In summary, W0(t)

is decreasing and convex with respect to sample path, and thus g(t) is also decreasing and
convex. Hence, it follows from Theorem 3.1 that if τ is HNBUE (HNWUE), then

E
0[(W(0−) − x)+] ≤ (≥) E[(W(0) − x)+].

The above equality holds for all x, and thus the stated result follows from
Proposition 2.1. �

We could have a stronger result for GI/G/1/K queues than for GI/G/c/K queues. To show

this, let F0
S(x)

def= P
0(W(0) ≤ x). Note that F0

S(x) is the distribution function of the sojourn time
for a customer when the service discipline is first in, first out (FIFO).

Lemma 4.2. If {Tn} is HNBUE (HNWUE) and F0
S(x) is increasing and concave for s > 0 then,

for GI/G/1/K queues, F0
W ≤st (≥st) FW.

Proof. First, assume that {Tn} is HNBUE. We define, for t > 0,

g(t; x)
def= E[1W0(t−)≤x] =E[1W0(t)≤x].

We can see that

g(t; x) = P(W0(t) ≤ x) = P(W0(0) ≤ x + t) = P
0(W(0) ≤ x + t) = F0

S(x + t), (4.2)

where the second equality follows from W0(t) being continuous for t > 0 because there are
no arrivals after time 0 in the virtual queue. The fact that F0

S(x) is increasing and concave,
together with (4.2), proves that g(t; x) is increasing and concave in t. Hence, it follows from
Corollary 3.1 that E0[1W(0−)≤x] ≥E[1W(0)≤x], which means that F0

W ≤st FW . Reversing the
inequalities in the above arguments proves that F0

W ≥st FW when {Tn} is HNWUE. �

Corollary 4.1. If {Tn} is HNBUE (HNWUE) then, for GI/M/1 queues, F0
W ≤st (≥st) FW.

Proof. It is known [27] that
F0

S(x) = 1 − e−μ(1−η)x, (4.3)

where μ is the inverse of the mean service time for a customer, and η is the unique solution to
the following equation for z ∈ (0, 1):

z =E[eμ(z−1)τ ]. (4.4)

Since the F0
S(x) in (4.3) is increasing and concave, applying Lemma 4.2 completes the

proof. �
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FIGURE 3. Comparison of E[eμ(z−1)τ ] for D/M/1 and M/M/1 queues.

Remark 4.1. Corollary 4.1 can be shown by the following elementary consideration. For
GI/M/1 queues,

F0
W (x) = 1 − ηe−μ(1−η)x, FW (x) = 1 − ρe−μ(1−η)x, (4.5)

where ρ
def= λ/μ and η is the solution to (4.4) in (0,1). Note that F0

W (x) is the distribution of
the actual waiting time for a GI/M/1 queue for FIFO discipline and its expression was given
in [27]; FW (x) is the distribution of virtual waiting time. Now, suppose that {Tn} is HNBUE. It
follows from Proposition 2.2 that τ ≤cx Exp(1/λ), and thus

E[eμ(z−1)τ ] ≤E[eμ(z−1)Exp(1/λ)].

Since η is the intersection of f (z) =E[eμ(z−1)τ ] and f (z) = z, we see that η ≤ ρ when
E[eμ(z−1)τ ] ≤E[eμ(z−1)Exp(1/λ)]. As an example, we compare E[eμ(z−1)τ ] when τ = 1/λ

(D/M/1 queue: solid curve) and E[eμ(z−1)τ ] when τ = Exp(1/λ) (M/M/1 queue: dashed curve)
in Figure 3. It follows from (4.5) that, if η ≤ ρ, then F0

W (x) ≥ FW (x) for all x ≥ 0. Thus, if {Tn}
is HNBUE, then F0

W ≤st FW . We can also obtain the desired result when {Tn} is HNWUE in a
similar way.

4.2. Number of customers of GI/M/c/K queue

Consider a GI/M/c/K queue where the mean service time for a customer is 1/μ. The time-
and customer-stationary distribution functions of the number of the customers in the queues
are respectively denoted by

FL(x)
def= P(L(0) ≤ x), F0

L(x)
def= P

0(L(0−) ≤ x),

where L(0−)
def= limt↓0 L(−t) is the left-hand limit of L(0). Let D0(t) denote the number of cus-

tomers departed from the virtual queue (see Section 4.1) during (0, t]. L0(t) can be expressed as
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L0(t) = L0(0) − D0(t). Note that D0(t) admits the Ft-predictable stochastic intensity μLs(t−),
where Ft is the history [1] of the virtual queue up to time t and the arrival process up to
time 0. It follows from a property of stochastic intensity [1] that

E[D0(t) | F0] =E

[ ∫ t

0
μLs(u−) du

]
. (4.6)

Lemma 4.3. If {Tn} is HNBUE (HNWUE), then FL ≤icx (≥icx) F0
L.

Proof. We define g(t)
def= E[(L0(t−) − x)+] and gA(t)

def= E[(L0(t−) − x)+ | F0]. It follows
from (4.6) that

d

dt
gA(t) = −E

[
μLs(t−)1L0(t)≥x | F0

] ≤ 0.

Thus, gA(t) is decreasing. Since g(t) =E[gA(t)], g(t) is also decreasing. In addition to this,
d
dt gA(t) is increasing because Ls(t) is decreasing. Thus, gA(t) and therefore also g(t) are convex
for t > 0. Hence, if {Tn} is HNBUE (HNWUE), then

E
0[(L(0−) − x)+] ≤ (≥) E[(L(0) − x)+].

This inequality holds for all x, and thus the stated result follows from Proposition 2.1. �

Next, consider GI/M/1 queues.

Corollary 4.2. If {Tn} is HNBUE (HNWUE) then, for GI/M/1 queues, F0
L ≤st (≥st) FL.

Proof. Letting

P(k, t)
def= E[1L0(t−)≤k] = P(L0(t−) ≤ k),

P(k, t)
def= E[1L0(t−)=k] = P(L0(t−) = k),

it follows that d
dt p(k, t) = μ(p(k + 1, t) − p(k, t)) and d

dt p(0, t) = μp(1, t). Hence,

d

dt
P(k, t) =

k∑
l=0

d

dt
p(l, t) = μp(1, t) +

k∑
l=1

μ(p(k + 1, t) − p(k, t)) = μp(k + 1, t) ≥ 0, (4.7)

d2

dt2
P(k, t) = μ

d

dt
p(k + 1, t) = μ2(p(k + 2, t) − p(k + 1, t)). (4.8)

It can be seen that

p(k, t) =
∞∑

n=0

Pr{{L(0) = k + n} ∩ {n customers have departed during [0,t)}}

=
∞∑

n=0

p(k + n − 1, 0)
(μt)n

n! e−μt = (1 − η)ηk−1e−μt(1−η),

where we use p(k, 0) = P(L0(0−) = k) = (1 − η)ηk [27]. Substituting the above equality into
(4.8) yields

d2

dt2
P(k, t) = −μ2(1 − η)2ηke−μt(1−η) ≤ 0. (4.9)
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As (4.7) and (4.9) mean that p(k, t) is increasing and concave with respect to t, it follows from
Corollary 3.1 that E0[1L(0−)≤k] ≥ (≤) E[1L(0)≤k], or P0(L(0−) > k) ≤ (≥) P(L(0) > k), which
completes the proof. �
Remark 4.2. Consider a GI/GI/1/K queue and let {TD

n : n ∈Z} denote the departure times for
the customers from the queue. The departure times are assumed to be labeled such that TD

0 ≤
0 < TD

1 . Let F(e)
σ denote the equilibrium distribution of the service time for the customers. If

the remaining service time for a customer in service at customer arrival instants follows the
equilibrium distribution F(e)

σ , that is,

P
0(TD

1 ≤ x | Ls(0 + ) > 0) = F(e)
σ (x), (4.10)

then (4.6) holds because D1, D2, . . . becomes a stationary renewal process and thus D0(t) = μt
[5]. This argument suggests that Lemma 4.3 holds for GI/GI/1/K queues if (4.10) holds, and
the same argument can also be applied to GI/GI/c/K queues. However, note that (4.10) does not
hold in general, and thus this argument does not prove that Lemma 4.3 holds for all GI/GI/1/K
queues. Nevertheless, as shown in Section 5, we have numerically found that E0[L] ≤ (≥) E[L]
seems to hold for GI/GI/1 queues if the arrival process is HNBUE (HNWUE) even for non-
exponential service time distributions. This result implies that (4.10) approximately holds for
most of the conditions of these queues.

Remark 4.3. For GI/M/1 queues,

P
0(L(0−) > k) = ηk+1, k = 0, 1, . . . ,

P(L(0) > k) = ρηk, k = 0, 1, . . . ,

where η is the solution of (4.4) in (0,1). If τ is HNBUE (HNWUE), then η ≤ (≥) ρ, as shown
in Remark 4.1. From this fact, Corollary 4.2 also follows.

4.3. Workload of GI+G/GI/1 queue

Next, we consider an example given in [26] where the superposition of two stationary and
ergodic arrival processes, {Ti

n; n ∈Z}, i = 0, 1, is fed into a single-server queue. The two arrival
processes are independent. We assume that {T0

n } is a renewal arrival process; that is, its inter-
arrival times are independent and identically distributed.

Lemma 4.4. If {T0
n } is HNBUE (HNWUE) then, for GI+G/GI/1 queues,

E
0[W(0−)] ≤ (≥) E[W(0)].

Proof. In the proof, we call customers arriving at {Ti
n}, i = 0, 1, type-i customers, and

assume that type-1 customers have preemptive priority over type-0 customers. Note that this
assumption is not at all essential, because the concern of this lemma is the total workload.
We let W(t) = W0(t) + W1(t), where W0(t) (W1(t)) is the workload due to type-0 (type-1) cus-
tomers. Note that W1(t) is independent of the arrival process {T0

n }. Because of this, the statistics
of W1(t) under P0, which is the Palm probability measure with respect to {T0

n }, and P are the

same, as mentioned in [26]. For t > 0, we let g(t)
def= E[W0(t−)]. Note that W0(t−) is expressed

as the sum of W0
0 (t−) and W1

0 (t−), where W0
0 (t) (W1

0 (t)) is the workload in the virtual queue
due to type-0 (type-1) customers. Since E[W1

0 (t−)] =E
0[W1(t−)] (from the definition of W0)
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and E
0[W1(t−)] =E[W1(t−)] (W1(t) under P0 is statistically the same as under P), it follows

that
g(t) =E[W0

0 (t−)] +E[W1(t−)] =E[W0
0 (t)] +E[W1(0)],

where the second equality follows from the stationarity of W1(t) and the continuity of W0
0 (t)

for t > 0. Since d
dt W

0
0 (t) = −1 if W1

0 (t) = 0 with respect to sample path, it follows that

d

dt
g(t) = −E[1W0

0 (t)=01W1
0 (t)>0]

= −E[E[1W1
0 (t)=01W0

0 (t)>0 | 1W1
0 (t)>0]]

= −E[1W1
0 (t)=01W0

0 (t)>0 | W1
0 (t) > 0]P(W1

0 (t) > 0)

−E[1W1
0 (t)=01W0

0 (t)>0 | W1
0 (t) = 0]P(W1

0 (t) = 0)

= −E[1W1
0 (t)=01W0

0 (t)>0 | W1
0 (t) = 0]P(W1

0 (t) = 0)

= −E[1W0
0 (t)>0 | W1(t) = 0]P(W1(0) = 0) ≤ 0, (4.11)

where the last equality follows from the fact that P(W1
0 (t) = 0) = P

0(W1(t) = 0) =
P(W1(t) = 0) and the stationarity of W1(t) under P. From (4.11), we see that g(t) is decreasing.
In addition to this, d

dt g(t) is increasing because W0
0 (t) is decreasing. These arguments give us

the conclusion that g(t) is decreasing and convex. Hence, it follows from Theorem 3.1 that if
{T0

n } is HNBUE (HNWUE), then E
0[W(0−)] ≤ (≥) E[W(0)]. �

4.4. Age process for superposition of two independent point processes

Finally, we consider another example given in [26]. Let {Ti
n; n ∈Z}, i = 0, 1, be two point

processes that are assumed to be jointly stationary and ergodic under the probability measure
P. These two point processes are independent. Let Pi denote the Palm probability measure
with respect to the point process {Ti

n} and E
i be the corresponding expectation. Let {Rn; n ∈Z}

denote the superposition of the two point processes, and define the following ‘age’ process:

A(t)
def=

∞∑
n=−∞

1Rn<t≤Rn+1 (t − Rn).

Note that A(t) is left-continuous. The inter-arrival times for point processes {Ti
n; n ∈Z} (i =

0, 1) are not necessarily independent of each other.

Lemma 4.5. If {T0
n } is HNBUE (HNWUE) then, for all x,

E[(A(0) − x)+] ≤ (≥) E0[(A(0) − x)+].

That is, the age at the arrival instants of the 0th point process is greater than the age at an
arbitrary instant with respect to the increasing convex order.

Proof. Define g(t)
def= E

0[(A(t) − x)+ | T0
1 = t]. Let Fτ1 (t)

def= P1(T1
1 ≤ x) and F(e)

τ1 (t) denote its
equilibrium distribution, that is,

F(e)
τ1

(t) = 1

E1[T1
1 ]

∫ t

0
(1 − Fτ1 (s)) ds.
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It can be seen [26] that

g(t) =
∫ t

0
(s − x)+ dF(e)

τ1
(s) + (t − x)+

(
1 − F(e)

τ1
(t)

)
= −[

(s − x)+
(
1 − F(e)

τ1
(s)

)]t
0 +

∫ t

x

(
1 − F(e)

τ1
(s)

)
ds + (t − x)+

(
1 − F(e)

τ1
(t)

)
=

∫ t

x

(
1 − F(e)

τ1
(s)

)
ds. (4.12)

Note that the first term on the right-hand side of the first line is the expectation of age condi-
tioned on the first arrival of the first point process after time 0 occurring before time t, and the
second term is the expectation of age conditioned on the first arrival of the first point process
after time 0 being after time t. It follows from (4.12) that

d

dt
g(t) = 1 − F(e)

τ1
(t) ≥ 0,

d2

dt2
g(t) = − d

dt
F(e)

τ1
(t) = −1 − Fτ1 (t)

E1[T1
1 ]

≤ 0.

This means that g(t) is increasing and concave, and thus the stated result follows from
Proposition 2.1. �

5. Numerical examples

In this section, we show two numerical examples concerning the inequalities between
customer and time averages.

5.1. Utilization of a GI/M/1 queue

In this subsection, we numerically investigate the relationship between customer-averaged
and time-averaged utilization of a GI/M/1 queue. We also show how this relationship is related
to the coefficient of variation of inter-arrival times for customers. The utilization is the prob-
ability that a non-zero workload remains in the queue. The time-averaged utilization is thus
equal to P(W(0) > 0) and the customer-averaged utilization (utilization at a customer arrival
instant) is equal to P

0(W(0−) > 0). As shown in Remark 4.1, for a GI/M/1 queue, P(W(0) > 0)
and P

0(W(0−) > 0) are respectively given as P(W(0) > 0) = ρ = λ/μ and P
0(W(0−) > 0) = η,

where μ is the inverse of the mean service time, λ is the inverse of the mean inter-arrival
time for customers, and η is the solution of z =E[eμ(z−1)τ ] in (0,1). Now assume that the
inter-arrival time for customers is distributed according to the nth Erlang distribution, where
E[eμ(z−1)τ ] is given as

E[eμ(z−1)τ ] =
(

nρ

nρ + 1 − z

)n

.

In Figure 4(a), we show the customer-averaged utilization of the GI/M/1 queue, in which the
inter-arrival time for customers is distributed according to the nth Erlang distribution, by chang-
ing n from 1 to 25. The time-averaged utilization is set to 0.5, 0.7, or 0.9. The horizontal axis
of the figure shows the coefficient of variation of inter-arrival times for customers, instead of
showing the values of n. Note that the coefficient of variation of the nth Erlang distribution is
equal to n−1/2. Because the Erlang distribution is HNBUE, it follows from Corollary 4.1 that

P
0(W(0−) > 0)

[ = 1 − F0
W (0)

] ≤ P(W(0) > 0)
[ = 1 − FW (0)

]
.
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FIGURE 4. Utilization of a GI/M/1 at queue the instant of packet arrival.

Thus, the customer-averaged utilization is smaller than (or equal to) the time-averaged uti-
lization, which is consistent with the results in Figure 4(a). Figure 4(a) also shows that the
customer-averaged utilization becomes smaller as the coefficient of variation of inter-arrival
times for customers becomes smaller. This result can be explained using theory as follows.
The proof of Corollary 4.1 (and the proof of Lemma 4.2) shows that, for a GI/M/1 queue,

g(t;x)
def= E

0[1W0(t)≤x] is a concave function of t. Thus, E0[1W0(t)>0] = 1 − g(t, 0) is a convex
function of t. Now, let τEr(n) denote a random variable following the nth Erlang distribution. If
τEr(n1) and τEr(n2) have the same mean and n2 ≤ n1, τEr(n1) ≤cv τEr(n2). Thus,

E
0[1W0(τEr(n1))>0

] ≤E
0[1W0(τEr(n2))>0

]
,

showing that when the inter-arrival time for customers follows the nth Erlang distribution, the
customer-averaged utilization decreases as n increases. Since the coefficient of variation of
the nth Erlang distribution becomes smaller as n increases, the customer-averaged utilization
decreases as the coefficient of variation of inter-arrival times decreases.

Next, assume that the inter-arrival time for customers is distributed according to a second-
order hyperexponential distribution with mean 1/λ, whose distribution function is given as

P(τ ≤ t) =
⎧⎨
⎩

1

n + 1
(1 − e−λt/n) + n

n + 1
(1 − e−nλt), t ≥ 0,

0, t < 0.
(5.1)

Note that the distribution in (5.1) is parametrized with n, where n is not necessarily an integer,
and its coefficient of variation is equal to

√
(2n2 − 3n + 2)/n. Under the distribution in (5.1),

E[eμ(z−1)τ ] is given as

E[eμ(z−1)τ ] = ρ

n + 1

(
1

ρ + n(1 − z)
+ n2

nρ + 1 − z

)
.

In Figure 4(b), we show the customer-averaged utilization of the GI/M/1 queue, in which
the distribution of the inter-arrival time for packets is given by (5.1), by increasing n from
1. The time-averaged utilization is set to 0.5, 0.7, or 0.9. As in Figure 4(a), the horizon-
tal axis of the figure shows the coefficient of variation of inter-arrival times for customers.
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Because the hyperexponential distribution is HNWUE, it follows from Corollary 4.1 that
P

0(W(0−) > 0) ≥ P(W(0) > 0). Thus, the customer-averaged utilization is larger than the time-
averaged utilization, which is consistent with the results in Figure 4(b). Figure 4(b) also shows
that the customer-averaged utilization becomes larger as the coefficient of variation of inter-
arrival times for customers becomes larger, which can also be confirmed via theory by an
argument similar to that for the Erlang distribution.

5.2. Piecewise exponential distributions

If a random variable Z has a piecewise-constant hazard function, then Z is called a piecewise
exponential random variable [7]. The distribution function of an n-piece exponential random
variable Z with cut points t0 = 0 < t1 < · · · < tn = ∞ is

FZ(t) = 1 −
n∑

k=1

cke−λkt1tk−1<t≤tk , (5.2)

where ck = ∏k
l=1 e(λl−λl−1)tl−1 . Note that its hazard function hZ(t) and its expectation E[Z] are

given by

hZ(t) =
n∑

k=1

λi1tk−1<t≤tk , E[Z] =
n∑

k=1

ck

λk

(
e−λktk−1 − e−λktk

)
.

The scaled TTT-transform of a piecewise exponential distribution is a piecewise linear func-
tion. In fact, the scaled TTT-transform of the n-piece exponential distribution (5.2) is given as

ϕFZ (x) =
n∑

i=1

(
ϕZ(xi−1) + λ

λi
(x − xi−1)

)
1xi−1<x≤xi, λ

def= 1

E[Z]
,

where xi
def= FZ(ti). Figure 5(a) shows the distribution function of the four-piece exponen-

tial random variable with parameters (5.3), and Figure 5(b) shows its scaled TTT-transform.
According to Theorems 2.1 and 2.2, Figure 5(b) proves that this four-piece exponential random
variable is not NBUE but HNBUE.

The set of piecewise exponential random variables includes those that are not NBUE
(NWUE) but HNBUE (HNWUE). Klefsjö showed that a four-piece exponential random
variable with the following parameters is not NBUE but HNBUE [9, 10]:

t1 = 0.359, t2 = 0.592, t3 = 1.662,

λ1 = 0.143, λ2 = 3.600, λ3 = 0.175, λ4 = 3.400.
(5.3)

We found that a four-piece exponential random variable with the following parameters is
not NWUE but HNWUE:

t1 = 0.2, t2 = 1.0, t3 = 2.0,

λ1 = 2.0, λ2 = 0.1, λ3 = 2.0, λ4 = 0.2.
(5.4)

Figure 6(a) shows the distribution function of the four-piece exponential random variable with
parameters (5.4), and Figure 6(b) shows its scaled TTT-transform, which proves that the four-
piece exponential random variable with parameters (5, 4) is not NWUE but HNWUE.

Figure 7 shows the customer and time averages of the workload of a GI/GI/1 queue
under the condition that the inter-arrival time for customers follows the four-piece exponential

https://doi.org/10.1017/jpr.2023.120 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.120


Time and customer average inequalities for HNB(W)UE arrival processes 1215

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3

D
is

tr
ib

ut
io

n 
fu

nc
tio

n

t

Distribution function

φFz
(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

S
ca

le
d 

T
T

T
 tr

an
sf

or
m

x

1-exp(-λFZ
-1(x))

Scaled TTT-transform solid curve ϕFZ
(x),

dotted curve 1 − exp −λF−1
Z (x)

(a) (b)

FIGURE 5. Piecewise exponential distribution that is not NBUE but HNBUE.
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FIGURE 6. Piecewise exponential distribution that is not NWUE but HNWUE.

distribution with parameters (5.3). We considered three different service-time distributions:
constant (GI/D/1), exponential distribution (GI/M/1), and the second-order hyperexponential
distribution (GI/H2/1) whose distribution function is

F(t) =
{

1
4 (1 − e−μt/3) + 3

4 (1 − e−3μt), t ≥ 0,

0, t < 0.

The results in Figure 7(a) (GI/D/1) and Figure 7(c) (GI/H2/1) were obtained from simulation,
and the results in Figure 7(b) were obtained by theory (for the GI/M/1 queue). Figure 7 con-
firms the conclusion of Lemma 4.1 that the customer average of the workload is smaller than
the time average when the arrival process is HNBUE. (The customer and time averages are
very close when ρ ≥ 0.8, and we tabulate these customer and time averages in tables in the
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FIGURE 7. Average workload (arrival process is not NBUE but HNBUE).
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FIGURE 8. Average number of customers (arrival process is not NBUE but HNBUE).

time average

 1

 10

 100

 0.5  0.6  0.7  0.8  0.9  1

A
ve

ra
ge

 w
or

kl
oa

d

ρ

customer average

GI/D/1

time average

 1

 10

 100

 0.5  0.6  0.7  0.8  0.9  1

A
ve

ra
ge

 w
or

kl
oa

d

ρ

customer average

GI/M/1

time average

 1

 10

 100

 0.5  0.6  0.7  0.8  0.9  1

A
ve

ra
ge

 w
or

kl
oa

d

ρ

customer average

GI/H2/1

(a) (b) (c)

FIGURE 9. Average workload (arrival process is not NWUE but HNWUE).

Appendix.) Figure 8 compares the customer and time averages of the number of customers
of a GI/GI/1 queue under the same conditions with the workload. Figure 8 shows that the
customer average of the number of customers in the queue is smaller than the time average
when the arrival process is HNBUE. Note that the inequalities between the customer and time
averages of the number of customers are proved only for GI/M/1 queues (Lemma 4.3). Thus,
these numerical examples imply that inequalities between the customer and time averages of
the number of customers may hold for GI/GI/1 queues.

Figure 9. (workload) and Figure 10 (number of customers) show the customer and time
averages of the GI/GI/1 queue under the condition that the inter-arrival time for customers
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FIGURE 10. Average number of customers (arrival process is not NWUE but HNWUE).

follows a four-piece exponential distribution with parameters (5.4), which is not NWUE, but
HNWUE. These figures numerically confirm that the customer average is larger than the time
average when the arrival process is HNWUE.

Appendix A. Average workload and number of customers in numerical examples of
Section 5

For reference, in Tables 1 and 2 we respectively list the values of the average workload and
the number of customers under the same conditions as Figures 7 and 8 for the cases where
ρ = 0.8, 0.85, 0.9, 0.95, and 0.98. In Tables 3 and 4, we also respectively list the values of the

TABLE 1. Workload when arrival process is not NBUE but HNBUE.

GI/D/1 GI/M/1 GI/H2/1

customer time customer time customer time
λ/μ average average average average average average

0.98 13.135 13.353 36.959 37.181 101.196 101.419
0.95 4.991 5.193 13.844 14.055 37.932 38.145
0.90 2.285 2.462 6.175 6.368 16.939 17.137
0.85 1.388 1.541 3.648 3.824 10.022 10.206
0.8 0.941 1.073 2.407 2.566 6.624 6.794

TABLE 2. Number of customers in system when arrival process is not NBUE but HNBUE.

GI/D/1 GI/M/1 GI/H2/1

customer time customer time customer time
λ/μ average average average average average average

0.98 13.882 14.107 37.692 37.919 101.890 102.117
0.95 5.718 5.939 14.564 14.786 38.639 38.860
0.90 2.970 3.184 6.857 7.071 17.615 17.829
0.85 2.031 2.237 4.290 4.499 10.660 10.867
0.8 1.550 1.740 3.007 3.206 7.220 7.420
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TABLE 3. Workload when arrival process is not NWUE but HNWUE.

GI/D/1 GI/M/1 GI/H2/1

customer time customer time customer time
λ/μ average average average average average average

0.98 93.2819 92.0702 126.4702 125.2531 214.5624 213.3298
0.95 34.3390 33.2379 47.2338 46.1053 80.7055 79.5496
0.90 14.8240 13.8947 20.9210 19.9357 36.1857 35.1504
0.85 8.3940 7.6283 12.2393 11.3907 21.5155 20.5924
0.8 5.2469 4.6347 7.9717 7.2519 14.2849 13.4683

TABLE 4. Number of customers in system when arrival process is not NWUE but HNWUE.

GI/D/1 GI/M/1 GI/H2/1

customer time customer time customer time
λ/μ average average average average average average

0.98 70.1557 69.2446 94.4432 93.5343 158.9153 158.0006
0.95 26.9426 26.0796 36.3863 35.5170 60.8870 60.0118
0.90 12.5292 11.7484 17.0117 16.2106 28.1937 27.3814
0.85 7.6825 6.9928 10.5377 9.8071 17.3471 16.5954
0.8 5.2304 4.6397 7.2924 6.6339 11.9462 11.2540

average workload and the number of customers under the same conditions as Figures 9 and 10.
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