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Abstract

Active components from plants are an alternative therapy to parasite control, addressing the
widespread multidrug resistance populations. Linalyl acetate (LA), an ester abundantly found in
plants of the genus Lavandula, was tested in vitro against third-stage larvae (L3) of Haemonchus
spp. and Trichostrongylus spp. using the larval migration test at 0.89, 2.24, 4.47, 8.95, 17.9, 35.8,
71.6, and 143.2 mg/ml. After an initial incubation of 18 h, the total content of each tube was
transferred to a 24-well plate that allowed active L3 to migrate through a nylon mesh (second
incubation). Although LA exhibited 100% efficacy in reducing larval migration at 8.95 and 17.9
mg/ml, it showed reduced activity (5%) at 143.2 mg/ml. The data revealed a hormetic biphasic
response characterised by an inverted U-shaped concentration-response curve. While hormesis
has been previously documented in insecticidal and allelopathic contexts, this study reports the
occurrence of hormesis induced by a phytochemical component against two species of nema-
todes for the first time. This distinctive stimulation-and-inhibition effect should be considered
when selecting new compounds for preclinical testing.

Introduction

Gastrointestinal parasites significantly cause infection and reduce welfare in small ruminants
(Oliveira et al. 2017). In tropical and subtropical regions, Haemonchus contortus is the most
prevalent nematode affecting ruminants, leading to apathy, lesions in the intestinal mucosa, and
anemia (Zajac and Garza 2020). The second most frequent gastrointestinal nematode of sheep in
Brazil is Trichostrongylus colubriformis, which causes weight loss, morbidity, and reduced food
intake (Carvalho et al. 2021). Although several diagnostic methods are available, parasite control
predominantly relies on the preventive use of anthelmintics (Molento et al. 2021). This strategy
has led to the selection of multidrug resistance to H. contortus (Amaral et al. 2021), prompting
research into new active compounds (Bortoluzzi et al. 2021; Selzer and Epe 2021; Soldera-Silva
et al. 2018).

Several studies on humans and animals have tested active plant components to control
parasites (Chaaban et al. 2019; Garbin et al. 2021). Esters are plant derivatives constituting the
volatile base of essential oils (EO), terpenes, and other compounds. These compounds often
have an intensely sweet and fruity odor, particularly during peak production when plants fully
bloom (Elsharif et al. 2015). Linalyl acetate (LA) is an ester derived from linalool, extracted
from Lavandula angustifolia EO through supercritical carbon dioxide extraction and from
L. officinalis via steam distillation (Lis-Balchin et al. 1998; Altun and Yapici 2022). A substan-
tial amount of LA is obtained from L. angustifolia (79.8%) and L. officinalis (34.9%)
EO. Moreover, LA exhibits analgesic, anti-inflammatory, anxiolytic, antimicrobial, and seda-
tive properties and is effective against burns and common skin lesions (Cavanagh and
Wilkinson 2002). However, LA has yet to be tested against the nematodes H. contortus and
T. colubriformis.

Hormesis is an adaptive stress response (Jentho et al 2018) that is highly relevant to
explaining biological organisation and risk assessment in toxicology, microbiology, medicine,
and public health (Calabrese 2018). It refers to a biphasic pharmacological response where initial
drug doses elicit a maximal effect. In contrast, higher doses result in a diminished/suppressive
outcome, potentially reaching low or zero efficacy (Calabrese 2018). A hormesis curve for plant
compounds has been documented; for instance, Papanastasiou et al. (2017) reported that
limonene induced a typical hormetic insecticidal effect against the Mediterranean fruit fly
Ceratitis capitata. This study aimed to determine the motility effect of LA against larvae of
Haemonchus spp. and Trichostrongylus spp. and to report the hormetic effect of LA on these
nematodes.
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Methodology
Plant material and nematode parasites

Pure LA was acquired from Quinari (Ponta Grossa, Brazil), refer-
ence 1331-1, produced by vapor pressure of 0.111 mm Hg at 25°C.
The component was extracted from the flowers of L. officinalis
Mont Blanc. The material was kept in a capped amber bottle until
testing, when it was solubilised in distilled water containing 2% v/v
Tween 80.

Fecal samples were collected from four naturally infected male
White Dorper sheep from a farm located in Pinhais, Brazil
(-25.38638, -49.12646). The material was subjected to a modified
coprological technique (Gordon and Whitlock 1939) for quantify-
ing nematode eggs, using 4 g of feces in 26 ml of saturated sucrose
solution, and the result was multiplied by 25. Subsequently, fecal
samples were mixed with an equal volume of vermiculite, mois-
tened, and incubated at 25°C for 10 days to obtain third-stage larvae
(L3). After that, the coproculture was then placed in a Baermann
apparatus to collect L3. All larvae were identified at the genus level,
according to van Wyk and Mayhew (2013).

The project was approved by the Animal Ethics Committee
(CEUA) of the Agricultural Sciences Sector of the Federal Univer-
sity of Parand, protocol 001/2019.

Larval migration inhibition test — LMT

The LMT was employed to determine the effect of LA on L3
following the methodology described by Demeler et al. (2010) with
modifications. L3 were incubated in 2-ml opaque airtight micro-
tubes. Approximately 200 L3 were incubated in the presence of LA
at concentrations of 0.89, 2.24, 4.47, 8.95,17.9, 35.8, 71.6, and 143.2
mg/ml. After the first incubation of 18 h, the total content of each
tube was transferred to a 24-well plate where a 25 pm mesh
separated two environments (upper and lower). The plate was
sealed with parafilm to prevent volatilisation and incubated for
another 24 h at 28°C under constant light. Subsequently, the mesh
was carefully removed, and the L3 were counted under an inverted
Optiphase INV-403 microscope (van Nuys, USA).

Statistical analysis

The percentage of L3 that did not migrate was determined for all
controls and from each LA concentration. Each sample was tested
in four replicates, including a negative control of distilled water
(NC), a control using 2% Tween 80 (CT), and a positive control
using 20% nitroxynil (C-NTX). A nonlinear regression analysis of
the response to the concentrations was performed. Pharmaco-
logical comparison and efficacy were determined on a log scale
(X =log X). A four-parameter logistic equation with variable slope
was chosen using GraphPad Prism 6.1 (San Diego, USA). The
efficacy was calculated according to the following formula:

Migration (%) =
(L3 from control group - L3 from treated group/
L3 from control group) x 100

Results and discussion

L3 identification before testing revealed the presence of Hae-
monchus spp. (47.7%) and Trichostrongylus spp. (38.5%). As
parasite populations were collected from the same farm with no
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Table 1. Percentage (%) of nematode larval inhibition of migration and
standard deviation (SD) after treatment with linalyl acetate (LA)

LA concentration (mg/mL) % Inhibition (+/- SD)

0.89 2.63 (+ 1.73)
2.24 34.45 (+ 3.05)
4.47 36.29 (+ 4.16)
8.95 45.75 (+ 3.59)
17.9 52.59 (+ 4.18)
35.8 44.74 (+ 0.87)
716 28.26 (+ 5.50)
143.2 5.19 ( 2.67)
CT-Tween 80 2.32 + (0.88)
CH-water 0.1 (x0)

C-NTX 91.54 (+ 2.07)

previous drug resistance record, we assume a similar distribution
after incubation. The LMT indicated that the three lowest con-
centrations of LA exhibited a concentration-dependent effect
(stimulation) on the larvae with a linear correlation of 0.950
(Table 1). At doses of 8.95 and 17.9 mg/ml, the inhibition of L3
motility was 49% and 59% (plateau), respectively. At concentra-
tions of 35.8, 71.6, and 143.2 mg/ml, the results showed a steady
and proportional decrease in L3 migration inhibition of 44.7, 28.3,
and 5.2%, respectively. The NC and CT did not affect L3 migra-
tion. NTX exhibited 91.5% efficacy (Table 1). According to Bosly
(2022), in Saudi Arabia, the knockdown rate of lavender oil at 5%,
containing 6.7% LA, was 95.5% in adults of Culex pipiens. In
larvae, lavender oil induced an 87.2% mortality after 60 minutes
of exposure (LCs¢ = 301.1 ppm). Mantovani ef al. (2013) demon-
strated 100% activity of 200 pg/ml of LA against adult forms of
Schistosoma mansoni in Australia. The LCsy values against
S. mansoni at 24 and 120 h incubation were 117.7 and 103.9
pg/ml, respectively.

Figure 1 illustrates the hormetic effect of LA, demonstrating
an inverted U-shaped curve characterised by an increase, plateau,
and subsequent decrease in efficacy. The data suggest that at
higher concentrations, LA promotes an opposing mechanism of
action, blocking the parasite’s receptors to the compound and
preventing future interactions (Calabrese and Mattson 2017).
The hormetic mechanism may be based on the premise that
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Figure 1. Hormetic concentration-dependent effect of linalyl acetate against Haemonchus
spp. and Trichostrongylus spp.
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low stress activates or positively induces responses to the mol-
ecules. The hormetic effect may also depend on the organism’s
nutritional status, temperature, and other preconditions
(Calabrese 2018).

It is well known that the biological effect of EO depends on the
presence or absence of various components (Mande and Sekar
2020). The hormetic effect of EO has been described in Drosophila
melanogaster (fruit fly), Musca domestica (housefly), and Acheta
domesticus (cricket) (Cutler et al. 2022). The EO of Rosmarinus
officinalis (rosemary), which contains 27.5% of a-pinene in fully
ripe fruits, stimulated the growth of radish roots and aerial parts at
doses up to 300 pl/L but decreased the stimulus at doses greater
than 1200 pl/L (Alipour and Saharkhiz 2016). When used against
the adult stage of Ceratitis capitata (Benakeio fly), limonene
increased the fertility and life expectancy of the species in low
concentrations, but these effects diminished considerably at higher
doses (Papanastasiou et al. 2017). Citrus myrtifolia (Chinotto
orange) exhibited a hormetic impact on Lolium multifolium
(Italian ryegrass) seeds, containing 76.8% limonene and 1.0% LA
(Caputo et al. 2020). The hormetic effect was also observed in A375
cells during tests with an aqueous emulsion of bergamot (Citrus
bergamia) and orange (C. sinensis) EO containing 43.3% limonene
(Alexa et al. 2022). Thymus vulgaris (thyme), which contains
thymol as the main component (33%), also showed a hormetic
effect on UMSCCI1 human cancer cells with a decrease in its lethal
effect at concentrations above 0.54 mg/ml (Sertel et al. 2011).

A crucial issue also relates to the ecological relevance of horm-
esis in an incorrect drug resistance diagnostic. Drug resistance is an
evolutionary phenotypic response represented by a lack of parasite
reduction (i.e, H. contortus) (Silva et al. 2022) manifested by
parasite paralysis and death. Under a hormetic effect, this lack of
reduction may not demonstrate resistance, as organisms might
moderately adapt their behavior or even increase their fitness in
response to changing environments (Costantini 2019; Jalal et al.
2021). Kishimoto et al. (2017) reported the transmission of a
resilient phenotype for oxidative stress and proteotoxicity through
hormetic mechanisms in Caenorhabditis elegans. The hormetic
effect was transmitted epigenetically upon exposure to various
stressors during developmental stages, providing survival advan-
tages for generations after controlled stress exposure. Therefore, the
inverted U-shaped efficacy of a phytochemical component against
two species of ruminant parasites observed in vitro should be taken
with caution, as reports of lack of effectiveness are a consequence of
two major stress factors of frequent drug use, and the combination
of products (Molento and Branddo 2020). This distinctive
stimulation-and-inhibition effect should also be considered when
selecting new compounds for preclinical testing.

Conclusion

LA was effective against free-living stages of Haemonchus spp. and
Trichostrongylus spp. However, the compound exhibited hormetic
activity at doses above 35.8 mg/ml, demonstrating a reduction in
efficacy to only 5% at 143.2 mg/ml. This study is the first to report
the hormetic effect of a phytochemical component against nema-
tode parasites of ruminants.
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