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Abstract

We consider the problem of detecting whether a power-law inhomogeneous random
graph contains a geometric community, and we frame this as a hypothesis-testing prob-
lem. More precisely, we assume that we are given a sample from an unknown distribution
on the space of graphs on n vertices. Under the null hypothesis, the sample originates
from the inhomogeneous random graph with a heavy-tailed degree sequence. Under the
alternative hypothesis, k = o(n) vertices are given spatial locations and connect follow-
ing the geometric inhomogeneous random graph connection rule. The remaining n − k
vertices follow the inhomogeneous random graph connection rule. We propose a simple
and efficient test based on counting normalized triangles to differentiate between the two
hypotheses. We prove that our test correctly detects the presence of the community with
high probability as n → ∞, and identifies large-degree vertices of the community with
high probability.
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1. Introduction

Random graphs provide a unified framework to model many complex systems in biology,
computer science, and sociology, as well as numerous other sciences. Random graphs are
particularly useful as null models to determine if some observed real-world network devi-
ates from its expected structure in a statistically significant way. In this context, it has been
widely observed that real-world networks share two defining features: heavy-tailed degree
sequences and large clustering [16, 34]. Neither of these features are reproduced by the clas-
sical Erdös–Rényi random graph model, which makes this an unsatisfactory null model for
most applications. Consequently, alternative models have been developed to match the degree
sequence and clustering observed in real-world networks. The so-called inhomogeneous ran-
dom graph (IRG) [14] is a popular generalization of the Erdös–Rényi random graph obtained
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2 G. BET ET AL.

by assigning weights to nodes, and connecting two nodes with a probability that is proportional
to the products of their weights. This way, the IRG can reproduce an arbitrary degree sequence,
but still has low clustering.

A popular method to obtain a random graph with a large clustering is to embed the ver-
tices in a metric space (such as the sphere or the torus) and connect them with probabilities
proportional to their distances [26]. Indeed, the presence of distances makes two neighbors
of a given vertex likely to be close by and therefore connected as well, due to the triangle
inequality. By embedding the vertices of the IRG in a torus, we obtain the so-called geometric
inhomogeneous random graph (GIRG) [12]. This model creates realistic networks with heavy-
tailed degree sequences, as well as high clustering, and has been very successful in embedding
real-world network data into a geometric space [9, 18]. Furthermore, this random graph model
is a very natural model when the vertices have features, such as locations, interests, or other
properties, and vertices with similar features are more likely to connect.

However, these types of random graph model assume that all nodes are spread uniformly
across the geometric space, while real-world network embeddings often show a more clustered
geometric space instead [8, 9], causing a community structure. It is then of great practical inter-
est, first, to establish if these communities are present, and, second, to identify them. Perhaps
surprisingly, the early literature on the latter problem did not address the former [20, 32, 33]. In
fact, often the focus of the community detection literature lies on algorithms to extract a com-
munity structure from given networks, regardless of whether the structure is actually present.
These algorithms are usually tested on random graph models with a known community struc-
ture. One such example is the stochastic block model [22], which has received considerable
attention due to its mathematical tractability. However, this comes at the expense of unrealistic
assumptions, such as very large communities (of the same order as the graph size) and homo-
geneous degree distributions. To overcome this, Arias-Castro and Verzelen [4, 38] considered
the problem of detecting the presence of a small community in an Erdös–Rényi random graph.
They found the region in the parameter space where (almost sure) detection is impossible, and
gave tests that are able to detect the community outside this region. These results were later
generalized to the IRG in [7]. However, none of these results address the realistic graph case
with heavy-tailed degree sequences.

In this paper, we take a further step toward obtaining detection results for realistic net-
works by detecting communities in realistic random graph models with both heterogeneity
and geometry. More precisely, our null model is the IRG with a heavy-tailed degree sequence,
and the community, if present, is obtained by embedding a small number of the total nodes
within a torus and connecting them according to the usual GIRG connection probabilities. Due
to the geometric nature of the community it contains many triangles, as opposed to the tree-
like nature of an IRG-based community. This realistic feature of the community allows us to
develop efficient testing methods for the testing as well as the identification of the community.

More precisely, when the community is indeed present in a graph of size n, n − k nodes of
the network form connections with each other on a non-geometric basis. The other k nodes
have a position in some geometric space, and nearby nodes are more likely to connect. This
geometric setting creates a subgraph with many triangles, and can therefore be thought of as a
community in the network. This geometric structure is less restrictive than planting a clique,
and more realistic than a dense inhomogeneous random graph as a community. Furthermore,
the fact that the planted structure is geometric allows for efficient, triangle-based tests to detect
and identify the structure. To the best of our knowledge, this type of planted structure has not
been considered before.
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Localized geometry detection in scale-free random graphs 3

Our contributions are the following:

• We provide a statistical test to detect the presence of a planted geometric community in
realistic random graph models. Unlike other detection tests for dense subgraph detection
[7, 38], the test works for heterogeneous degrees and sparse networks. This method is
triangle-based, making it efficient in implementation. Rather than using standard triangle
counts, which may not be able to differentiate between geometric and non-geometric
networks, the statistic weights the triangles based on their evidence for geometry.

• We provide a statistical method to identify the largest-degree vertices of the planted
geometric community. This method is also triangle-based, and is therefore efficient to
implement. We show that this method achieves almost exact recovery among all high-
degree vertices.

• We provide a method to infer the size of the planted geometric community. This method
uses the largest-degree identified vertices of the planted geometric community to obtain
an estimate for the community size based on the convergence of order statistics.

• We show numerically that the combination of these tests leads to accurate identifica-
tion of the planted geometric community. Furthermore, these tests can be performed
computationally in only O(n3/2) time [27].

1.1. Related literature

Our work lies at the intersection of two rich lines of research: community detection and what
might be referred to as structure detection. In the former setting, one is given a sample from a
known random graph model and the task is to determine if there is a statistically unlikely dense
subgraph, and possibly to identify it. In this context, the planted clique problem has received
considerable attention as a testbed for community detection algorithms. In this model, a large
network of size n is generated according to some mechanism, and a small clique of size k might
be planted in it [2, 39]. The seminal works [4, 38] form a stepping stone toward more realistic
dense communities. Their null model is the (respectively dense, sparse) Erdös–Rényi random
graph, and, when present, the community is a small subset of vertices with larger connection
probability than in the null model. See also [21]. Further generalizing this work, [7] focuses
on detecting a dense subgraph in an inhomogeneous random graph. More precisely, their null
model is the inhomogeneous random graph, and in the alternative hypothesis, the connection
probabilities of a small subset of nodes C are increased by a multiplicative factor ρC > 1.
Crucially, their approach requires precise control of the inhomogeneity of the graph and does
not work, for example, for heavy-tailed degree distributions. Therefore, the difference between
our work and [7] is two-fold. First, we consider the case of power-law vertex weights, which
is more attractive from a modeling point of view. Second, the planted structure is a community
by virtue of the underlying geometrical structure, rather than by tuning an additional model
parameter of a tree-like graph. [6] tackles the opposite problem to ours, namely, detecting
mean-field effects in a geometric random graph model. More precisely, their null model is a
geometric random graph, and in the alternative hypothesis, a small subset of vertices connects
with every other vertex according to independent and identically distributed Bernoulli random
variables. They provide detection thresholds, as well as asymptotically powerful tests.

On the other hand, in the setting of structure detection, we are given a sample from an
unknown random graph model, and the task is to determine if the sample originates from a
mean-field model or a structured (e.g. geometric) model. In [13] (see also [15]), the null model
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is the Erdös–Rényi graph, and the alternative model is a high-dimensional geometric random
graph. For recent progress on this problem, see [10]. [17] proposes a test based on small sub-
graph counts to distinguish between the Erdös–Rényi graph and a general class of structured
models that includes the stochastic block model and the configuration model. More recently,
[11] proposes a test to distinguish between a mean-field model and Gibbs models, and [29] pro-
poses a test to distinguish between a power-law random graph with and without geometry. See
also [19] for two-sample hypothesis testing for inhomogeneous random graphs. [23] proposes
the so-called SCORE algorithm for community detection on the degree-corrected block model.
One of their main ideas is to overcome the statistical issues caused by the heterogeneity of the
degree distribution by constructing test statistics that are properly normalized so as to cancel
out the effects of vertex weights. In a similar spirit, [24] considers an inhomogeneous random
graph with community and proposes a normalized test based on short paths and short cycles to
detect the presence of more than one community. Our work here is also graphlet-based (trian-
gles in this case), but rather than taking all triangles as equal, we weight the triangles based on
the inhomogeneity of the network degrees. This provides a robust statistic to infer communities
in heavy-tailed networks.

1.2. Structure of the paper

The rest of the paper is structured as follows. In Section 2 we explain the model and the
hypotheses for our tests. In Section 3 we provide the tests that we propose, and state our main
results on their accuracy, followed by a discussion in Section 4. We finally prove our main
results on detecting the presence of a geometric structure in Section 5, and our results on the
identification of the geometric structure in Section 6.

1.3. Notation

We adopt the standard notation of a statistical testing problem. The null hypothesis will
be denoted by H0, and the alternative hypothesis by H1. When operating under H0, i.e.
assuming the null hypothesis holds, the probability of some event E will be denoted by
P0(E) := P(E | H0). We denote the expected value and the variance with respect to this prob-
ability measure by E0 and Var0, respectively. On the other hand, when H1 is assumed to
hold, we will similarly use the notation P1, E1, Var1. Throughout the paper we make use
of the standard Bachmann–Landau notation. We write f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0,
f (n) = O(g(n)) if lim supn→∞ f (n)/g(n)<∞, and f (n) =�(g(n)) if g(n) = O(f (n)). Finally, we
say that a sequence of events {En}n≥1 happens with high probability if limn→∞ P(En) = 1.

2. Model

We now formulate the problem of community detection in a graph as a hypothesis-testing
problem. We are given a single sample of a simple graph G = (V, E), where V = [n] :=
{1, . . . , n} is the set of nodes, and E ⊆ {(i, j) ∈ V × V : i< j} are the edges. Note that, by
assumption, G does not contain self-loops and multiple edges.

2.1. Null model

Under the null hypothesis H0, the graph G is a sample of the IRG model, which is defined
as follows [14]. To each vertex i ∈ V we assign a weight wi, and Fn(x) = (1/n)

∑
i∈V 1{wi≤x}

denotes the empirical cumulative weight distribution. Fn can also be seen as the cumulative
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weight distribution of a uniformly chosen vertex in the graph. We require the weight sequence
to satisfy the following assumption.

Assumption 1. There exist τ ∈ (2, 3) and C,w0 > 0 such that, for all x ≥ w0,

1 − Fn(x) = Cx1−τ (1 + o(1)).

Given the weight sequence {wi}i∈V , any edge (i, j) is present with probability

pij = p(wi,wj) := min

(
wiwj

μn
, 1

)
, (1)

independently of all other edges, where μ= w0(τ − 1)/(τ − 2). In the Supplementary Material
we prove that when n is large, μ is asymptotically equal to the average weight.

2.2. Alternative model

Under the alternative hypothesis H1, k of the vertices form a community. Without
loss of generality, we assume these are VC := {1, . . . , k} ⊂ V . For convenience, we write
VI := V \ VC, and we call the elements of VI type-A vertices, while we call the elements of VC

type-B vertices. Let us now define the geometric community more precisely. Let X =R
d/Zd

be the d-dimensional torus. We endow X with the norm

‖x − y‖ = sup
i=1,...,d

min{|x(i) − y(i)|, |1 − (x(i) − y(i))|}, (2)

where x = (x(1), . . . , x(d)) and y = (y(1), . . . , y(d)) are elements of X . Note that this is the
usual infinity norm compatible with the torus structure. To each vertex i ∈ VC we assign a
(random) position xi in the torus X . Formally, (xi)i∈VC is a sequence of random variables
distributed uniformly over X , and we will denote by (xi)i∈VC a realization of such random
sequence. Again, we assign to each vertex i ∈ V a weight wi, where (wi)i∈V is a sequence satis-
fying Assumption 1. Additionally, defining the empirical cumulative distribution of the vertex
weights in the geometric community as Fk(x) = (1/k)

∑
i∈VC

1{wi≤x}, we will also require that
Fk(x) has a power-law tail.

Assumption 2. Let τ,C,w0 be as in Assumption 1. Then, for all x ≥ w0,

1 − Fk(x) = Cx1−τ (1 + o(1)).

Under H1, any edge (i, j) ∈ VI × VI is present independently of all other edges with
probability as in (1). Instead, if (i, j) ∈ VC × VI ,

pij = p(wi,wj) := 1

1 + C1
min

(
wiwj

μn
, 1

)
. (3)

That is, pairs with at least one type-A vertex connect with probability determined by the
weights of the two endpoints, similarly to under H0, but with a correction factor 1/(1 + C1) if
the other endpoint is a type-B vertex.

Finally, any edge (i, j) ∈ VC × VC is present independently of all other edges with
probability

pij = p(wi,wj, xi, xj) := 1

1 + C1
min

(
wiwj

μk‖xi − xj‖d
, 1

)γ
(4)
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6 G. BET ET AL.

FIGURE 1. Visualization of the geometric community in the alternative model. Black and red dots
represent type-A and type-B vertices, respectively, and their sizes grow with vertex weights.

for some γ ∈ (1,∞]. This is a geometric connection probability on k vertices similar to the
GIRG model [12], multiplied by the factor 1/(1 + C1) ∈ (0, 1). The correct choice for the
correction factor is C1 := (1 + (γ − 1)−1)2d, and it will be discussed below. By conven-
tion, the choice γ = ∞ corresponds to the threshold connection rule, i.e. pij = 1/(1 + C1) if
‖xi − xj‖d ≤ wiwj/(μk), and pij = 0 otherwise. Thus, these k type-B vertices form connections
based on their weights as well as their positions. In particular, the closer xi and xj, the more
likely they are to connect. The triangle inequality also ensures that a connection between type-
B nodes i and j and i and k makes it more likely for an edge between j and k to be present
as well. Thus, the type-B vertices are likely to be more clustered than the type-A vertices.
Note that an alternative interpretation for the connection rule (4) is that it is the GIRG con-
nection probability on n vertices [12], where positions of vertices VC are sampled uniformly
over the (shrinking) torus [0, �k/n�]d. In Figure 1 we offer a visualization of the graph model
introduced above, under the alternative hypothesis H1.

2.3. Sources of randomness

Observe that under H1, two sources of randomness are present: the position sequence
(xi)i∈VC , and the random independent connections between vertices. Given a network sample,
the positions that generated the network community are usually unknown, and we only observe
the network connections. Thus, we assume that we do not know the positional vectors of the
community. However, when a given network is a realization of an inhomogeneous random
graph or a geometric inhomogeneous random graph, degrees are mixed-Poisson distributed. In
particular, the degree of a vertex i in the network is di ∼ Poisson(wi), so that di is close to wi,
with high probability when wi � 1; see, e.g., [12] and [37, Appendix C]. Therefore, we assume
that the weight sequence is known, as it is possible to infer it from the degree distribution of
the observed network.
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2.4. Correction factor

In the IRG, any vertex i has expected degree wi(1 + o(1)). On the other hand, the random
graph formed under H1, without the correction factor 1/(1 + C1) in (3) and (4), would intro-
duce a bias on the expected degree. Therefore, a simple check on the degree distribution would
be sufficient to determine if a random graph has been sampled from H0 or H1. With the cor-
rection factor of 1/(1 + C1), the expected degree of any vertex is wi(1 + o(1)) under both H0
and H1, as proved in the Supplementary Material, which excludes a trivial detection test.

2.5. Model choice for the community

The presence of a network community can often be attributed to the embedding of its nodes
in a hidden metric space [8, 35]. The interpretation for real-world networks is that such a spa-
tial arrangement enables vertices with similar structural or functional characteristics to cluster
together, naturally forming a distinct community within the network. Our choice for H1 follows
this logic, as vertices in VC are embedded in the torus X . Because edge connections are drawn
according to the probabilities (3) and (4), for any vertex v ∈ VC, the proportion of connections
between v and the community VC among the total number of neighbors of v is positive (on
average) and equal to C1/(1 + C1). Thus, the vertices in VC are tightly connected.

3. Main results

In this section we describe our main results regarding the detection and the identification
of the geometric community. First, let us introduce a few important notions. A test ψ is a
mapping from G to {0, 1}. Here, ψ(G) = 1 indicates that the null hypothesis H0 is rejected
and the graph contains a planted geometric community, and ψ(G) = 0 otherwise. The risk of
such a test is defined as R(ψ) := P0(ψ(G) = 1) + P1(ψ(G) = 0). Our goal is to distinguish H0
and H1 when the graph size n is large. Formally, a sequence of tests (ψn)n≥1 is said to be
asymptotically powerful when it has vanishing risk, i.e. limn→∞ R(ψn) = 0. Such a sequence
of tests identifies the underlying model correctly in the limit of n → ∞.

3.1. Detection

In this section we first describe an asymptotically powerful test for planted geometric com-
munity detection, the weighted triangle test. We will use the shorthand notation {i, j, k} = � to
mean {(i, j), (j, k), (k, i)} ⊆ E. The test uses the weighted triangles statistic

W(G) :=
∑

a,b,c∈V

1

wawbwc
1{{a,b,c}=�}. (5)

Thus, each triangle is given a weight that is inversely proportional to the product of the weights
of its vertices. In this way, W discounts the triangles formed by high-weight vertices. Indeed,
triangles between high-weight vertices are likely to be formed in geometric as well as in non-
geometric random graphs. Therefore, standard triangle counts are not even able to distinguish
between power-law geometric graphs and inhomogeneous random graphs [29], and we need
more advanced triangle-based statistics. The main distinction is given by the triangles formed
between low-degree vertices, which are unlikely in non-geometric models. The weighted tri-
angle test rejects H0 when W(G) is larger than some threshold f (n). Formally, the weighted
triangle test ψW is defined as

ψW (G) = 1{W(G)≥f (n)}. (6)
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The next result shows that there is significant freedom in the choice of f (n), while still having
an asymptotically powerful test.

Theorem 1. Let f(n) be a function such that f (n) → ∞ as n → ∞ and f (n) = o(k). Then, the
weighted triangle test is asymptotically powerful.

Theorem 1 shows that it is possible to detect the presence of any geometric subset as long as
it grows (arbitrarily slowly) in n. Still, the test statistic (6) relies on knowledge of a lower bound
on the geometric size k when choosing the threshold f (n), as Theorem 1 requires f (n) = o(k);
in Section 3.3 we present a method to overcome this problem.

Based on the same techniques used to prove Theorem 1, we can design a level-α test as
follows. Let α ∈ (0, 1) and define the test ψ̄W (G) = 1{W(G)≥1+1/

√
αμ3}. Using the results in

Section 5, it is possible to show that limn→∞ P0(ψ̄W (G) = 1) ≤ α. In other words, without
prior knowledge of the potential community size, it is possible to bound the type-I error below
any desired level α ∈ (0, 1).

3.2. Identification

We now focus on the problem of identifying the geometric vertices under H1. When a test
rejects H0, the following goal is to identify the vertices that are part of the planted geometric
part. To this end, let V̂C ⊆ V be an estimator for the set of geometric vertices. We assume that
the size of the planted geometric community, k, is known. To measure the performance of an
estimator of the geometric vertices, we use the risk function

Rid(V̂C) := EVC

[ |V̂C�VC|
2|VC|

]
,

where V̂C�VC := ((V \ V̂C) ∩ VC) ∪ (V̂C ∩ (V \ VC)) denotes the symmetric difference
between V̂C and VC, and EVC denotes the expected value given the knowledge of the set VC.
Note that |V̂C�VC| ≤ 2|VC| when we assume that the community size is known and V̂C out-
puts exactly k vertices, so that in that case Rid ∈ [0, 1]. We say that a method achieves almost
exact recovery when Rid(V̂C) → 0, and partial recovery when Rid(V̂C) → c for c ∈ (0, 1). In
other words, a test achieves almost exact recovery if the number of misclassified vertices is
negligible compared to the community size; a test achieves partial recovery when it identifies
a positive proportion of the vertices in the community. We refer to Abbe’s monograph [1] for a
precise definition of different recovery notions. To obtain an estimator for the set of geometric
vertices, we construct a test statistic T : V → {0, 1} such that T(i) = 1 if node i ∈ V is estimated
to be in the community, and T(i) = 0 otherwise.

Low-weight vertices in a GIRG have degree zero with positive probability, and zero-degree
type-A and type-B vertices cannot be identified. This strongly suggests that in our setting,
where O(n) vertices have a weight of order O(1), almost exact recovery cannot be achieved. In
fact, even partial recovery is difficult because low-weight vertices are a non-vanishing fraction
of all the vertices. We therefore focus on achieving almost exact recovery among the graph
induced by all high-weighted vertices.

For the purpose of identification, we propose the test statistic T : V → {0, 1}
T(a) := 1{W(a)>n/(wa

√
log n)}, (7)

where

W(a) := n

w2
a

∑
b,c∈V

1

wbwc
1{{a,b,c}=�}. (8)

https://doi.org/10.1017/jpr.2025.10038 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.10038
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We next show that when wa = wa(n) → ∞ this test leads to vanishing type-I and type-II errors.

Theorem 2. The test T(a) achieves almost exact recovery among the set of all vertices a with
weight wa � log (n). Formally, setting V̂C := {a ∈ V : T(a) = 1}, we get

lim
n→∞ EVC

[∣∣V̂tn
C �Vtn

C

∣∣
2
∣∣Vtn

C

∣∣ | ∣∣Vtn
C

∣∣> 0

]
= 0

as long as
(n log (n)/k)1/τ � tn � k1/(τ−1), (9)

where, for any U ⊆ V, Uh := U ∩ {a ∈ V : wa ≥ h}.
Note that while Theorem 2 uses knowledge of k in the threshold for the weights on

which the risk tends to 0, this threshold can be avoided by choosing tn � (n log (n))1/τ , as
k ≥ 1. In this case, we only need to know whether the upper limit also holds, i.e. whether
k � (n log (n))(τ−1)/τ , and we only need a sufficiently large lower bound on k.

3.3. Estimating the community size

Next, we tackle a different issue, namely inferring the size of the planted geometric com-
munity under H1. We will make crucial use of the fact that the estimator for the community
introduced above identifies high-degree vertices exactly in the n → ∞ limit by Theorem 2.

Let X(1), X(2), . . . denote the order statistics of the weights of the vertices of the geometric
part that are identified by Theorem 2. That is, X(1) is the vertex of the geometric part with the
highest degree. Thus, we take the m highest-weight vertices that are identified by the node-
based test as being part of the GIRG as input. Denote the weights of these vertices by X(1),
X(2), and so on. As an estimator of the community size k we propose k̂m := mXτ−1

(m) .

Theorem 3. Assume that k � (n log (n))(τ−1)/(2τ−1) and m ∈N. Then, as n → ∞, k̂m/k
P→ 1.

Proof. Let X(1), X(2), . . . denote the order statistics of the weights of the vertices of the
GIRG part. By [36, Eq. (4.17)], as k → ∞,

X(s)

(k/s)1/(τ−1)
P→ 1.

Now, the m type-B vertices with the highest weight can be identified correctly with probability
tending to 1 as long as there exists some tn satisfying (9). Such a sequence exists as long as

k � (n log (n))(τ−1)/(2τ−1). Then, k̂ = Xτ−1
(m) m/k

P→ 1. �

In Theorem 1, the threshold function f (n) is determined based on knowledge of the com-
munity size, k. However, Theorems 2 and 3 offer a way to confirm the existence of a geometric
community without requiring prior knowledge of k. The process involves three steps: first,
identifying the vertex X(1) with the highest weight in the graph for which the test T in (7) is

successful; second, computing k̂1 = X(1)τ−1; and finally, defining f (n) =
√

k̂1 before applying
Theorem 1.

3.4. Numerical results

We present here some numerical experiments to illustrate the finite-sample performance of
our tests.
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FIGURE 2. Histogram of the value of W for 104 sample graphs generated under H0 (blue) and H1 (orange)
using τ = 2.5, C = 1, w0 = 1, d = 2, and γ = 5.
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FIGURE 3. Identification of geometric vertices and estimate of the community size under H1 using the
parameters n = 106, k = 104, τ = 2.5, d = 1, γ = 5, C = 1, and w0 = 1.

In Figure 2 we compare the histogram of W from (5) evaluated over multiple samples of
the null and alternative models. In both cases, the models are generated on n = 104 vertices,
and the size of the geometric community varies between k = 100, 200, 300. Under H0, W is
highly concentrated, while under H1, the typical value of W is larger and increases in k. This is
consistent with Propositions 1 and 2, and shows that our test ψW can work with high accuracy
for finite samples. Furthermore, the larger k is, the better the separation between H0 and H1 in
terms of W.

Figure 3(a) illustrates the performance of our identification test (7), which plots the value
of the local weighted-triangle statistic W(a) for each vertex a for a single sample of H1. Figure
4(a) shows that the clouds of coordinates (wa,W(a)) of type-B vertices separate well from the
cloud formed by type-A vertices. The dotted line in Figure 3(a) is the curve y = Cn/(x

√
log n),

where here C is a constant value tuned to the parameters of the model. According to Theorem 2,
all but a small fraction of type-B vertices with large weights lie above the dotted line, whereas
the type-A vertices are located below. Our simulations confirm this. We also observe that a
large proportion of the vertices with low weights is correctly identified. This suggests that
partial recovery might still be achieved for the entire community by ignoring the vertices whose
local weighted-triangle statistic equals zero, even though Theorem 2 only works for high-
degree vertices.
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FIGURE 4. Detection of the geometric community and identification of its vertices when using degrees
as a proxy for vertex weights.

In Figure 3(b) we show a practical application of Theorem 3. The blue dots are the average
values of the resulting estimates of k, obtained from 15 simulations of the model H1. Theorem
3 shows that k̂m converges in probability to the real size of the geometric community k as
n → ∞. This convergence cannot be observed in Figure 3(b), where the size of the graph is
fixed (n = 106). Nonetheless, the figure shows that (k̂m)m ≥ 1 are able to approximate k quite
well, even for moderate values of m.

Lastly, in Figure 4 we observe how well our detection and identification tests perform when
we use degrees as a proxy for the unknown weights in (5) and (8). Figure 4 shows that our
detection and identification tests still perform well, demonstrating that our tests also work well
with observable statistics.

4. Discussion

4.1. Computational complexity

As our test is triangle-based, it only requires a triangle enumeration for all vertices. This
can be done in O(n1+(1/τ )) [28] or O(n3/2) [27] time, or in time O(n log (n)) for a good
approximation [5], providing an extremely efficient method for detecting and identifying
geometry.

4.2. Graph sparsity

The null and alternative models compared in this paper are sparse random graphs, where
the average degree is fixed as the graph size increases. It is easily checked that our results
fail in a denser regime, namely when μ→ ∞, since weighted triangles lose their statistical
test significance. Instead of using the weighted triangles introduced in this paper, in a denser
regime it could be more appropriate to test for geometry via signed triangles [25], which are
counted after centering the adjacency matrix. Signed triangles have been used to distinguish
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Erdös–Rényi from high-dimensional geometric random graphs, and they were shown to per-
form better than pure triangle counts since they are much less correlated with the edge count
in the graph [13].

4.3. Iterative procedure

Our identification procedure identifies high-weight vertices correctly with high probability.
We believe that this identification can serve as a starting point for determining the lower-weight
vertices with non-trivial probability. Given the identification of the high-weight neighbors of
a low-weight vertex, we can compute the likelihood of this vertex being part of the geometric
structure or not, and identify it based on the highest likelihood. After this, we can again assess
this likelihood with these updated identifications and iteratively improve the estimated geo-
metric subset. Such a procedure has been proven to work for the stochastic block model [40],
and using such procedures in this setting also seems promising.

4.4. Improving k̂

While Theorem 3 shows that our estimator of k is unbiased in the large-network limit, for
finite values of n, k̂ overestimates k, as shown in Figure 3b. This is because the test is based
on the identified geometric vertices of Theorem 2. In the large-network limit, these are all
identified correctly. However, for finite n, some vertices may be misclassified as geometric
or non-geometric. Since k is small compared to n, most misclassifications are non-geometric
vertices that are misclassified as geometric. These misidentified vertices, therefore, make the
inferred order statistics of the geometric vertices higher, leading to an overestimation of k.
Improving this estimate for finite n is consequently an interesting line of further research.
For example, we could use information on the expected number of misclassified vertices to
improve the test.

4.5. Rescaling the box sizes

In our model, we rescaled the GIRG connection probability (4) with the size of the com-
munity k. This is equivalent to sampling the locations of the vertices in the community in
a shrinking torus, and not rescaling the connection probability. Another natural choice is
rescaling the connection probability within the community as

pij = min

(
wiwj

μn‖xi − xj‖d
, 1

)γ
.

However, this connection probability leads to a sparse community, where most community
members will be disconnected from other community members. As the name suggests, in the
sparse community scenario the average number of connections between a given vertex in the
community and other community vertices decreases roughly as k/n. Because of this, we believe
that our assumption of a localized community hypothesis of (4) is the more realistic scenario.
Still, our detection methods also apply to the sparse community setting as long as k � √

n. The
thresholds for identifying such a sparse community are unknown, however, and would be an
interesting point for further research to investigate the theoretical limits of our methods.

4.6. Different geometries

Under H1, the positions of community vertices are sampled uniformly from the torus X
endowed with the infinity norm. It may be interesting to investigate to what extent the results
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FIGURE 5. Histogram of the number of triangles for 104 sample graphs generated under H0 (blue) and
H1 (orange) using τ = 2.5, C = 1, w0 = 1, d = 2, and γ = 5.

presented in this paper hold in a different space. For instance, other choices may be the d-
dimensional sphere Sd or the cube [0, 1]d. In both cases we do not expect the results to differ
qualitatively, as both the sphere and the cube are locally diffeomorphic to X . Furthermore,
using ‖ · ‖ in (2) as the infinity norm on X is not restrictive, as all norms are equivalent in
finite-dimensional vector spaces. However, we believe that metrics that are not induced by any
norm may lead to different results.

4.7. Discounting triangles on high-weighted vertices

In (5) and (8), we introduced the statistics W and W(a) to detect and identify the geometric
community rather than the simpler statistics� and�(a), i.e. the triangle counts and the number
of triangles containing a. Unfortunately, simple triangle counts may already fail to distinguish
geometric and non-geometric graphs, as shown in Figure 5 and proved in [29]. On the other
hand, our statistic W mainly counts triangles formed on low-weighted vertices. This quantity is
intuitively small in the IRG model, where vertices with low weight mostly connect to vertices
with high weights. Instead, a geometric community structure enforces triangles among low-
weighted close-by vertices, making W an ideal statistic to detect geometric communities.

4.8. Other subgraph count statistics

Our analysis focuses on counting triangles while excluding those formed around high-
weighted vertices. We believe that extending similar statistical measures to larger cliques
would show that under the null model (H0) they remain bounded, whereas in the alternative
model (H1) these statistics grow linearly with k; see [31]. Thus, incorporating additional clique
patterns would not improve the performance of our test significantly. Furthermore, identifying
larger motifs within a network poses computational challenges. While clique patterns may not
improve our approach, subgraph-counting statistics that assign different weights to patterns
could potentially lead to better performance; see [30].

4.9. Achieving partial/almost exact recovery

In Theorem 2 we show that the test T(a) achieves almost exact recovery among the set of
vertices with weight wa � log (n). The question is: can we get a better result using a different
local test, and achieve either partial or almost exact recovery for all vertices? The answer is
no. Triangle-based statistics fail, since under H1 there is a positive proportion of vertices with
degree at most one. In particular, a positive proportion of vertices is isolated. Therefore, no
local test can determine if an isolated vertex is part of the geometric community. However,
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designing a suitable test to achieve partial or almost exact recovery among all non-isolated
vertices is an interesting open problem.

4.10. Different connectivity kernels

This paper examines models based on the Chung–Lu type connection probability with
a multiplicative kernel, as defined in (1), (3), and (4). This choice ensures that the models
exhibit a scale-free structure with a heavy-tailed degree distribution, a common characteristic
of real-world networks. In contrast, generic connectivity kernels pij = f (wi,wj) do not inher-
ently possess this property without additional adjustments. Still, it would be interesting to
investigate what types of statistics would distinguish geometric regions for other kernels. A
key aspect of our methodology is a precise understanding of the triangle distribution. In multi-
plicative kernel models, triangles predominantly form among nodes with degrees of order

√
n

or higher, while geometric communities in these models generate a substantial number of trian-
gles among low-degree nodes. Because triangle formation patterns are central to our analysis,
extending this approach to general kernels would require a deeper exploration of how triangles
emerge in different connectivity structures.

5. Detection: Proofs

In this section we prove Theorem 1. The proof relies on the application of the second
moment method. To apply Chebyshev’s inequality, we first provide upper and lower bounds
for E[W] and Var (W), under the null and alternative hypotheses.

Proposition 1. (W under H0.) Under H0, the expected value and the variance of W are

E0[W] = 1 + o(1), Var0 (W) ≤ 1

μ3
(1 + o(1)).

Proposition 2. (W under H1). Assume k ≡ k(n) → ∞ as n → ∞. Under H1, the expected value
and the variance of W are

E1[W] =�(k), Var1 (W) = O(k).

The proofs of Propositions 1 and 2 can be found in the Supplementary Material.

Proof of Theorem 1. By Proposition 1 and Chebyshev’s inequality,

P0(W(G)> f (n)) ≤ Var0 (W(G))

f (n)2
→ 0.

Furthermore, by Proposition 2, for n sufficiently large there exists a constant M such that

P1(W(G)< f (n)) ≤ P1(W(G) −E[W(G)]< f (n) − Mk).

Then, again by Chebyshev’s inequality,

P1(W(G)< f (n)) ≤ Var1 (W(G))

(f (n) − Mk)2
→ 0

by Proposition 2. �
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6. Identification: Proofs

We will now show that, under the alternative hypothesis H1, a positive fraction of high-
degree vertices in the geometric community of the network can be distinguished through the
localized triangle statistic. The result will follow, again, from Chebyshev’s inequality. First, we
need some results on the first and second moments of the localized statistic W(a), for vertices
inside or outside the geometric community.

Proposition 3. (W(a) outside VC.) Suppose a is a type-A vertex. When k = o(n),

E1[W(a)] ≤ 1

2μ
(1 + o(1)).

Proposition 4. (W(a) inside VC.) Suppose a is a type-B vertex. When k = o(n) and k → ∞ as
n → ∞, E1[W(a)] =�(n/wa).

Proposition 5. (Variance of W(a).) Suppose k = o(n), and k → ∞ as n → ∞. For any a,
Var1 (W(a)) = O(n2/w3

a).

The proofs of Propositions 3, 4, and 5 can be found in the Supplementary Material. We are
now ready to demonstrate the validity of our identification test.

Proof of Theorem 2. Assume that wa � log (n).
We first calculate the type-I error. When a is type-A, from Propositions 3 and 5 we have

E1[W(a)] = O(1), Var (W(a)) = O(n2/w3
a). By Chebyshev’s inequality,

P

(
W(a)>

n

wa
√

log (n)

)
≤ Var (W(a))

((n/(wa
√

log (n)))(1 + o(1)))2
= O

(
log (n)

wa

)
. (10)

Let ñ denote the number of vertices with weight at least tn, and k̃ the number of type-B vertices
with weight at least tn. For the type-II error, from Propositions 4 and 5 we have E1[W(a)] =
�(n/wa), Var (W(a)) = O(n2/w3

a) for any type-B vertex a. Then, by Chebyshev’s inequality,

P

(
W(wi)<

n

wa
√

log (n)

)
≤ Var (W(a))

((n/(wa
√

log (n))) −E1[W(a)])2

= O

(
n2/w3

a

(n/wa)2

)
= O

(
1

wa

)
. (11)

Thus, the expected number of misclassified type-B vertices equals k̃K2(h log (n))−τ = o(k̃) for
some K2 > 0.

With weight threshold tn for which we apply the test, as k̃ is binomial with mean nt1−τ
n , [3,

Theorem A.1.4] yields that, for all ε > 0,

P(E1) := P
(
k̃< (1 − ε)kt1−τ

n

)≤ exp
(−kt1−τ

n ((1 − ε) log (1 − ε) + ε)
)= exp

(−ε̃kt1−τ
n

)
for some ε̃ > 0, and

P(E2) := P
(
ñ< (1 + ε)nt1−τ

n

)≤ exp
(−nt1−τ

n ((1 + ε) log (1 − ε) − ε)
)= exp

(−ε̂nt1−τ
n

)
for some ε̂ > 0. Thus, as k< n, P(Ē1 ∩ Ē2) ≥ 1 − exp

(−ζkt1−τ
n

)
for some ζ > 0. By (10) with

w0 = tn, on Ē2, the expected number of misclassified type-A vertices equals

O

( ∑
a∈[n−k]:wa>tn

log (n)

wa

)
= O

(
log (n)t−τn nt1−τ

n

)
,
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where nt1−τ
n appears since on Ē2 there are at most (1 + ε)nt1−τ

n vertices of type A with weight
at least tn. Furthermore, misclassified type-B vertices are o(k̃) by (11).

Now,

E

[∣∣V̂tn
C �Vtn

C

∣∣
2
∣∣Vtn

C

∣∣ | Vtn
C ≥ 1

]
= P(E1 ∪ E2)E

[∣∣V̂tn
C �Vtn

C

∣∣
2
∣∣Vtn

C

∣∣ | E1 ∪ E2, Vtn
C ≥ 1

]

+ P(Ē1 ∩ Ē2)E

[∣∣V̂tn
C �Vtn

C

∣∣
2
∣∣Vtn

C

∣∣ | Ē1 ∩ Ē2

]

≤ n exp
(−ε̃kt1−τ

n

)+ O
(

log (n)t1−2τ
n n

)
(1 − ε)kt1−τ

n
= o(1), (12)

as long as (n log (n)/k)1/τ � tn � k1/(τ−1). �
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