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Abstract
This paper proposes a tracking controller for the formation construction of multiple autonomous surface vessels
(ASVs) in the presence of model uncertainties and external disturbances with output constraints. To design a forma-
tion control system, the leader-following strategy is adopted for each ASV. A symmetric barrier Lyapunov function
(BLF), which advances to infinity when its arguments reach a finite limit, is applied to prevent the state vari-
ables from violating constraints. An adaptive-neural technique is employed to compensate uncertain parameters
and unmodeled dynamics. To overcome the explosion of differentiation term problem, a first-order filter is pro-
posed to realize the derivative of virtual variables in the dynamic surface control (DSC). To estimate the leader
velocity in finite time, a high-gain observer is effectively employed. This approach is adopted to reveal all signals of
the closed-loop system which are bounded, and the formation tracking errors are semi-globally finite-time uniformly
bounded. The computer simulation results demonstrate the efficacy of this newly proposed formation controller for
the autonomous surface vessels.

1. Introduction
Formation control has been a major research concern in recent years because of its practicability in per-
sistent surveillance, target tracking, transportation,etc. The ability to coordinate multiple mobile robots
in comparison with a single complex robot is not limited to performance, reliability, adaptability and
flexibility [1]. The formation control challenges correspond to designing, stabilizing, path-following and
tracking controllers to make a group of autonomous vehicles to hold or track the appropriate positions
together with orientations as to one or more reference points. There exist many approaches in obtaining
an appropriate formation which can be branched into leader-following approaches [2, 3], behavior-
based techniques [4, 5] and virtual-structure methods [6, 7]. The leader-follower formation control is the
preferred in practice because of its simplicity and reliability [8]. This issue has been addressed by consid-
ering many practical aspects for tractor trailers [9], car-like mobile robots [10] and underwater vehicles
[11]. In ref. [12], a dynamic surface control (DSC) approach is proposed for autonomous surface vessel
(ASVs) in the presence of uncertainties and ocean disturbances. To provide the transient performance
specifications on the formation errors, the prescribed performance control (PPC) is applied to the control
design [13]. Thus, a leader-following attitude control is proposed by ref. [14] for the spacecraft forma-
tion subjects to a preassigned performance, where unknown inertial parameters, external disturbance
torques and unmodeled uncertainties are taken into account.

Managing the constraints in a rigorous manner of control design and analysis has become the focus
in different fields of science and engineering, because of their theoretical challenges and essence in
real-world applications [15]. In the physical systems, constraints are ubiquitous, manifesting themselves
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as physical stoppages, saturation, performance and safety specifications. The constraints’ violation in a
process may lead to degradation in performance, accidents or system damage. The Barrier Lyapunov
function (BLF)-based control design is applied for these challenges to assure the constraint states. In
this context, the barrier function ϒ(x) is proposed as continuous function where the value tends to be at
infinity when x approaches to the feasible region boundary [16]. The model predictive control is assessed
in ref. [17] for the formation control by introducing constraints in the cost function as coupling terms.
To assess the line-of-sight (LOS) range and angle constraints, tan-type BLF are suggested in the control
approach [18]. In ref. [19], an adaptive NN control with the asymmetric BLF is adopted in the formation
control of marine vessels. Moreover, the finite-time is more advantages than the asymptotic control due
to the protocols applied in its design by finite-time control, which are of rapid convergence rate [20, 21].
The minimal learning parameters (MLP) and NN approaches are applied to all ASVs through finite-
time formation control in ref. [22]. The major features of finite-time control consist of high tracking
precision, powerful disturbance rejection, appropriate robustness and fast convergence rate.

All ASVs are exposed to different types of marine disturbances like waves and ocean currents.
Unexpected external disturbances have an inverse effects on the system performance to an extent that it
may lead to the control system destabilization [23, 24]. Applying a nonlinear disturbance observer will
be contributive in rejecting disturbances in all ASVs [25, 26]. These observers are devised for compen-
sating the inflicted forces and the accelerations of the vessels. These disturbances are modeled through
first- and second-order models in the control design in ref. [27]. To enhance the antidisturbance capabil-
ity and improve the control accuracy of complex systems, various disturbance rejection methods have
been extensively studied. Researchers in refs. [28, 29] devised a disturbance rejection based on terminal
sliding-mode control. This newly finite-time control lacks the capability of disturbance rejection, which
may lead to the performance degradation due to impact on the limited and predefined error bounds.

Motivated by the above discussions, the control objective is to make the constrained formation control
of all ASVs moving on a specified trajectory in the presence of the imposed environment disturbances
under output constraints without velocity measurements. Although the previous disturbance observers
are able to provide the tracking controller design with a high-precision estimation of disturbances, nearly
all of them are designed such that they only assure that the disturbance estimation errors converge to
zero without finite settling time in the stability analysis. The infinite settling time is not desirable during
the formation control problem execution. Moreover, if the imposed disturbances on the dynamics of all
ASVs are not compensated within the finite-time, the improper transient performance of the formation
errors causes collisions and will affect in the deterioration of control efficiency. However, the trajectory
errors of all ASVs in the formation control problem are transgressed from the limited and predefined
bounds due to the limited field-of-view (FOV). Consequently, to cope with these challenges, a BLF-
based constrained control structure with a disturbance observer design is proposed for the formation
control problem of ASVs that improve the transient performance. Both the controller and disturbance
observer are designed through finite-time approach.

Compared with previous related works, the main contributions of this article are expressed as follows:

• For the first time, the finite-time BLF-based DSC approach is successfully combined with a
finite-time terminal sliding-mode disturbance observer for the formation control of ASVs due
to the powerful disturbance rejection of the finite-time technique which increases effectively the
convergence rate of the system response and compensates the disturbance effects in finite-time.

• Compared with the available obtained results [30–33], the BLF-based control laws are proposed
for all ASVs to solve the formation control problem while making them keep the formation
tracking errors in the limited and predefined bounds in the presence of model uncertainties,
external disturbances and output states constraints.

• Compared with [34–36], an effective nonlinear terminal sliding-mode disturbance observer is
applied to compensate the imposed environment disturbance effects in the formation control
of these systems. The proposed controller guarantees the asymptotic trajectory tracking and
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removes the restrictions of the previous methods that require the external disturbances to be
constant or its first-time derivative to be bounded.

• The suggested control design is performed for the full constrained states and without the velocity
measurements. Applying of a high-gain observer (HGO) is an effective technique in the design of
the output feedback control for the formation control problem of ASVs, which does not require
any prior knowledge of the system dynamic model.

• Compared with [37–40], in the distributed control, the communication strategy not only is
achieved based on the graph theory but also in the formation control problem, this issue is
achieved based on the image vision, which is affected under the limited FOV. To solve this prob-
lem, it is necessary to consider limited FOV constraints in the formation control problem which
imposes some restrictions on the tracking errors.

The rest of this article is organized as follows. Preliminaries and problem statements are presented in
Section 2. The BLF is introduced in Section 3. The formation controller design for all ASVs is imple-
mented in Section 4. The simulation results are presented in Section 5, and the article is concluded in
Section 6.

2. Preliminaries and problem statements
Consider a group of cooperative autonomous surface vessels governed by the following kinematic and
dynamic equations:

η̇i = Ji(ψi)υi i = 1, . . . , N,

Miυ̇i + Ci(υi)υi + Di(υi)υi + Gi(ηi)= τi + τdi.
(1)

where Mi > 0 is the inertia matrix, Ci(υi) is the total Coriolis and Centripetal acceleration matrix, Di(υi)
is the damping matrix, the vector ηi = [xi, yi,ψi]T is the output of all ASVs, υi = [ui, vi, ri]T is the vector of
angular velocity, τi ∈ R3 is the control inputs and the vector τdi = [τd1, τd2, τd3]T ∈ R3 contains the external
disturbances, and Gi(ηi) ∈ R3 is the gravity vector. Moreover, the rotational matrix Ji(ψi) and the dynamic
equations of velocities are defined as follows:

Ji(ψi) =
⎛
⎜⎝

cosψi − sinψi 0

sinψi cosψi 0

0 0 1

⎞
⎟⎠ , (2)

⎧⎪⎨
⎪⎩

m11iu̇i = m22iviri − d11iui + τui − τwui(t),

m22iv̇i = −m11iuiri − d22ivi − τwvi(t),

m33iṙi = (m11i − m22i)uivi − d33iri + τri − τwri(t).

(3)

With respect to kinematics and dynamics of all ASVs, the state equations are expressed as:{
η̇i = Ji(ψi)υi

υ̇i = Mi
−1(τi + τdi − Ci(υi)υi − Di(υi)υi − Gi(ηi)) .

(4)

The solutions of formation control consist of position-based, distance-based, orientation-based and
their combinations. In this article, the position-based formation control is applied to the autonomous
surface vessels. The geometric structure of two autonomous surface vessels moving in a leader-follower
formation is shown in Fig 1. The LOS range ρi and angle λi between the leader and the followers are
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Figure 1. A leader-follower formation structure.

defined as:

ρi =
√

(x0 − xi)
2 + (y0 − yi)

2,

λi = a tan 2(y0 − yi, x0 − xi).
(5)

The objective is to design a control input τi for the follower i to track its leader with desired com-
mand where the following formation tracking errors are required to be constrained. In this context, let a
desired reference trajectory η0 = [x0, y0,ψ0]T and its first-time derivatives η̇0 provide the leading forma-
tion problem, and then, the formation tracking errors are defined for each autonomous surface vessel as
follows:

z1i(t) = ηi(t) − η0(t). i = 1, . . . , N. (6)

The formation tracking errors for each autonomous surface vessel in the formation problem should
meet the constraint requirements due to the limited FOV; thus, to assure the formation control objective,
the following inequality must be of concern:

‖z1i(t)‖<βi i = 1, . . . , N. (7)

where z1i denotes the formation tracking error and βi is the constrained bound of the tracking error for
i = 1, . . . , N.

Lemma 2.1. Young’s inequality (ref. [27]) For any ∀(x, y) ∈ �2, the following inequality holds true:

xy ≤ ϑ p

p
|x|p + 1

qϑ q
|y|q, (8)

where ϑ > 0, p> 1, q> 1 and (p − 1)(q − 1) = 1.

Remark 1. A critical issue in the formation control problem is designing an appropriate algorithm to
make the team of autonomous surface vessels to cover a desired formation. If the positions of individual
autonomous surface vessels are controlled in an active sense, the autonomous surface vessels can move
towards their desired positions any interact. Then, the surface vessels need to maintain their formation
as a rigid body. Each autonomous surface vessel can only draw decisions based on the local information
within a certain locality due to limited FOV, limited sensing range and communication constraints. In
the available studies, the control problem in case of output constraints is not of concern. Moreover, there
exist no strict theoretical basis to indicate that these constraints will never be violated. For safety and
security, this issue cannot be ignored in practice. In this article, a symmetric BLF is applied to avoid the
limits violation and keep all the states within the predefined bounds.
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3. BLFs
A specific property of the BLFs is high growth of such functions with approaching to the constrained
bounds in the neighborhoods. This issue enables us to get the solution process at any inner point of the
feasible set and to remain in the interior without taking particular care of the constraints [16]. Therefore,
the following definition is of concern.

According to ref. [41], a BLFϒ(x) is a scalar function, defined in accordance with the system ẋ = f (x)
on an open region D containing the origin. This scalar functionϒ(x) is continuous and positive-definite.
It has continuous first-order partial derivatives at every point of D and with the propertyϒ(x) → ∞ as x
approaches the boundary of D, meets ϒ(x) ≤ β, ∀t ≥ 0 as to the solution ẋ = f (x) for x(0) ∈ D and some
positive constant β, which is related to the initial value of x. Parameter β is introduced to describe the
upper bound of this function.

Remark 2. With respect to the Remark 1, the state space is split for each autonomous surface vessel into
errors z1i and z2i, where z1i is the state to be constrained and z2i is the free state. The state z1i requires the
BLFϒi to prevent it from reaching the limits β1i, while z2i may involve a quadratic function. Here, based
on Lemma 1, ηi, υi ∈ R3 are the states variables where ηi is required to meet |ηi(t)|<β1i, ∀t ≥ 0 with β1i

being a constrained bound. The following Lemma formalizes the result for general forms of BLFs to
assure that the outputs or state constraints are not violated.

Lemma 3.1. (ref. [41]) For any positive constants β1i and β2i, let z1i := {z1i ∈ : β1i < z1i <β2i} ⊂ R3.
Consider the system

η̇i = h(t, η), (9)

where ηi := [ωi, z1i]T and h is the piecewise continuous in t, locally Lipchitz in z and uniformly in t.
Assume that there exists function Ui :ϒi(z1i → R+) continuously differentiable and positive-definite in
their respective domains in a sense that

ϒi(z1i) → ∞ as z1i → −β1i or z1i → β1i, (10)

γ1i(‖ωi‖ ) ≤ Ui(ωi) ≤ γ2i(‖ωi‖), (11)

where γ1i and γ2i are the class k∞ functions. Let ϒi(η) =ϒi(z1i) + Ui(ωi) and the initial error z1i(0)
belongs to the set z1i ∈ (−β1i, β2i). If the following inequality holds true:

ϒ̇i = ∂ϒ

∂η
h ≤ 0, (12)

then the error z1i(t) remains in the open set z1i ∈ (−β1i, β1i) ∀t ∈ [0, ∞).

Lemma 3.2. (ref. [42]) For any positive constant β1i, the following inequality holds for all errors z1i in
the interval ‖z1i‖<β1i:

log
β2

1i

β2
1i − z2

1i

<
z2

1i

β2
1i − z2

1i

. (13)

Assumptions: The following assumptions are essential to meet the mentioned control objectives:

1. Over the compact set υi ∈�υ , the NN ideal weight vector θ ∗
i , and the minimum approximation

error δ∗
i (υi) of NN are bounded through

‖θ ∗
i ‖ ≤ θmi, ‖δ∗

i (υi)‖ ≤ εi, ∀υi ∈�υi, (14)

where θmi and εi are the positive constants.
2. The sway velocity νi is passive bound. This feature is systematically analyzed with respect to

different cases in ref. [10]. This assumption is highly actual in practice because the hydrodynamic
damping force is dominant in the sway direction which damps out the sway speed.
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3. The external disturbance τdi acting on each surface vessel which is subjected to wind, wave and
sea currents is bounded in practical engineering. Consequently, there exist a scalar�i ∈ R+ such
that ‖τdi‖ ≤�i.

Lemma 3.3. Finite-time theory (ref. [21]) Consider the nonlinear system ẋi = fi(xi) with both
fi(0) = 0 and xi(0) = x0. Provided that the function ϒi(x) : Ui → R is defined as continuously differ-
entiable, positive-definite on a neighborhood and the time derivative of this function is obtained as:

ϒ̇i(x) ≤ −C1iϒi(x) − C2iϒ
μi
i (x), (15)

where C1i, C2i > 0 and 0<μi < 1, then the origin is locally finite-time stable. Provided that Ui = RN

and ϒi(x) are bounded in their radial sense, then the origin is globally finite-time stable. In this context,
the finite-time Ti ∈ [0, ∞) meets the following requirements based on the initial states:

Ti ≤ 1

C1i(1 −μi)
Ln

C1iϒ
1−μi
i (x0) + C2i

C2i

. (16)

Remark 3. In practice, unlike the original control systems, it is necessary for the closed-loop system
to achieve finite-time stability. A slow convergence speed may require longer time for the autonomous
surface vessels to reach the desired position, and high overshoot might result in a collision between
the follower and its predecessor. Both the finite-time convergence and stabilization not only assure
higher convergence rate but also guarantee a better disturbance rejection, higher accuracy and greater
robustness against uncertainties.

4. Formation control design for autonomous surface vessels
4.1. Neural network approximator
According to the universal approximation property, radial basis function neural networks (RBFNNs)
are widely applied to compensate structured uncertainties due to the fact that RBFNNs are capable to
approximate smooth uncertain functions in many nonlinear systems such as autonomous surface vessels.
To this end, a nonlinear function is approximated as follows:

f̂i(υi) := θ̂ T
i �i(υi), (17)

where υi ∈�υi ⊂ Rq is the input vector and q is the NN input dimension, θ̂i = [θ̂1i, θ̂2i, . . . , θ̂li]T ∈ Rl is
the NN weights vector and l> 1 is the NN number. The regression vector�i(υi) = [ϕ1i(υi), . . . , ϕli(υli)]T

is the basis function vector where ϕi(υi) is defined as ϕi(υi) = exp[‖υi −μi‖2/ci], i = 1, . . . , l; where,
μi = [μi1, . . . ,μiq]T is the center of Gaussian functions and ci > 0 is the width of them. For any unknown
nonlinear function fi(υi) that contains Ci(υi) and Di(υi), there exists the NN function θi

∗T�i(υi) in a sense
that

fi(υi) := θ ∗T

i �i(υi) + δ∗
i (υi), ∀υi ∈�υi ∈ Rq, (18)

where δ∗
i (υi) is the minimum approximation error and θ ∗

i is the ideal constant vector defined as:

θ ∗
i := arg min

θ̂i∈Rl
supυi∈�υi

f (υi) − θ̂ T
i �i(υi). (19)

4.2. HGO
In some practical systems, the limitations and environmental disturbances together with technological
limitations make accurate velocity measurements of surface vessels difficult [44]. A HGO is applied
to estimate these unmeasurable states, referred to as υi for i = 1, . . . , N. The dynamics of HGO are
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expressed as follows: {
miλ̇i1 = λi2

miλ̇i2 = −m1iλi2 − λi1 + ηi

, (20)

where λi1, λi2 ∈ Rn are the state vectors of HGO, m1i and mi are the small positive constants. To prevent
peaking, the saturation functions are applied to a given observer signal when it is outside the preferable
range � as [46]:

λij = Bij�

(
λij

Bij

)
, Bij ≥ max(λij)

υ∈�υi

, (21)

where

�(a) =

⎧⎪⎨
⎪⎩

−1 for a<−1

a for |a| ≤ +1

+1 for a>+1

Consequently, the following equation can be proved [45]:

�i2 = λ2i

mi

− υi = miX(2)
i (22)

where Xi = λi2 + miλi1 and there exist positive constants t∗ and gi2 in a sense that ∀ t> t∗, ‖�i2‖ ≤ κigi2

holds true.

4.3. Output feedback adaptive-neural formation controller design
To design DSC for the formation control of surface vessels, the formation tracking errors are defined for
the first and second steps through the state variables ηi and υi as:{

z1i = ηi − η0

z2i = υi − PiF

i = 1, . . . , N. (23)

Let z1i = [z11i, z12i, z13i]T and z2i = [z21i, z22i, z23i]T . With respect to the suggested HGO, the estimation
of second surface errors in (23) is rewritten as:

ẑ2i = υ̂i − PiF = J−1(ψi)
λ2i

mi

− PiF, (24)

where PiF is the virtual control signal that is passed through the following first-order filter:

αiṖiF + PiF = Pi PiF(0) = Pi(0), (25)

where Pi is the virtual controller and αi is a design parameter. Consequently, the following error is
defined for each surface vessel in the formation control:

Pie = PiF − Pi. (26)

Next, one has the following equation through (25) and (26):

Ṗie = ṖiF − Ṗi = 1

αi

Pie − Ṗi. (27)

Consequently, one may find that ∥∥∥∥Ṗie + Pie

αi

∥∥∥∥ ≤� , (28)
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where � is the continuous function of closed-loop variables and their derivatives that is used to derive
the following inequality, where will be used in the stability analysis in the sequel:

PT
ieṖie ≤ − 1

αi

‖Pie‖2 + ‖Pie‖2 + 1

4
� 2. (29)

In the second step, the virtual surface error of each surface vessel is obtained by

z̃2i = ẑ2i − z2i = J−1(ψi)
λ2i

mi

− PiF − υi + PiF =�i2. (30)

With respect to the conditions of HGO and
∥∥J−1

∥∥ ≤ Si where Si ∈ �+ is an unknown constant, the
following inequalities are of concern:

‖z̃2‖ =
∥∥∥∥J−1(η)

(
λi2

mi

− η̇

)∥∥∥∥ = ∥∥J−1(η)miχ̈
∥∥ ≤ miP2

∥∥J−1(η)
∥∥ ≤ miP2Si := S2, (31)

‖z̃2‖2 =
∥∥∥∥J−1(η)

(
λi2

mi

− η̇

)∥∥∥∥
2

= ∥∥J−1(η)miχ̈
∥∥2 ≤ m2

i P2
2

∥∥J−1(η)
∥∥2 ≤ m2

i P2
2S

2
i := S2

2. (32)

By replacing υ̂i = ẑ2i + PiF and derivation from the calculated tracking errors, the following equations
are obtained:

ż1i = Ji(ẑ2i + PiF) − η̇0,

ż2i = ˙̂υ i − ṖiF.
(33)

At this step, to facilitate discussion on the limited FOV constraint requirements of the formation
tracking errors, the symmetric BLF is introduced for each surface vessel [22] as follows:

ϒ1i = 1

2
log

β2
1i

β2
1i − zT

1iz1i

, ‖z1i(0)‖<β1i. (34)

The derivative of the BLF is calculated based on the formation tracking errors of each surface ves-
sel. By inserting the calculated dynamic error in the derivative of the BLF, the following equation is
obtained:

ϒ̇1i = zT
1iż1i

β2
1i − zT

1iz1i

= zT
1i(Ji(ψi)(ẑ2i + Pi) − η̇0)

β2
1i − zT

1iz1i

. (35)

Consequently, the virtual control signals are designed according to the BLF derivative and finite-time
approach on the formation control of autonomous surface vessels as

Pi = J−1
i (ψi)(η̇0 − c1iz1i(β

2
1i − zT

1iz1i) − c2isgnα(z1i)), (36)

where c1i and c2i are the designed positive parameters, sgnα(z1i) = |z1i|αsign(z1i) which 0.5<α < 1. With
substituting the virtual control (36) into (35), the following equation is obtained:

ϒ̇1i = Jiz1iẑ2i − c1iz2
1i(β

2
1i − zT

1iz1i) − c2iz1isgnα(z1i)

β2
1i − zT

1iz1i

. (37)

With respect to equation z1isign(z1i) = |z1i|, term c2i|z1i|α+1 is replaced into c2iz1isgnα(z1i); thus, the
following equation is achieved:

ϒ̇1i = −c1iz
2
1i +

Jiz1iẑ2i

β2
1i − zT

1iz1i

− c2i|z1i|α+1

β2
1i − zT

1iz1i

. (38)

By applying a simple math calculations, the following equation is obtained:

ϒ̇1i = −c1iz
2
1i +

Jiz1iẑ2i

β2
1i − zT

1iz1i

− c2i(β
2
1i − zT

1iz1i)
α−1

2

(
z2

1i

β2
1i − zT

1iz1i

) α+1
2

. (39)
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According to Lemma 1, we have
1

2
log

β2
1i

β2
1i − zT

1iz1i

<
z2

1i

2(β2
1i − zT

1iz1i)
. Let ρ1i = β2

1i − zT
1iz1i which is

positive, then, the following equation is obtained:

ϒ̇1i = −2c1iρ1iϒ1i − c2iρ1i
α−1

2 (2ϒ1i)
α+1

2 + Jiz1iẑ2i

β2
1i − zT

1iz1i

. (40)

Remark 4. An extra term −c2isgnα(z1i) in the virtual control (36) is proposed for the finite-time stability
which would increase the convergence rate and accuracy. Because of to 0.5<α < 1, the derivatives of
this term may lead to singularity problem on the error surface. Consequently, to overcome this drawback,
the first-order SMD which can engulf the derivatives of the virtual control laws which are applied to the
DSC approach.

After designing the virtual control singals for each surface vessel in step 1, the quadratic Lyapunov
function is proposed in step 2 as follows:

ϒ2i =ϒ1i + 1

2
zT

2iMi z2i + 1

2γi

θ̃ T
i θ̃i + 1

2
PT

iePie, (41)

where γi > 0 is a design parameter and θ̃i = θ ∗
i − θ̂i. By calculating the derivative of Lyapunov function

in step 2, the following equation is obtained:

ϒ̇2i = ϒ̇1i + zT
2iMi ż2i − 1

γi

θ̃ T
i

˙̂
θi + PT

ieṖie. (42)

By inserting the error dynamic into this derivative, the following result is achieved:

ϒ̇2i = −2c1iρ1iϒ1i − c2iρ1i
α−1

2 (2ϒ1i)
α+1

2 + JizT
1iẑ2i

β2
1i − zT

1iz1i

+ zT
2i(−Ci(υi)z2i − Di(υi)z2i + τi + f ∗

i (υi)) − 1

γi

θ̃ T
i

˙̂
θ i + PT

ieṖie, (43)

where f ∗
i (υi) = −Ci(υi)PiF − Di(υi)PiF − Gi(ηi)− MiṖiF. By inserting f ∗

i (υi) = θ ∗T

i ϕi + εi into Eq. (43),
where εi is the approximator error in the derivative of Lyapunov function in step 2, the following is
yield:

ϒ̇2i = −2c1iρ1iϒ1i − c2iρ1i
α−1

2 (2ϒ1i)
α+1

2 + JizT
1iẑ2i

β2
1i − zT

1iz1i

+ zT
2i

(
−Ci(υi) z2i − Di(υi)z2i + τi + θ̃ T

i ϕi + θ̂ T
i ϕi + εi

)
− 1

γi

θ̃ T
i

˙̂
θ i

−
(

1

αi

− 1 − 0.5λmax{Ji(ψi)}
)

‖Pie‖2 + 1

4
� 2. (44)

The sigma-modification structure is utilized as a robust adaptive law until it makes the estimated
parameters to become fixed at specific points. The adaptive laws are chosen for each surface vessel as
follows:

˙̂
θi = γiz

T
2iϕi − γiδi(θ̂i − θi0), (45)

where γi > 0 and δi > 0 are the design parameters. The parameters θi0 ∈ R3 are priori estimates of the
parameters θi. Consequently, the formation control signal for each surface vessel is designed as:

τi = −c3iẑ2i − c4isigα(ẑ2i) − θ̂ T
i ϕi − Jiz1i

β2
1i − zT

1iz1i

− τ̂di, (46)

where parameters c3i and c4i are the designed positive constants and τ̂di will be designed as the finite-time
disturbance observer in the next step. With respect to zT

2i

(
Ṁi − 2Ci(υi)

)
z2i = 0 and by substituting the
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control signals into the derivative of Lyapunov function, the following equation is obtained:

ϒ̇2i = −2c1iρ1iϒ1i − c2iρ1i
α−1

2 (2ϒ1i)
α+1

2 − zT
2ic3iz2i − zT

2ic3iz̃2i

−c4i

(‖z2i‖2
) α+1

2 − c4i

(‖z̃2i‖2) α+1
2 − zT

2iDiz2i + zT
2iεi + θ̃ T

i δi(θ̂i − θi0)

−
(

1
αi

− 1 − 0.5λmax{Ji(ψi)}
)

Pie
2 + 1

4
� 2.

(47)

With respect to inequalities (29) and (32) and through assumption εi
2 < ε∗2

i and Lemma 2, the
following inequalities can be obtained by applying the Young’s inequality as follows:

zT
2iεi ≤ 1

2
zT

2iz2i + 1

2
ε∗2

i , (48)

θ̃ T
i δi(θ̂i − θi0) ≤ −(1 − 0.5/k2)δi

∥∥∥θ̃i

∥∥∥2 + 0.5δi‖θi − θi0‖2, (49)

−zT
2ic3iz̃2i ≤ 0.5λmax{c3i} ‖z2i‖2 + 0.5λmax{c3i} ‖z̃2i‖2. (50)

Consequently, with replacing the inequalities (48)–(50) into Eq. (47), the following inequality is
achieved:

ϒ̇2i ≤ −2c1iρ1iϒ1i − c2iρ1i
α−1

2 (2ϒ1i)
α+1

2 − ρ2i‖Pie‖2 − ρ5i‖z2i‖2

−c4i

(‖z2i‖2
) α+1

2 − ρ3i

∥∥∥θ̃i

∥∥∥2 + 1
2
ε∗2

i + ρ4i + ρ6i,
(51)

where parameters ρ2i =
(

1
αi

− 1 − λmax(Ji(ψi))
)
, ρ3i = (1 − 0.5/k2)δi, ρ4i = 0.5δi‖θi − θi0‖2,

ρ5i = λmin{Di + c3i + c4i} − 0.5λmax{c3i} and ρ6i = S2
2
2

+ 1
4
� 2 are positive constants with conditions

λmin{Di + c3i + c4i}> 0.5λmax{c3i} and 1
αi
> 1 + λmax(Ji(ψi)).

Remark 5. Since in the constrained formation control problem, each ASV can only acquire the position
information from its immediate predecessor, such position states of ASVs are unmeasurable and the
tracking errors can be considered in the predefined and constrained bounds which are time-varying by
recalling the limited FOV. To satisfy these constraints on the formation tracking errors, the following
constraints are considered:

β
i
(t) ≤ zi(t) ≤ β̄i(t) (52)

with
β̄i(t) = β̄i,∞ + (β̄i,0 − β̄i,∞)e−kit,

β
i
(t) = β

i,∞ + (β
i,0

− β
i,∞)e−kit,

(53)

where β̄i,0, β̄i,∞, β
i,0

, β
i,∞ and ki are the positive design parameters, β̄i(t) and β

i
(t) are the maximum and

minimum allowable tracking errors with β̄i,∞ ≤ β̄i,0 and β
i,∞ ≤ β

i,0
, respectively. These time-varying

boundaries of the tracking errors are utilized in the conversion of the error transformation.
The asymmetric BLFs are proposed to assure the time-varying limited FOV errors constrained within

certain bounds such that leaders and followers can preserve the predefined structure and ensure the
desired steady-state bounds as follow:

ϒi = qz(zi)

2
log

β
2

i

β
2

i − z2
i

+ 1 − qz(zi)

2
log

β2

i

β2

i
− z2

i

, (54)

where qz is the logic variable which is equal to one if the kinematic error zi is positive and the otherwise
is equal to zero; β

i
and β i are the minimum and maximum constraints on the time-varying error zi,
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respectively. To dominate the time dependency, the following conversion of variables is proposed:

�z1 = zi

βi

, �z2 = zi

βi

, �z = qz�z2 + (1 − qz)�z1. (55)

With the above conversion of coordinates, the BLF ϒi is rewritten without the time dependency as
follows:

ϒi = 1

2
log

1

1 −�2
z

. (56)

It is obvious that the BLF ϒi is positive-definite and continuously differentiable in the set |�z|< 1.
This suggested BLF based on the error transformation can be substituted into the proposed BLF in
Eq. (34) with respect to the time-varying predefined and limited FOV constraints.

4.4. Terminal sliding-mode disturbance observer design
The environmental disturbances vector τdi is bounded and not measurable precisely in practice, indicat-
ing that the designed terminal sliding-mode disturbance observer has more practical value. The physical
meanings of these imposed environmental disturbances are mostly due to the sea and ocean currents,
storms, waves and winds. However, its interpretation may generally cover strong couplings, uncertain
nonlinearities, modeling errors and unmodeled dynamics of the system. In this step, a terminal sliding-
mode observer-based estimation scheme will be developed more to assure the actual external disturbance
for each surface vessel to allow high-accuracy estimation after finite-time. To design an estimation law
for disturbance τdi, the new error variable�i = υi −�i is introduced firstly for each surface vessel where
�i ∈ R3 is updated through the following equation:

�i = M−1
i (Ki1�i + Ki2sgn(�i) + τi − Ci(υi)υi − Di(υi)υi − gi(ηi)). (57)

This nonlinear terminal sliding-mode disturbance observer estimation law is implemented in the
control design to obtain in a high performance control against external disturbances through finite-time
convergence of tracking errors vector for each surface vessel into a compact set as:

τ̂di = K1i�i + K2isgn(�i) (58)

where K1i and K2i are positive constants. The actual τdi can be estimated precisely through τ̂di. Moreover,
the estimated disturbance error edi = τ̂di − τdi for each surface vessel is assured to converge to zero in
an asymptotic manner. In practice, to reduce the chattering in the finite-time convergence, a continuous
function �i/ (‖�i‖ + εi) must be adopted to approximate the sgn(�i) function. This designed termi-
nal sliding-mode disturbance observer is implemented without any assumption on the upper bound of
disturbances in the control design to increase the control system performance.

To prove the convergence of this terminal sliding-mode disturbance observer law, the following
Lyapunov function is proposed for each surface vessel:

ϒ3i = 0.5�T
i Mi�i. (59)

With respect to Eq. (4), control signal (46) and terminal sliding-mode law (53), the following equation
is yielded:

Mi�̇i = Miυ̇i − Mi�̇i

= −Ki1�i − Ki2sgn(�i) + τid.
(60)

The time derivative of Lyapunov function (59) is calculated along with disturbance observer error
�i as:

ϒ̇3i =�T
i (τdi − Ki1�i − Ki2sgn(�i) − Ki3
�i�pi/ qi )

≤ −Ki1‖�i‖2 − Ki2‖�i‖ +�i‖�i‖ − Ki3�
T
i 
�i�pi / qi

≤ −Ki1‖�i‖2 − Ki3�
T
i 
�i�pi/ qi

(61)
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Figure 2. Suggested block diagram for the leader-follower formation control of autonomous surface
vessels.

With applying Lemma 1, the inequality (61) will be bounded more through:

ϒ̇3i ≤ − 2Ki1

λmax(Mi)
ϒ3i − K3i

(
2

λmax(Mi)

)σ

(ϒ3i)
σ (62)

where σ = pi + qi

2qi

. Consequently, ϒ̇3i(t) ≡ 0 for all convergence rate t ≥ tix, which, tix is obtained through

the following inequality at finite-time [43].

tix ≤ 1

c(1 + α)
ln

cϒ 1−α
3i (0) + ιi

ιi
(63)

where ιi = 2Ki1

λmax(Mi)

and ci = Ki3

(
2

λmax(Mi)

)σi

.

Consequently, it can be deduced that ϒ3i ≡ 0, where �̇i = 0, t ≥ tix and the disturbance estimation
error edi meets

edi = Ki1�i + Ki2sgn(�i) + Ki3
�i�pi/ qi − (Miυi + Ci(υi)υi − τi + Di(υi)υi + G(ηi))

= Mi(−υ̇i + �̇i). (64)

As a result, edi = −Mi�̇i, which is finite-time stable, edi ≡ 0, t ≥ tix. Thus, the states of the closed-
loop control system converge to the origin in finite-time and the estimation parameters are bounded.
This suggested control structure is illustrated for the leader-follower formation control of autonomous
surface vessels in Fig. 2.

Remark 6. In comparison with ref. [32], where the leader-follower performed based on range and bear-
ing constraints, in this article, the leader-follower formation control accomplished based on the tracking
error constraints. Moreover, since the control approach is based on finite-time, the finite-time disturbance
observer is applied in this article which increases the disturbance rejection powerfully and improves both
the high tracking precision and fast convergence rate in the formation control problem.

Remark 7. The negligence of the effects of external ocean disturbances in the formation control problem
may lead to the system instability and collision of ASVs. Therefore, the finite-time terminal sliding-mode
disturbance observer is proposed in this article to compensate such disturbances in the dynamics of all
ASVs. This suggested finite-time disturbance observer-based controller for ASVs picks up the previous
restrictions on the number of ASVs and the formation arrangement.
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Theorem 4.1. Consider a group of cooperative autonomous surface vessels with kinematic and dynamic
equations which are given by (1) and (4). Subjected to Assumptions 1-3 and constraint (7), the proposed
control law (46) with applying HGO (20)-(22), adaptive law (45) and nonlinear disturbance observer
(53) ensure that all the signals in the closed-loop control system remain bounded as t → ∞ and the
tracking errors z1i(t) and z2i(t) are semi-globally uniformly ultimately bounded (SGUUB) and converge
into a small ball including the zero.

Proof. Consider the following Lyapunov function for the overall formation control system:

ϒT(t) =
N∑

i=1

(
1

2
log

β2
1i

β2
1i − zT

1iz1i

+ 1

2
zT

2iMi z2i + 1

2γi

θ̃ T
i θ̃i + 1

2
PT

iePie + 1

2
�T

i Mi �i

)
. (65)

The following inequality is obtained for the entire formation control system:

ϒ̇T(t) ≤
N∑

i=1

(
−2c1iρ1iϒ1i − c2iρ1i

α−1
2 (2ϒ1i)

α+1
2 − ρ2i‖Pie‖2 − ρ3i

∥∥∥θ̃i

∥∥∥2 − ρ5i‖z2i‖2

−c4i

(‖z2i‖2
) α+1

2 + 1
2
ε∗2

i + ρ4i + ρ6i − 2Ki1

λmax(Mi)
ϒ3i − K3i

(
2

λmax(Mi)

)σ

(ϒ3i)
σ

)
.

(66)

Consequently, inequality (66) can be represented for the overall formation control of autonomous
surface vessels as follows:

ϒ̇T(t) =
N∑

i=1

(−si‖χti(t)‖2 + γi(t)
) ≤ −smin‖χt(t)‖2 + γ (t), (67)

where χti = [zT
1i, zT

2i, θ̃
T
i , Pie,�T

i ], χt = [χ T
t1, χ T

t2, . . . , χ T
tN]T , smin = min{si}N

i=1 and γ (t) =
N∑

i=1

γi(t). In this

context, ξi and γi are defined as follows:

ξ = min

{
2c1iρ1i, c2iρ1i

α−1
2 , ρ2i, ρ5i, ρ3i, c4i,

2Ki1

λmax(Mi)
, K3i

(
2

λmax(Mi)

)σ}
. (68)

γ = ρ4i + ρ6i + 1

2
ε∗2

i . (69)

Consequently, with respect to definitions (68) and (69), the following inequality is obtained for the
overall formation control of autonomous surface vessels:

ϒ̇T(t) ≤ −ξ ϒT(t) + γ , (70)

which assures that the closed-loop control system is SGUUB. According to Lemma 1, inequality
‖z1i(t)‖<β1i ∀t> 0 yields that the initial conditions ‖z1i(0)‖<β1i are satisfied. Hence, it is known that
ηi(t) = z1i(t) + η0(t), ‖z1i(t)‖<β1i and ‖η0(t)‖ ≤ A0, consequently, ‖ηi(t)‖<β1i + A0 and the position
output constraints will never be violated. The signals zi(t) = [z1i(t), z2i(t), z3i(t)]T remain in a defined
bounded compact set through:

�z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zi ∈ Rn : |z1i| ≤ β2
1i

√
1 − e−2ϒ1i , ‖z2i‖ ≤

√√√√√max

{
ϒ(t0),

γi

si

}
λzmin

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (71)

This equation indicates that ‖zi(t)‖ decreases whenever zi(t) is outside the set �z, revealing that zi(t)
is SGUUB and converges exponentially to a neighborhood of the origin which assures that the leader-
follower formation control system for the surface vessels under output constraints is SGUUB. By the
function approximation capability of NNs, an adaptive-neural formation controller is designed for each
surface vessel in a sense that all of them can synchronize the leader with tracking errors by being SGUUB
in an asymptotic manner. Thus, all the signals in the closed-loop system are bounded and the tracking
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Figure 3. Formation control of autonomous surface vessels with circle desired trajectory.

errors converge to a small neighborhood of the origin by choosing the design parameters appropriately.
Consequently, the obtained proof process is analogous to theorem. The proposed control method not
only can guarantee the formation objective achieved within finite settling time but also can estimate
the external disturbances in the finite-time. It is easy to draw the conclusion that the formation control
problem of surface vessels can be solved with constrained states.

5. Simulation results
To illustrate the performance of this newly proposed disturbance observer-based finite-time forma-
tion controller, a simulation of N = 5 identical models of the autonomous surface vessels is carried
out where the system parameters are obtained from ref. [19]. Undoubtedly, there exist some model
uncertainties and time-varying disturbances that are introduced in this model. The objective here is to
make the formation control to achieve the desired trajectory to form the circle shapes with a radius of
12m with η0 = [2, −8, −1.5]T for autonomous surface vessels, while avoiding from violation of con-
straints in the presence of uncertainties and disturbances. The initial positions and orientation of each
surface vessel are represented by η1(0) = [1, −8, −1]T , η2(0) = [3, −10, −1.5]T , η3(0) = [4, −11, −1]T ,
η4(0) = [6, −13, −1]T , η5(0) = [8, −14, −1]T , which meet Lemma 1, and the initial velocities are υi(0) =
[0, 0, 0]T . The formation trajectory of autonomous surface vessels in 2-D plane is illustrated in Fig. 3
where the followers have to follow the leaders at the finite-time in the presence of state constraints,
external disturbances and uncertainties.

The constant coefficient of the first-order filter is considered as αi = 0.005; the virtual and actual
controller coefficients c1i = 50, c2i = 40, c3i = 2, c4i = 3 are designed; the finite-time coefficient is con-
sidered as α = 0.85; the high-gain velocity observer parameters are considered as mi = 0.2, m1i = 5; The
designed disturbance observer parameters are selected as K1i = 60, K2i = 20, δi = 5; the constraint bound
for the formation tracking errors are selected as β1i = 0.05. The initial estimated RBFNN parameters are
selected as θ1i(0) = 10, θ2i(0) = 2 and θ3i(0) = 1 in the formation control of each autonomous surface ves-
sel. Moreover, the time-varying reign of tracking errors regarding the limited FOV bound is suggested as
z̄i,0 = +1, z̄i,∞ = +0.05, z

i,0
= −1, z

i,∞ = −0.05 and the exponential rate coefficient is selected as ki = 2.
The designed actual control signals of autonomous surface vessels τui, τvi and τri are shown in Fig. 4.

The high-gain velocity observer errors υ̃ui, υ̃vi and υ̃ri are illustrated in Fig. 5. It is clear that all signals
are saturated due to the initial tracking error as well as the effects of HGO approximation. The distances
and angles between autonomous surface vessels ρi, ψi are shown in Fig. 6. The disturbance observer
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Figure 4. Actual control signals of each autonomous surface vessels τui, τvi and τri.

Figure 5. High-gain velocity observer errors of the autonomous surface vessels υ̃ui, υ̃vi and υ̃ri.

output in the formation control is shown in Fig. 7. The disturbance observer errors of all ASVs �d1i,
�d2i, �di3 are shown in Fig. 8. The first surface errors of each ASV zxi, zyi, zψ i and the second surface
errors of each ASV zui, zvi and zri are illustrated in Figs. 9 and 10, respectively.

The Frobenious norm of estimated NN parameters is illustrated in Fig. 11. An appropriate increasing
of the NN nodes number will lead to a smaller approximation error, thus a decreasing in compact set�i.
This fact indicates that the formation is performed well despite the available time-varying disturbances
and uncertainties. All surface vessels successfully track the leader to construct the desired formation
without violating the constraints and the formation tracking performance of the cooperative autonomous
surface vessels is met at finite-time.

As it can be seen in the Fig. 5, the HGO estimates the velocities of all ASVs in the finite settling time
within about 2 s. It is clear that these estimates arrive at their respective saturation values and converge
quickly to the actual output derivatives in a small neighborhood of their values.
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Figure 6. Distances and orientation angles between the autonomous surface vessels ρi and ψi.

Figure 7. Disturbance observer output of the autonomous surface vessels τd1i, τd2i and τdi3.

The external disturbance signals and the disturbance observer signals of all ASVs τd1i, τd2i and τdi3

are illustrated by Fig. 12. Also, the disturbance observer errors of all ASVs �d1i, �d2i, �di3 are shown in
Fig. 13. Moreover, the first error surface signals of all ASVs zxi, zyi and zψ i in the presence of the external
disturbances are illustrated by Fig. 14. It can be seen from Fig. 12 that the proposed disturbance observer
(58) could process the disturbance estimations of all ASVs successfully in tix = 2s according to (63).

5.1. A comparative experiment
To verify the performance of the suggested controller for the formation control of surface vessels, four
scenarios are considered in this study. In the first scenario, the simulation is carried out for the DSC
approach. In the second scenario, the BLF-based design is implemented in the suggested controller. In
the third scenario, the finite-time technique is applied to the DSC approach, and in the fourth scenario,
both BLF and finite-time strategies are utilized in the proposed control system. To compare between
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Figure 8. Disturbance observer errors of the autonomous surface vessels �d1i, �d2i and �di3.

Figure 9. First surface errors of the autonomous surface vessels zxi, zyi and zψ i.

these approaches, the following performance indices are defined:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ISE = ∫ T

0
e2

i (t)dt,

IAE = ∫ T

0
|ei(t)| dt,

ITAE = ∫ T

0
t|ei(t)| dt,

(72)
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Figure 10. Second surface errors of the autonomous surface vessels zui, zvi and zri.

Figure 11. Frobinious norm of the RBF neural network θ1i, θ2i, θ3i, θ4i and θ5i.

where ei(t) is the tracking error of the formation control, T is the constant time in which the tran-
sient response settles and Integral Square Error (ISE), Integral Absolute Error (IAE) and Integral Time
Absolute Error (ITAE) are the ISE, IAE and ITAE, respectively. The overshoot, settling time, the
tracking errors zxi, zyi and zψ i in terms of three well-known criteria including ISE, IAE and ITAE are
reported in Tables I and II, respectively, between four scenarios without considering disturbances and
with applying disturbances. Environmental disturbances as currents and waves effects cause the desired
performance not to be achieved and the tracking errors of the formation control are transgressed. The
forced external disturbances to each autonomous surface vessel are considered as follows:

τdi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τd1 = 5 sin(2t) + 5 cos(t),

τd2 = 5 cos(3t) + 5 cos(2t),

τd3 = 5 sin(2t) + 5 sin(t),

(73)

By a comparison between different scenarios, in Scenario 1, the control structure only assures the
tracking of all ASVs without any novelty. In Scenario 2, the BLF approach decreases the formation
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Figure 12. Disturbance observer output of the autonomous surface vessels τd1i, τd2i and τdi3.

Figure 13. Disturbance observer errors of the autonomous surface vessels �d1i, �d2i and �di3.

tracking errors for all ASVs in the defined and limited bounds. In Scenario 3, the finite-time approach
decreases the settling time and increases the convergence rate in an effective way. In Scenario 4, the
control performance is significantly increased via a combination of the finite-time control and BLF-
based design in the control structure. In Fig. 4, the yaw moment τr is presented to be much more noisy
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Figure 14. First surface errors of the autonomous surface vessels zxi, zyi and zψ i in the presence of
imposed external disturbances.

than τu and τv. This is because the relative effect of the noise in the yaw dynamics is larger than that one
in the surge motion.

5.2. The efficacy and robustness of the proposed controller
To verify the efficacy and robustness of this proposed controller, the following disturbances are applied
to the dynamic models of ASVs:

τdi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τd1 = + 1
2
u(t) + 1

2
u(t − 6) + 1

2
u(t − 14)

τd2 = − 1
2
u(t) − 1

2
u(t − 6) − 1

2
u(t − 14).

τd3 = +1u(t) − 2u(t − 6) − 5
2
u(t − 14)

(74)

As can be seen from Figs. 12 and 13, despite the imposed disturbances to the ASVs dynamics, the
desired trajectory tracking of ASVs in the formation control problem is performed well. Although this
methodology is an effective approach to handle these disturbances, unwanted peaks are appeared in the
disturbance observer errors, while the consecutive step disturbances in Eq. (74) are applied to the ASVs
dynamics. In spite of such a peaking, which may be removed by employing the saturation function in
the disturbance observer design, all ASVs successfully track the desired trajectories in the formation
control problem and the boundary of tracking errors are never transgressed. Moreover, we can see that
the finite-time terminal sliding-mode disturbance observer estimates the disturbance τdi quite well for a
finite-time presentation of tix.

It is clear that from Fig. 14, in spite of peaking at t = 6 and t = 8 s due to the consecutive step
disturbances calculated from Eq. (74), all the vehicles construct the desired formation very well. In
comparison with the other disturbance observers in the literature, the proposed approach is illustrated
as a suitable solution to the problem of disturbance observer design with the finite-time convergence tix.
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Table I. Comparison results between four scenarios without disturbance effects on ASVs.

Notation Overshoot Settling time zx zy zψ ISE IAE ITAE
Scenario 1 0.5 2.1 0.19 0.25 0.080 0.009 0.006 0.003
Scenario 2 0.1 1.7 0.13 0.16 0.070 0.008 0.005 0.002
Scenario 3 0.3 0.8 0.20 0.20 0.007 0.008 0.006 0.002
Scenario 4 0.1 1.1 0.13 0.16 0.007 0.007 0.005 0.002

Table II. Comparison results between four scenarios with disturbance effects on ASVs.

Notation Overshoot Settling time zx zy zψ ISE IAE ITAE
Scenario 1 0.6 2.9 0.29 0.38 0.09 0.018 0.06 0.009
Scenario 2 0.1 1.9 0.18 0.19 0.08 0.017 0.05 0.008
Scenario 3 0.4 1.6 0.23 0.26 0.008 0.017 0.05 0.009
Scenario 4 0.2 1.9 0.17 0.29 0.008 0.016 0.05 0.008

Moreover, the proposed methodology can eliminate the well-known assumptions on the existence of
the derivative of external disturbances in previous works. It is clear that this method does not require
any knowledge about the amplitude and frequency of imposed environmental disturbances, and such
parameters are not implemented in the controller design.

6. Conclusion
A constrained formation control scheme for a cooperation of autonomous surface vessels was presented
in this article. A dynamic surface controller was designed based on the finite-time technique and the
reference trajectory of the formation control could be tracked in a finite-time. The formation control of
surface vessels employed an adaptive NN technique to compensate the uncertain parameters and unmod-
eled dynamics. A symmetric BLF was applied to prevent the transgression of the output constraints,
and it was illustrated that such outputs are able to start from anywhere in the initial constrained output
space. The finite-time BLF-based DSC approach has been combined with a finite-time terminal sliding-
mode disturbance observer due to the powerful disturbance rejection of the finite-time technique which
increases effectively the convergence rate of the system response and compensates disturbance effects
in a finite-time. The obtained simulation results have indicated that the constraints on the formation
tracking errors are never violated. Consequently, the formation tracking errors in this newly proposed
control algorithm has remained strictly within the constrained region at the finite-time, and the semi-
global uniform ultimate boundedness of tracking errors was achieved, and all the closed-loop control
signals have remained bounded in the limited and predefined bounds subjected to a mild requirement
on the initial conditions.
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