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For s1, s2 ∈ (0, 1) and p, q ∈ (1, ∞), we study the following nonlinear Dirichlet
eigenvalue problem with parameters α, β ∈ R driven by the sum of two nonlocal
operators:

(−Δ)s1
p u + (−Δ)s2

q u = α|u|p−2u + β|u|q−2u in Ω, u = 0 in R
d \ Ω, (P)

where Ω ⊂ R
d is a bounded open set. Depending on the values of α, β, we

completely describe the existence and non-existence of positive solutions to (P). We
construct a continuous threshold curve in the two-dimensional (α, β)-plane, which
separates the regions of the existence and non-existence of positive solutions. In
addition, we prove that the first Dirichlet eigenfunctions of the fractional p-Laplace
and fractional q-Laplace operators are linearly independent, which plays an essential
role in the formation of the curve. Furthermore, we establish that every nonnegative
solution of (P) is globally bounded.
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1. Introduction and main results

In this paper, we are concerned with the existence and non-existence of positive
solutions to the following nonlinear eigenvalue problem involving the fractional
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(p, q)-Laplace operator with zero Dirichlet boundary condition:

(−Δ)s1
p u+ (−Δ)s2

q u = α|u|p−2u+ β|u|q−2u in Ω, u = 0 in R
d \ Ω, (EV; α, β)

where 0 < s2 < s1 < 1 < q < p <∞, α, β ∈ R are two parameters and Ω ⊂ R
d is

a bounded open set. In general, the fractional r-Laplacian (−Δ)s
r (s ∈ (0, 1) and

r ∈ (1, ∞)) is defined as

(−Δ)s
ru(x) := P.V.

∫
Rd

|u(x) − u(y)|r−2(u(x) − u(y))
|x− y|d+sr

dy, x ∈ R
d,

where P.V. stands for the principle value.
The local counterpart of (EV; α, β) is the following Dirichlet eigenvalue problem

for the (p, q)-Laplace operator:

−Δpu− Δqu = α|u|p−2u+ β|u|q−2u in Ω, u = 0 in ∂Ω. (1.1)

The study of (p, q)-Laplace operators are well known for their applications in
physics, chemical reactions, reaction-diffusion equations e.t.c. for details, see [15,
18, 20] and the references therein. Some authors considered the eigenvalue prob-
lems for the (p, q)-Laplace operator. In this direction, for α = β, Motreanu–Tanaka
in [29] obtained the existence and non-existence of positive solutions of (1.1).
For α �= β, in [8] Bobkov–Tanaka extended this result by providing a certain region
in the (α, β)-plane that allocates the sets of existence and non-existence of positive
solutions of (1.1). Moreover, they constructed a threshold curve in the first quadrant
of the (α, β)-plane, which separates these two sets. Later, in [9], the same authors
plotted a different curve for the existence of ground states and the multiplicity of the
positive solutions for (1.1). It is essential that in which region the positive solution
of (1.1) exists or does not exist, and the behaviour of the threshold curve depends
on whether φp, φq are linearly independent, where φp and φq are the first Dirichlet
eigenfunctions of the operators −Δp and −Δq respectively. For other results related
to the positive solutions of eigenvalue problems involving (p, q)-Laplace operator,
we refer to [6, 10, 33] and the references therein.

In the nonlocal case, parallelly, many authors studied the nonlinear equations
driven by the sum of fractional p-Laplace and fractional q-Laplace operators with
the critical exponent. For example, see [2, 4, 7, 24, 25] where the weak solution’s
existence, regularity, multiplicity, positivity and other qualitative properties are
investigated. The study of (EV; α, β) is motivated by the Dancer–Fučik (DF)
spectrum of the fractional r-Laplace operator. The DF spectrum of the operator
(−Δ)s

r is the set of all points (α, β) ∈ R
2 such that the following problem

(−Δ)s
ru = α(u+)r−1 − β(u−)r−1 in Ω, u = 0 in R

d \ Ω, (1.2)

admits a nontrivial weak solution, where u± = max{±u, 0} is the positive and
negative part of u. For r = 2, in [26], Goyal–Sreenadh considered (1.2) and proved
the existence of a first nontrivial curve in the DF spectrum. They also showed that
the curve is Lipschitz continuous, strictly decreasing, and studied its asymptotic
behaviour. For r �= 2, in [31], the authors constructed an unbounded sequence of
decreasing curves in the DF spectrum. Nevertheless, the study of the spectrum
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for the fractional (p, q)-Laplace operator is not well explored. In [30], for α = β,
Nguyen-Vo studied the following weighted eigenvalue problem with zero Dirichlet
boundary condition:

(−Δ)s1
p u+ (−Δ)s2

q u = α
(
mp|u|p−2u+mq|u|q−2u

)
in Ω, u = 0 in R

d \ Ω, (1.3)

where 0 < s2 < s1 < 1 < q � p <∞, the weights mp, mq are bounded in Ω and sat-
isfy m+

p , m
+
q �≡ 0. Depending on the values of α, the authors obtained the existence

and non-existence of positive solutions of (1.3).
The primary aim of this paper can be summarized into the following two

aspects:

(a) We provide a comprehensive analysis of the sets in the (α, β)-plane that deter-
mine the existence and non-existence of positive solutions for the equation
(EV; α, β). Following the local case approach, we construct a continuous
threshold curve denoted as C that effectively separates the regions where pos-
itive solutions exist from those where they do not. In some specific regions of
the (α, β)-plane, we employ the sub-super solutions technique to establish the
existence of positive solutions. To apply this technique, we utilize the crucial
result stated in theorem 4.1, which proves that every nonnegative solution of
(EV; α, β) is globally bounded.

(b) The existence and non-existence of positive solutions to (EV; α, β) depend
on the following statement:

φs1,p �= cφs2,q for any c ∈ R, (LI)

where φs1,p and φs2,q are the first eigenfunctions of the operators (−Δ)s1
p and

(−Δ)s2
q corresponding to the first eigenvalues λ1

s1,p and λ1
s2,q respectively in

Ω under zero Dirichlet boundary condition. While this linear independence
condition for the operators −Δp and −Δq was conjectured in [8] and later
proved in [9], its validity remains unknown for any s1, s2 ∈ (0, 1). Neverthe-
less, several authors have assumed the condition (LI) in various contexts (e.g.,
[23, 30]). We establish the validity of (LI) under certain assumptions on s1
and s2, as demonstrated in theorem 1.9.

Recall that, for 0 < s < 1 � r <∞, the fractional Sobolev space is defined as

W s,r(Ω) := {u ∈ Lr(Ω) : [u]s,r,Ω <∞} ,

with the so-called fractional Sobolev norm ‖u‖s,r,Ω := (‖u‖r
Lr(Ω) + [u]rs,r,Ω)

1
r , where

[u]rs,r,Ω :=
∫∫

Ω×Ω

|u(x) − u(y)|r
|x− y|d+sr

dxdy,

is called the Gagliardo seminorm. For r ∈ (1, ∞), W s,r(Ω) is a reflexive Banach
space with respect to the fractional Sobolev norm ‖·‖s,r,Ω. Now we consider the
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following closed subspace of W s,r(Rd):

W s,r
0 (Ω) := {u ∈W s,r(Rd) : u = 0 in R

d \ Ω},

endowed with the seminorm [·]s,r,Rd , which is an equivalent norm in W s,r
0 (Ω)

([12, Lemma 2.4]). For details of the fractional Sobolev spaces and their related
embedding results, we refer to [12, 14, 19] and the references therein. For s1 > s2
and p > q � 1, the continuous embedding W s1,p

0 (Ω) ↪→W s2,q
0 (Ω) (see [5, Proposi-

tion 2.2]) allows us to introduce the notion of weak solution for (EV; α, β) in the
following sense:

Definition 1.1. A function u ∈W s1,p
0 (Ω) is called a weak solution of (EV; α, β)

if the following identity holds for all φ ∈W s1,p
0 (Ω):

∫∫
Rd×Rd

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))
|x− y|d+s1p

dxdy

+
∫∫

Rd×Rd

|u(x) − u(y)|q−2(u(x) − u(y))(φ(x) − φ(y))
|x− y|d+s2q

dxdy

= α

∫
Ω

|u|p−2uφdx+ β

∫
Ω

|u|q−2uφdx.

In our first theorem, we prove the existence of a positive solution for (EV; α, β)
if any of α and β is larger than the first Dirichlet eigenvalue of the fractional
p-Laplacian and fractional q-Laplacian respectively. We also show that this range
of α, β is necessary for the existence of a positive solution when (LI) does not hold.

Theorem 1.2. Let 0 < s2 < s1 < 1 < q < p <∞. Assume that

(α, β) ∈ ((λ1
s1,p,∞) × (−∞, λ1

s2,q)
) ∪ ((−∞, λ1

s1,p) × (λ1
s2,q,∞)

)
∪ ({λ1

s1,p} × {λ1
s2,q}

)
. (1.4)

The following hold (see Fig. 1):

(i) (Sufficient condition): Let α, β satisfy (1.4). In the case, when α = λ1
s1,p and

β = λ1
s2,q, we assume that (LI) violates. Then (EV; α, β) admits a positive

solution.

(ii) (Necessary condition): Let (LI) violates and (EV; α, β) admits a positive
solution. Then α, β satisfy (1.4).

Remark 1.3.

(i) The above theorem asserts that (EV; λ1
s1,p, λ

1
s2,q) admits a positive solution

if and only if (LI) violates. Indeed, (EV; λ1
s1,p, λ

1
s2,q) admits a non-trivial

solution only when (LI) violates (see proposition 6.1).
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Figure 1. Shaded region denotes existence, and unshaded region denotes non-existence of
positive solutions. (a) The case (LI) holds (with α∗

s1,p < ∞), (b) The case (LI) does not
hold.

(ii) If (LI) violates, then theorem 1.2 gives a complete description of the set of
existence and non-existence of positive solutions of (EV; α, β). In particular,
theorem 1.2 generalizes the result of [30, Theorem 1.1] for α �= β.

It is observed that for α, β ∈ R, the problem (EV; α, β) is equivalent to the
problem (EV; β + θ, β), where θ = α− β. Using this terminology we define the
following curve:

Definition 1.4 Threshold curve. For brevity, denote β = λ. For each θ ∈ R

consider the following quantity:

λ∗(θ) := sup {λ ∈ R : (EV; λ+ θ, λ) has a positive solution} . (1.5)

https://doi.org/10.1017/prm.2023.134 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.134


6 N. Biswas and F. Sk

If such λ does not exist, we then set λ∗(θ) = −∞. The threshold curve corresponding
to (EV; α, β) is defined as C := {(λ∗(θ) + θ, λ∗(θ)) : θ ∈ R}. Also, we define the
following quantities:

θ∗ := λ1
s1,p − λ1

s2,q, α
∗
s1,p :=

[φs2,q]
p
s1,p,Rd

‖φs2,q‖p
Lp(Ω)

, and θ∗+ := α∗
s1,p − λ1

s2,q.

Clearly, θ∗ � θ∗+ and θ∗ = θ∗+ if and only if (LI) violates (from (iv) of proposition
2.1).

In the following proposition, we discuss some qualitative properties of C and see
that C carries similar behaviours as in the local case [8, Proposition 3 and Figure 2].

Proposition 1.5. Let 0 < s2 < s1 < 1 < q < p <∞. Then the following hold:

(i) λ∗(θ) <∞ for all θ ∈ R.

(ii) λ∗(θ∗) + θ∗ > λ1
s1,p and λ∗(θ∗) > λ1

s2,q if and only if (LI) holds.

(iii) λ∗(θ) + θ � λ1
s1,p and λ∗(θ) � λ1

s2,q for all θ ∈ R.

(iv) λ∗(θ) is decreasing and λ∗(θ) + θ is increasing on R.

(v) If α∗
s1,p is finite, then λ∗(θ) = λ1

s2,q for all θ � θ∗+.

(vi) λ∗ is continuous on R.

According to (iii) of the above proposition, C ⊂ ([λ1
s1,p, ∞) × [λ1

s2,q, ∞)).
Further, if α∗

s1,p = ∞, from the property (iii), we observe that C always lies above
the line β = λ1

s2,q. From now onwards, we assume that α∗
s1,p <∞. In the following

theorem, we demonstrate that C separates the sets of existence and non-existence
of positive solutions in the region ([λ1

s1,p, ∞) × [λ1
s2,q, ∞)) (see Fig. 1).

Theorem 1.6. Let 0 < s2 < s1 < 1 < q < p <∞. Let α � λ1
s1,p and β � λ1

s2,q.
Assume that (LI) holds.

(i) If β ∈ (λ1
s2,q, λ

∗(θ)), then (EV; α, β) admits a positive solution.

(ii) If α > λ1
s1,p and β < λ∗(θ), then (EV; α, β) admits a positive solution.

(iii) If β > λ∗(θ), then there does not exist any positive solution for (EV; α, β).

Now we state the existence and non-existence of positive solutions on the curve
C (see Fig. 1).

Theorem 1.7. Let 0 < s2 < s1 < 1 < q < p <∞.

(i) If θ < θ∗+, then (EV; λ∗(θ) + θ, λ∗(θ)) admits a positive solution.

(ii) If θ > θ∗+, then there does not exist any positive solution for (EV; λ∗(θ) +
θ, λ∗(θ)).

https://doi.org/10.1017/prm.2023.134 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.134


On generalized eigenvalue problems of fractional (p, q)-Laplace operator 7

The above theorem does not consider the borderline case θ = θ∗+. In this case,
we have a partial result in remark 6.9, which says that (EV; λ∗(θ) + θ, λ∗(θ)) does
not admit any ground state solution.

Remark 1.8. The relations among s1, s2, p, q are taken without loss of any gener-
ality. All the preceding results in this paper hold for the remaining cases by choosing
the appropriate solution space as given below:

(i) For s1 < s2 and p < q (symmetric), we choose the solution space as W s2,q
0 (Ω).

(ii) For s2 < s1 and p < q (cross), we choose the solution space as W s1,p
0 (Ω) ∩

W s2,q
0 (Ω) endowed with the norm [·]s1,p,Rd + [·]s2,q,Rd .

(iii) For s1 = s2 = s and p �= q, we choose the solution space asW s,p
0 (Ω) ∩W s,q

0 (Ω)
endowed with the norm [·]s,p,Rd + [·]s,q,Rd .

The next theorem verifies the linear independency of the first Dirichlet eigen-
functions of the fractional p-Laplacian and the fractional q-Laplacian.

Theorem 1.9. Let 1 < q < p <∞ and s1, s2 ∈ (0, 1) satisfy the following condi-
tion:

s1p
′

q′
< s2 < s1.

Then the set {φs1,p, φs2,q} is linearly independent.

Remark 1.10. Theorem 1.9 holds if we take the other relations among s1, s2, p, q
listed below:

(i) For 1 < p < q <∞ and s2q′

p′ < s1 < s2 (interchanging the roles of s1, s2, p, q).

(ii) For 1 < q < p <∞ and s1 = s2.

The rest of the paper is organized as follows. Section 2 briefly discusses the first
Dirichlet eigenpair of fractional r-Laplace operator, recalls the discrete Picone’s
inequalities, and proves some technical results. In § 3, we prove the validity of (LI).
This section contains the proof of theorem 1.9. In § 4, we establish the regularity
of the solution for (EV; α, β) and state a version of the strong maximum principle
related to (EV; α, β). Section 5 studies various frameworks of energy functionals
associated with (EV; α, β). Finally, § 6 studies the existence and non-existence
of positive solutions for (EV; α, β). In this section, we prove theorem 1.2–1.7 and
proposition 1.5.

2. Preliminaries

In this section, we recall some qualitative properties of the first nonlocal eigenvalue
and its corresponding eigenfunction. Afterwards, we recall the discrete Picone’s
identities. We list the following notations to be used in this paper:
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Notation:

• BR(x) ⊂ R
d denotes an open ball of radius R > 0 centred at x.

• For a set E ⊂ R
d, |E| denotes the Lebesgue measure of E.

• We denote dμ1 := |x− y|−(d+s1p)dxdy and dμ2 := |x− y|−(d+s2q)dxdy.

• For r ∈ (1, ∞), the conjugate of r is denoted as r′ := r
r−1 .

• For 0 < s < 1 < r <∞, we denote [·]s,r,Rd as [·]s,r, and ‖·‖Lr(Ω) as ‖·‖r.

• For k ∈ N, we denote uk(x) := u(x) + 1
k where x ∈ R

d.

• For γ ∈ (0, 1), the Hölder seminorm [f ]C0,γ(Ω) := sup
x, y∈Ω, x �=y

|f(x) − f(y)|
|x− y|γ .

• For sr < d (where 0 < s < 1 < r <∞), the fractional critical exponent

r∗s :=
rd

d− sr
.

• For each n ∈ N, we denote the positive and negative parts (fn)± by f±n :=
max{±fn, 0}.

• Eigenvalue of (2.1), λs,r(Ω) is denoted as λs,r.

• We denote the eigenfunction of (2.1) corresponding to the first eigenvalue λ1
s,r

as φs,r.

• For r ∈ (1, ∞), x0 ∈ Ω and R > 0, the nonlocal tail of f ∈W s,r
0 (Ω) is defined

as

Tailr(f ;x0, R) :=

(
Rsr

∫
Rd\BR(x0)

|f(x)|r−1

|x− x0|d+sr
dx

) 1
r−1

.

• C is denoted as a generic positive constant.

2.1. First eigenvalue of fractional r-Laplacian

For a bounded open set Ω ⊂ R
d and 0 < s < 1 < r <∞, we consider the following

nonlinear eigenvalue problem:

(−Δ)s
ru = λs,r|u|r−2u in Ω, u = 0 in R

d \ Ω. (2.1)

We say λs,r is an eigenvalue of (2.1), if there exists non-zero u ∈W s,r
0 (Ω) satisfying

the following identity for all φ ∈W s,r
0 (Ω):∫∫

Rd×Rd

|u(x) − u(y)|r−2(u(x) − u(y))(φ(x) − φ(y))
|x− y|d+sr

dxdy

= λs,r

∫
Ω

|u(x)|r−2u(x)φ(x) dx.
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In this case, u is called an eigenfunction corresponding to λs,r, and we denote
(λs,r, u) as an eigenpair. In the following proposition, we collect some qualitative
properties of the first eigenpair of (2.1).

Proposition 2.1. For r ∈ (1, ∞) and s ∈ (0, 1), consider the following quantity:

λ1
s,r = inf

{
[u]rs,r : u ∈W s,r

0 (Ω) and
∫

Ω

|u|r = 1
}
.

Then the following hold:

(i) λ1
s,r is the first positive eigenvalue of (2.1).

(ii) Every eigenfunction corresponding to λ1
s,r has a constant sign in Ω.

(iii) If v is an eigenfunction of (2.1) corresponding to an eigenvalue λs,r > 0 such
that v > 0 a.e. in Ω, then λs,r = λ1

s,r.

(iv) Any two eigenfunctions corresponding to λ1
s,r are constant multiple of each

other.

(v) Any eigenfunction of (2.1) corresponding to an eigenvalue λs,r is in Lσ(Rd)
for every σ ∈ [1, ∞]. Moreover, if Ω is of class C1,1, then the eigenfunction
lies in C0,γ(Ω) for some γ ∈ (0, s].

Proof. For proof of (i) and (iii), we refer to [21, Lemma 2.1 and Theorem 4.1]. For
(ii), see [14, Proposition 2.6]. Then the proof of (iv) follows using [21, Theorem 4.2].

(v) Let u be an eigenfunction of (2.1) corresponding to λs,r. By [12, Theorem
3.3], u ∈ L∞(Ω) and hence u ∈ L∞(Rd). Further, since u ∈W s,r(Rd) ∩ L∞(Rd),
the interpolation argument yields u ∈ Lσ(Rd) for every σ � r. Also for σ ∈ [1, r),
applying Hölder’s inequality with the conjugate pair ( r

σ ,
r−σ

σ ),

∫
Ω

|u|σ �
(∫

Ω

|u|r
)σ

r

|Ω| r−σ
r .

Thus, u ∈ Lσ(Rd) for every σ ∈ [1, ∞]. Furthermore, since u ∈ L∞(Rd) we apply
[27, Theorem 1.1] to get u ∈ C0,γ(Ω) for some γ ∈ (0, s]. �

2.2. Some important results

In this subsection, we state some elementary inequalities, recall Picone’s inequal-
ities for nonlocal operators and collect some test functions in W s,r

0 (Ω).

Lemma 2.2. Let a, b ∈ R, and γ ∈ R
+. The following hold:

(i) If γ > 1, then

|a− b|γ−2(a− b)(a+−b+) � |a+−b+|γ ;

|a− b|γ−2(a− b)(b− − a−) � |a− − b−|γ ,
where a± = max{±a, 0}.
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(ii) If γ � 2, then |a− b|γ−2(a− b) � C(|a|γ−2
a− |b|γ−2

b) for some
C = C(γ) > 0.

(iii) ||a|γ − |b|γ | � γ(|a|γ−1 + |b|γ−1)|a− b|.
Proof. Proof of (i) follows from [14, Lemma A.2]. Proof of (ii) follows from [28, (2.2)
of Page 5]. Proof of (iii) follows using the fundamental theorem of calculus. �

We recall several versions of the discrete Picone’s inequality that are useful in
proving our results.

Lemma 2.3 Discrete Picone’s inequality. Let r1, r2 ∈ (1, ∞) with r2 � r1 and let
f, g : R

d → R be two measurable functions with f > 0, g � 0. Then the following
hold:

(i) For x, y ∈ R
d,

|f(x) − f(y)|r1−2(f(x) − f(y))
(

g(x)r2

f(x)r2−1
− g(y)r2

f(y)r2−1

)

� |g(x) − g(y)|r2 |f(x) − f(y)|r1−r2 .

(ii) For x, y ∈ R
d,

|f(x) − f(y)|r2−2(f(x) − f(y))
(

g(x)r1

f(x)r1−1
− g(y)r1

f(y)r1−1

)

� |g(x) − g(y)|r2−2(g(x) − g(y))
(
g(x)r1−r2+1

f(x)r1−r2
− g(y)r1−r2+1

f(y)r1−r2

)
.

(iii) Let α, β � 1. Then for x, y ∈ R
d,

|f(x) − f(y)|r1−2(f(x) − f(y))

×
(

g(x)r1

αf(x)r1−1 + βf(x)r2−1
− g(y)r1

αf(y)r1−1 + βf(y)r2−1

)

� |g(x) − g(y)|r1 .

(iv) Let α, β � 1. Then for x, y ∈ R
d,

|f(x) − f(y)|r2−2(f(x) − f(y))

×
(

g(x)r1

αf(x)r1−1 + βf(x)r2−1
− g(y)r1

αf(y)r1−1 + βf(y)r2−1

)

� |f(x)
r1
r2 − f(y)

r1
r2 |r2 .

Moreover, the equality holds in the above inequalities if and only if f = cg a.e. in
R

d for some c ∈ R.

Proof. For the proof of (i), see [11, Proposition 4.2]. Proof of (ii), (iii), and (iv)
follows from [23, Theorem 2.3 and Remark 2.6]. �
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The following lemma verifies that certain functions are in the fractional Sobolev
space, which we require in the subsequent sections.

Lemma 2.4. Let s ∈ (0, 1) and r1, r2 ∈ (1, ∞). Let u ∈W s,r1
0 (Ω) be a non-negative

function. For v ∈W s,r1
0 (Ω) ∩ L∞(Ω), the following functions

φk :=
|v|r1

ur1−1
k + ur2−1

k

, ψk :=
|v|r1

ur2−1
k

, and ηk :=
|v|r1−r2+1

ur1−r2
k

with r2 < r1

lie in W s,r1
0 (Ω).

Proof. We only prove that φk ∈W s,r1
0 (Ω). For other functions, the proof follows

using similar arguments. Clearly, φk is in Lr1(Ω) and φk = 0 in Ωc, for every k.
Next, claim that [φk]s,r1 <∞. In order to show this, for x, y ∈ R

d, we calculate

|φk(x) − φk(y)|

=
∣∣∣∣ |v(x)|r1

uk(x)r1−1 + uk(x)r2−1
− |v(y)|r1

uk(y)r1−1 + uk(y)r2−1

∣∣∣∣ =
∣∣∣∣ |v(x)|r1 − |v(y)|r1

uk(x)r1−1 + uk(x)r2−1

+
|v(y)|r1

(
uk(y)r1−1 + uk(y)r2−1 − (uk(x)r1−1 + uk(x)r2−1

)
(uk(x)r1−1 + uk(x)r2−1) (uk(y)r1−1 + uk(y)r2−1)

∣∣∣∣∣
�
(
kr1−1 + kr2−1

) ||v(x)|r1 − |v(y)|r1 |

+ ‖v‖r1
∞

∣∣uk(y)r1−1 − uk(x)r1−1
∣∣+ ∣∣uk(y)r2−1 − uk(x)r2−1

∣∣
(uk(x)r1−1 + uk(x)r2−1) (uk(y)r1−1 + uk(y)r2−1)

.

Using (iii) of lemma 2.2, we get

|φk(x) − φk(y)| � r1
(
kr1−1 + kr2−1

) (|v(x)|r1−1 + |v(y)|r1−1
) |v(x) − v(y)|

+ (r1 − 1)‖v‖r1
∞

(
uk(x)r1−2 + uk(y)r1−2

)
uk(x)r1−1uk(y)r1−1

|uk(x) − uk(y)|

+ (r2 − 1)‖v‖r1
∞

(
uk(x)r2−2 + uk(y)r2−2

)
uk(x)r2−1uk(y)r2−1

|uk(x) − uk(y)|.

Now using u−1
k � k and v ∈ L∞(Ω), there exists C = C(r1, r2, k, ‖v‖∞) such that

|φk(x) − φk(y)| � C (|v(x) − v(y)| + |uk(x) − uk(y)|)
= C (|v(x) − v(y)| + |u(x) − u(y)|) .

Therefore, φk ∈W s,r1
0 (Ω) follows as [v]s,r1 , [u]s,r1 <∞. This completes the proof.

�

3. Linear independence of the first eigenfunctions

This section is devoted to proving the linear independency of the first Dirich-
let eigenfunctions of the fractional p-Laplacian and the fractional q-Laplacian.
Throughout the section, we assume that Ω ⊂ R

d is a bounded open set of class C1,1.
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For brevity, we denote the first eigenpair of (2.1) by (λ1
s,r, u). From proposition 2.1,

u > 0 in Ω, u = 0 in R
d \ Ω and u ∈ C(Ω). Therefore, u attains its maximum in Ω.

Due to the translation invariance of the fractional r-Laplacian, we assume that Ω
contains the origin and the maximum point for u is the origin. Now for τ > 0, we
consider Ωτ := {z ∈ R

d : τz ∈ Ω} and define uτ : R
d → R as follows:

uτ (x) :=

⎧⎪⎨
⎪⎩
u(0) − u(τx)

τsr′ , for x ∈ Ωτ ;
u(0)
τsr′ , for x ∈ R

d \ Ωτ .

The following result demonstrates a property of the above function, which plays an
essential role in proving (LI).

Lemma 3.1 (Blow-up lemma). Let r ∈ (1, ∞) and s ∈ (0, 1). If τn → 0, as n→ ∞,
then there exists a subsequence denoted by (τn) such that uτn

→ ũ in Cloc(Rd)
as n→ ∞. Moreover, ũ ∈W s,r

loc (Rd) ∩ C(Rd) is non-negative, and satisfies the
following equation weakly:

(−Δ)s
rv = −λ1

s,ru(0)r−1 in R
d, (3.1)

and ũ(0) = 0.

Proof. Note that for any τ > 0, uτ � 0, since u(0) is the maximum value for u in
Ω. Using the fact that (λ1

s,r, u(τx)) is the first eigenpair for fractional r-Laplacian
on Ωτ , we obtain that the following equation holds weakly:

(−Δ)s
ruτ (x) = −(−Δ)s

ru(τx) = −λ1
s,ru(τx)

r−1 in Ωτ , uτ =
u(0)
τsr′ in R

d \ Ωτ .

(3.2)

For each τ > 0, using proposition 2.1 and [14, Theorem 3.13], we get uτ ∈ C(Ωτ ).
Now we divide our proof into two steps. In the first step, we show that uτn

→ ũ in
Cloc(Rd) as n→ ∞. In the second step, we prove ũ is a weak solution to (3.1).

Step 1: Take a ball BR(0) such that B4R(0) ⊂ Ωτ . We choose σ1 > 0 as follows

σ1 :=
dγ
s
, where γ > 1.

By the nonlocal Harnack inequality (see [24, Theorem 2.2]), there exists C =
C(d, s, r) such that

max
BR(0)

uτ � C

(
min

B2R(0)
uτ + ‖λ1

s,r u
r−1‖

1
r−1

Lσ1 (B2R(0))

)
= C‖λ1

s,r u
r−1‖

1
r−1

Lσ1 (B2R(0)),

(3.3)

In (3.3) the last equality follows from the fact minB2R(0) uτ = 0, because origin is
the maximum point of u in Ω. Further, for r � 2 we immediately get (r − 1)σ1 > 1,
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and for 1 < r < 2 we choose

γ >

⎧⎪⎪⎨
⎪⎪⎩

max
{

sr

dr + 2(sr − d)
, 1
}
, if sr < d;

max
{

s

d(r − 1)
, 1
}
, if sr � d,

to get (r − 1)σ1 > 1. Then proposition 2.1-(v) and (3.3) yield

max
BR(0)

uτ � C‖λ1
s,r u

r−1‖
1

r−1

Lσ1 (Rd)
� C, (3.4)

where C = C(d, s, r, λ1
s,r, ‖u‖L(r−1)σ1 (Rd)). Next, we define the following exponent

Θ(d, s, r, σ1) := min
{

1
r − 1

(
sr − d

σ1

)
, 1
}
. (3.5)

Then, applying the regularity estimate [13, Theorem 1.4] when r � 2 and [22,
Theorem 1.2] when 1 < r < 2, for the problem (3.2) we get the following Hölder
regularity estimate of the weak solution uτ for any s < δ < Θ(d, s, r, σ1):

[uτ ]C0,δ(BR/8(0))

� C

Rδ

[
max
BR(0)

uτ + Tailr(uτ ; 0, R) +
(
Rsr− d

σ1 λ1
s,r‖ur−1‖Lσ1 (BR(0))

) 1
r−1
]

:=
C

Rδ

[
max
BR(0)

uτ + I1 + I
1

r−1
2

]
, (3.6)

where C = C(d, s, r). We now estimate the last two terms I1, I2 of (3.6) as follows:
Estimate of I2: Choose a > 0 such that a > γr − 1. Then, by the change of variable
we have

I2 := λ1
s,rR

s(r− 1
γ )

(∫
BR(0)

|u(y)|(r−1)σ1 dy

) 1
σ1

= λ1
s,r

Rs(r− 1
γ )

R
sa
γ

(∫
BRa+1 (0)

|u(z)|(r−1)σ1 dz

) 1
σ1

� λ1
s,rR

s(r− 1
γ )− sa

γ

(∫
Rd

|u(z)|(r−1)σ1 dz
) 1

σ1

, (3.7)

where we see that r − 1
γ <

a
γ .

Estimate of I1: Note that

I1 := Tailr(uτ ; 0, R) � C(r)
(
Tailr(u+

τ ; 0, R) + Tailr(u−τ ; 0, R)
)

= C(r)Tailr(u+
τ ; 0, R), (3.8)

where the last equality follows from the non-negativity of uτ . To estimate
Tailr(u+

τ ; 0, R), let R1 = 4R and � := maxBR(0) uτ . Take φ ∈ C∞
c (BR) satisfying
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0 � φ � 1, φ = 1 in BR
2

and |∇φ| � 8
R . We use the test function η := (uτ − 2�)φp

in the weak formulation of uτ and then proceed similarly as in [32, Lemma 4.2]) to
get a constant C = C(d, s, r) such that

C�|BR|R−srTailr(u+
τ ; 0, R)r−1 � C�r|BR|R−sr + λ1

s,r

∫
BR

ur−1η dx

� C�r|BR|R−sr + 3�λ1
s,r

∫
BR

ur−1 dx

� C�r|BR|R−sr + 3�λ1
s,r|BR|

1
σ′
1 ‖ur−1‖Lσ1 (BR),

where in the above estimates we used the fact |u− 2�| � 3� in BR. This implies
that

Tailr(u+
τ ; 0, R) � C

(
max
BR(0)

uτ +
(
Rsr− d

σ1 λ1
s,r‖ur−1‖Lσ1 (BR)

) 1
r−1
)

� C

(
max
BR(0)

uτ + I
1

r−1
2

)
. (3.9)

Now, plugging the estimates (3.4), (3.7), (3.8), (3.9) into (3.6), we thus obtain

[uτ ]C0,δ(BR/8(0)) � C

Rδ+ε
, (3.10)

where C = C(d, s, r, λ1
s,r, ‖u‖L(r−1)σ1 (Rd)) and ε := 1

r−1 ( 1+a−rγ
γ ) > 0. Let K ⊂ R

d

be any compact set. Observe that Ωτ becoming R
d when τ is sufficiently small. Thus,

we can choose R > 1 and 0 < τ0 << 1 such thatK ⊂ BR
8
(0) ⊂ Ωτ for all τ ∈ (0, τ0).

Therefore, we use (3.4) and (3.10) to obtain the following uniform estimate for all
τ ∈ (0, τ0):

max
K

uτ � C, and [uτ ]C0,δ(K) � C, (3.11)

where C is independent of both τ and K. Next, for a sequence (τn) converging
to zero, we consider the corresponding sequence of functions (uτn

). Using (3.11)
we can show that (uτn

) is equicontinuous and uniformly bounded in K. Therefore,
applying the Arzela–Ascoli theorem, up to a subsequence, uτn

→ ũ in C(K). Thus
we have

uτn
→ ũ in Cloc(Rd), as n→ ∞. (3.12)

Step 2: Recalling the weak formulation of (3.2) for τ > 0 be any,∫∫
Rd×Rd

|uτ (x) − uτ (y)|r−2(uτ (x) − uτ (y))(φ(x) − φ(y))
|x− y|d+sr

dxdy

= −λ1
s,r

∫
Ωτ

u(τx)r−1φ(x) dx, ∀φ ∈ C∞
c (Ωτ ). (3.13)

Let v ∈ C∞
c (Rd) and let supp(v) := K. Since Ωτn

is becoming R
d, as τn → 0, there

exists n0 ∈ N such thatK ⊂ Ωτn
for all n � n0. Hence, from (3.13) for every n � n0,
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we write ∫∫
Rd×Rd

|uτn
(x) − uτn

(y)|r−2(uτn
(x) − uτn

(y))(v(x) − v(y))
|x− y|d+sr

dxdy

= −λ1
s,r

∫
K

u(τnx)r−1v(x) dx. (3.14)

We pass the limit as n→ ∞ in the R.H.S of (3.14), to get

lim
n→∞

∫
K

u(τnx)r−1v(x) dx = lim
n→∞

∫
Rd

u(τnx)r−1v(x)χK(x) dx

=
∫

K

u(0)r−1v(x) dx, (3.15)

where the last equality in (3.15) follows using the dominated convergence theorem.
Again, applying the dominated convergence theorem, we have

L.H.S of (3.14)

= lim
k→∞

∫∫
Bk(0)×Bk(0)

|uτn
(x) − uτn

(y)|r−2(uτn
(x) − uτn

(y))(v(x) − v(y))
|x− y|d+sr

dxdy

:= lim
k→∞

∫∫
Bk(0)×Bk(0)

Fn(x, y) dxdy.

Now, we establish

lim
n→∞ lim

k→∞

∫∫
Bk(0)×Bk(0)

Fn(x, y) dxdy = lim
k→∞

lim
n→∞

∫∫
Bk(0)×Bk(0)

Fn(x, y) dxdy. (3.16)

To show (3.16), for any fixed k ∈ N we first prove that

Fn(x, y) n→∞−−−−→ F (x, y)

:=
|ũ(x) − ũ(y)|r−2(ũ(x) − ũ(y))(v(x) − v(y))

|x− y|d+sr
in L1 (Bk(0) ×Bk(0)) .

It is easy to see from (3.12) that Fn(x, y) n→∞−−−−→ F (x, y) pointwise. Now for x, y ∈
Bk(0), and using the uniform boundedness of (uτn

) (see (3.11)), we have

|Fn(x, y)| =
|uτn

(x) − uτn
(y)|r−1|v(x) − v(y)|

|x− y|d+sr
� [uτn

]r−1

C0,δ(Bk(0))
|v(x) − v(y)|

|x− y|d+sr−δ(r−1)

� C
|v(x) − v(y)|

|x− y|d+sr−δ(r−1)
,
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where the constant C does not depend on n. By Fubini’s theorem, we get for any
fixed k ∈ N∫∫
Bk(0)×Bk(0)

|v(x) − v(y)|
|x− y|d+sr−δ(r−1)

dxdy �
∫∫

Bk(0)×B2k(0)

|v(x) − v(x+ z)|
|z|d+sr−δ(r−1)

dzdx

=
∫∫

Bk(0)×B2k(0)

(∫ 1

0

|∇v(x+ tz)|
|z|d+sr−δ(r−1)−1

dt
)

dzdx

�
∫

B2k(0)

∫ 1

0

‖∇v‖L1(Rd)

|z|d+sr−δ(r−1)−1
dtdz

= C‖∇v‖L1(Rd) <∞, since δ >
sr − 1
r − 1

.

Thus, applying the dominated convergence theorem, we conclude Fn
n→∞−−−−→ F in

L1(Bk(0) ×Bk(0)). Also, it is easy to verify that for any fixed n ∈ N∫∫
Rd×Rd

Fn(x, y)χBk(0)(x)χBk(0)(y) dxdy k→∞−−−−→
∫∫

Rd×Rd

Fn(x, y) dxdy.

Again, from the Fatou’s lemma, (3.14), and (3.15) we get∫∫
Rd×Rd

F (x, y) dxdy � lim
n→∞

∫∫
Rd×Rd

Fn(x, y) dxdy

= −λ1
s,r lim

n→∞

∫
K

u(τnx)r−1v(x) dx � C.

Next, for n, k ∈ N, we consider the double sequence of functions (Fn,k) defined as

Fn,k(x, y) := Fn(x, y)χBk(0)(x)χBk(0)(y), for x, y ∈ R
d.

We claim that

lim
n→∞
k→∞

∫∫
Rd×Rd

Fn,k(x, y) dxdy =
∫∫

Rd×Rd

F (x, y) dxdy. (3.17)

Again, using (3.12), Fn,k(x, y)
n, k→∞−−−−−→ F (x, y) pointwise a.e. in R

d. Further, for
x, y ∈ R

d, using the uniform estimate (3.11) we have

|Fn,k(x, y)| = |Fn(x, y)|χBk(0)(x)χBk(0)(y)

=
|uτn

(x) − uτn
(y)|r−1|v(x) − v(y)|

|x− y|d+sr
χBk(0)(x)χBk(0)(y)

� [uτn
]r−1

C0,δ(Bk(0))
|v(x) − v(y)|

|x− y|d+sr−δ(r−1)
χBk(0)(x)χBk(0)(y)

� C
|v(x) − v(y)|

|x− y|d+sr−δ(r−1)
χBk(0)(x)χBk(0)(y),
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where the constant C is independent of both n and k. Moreover, from the fact that
δ > sr−1

r−1 , ∫∫
Rd×Rd

|v(x) − v(y)|
|x− y|d+sr−δ(r−1)

dxdy <∞,

if we choose δ < sr
r−1 . Thus, (3.17) follows by again using the dominated convergence

theorem. Hence, by the standard result for interchanging double limits, we obtain
(3.16). Therefore, taking the limit as n→ ∞ in the L.H.S of (3.14) and using (3.16)
we obtain

lim
n→∞ lim

k→∞

∫∫
Bk(0)×Bk(0)

Fn(x, y) dxdy = lim
k→∞

lim
n→∞

∫∫
Bk(0)×Bk(0)

Fn(x, y) dxdy

= lim
k→∞

∫∫
Bk(0)×Bk(0)

F (x, y) dxdy

=
∫∫

Rd×Rd

F (x, y) dxdy, (3.18)

Thus, using (3.14), (3.15), and (3.18) we get

∫∫
Rd×Rd

|ũ(x) − ũ(y)|r−2(ũ(x) − ũ(y))(v(x) − v(y))
|x− y|d+sr

dxdy

= −λ1
s,r

∫
Rd

u(0)r−1v(x) dx, ∀ v ∈ C∞
c (Rd).

Moreover, we also have ũ ∈W s,r
loc (Rd) ∩ C(Rd) provided s < δ. Hence, ũ is a weak

solution of (3.1). Again, since uτn
� 0, uτn

(0) = 0, from (3.12) we arrive at ũ � 0
with ũ(0) = 0. This completes the proof of the lemma. �

Proof of theorem 1.9. For simplicity of notation, we denote u0 = φs1,p and v0 =
φs2,q. We argue by contradiction. Suppose u0 = cv0 for some non-zero c ∈ R. With-
out loss of any generality, we can assume that u0 = v0. By proposition 2.1, u0 is
uniformly bounded, u0 > 0 in Ω and is in C(Ω). This guarantees that u0 has a
global extremum point. Since the operator (−Δ)s1

p is translation invariant, we can
assume that the origin is such a point. Now for τ > 0, define

uτ (x) :=

⎧⎪⎪⎨
⎪⎪⎩
u0(0) − u0(τx)

τs1p′ , for x ∈ Ωτ ;

u0(0)
τs1p′ , for x ∈ R

d \ Ωτ ,

(3.19)

where Ωτ := {x ∈ R
d : τx ∈ Ω}. Then by Blow-up lemma 3.1, there exists a

sequence τn → 0 such that uτn
→ ũ in Cloc(Rd), where ũ is a non-negative
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solution of

(−Δ)s1
p v = −λ1

s1,pu0(0)p−1 in R
d, (3.20)

and ũ(0) = 0. Again, by the change of variable we deduce

(−Δ)s2
q uτ (x) = P.V.

∫
Rd

|uτ (x) − uτ (y)|q−2(uτ (x) − uτ (y))
|x− y|d+s2q

dy

= − 1
τs1p′(q−1)

P.V.
∫

Rd

|u0(τx) − u0(τy)|q−2(u0(τx) − u0(τy))
|x− y|d+s2q

dy

= −τs2q−s1p′(q−1) P.V.
∫

Rd

|u0(τx) − u0(y)|q−2(u0(τx) − u0(y))
|τx− y|d+s2q

dy

= −τs2q−s1p′(q−1)(−Δ)s2
q u0(τx) = −τs2q−s1p′(q−1)λ1

s2,q u0(τx)q−1.

This implies that for each τ > 0, uτ given by (3.19) satisfies the following equation
weakly

(−Δ)s2
q v = −τs2q−s1p′(q−1)λ1

s2,q u0(τx)q−1 in Ωτ .

Using s1p′

q′ < s2 we again proceed as in Blow-up lemma 3.1, to obtain that ũ � 0 is
also a weak solution of the following equation:

(−Δ)s2
q v = 0 in R

d.

Therefore, by the strong maximum principle [17, Theorem 1.4], we conclude ũ = 0
a.e. in R

d, which gives a contradiction to (3.20) as u0(0) > 0. Thus, the set {u0, v0}
is linearly independent. �

4. L∞ bound and maximum principle

In this section, under the presence of multiple exponents (s1, p), (s2, q) and param-
eters (α, β), we first prove that every nonnegative weak solution of (EV; α, β) is
bounded in R

d. Afterwards, we state a strong maximum principle.

Theorem 4.1 (Global L∞ bound). Let 0 < s2 < s1 < 1 < q < p <∞ and let Ω ⊂
R

d be a bounded open set. Assume that u ∈W s1,p
0 (Ω) is a nonnegative solution of

(EV; α, β). Then u ∈ L∞(Rd).

Proof. d > s1p : Let M � 0, define uM = min{u, M}. Clearly uM is non-negative
and is in L∞(Ω). Since u ∈W s1,p

0 (Ω), then uM ∈W s1,p
0 (Ω). Fixed σ � 1, define φ =

uσ
M . Then, φ ∈W s1,p

0 (Ω). Thus taking φ as a test function in the weak formulation
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of u, we have

∫∫
Rd×Rd

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y)) dμ1

+
∫∫

Rd×Rd

|u(x) − u(y)|q−2(u(x) − u(y))(φ(x) − φ(y)) dμ2

= α

∫
Ω

u(x)p−1φ(x) dx+ β

∫
Ω

u(x)q−1φ(x) dx

� α

∫
Ω

u(x)p+σ−1 dx+ β

∫
Ω

u(x)q+σ−1 dx. (4.1)

Now, using [12, Lemma C.2] we estimate

I1 :=
∫∫

Rd×Rd

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y)) dμ1

� σpp

(σ + p− 1)p

∫∫
Rd×Rd

∣∣∣uM (x)
σ+p−1

p − uM (y)
σ+p−1

p

∣∣∣p dμ1

� C(d, s1, p)σpp

(σ + p− 1)p

(∫
Rd

(
uM (x)

σ+p−1
p

)p∗
s1 dx

) p
p∗

s1
,

where in the last inequality we use W s1,p
0 (Ω) ↪→ Lp∗

s1 (Rd). Since s2q < d, using
W s2,q

0 (Ω) ↪→ Lq∗
s2 (Rd) we estimate I2 as

I2 :=
∫∫

Rd×Rd

|u(x) − u(y)|q−2(u(x) − u(y))(φ(x) − φ(y)) dμ2

� C(d, s2, q)σqq

(σ + q − 1)q

(∫
Rd

(
uM (x)

σ+q−1
q

)q∗
s2 dx

) q
q∗s2

.

Plugging the estimates of I1 and I2 into (4.1) we obtain

C(d, s1, p)σpp

(σ + p− 1)p

(∫
Rd

(
uM (x)

σ+p−1
p

)p∗
s1 dx

) p
p∗

s1

+
C(d, s2, q)σqq

(σ + q − 1)q

(∫
Rd

(
uM (x)

σ+q−1
q

)q∗
s2 dx

) q
q∗s2

� α

∫
Ω

u(x)p+σ−1 dx+ β

∫
Ω

u(x)q+σ−1 dx.
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Letting M → ∞ in above, the monotone convergence theorem yields

C(d, s1, p)σpp

(σ + p− 1)p

(∫
Rd

(
u(x)

σ+p−1
p

)p∗
s1 dx

) p
p∗

s1

+
C(d, s2, q)σqq

(σ + q − 1)q

(∫
Rd

(
u(x)

σ+q−1
q

)q∗
s2 dx

) q
q∗s2

� α

∫
Ω

u(x)p+σ−1 dx+ β

∫
Ω

u(x)q+σ−1 dx. (4.2)

Claim: For σ1 := p∗s1
− p+ 1, uσ1+p−1 ∈ L

p∗
s1
p (Rd).

By taking σ = σ1, we obtain from (4.2) that

C(d, s1, p)σpp

(p∗s1
)p

(∫
Rd

u(x)
p∗

s1
p p∗

s1 dx
) p

p∗
s1 � α

∫
Ω

u(x)p∗
s1 dx+ β

∫
Ω

u(x)q+σ1−1 dx.

(4.3)

Notice that q + σ1 − 1 = q + p∗s1
− p < p∗s1

(as p > q). Set a1 :=
p∗

s1
q+σ1−1 . By apply-

ing the Hölder’s inequality with conjugate pair (a1, a
′
1) we estimate the second

integral of (4.3) as∫
Ω

u(x)q+σ1−1 dx �
(∫

Ω

u(x)p∗
s1 dx

) 1
a1 |Ω|

1
a′
1 . (4.4)

For R > 1, consider the set A := {x ∈ Ω : u(x) � R} and Ac = Ω \A. We estimate
the first integral of the R.H.S of (4.3) as follows:∫

Ω

u(x)p∗
s1 dx =

(∫
A

+
∫

Ac

)
u(x)p∗

s1 dx

� Rp∗
s1 |Ω| + |Ac|

p∗
s1

−p

p∗
s1

(∫
Ac

u(x)p∗
s1

p∗
s1
p dx

) p
p∗

s1
. (4.5)

We choose R > 1 so that

α
(p∗s1

)p

C(d, s1, p)σ1pp
|Ac|

p∗
s1

−p

p∗
s1 � 1

2
.

Therefore, combining (4.3), (4.4), and (4.5) we obtain

1
2

(∫
Rd

u(x)
p∗

s1
p p∗

s1 dx
) p

p∗
s1

�
(p∗s1

)p

C(d, s1, p)σ1pp

(
α|Ω|Rp∗

s1 + β|Ω|
1

a′
1

(∫
Ω

u(x)p∗
s1 dx

) 1
a1

)
.

Thus, uσ1+p−1 ∈ L
p∗

s1
p (Rd) for σ1 := p∗s1

− p+ 1. Set a2 :=
p∗

s1
+σ−1

p+σ−1 and a3 :=
p∗

s1
+σ−1

q+σ−1 . Using the Young’s inequality with the conjugate pairs (a2, a
′
2) and (a3, a

′
3)
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we write

u(x)p+σ−1 � u(x)p∗
s1

+σ−1

a2
+

1
a′2

� u(x)p∗
s1

+σ−1 + 1, and

u(x)q+σ−1 � u(x)p∗
s1

+σ−1

a3
+

1
a′3

� u(x)p∗
s1

+σ−1 + 1.

Hence the R.H.S of (4.2) can be estimated as

α

∫
Ω

u(x)p+σ−1 dx+ β

∫
Ω

u(x)q+σ−1 dx

� 2(α+ β)(1 + |Ω|)
(

1 +
∫

Ω

u(x)p∗
s1

+σ−1 dx
)
.

Now using the facts σ � 1 and σ + p− 1 � σp, we obtain from (4.2) that

(
1 +

∫
Rd

(
u(x)

σ+p−1
p

)p∗
s1 dx

) p
p∗

s1 � C

(
σ + p− 1

p

)p−1(
1 +

∫
Ω

u(x)p∗
s1

+σ−1 dx
)
,

where C = C(α, β, Ω, d, s1, p) > 0. Set ϑ = σ + p− 1. Then the above inequality
can be written as

(
1 +

∫
Rd

u(x)
ϑ
p p∗

s1 dx
) p

p∗
s1

(ϑ−p)

� C
1

ϑ−pϑ
p−1
ϑ−p

(
1 +

∫
Rd

u(x)p∗
s1

+ϑ−p dx
) 1

ϑ−p

.

(4.6)

We consider the sequences (ϑj) defined as follows

ϑ1 = p∗s1
, ϑ2 = p+

p∗s1

p
(ϑ1 − p), ···, ϑj+1 = p+

p∗s1

p
(ϑj − p).

Observe that p∗s1
− p+ ϑj+1 =

p∗
s1
p ϑj , and ϑj+1 = p+ (

p∗
s1
p )j(ϑ1 − p). Since p∗s1

> p,
we get ϑj → ∞, as j → ∞. From (4.6), we then write

(
1 +

∫
Rd

u(x)
ϑj+1

p p∗
s1 dx

) p
p∗

s1
(ϑj+1−p)

� C
1

ϑj+1−pϑ
p−1

ϑj+1−p

j+1

(
1 +

∫
Rd

u(x)
p∗

s1
p ϑj dx

) p
p∗

s1
(ϑj−p)

. (4.7)

Set Dj := (1 +
∫

Rd u(x)
p∗

s1
p ϑj dx)

p
p∗

s1
(ϑj−p) . We iterate (4.7) to get

Dj+1 � C
∑ j+1

k=2
1

ϑk−p

(
j+1∏
k=2

ϑ
1

ϑk−p

k

)p−1

D1, (4.8)
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where D1 = (1 +
∫

Rd u(x)
p∗

s1
p p∗

s1 dx)
p

p∗
s1

(p∗
s1

−p) which is finite by using the claim, and

Dj+1 �
((∫

Rd

u(x)
p∗

s1
ϑj+1
p dx

) p
p∗

s1
ϑj+1

) ϑj+1
ϑj+1−p

= ‖u‖
ϑj+1

ϑj+1−p

L

p∗
s1

ϑj+1
p (Rd)

. (4.9)

Combining (4.8) and (4.9) we have

‖u‖
ϑj+1

ϑj+1−p

L

p∗
s1

ϑj+1
p (Rd)

� C
∑ j+1

k=2
1

ϑk−p

(
j+1∏
k=2

ϑ
1

ϑk−p

k

)p−1

D1. (4.10)

Moreover,

∞∑
k=2

1
ϑk − p

=
1

(ϑ1 − p)

∞∑
k=2

(
p

p∗s1

)k−1

=
p

(p∗s1
− 1)(p∗s1

− p)
, and

∞∏
k=2

ϑ
1

ϑk−p

k = exp

( ∞∑
k=2

log(ϑk)
ϑk − p

)
= exp

(
p

(p∗s1
− p)2

log

(
p

(
p∗s1

(p∗s1
− p)

p

)p∗
s1

))
.

Therefore, taking the limit as j → ∞ in (4.10), we conclude that u ∈ L∞(Rd).
d = s1p : We proceed similarly as in the previous case by replacing the following
fractional Sobolev inequality (whenever required):

∫∫
Rd×Rd

∣∣∣uM (x)
σ+p−1

p − uM (y)
σ+p−1

p

∣∣∣p dμ1 � Θs1,p(Ω)
(∫

Rd

(
uM (x)

σ+p−1
p

)2p

dx
) 1

2

,

where

Θs1,p(Ω) := min
u∈W

s1,p
0 (Ω)

{
[u]ps1,p : ‖u‖L2p(Ω) = 1

}
.

Following similar arguments as given in the case d > s1p, we infer

(
1 +

∫
Rd

u(x)2ϑ dx
) 1

2(ϑ−p)

� C
1

ϑ−pϑ
p−1
ϑ−p

(
1 +

∫
Rd

u(x)p+ϑ dx
) 1

ϑ−p

. (4.11)

Then by considering the following sequences (ϑj) defined as:

ϑ1 = 2p, ϑ2 = p+ 2(ϑ1 − p), ···, ϑj+1 = p+ 2(ϑj − p),

we obtain u ∈ L∞(Rd).
d < s1p : By the fractional Morrey’s inequality ([12, Proposition 2.9]), we see that
functions in W s1,p

0 (Ω) are Hölder continuous and hence bounded. This completes
the proof. �

We use the following version of the strong maximum principle for the positive
solution of (EV; α, β).
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Proposition 4.2 (Strong Maximum Principle). Let Ω ⊂ R
d be a bounded open set

and 0 < s2 < s1 < 1 < q < p <∞. Let u ∈W s1,p
0 (Ω) ∩ L∞(Rd) be a non-negative

supersolution of (EV; α, β). Then either u > 0 a.e. in Ω or u ≡ 0 a.e. in R
d.

Proof. α, β � 0: Since u is a non-negative supersolution of (EV; α, β), we obtain

〈Ap(u), v〉+ 〈Bq(u), v〉 � α

∫
Ω

up−1v + β

∫
Ω

uq−1v � 0,

for every v ∈W s1,p
0 (Ω) with v � 0. Now we can use [3, (2) of Theorem 1.1] (by

taking c(x) = 0) with modifications (due to the presence of multiple parameters
s1, s2) to conclude either u > 0 a.e. in Ω or u ≡ 0 a.e. in R

d.
α, β � 0 or αβ � 0: Let x0 ∈ Ω and R > 0 be such that BR(x0) ⊂ Ω. Since u
is a non-negative supersolution of (EV; α, β), then we proceed as in [3, Lemma
2.1], for any R1 > 0 satisfying BR1 = BR1(x0) ⊂ BR

2
(x0), and obtain the following

logarithmic estimate∫∫
BR1×BR1

∣∣∣∣log
(
u(x) + δ

u(y) + δ

)∣∣∣∣
q

dμ2

� C

(
δ1−qRd

1

[
R−s1p Tailp(u−;x0, R)p−1 +R−s2q Tailq(u−;x0, R)q−1

]
Rd−s1p

1

+Rd−s2q
1

(
‖u‖L∞(Rd) + δ

)p−q

+
(
|α| + |β| ‖u‖p−q

L∞(Rd)

)
|B2R1(x0)|

)
, (4.12)

where δ ∈ (0, 1) and C = C(d, s1, p, s2, q) > 0. Now the result follows using (4.12)
and the arguments given in [3, Lemma 2.3]. �

5. Variational framework

To obtain the existence part of theorem 1.2–1.7, in this section, we study several
properties of energy functionals associated with (EV; α, β). In view of remark 1.8,
we assume s2 < s1 and q < p in the rest of the paper. We consider the following
functional on W s1,p

0 (Ω):

I+(u) =
[u]ps1,p

p
+

[u]qs2,q

q
− α

‖u+‖p
p

p
− β

‖u+‖q
q

q
, ∀ u ∈W s1,p

0 (Ω).

Now we define

〈Ap(u), φ〉=
∫∫

Rd×Rd

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y)) dμ1;

〈Bq(u), φ〉=
∫∫

Rd×Rd

|u(x) − u(y)|q−2(u(x) − u(y))(φ(x) − φ(y)) dμ2,

∀ u, φ ∈W s1,p
0 (Ω),

where 〈·〉 denotes the duality action. Using the Hölder’s inequality, it follows that
‖Ap(u)‖ � [u]p−1

s1,p and ‖Bq(u)‖ � [u]q−1
s2,q . One can verify that I+ ∈ C1(W s1,p

0 (Ω), R)
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and

〈
I ′+(u), φ

〉
= 〈Ap(u), φ〉+ 〈Bq(u), φ〉−α

∫
Ω

(u+)p−1φdx

− β

∫
Ω

(u+)q−1φdx, ∀ u, φ ∈W s1,p
0 (Ω).

Remark 5.1. If u ∈W s1,p
0 (Ω) is a critical point of I+, i.e.,

〈
I ′+(u), φ

〉
= 0 for all

φ ∈W s1,p
0 (Ω), then u is a solution of (EV; α, β). Moreover, for φ = −u−, using (i)

of lemma 2.2 we see

0 =
〈
I ′+(u),−u−〉=

〈
Ap(u),−u−

〉
+
〈
Bq(u),−u−

〉
� [u−]ps1,p + [u−]qs2,q.

The above inequality yields u− = c a.e. in R
d for some c ∈ R. Moreover, since

u− ∈W s1,p
0 (Ω), we get c = 0. Thus every critical point of I+ is a nonnegative

solution of (EV; α, β).

Now we discuss the coercivity and weak lower semicontinuity of I+.

Proposition 5.2. Let α < λ1
s1,p and β > 0. Then the functional I+ is weakly

sequentially lower semicontinuous, coercive, and bounded below on W s1,p
0 (Ω).

Proof. Let un ⇀ u in W s1,p
0 (Ω). Then using the compactness of the embeddings

W s1,p
0 (Ω) ↪→ Lp(Ω), W s2,q

0 (Ω) ↪→ Lq(Ω), and the weak lower semicontinuity of the
seminorm, we get

lim
n→∞

I+(un) = lim
n→∞

[un]ps1,p

p
+ lim

n→∞

[un]qs2,q

q
− α lim

n→∞
‖u+

n ‖p
p

p

− β lim
n→∞

‖u+
n ‖q

q

q
� I+(u).

Now we prove the coercivity of I+. Suppose α � 0. Then using W s1,p
0 (Ω) ↪→ Lq(Ω),

I+(u) �
[u]ps1,p

p
− β

‖u+‖q
q

q
�

[u]ps1,p

p
− Cβ

[u]qs1,p

q
, ∀ u ∈W s1,p

0 (Ω) \ {0}. (5.1)

If α > 0, then there exists a ∈ (0, 1) such that α = aλ1
s1,p. In this case, using

W s1,p
0 (Ω) ↪→ Lq(Ω), we get

I+(u) �
[u]ps1,p

p
− aλ1

s1,p

‖u+‖p
p

p
− β

‖u+‖q
q

q
�

[u]ps1,p

p
− aλ1

s1,p

‖u+‖p
p

p
− Cβ

[u]qs1,p

q
,

(5.2)
for every u ∈W s1,p

0 (Ω) \ {0}. From the definition of λ1
s1,p, we have [u]ps1,p �

λ1
s1,p‖u‖p

p � λ1
s1,p‖u+‖p

p. Therefore, (5.1) yields

I+(u) � 1 − a

p
[u]ps1,p − Cβ

[u]qs1,p

q
, ∀ u ∈W s1,p

0 (Ω) \ {0}. (5.3)
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In view of (5.1), observe that (5.3) holds for every α < λ1
s1,p. For any ε > 0, applying

Young’s inequality with the conjugate pair (p
q ,

p
p−q ) we obtain

[u]qs1,p � ε
q

p
[u]ps1,p +

p− q

p
ε−

p
p−q .

Hence from (5.1) we have the following estimate for every u ∈W s1,p
0 (Ω) \ {0}:

I+(u) � 1 − a

p
[u]ps1,p − ε

Cβ

p
[u]ps1,p − Cβ(p− q)

qp
ε−

p
p−q .

We choose ε > 0 so that Cβε < 1−a
2 . Therefore, from the above estimate, we get

I+(u) � 1 − a

2p
[u]ps1,p − Cβ(p− q)

qp
ε−

p
p−q ∀u ∈W s1,p

0 (Ω) \ {0}.

Thus the functional I+ is coercive on W s1,p
0 (Ω). Next, we prove that I+ is bounded

below. Set M > 0 such that Mp−q � p(1 + Cβq−1). Then using (5.1), we get

I+(u) � [u]qs1,p

(
[u]p−q

s1,p

p
− Cβ

q

)
� Mq, provided [u]s1,p � M.

Further, if [u]s1,p � M , then I+(u) � −MqCβ
q . Thus, I+ is bounded below on

W s1,p
0 (Ω). �

In the following proposition, we verify that I+ satisfies the Palais–Smale (P.S.)
condition on W s1,p

0 (Ω).

Proposition 5.3. Let α �= λ1
s1,p. Let (un) be a sequence in W s1,p

0 (Ω) such that
I+(un) → c for some c ∈ R and I ′+(un) → 0 in (W s1,p

0 (Ω))∗. Then (un) possesses
a convergent subsequence in W s1,p

0 (Ω).

Proof. First, we show that the sequence (un) is bounded inW s1,p
0 (Ω). On a contrary,

assume that [un]s1,p → ∞, as n→ ∞. Using (i) of lemma 2.2, note that

[u−n ]ps1,p � [u−n ]ps1,p + [u−n ]qs2,q �
∣∣〈I ′+(un),−u−n

〉∣∣ � ‖I ′+(un)‖[u−n ]s1,p.

Hence [u−n ]s1,p → 0, as n→ ∞. Set wn = un[un]−1
s1,p. Up to a subsequence, wn ⇀ w

in W s1,p
0 (Ω) and by the compactness of W s1,p

0 (Ω) ↪→ Lp(Ω), wn → w in Lp(Ω).
Further, [w−

n ]s1,p = [u−n ]s1,p[un]−1
s1,p → 0, as n→ ∞. Therefore, w−

n → 0 in W s1,p
0 (Ω)

and hence in Lp(Ω). This implies that w+
n → w in Lp(Ω), which yields w � 0 a.e. in

Ω. We show that w is an eigenfunction of the fractional p-Laplacian corresponding
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to α. For any φ ∈W s1,p
0 (Ω), we write

〈Ap(un), φ〉+ 〈Bq(un), φ〉−α
∫

Ω

|un|p−2
unφ− β

∫
Ω

|un|q−2
unφ = εn, (5.4)

where εn → 0 as n→ ∞. From the above inequality, we obtain

〈Ap(wn), φ〉+[un]q−p
s1,p 〈Bq(wn), φ〉−α

∫
Ω

|wn|p−2
wnφ− β[un]q−p

s1,p

∫
Ω

|wn|q−2
wnφ

=
εn

[un]p−1
s1,p

. (5.5)

Using the Hölder’s inequality with the conjugate pair (q, q′), the Poincaré inequality
‖φ‖q � C(Ω)[φ]s1,p, and the boundedness of (wn) in W s2,q

0 (Ω) we have

|〈Bq(wn), φ〉| � [wn]q−1
s2,q [φ]s2,q � C[φ]s1,p, and∫

Ω

|wn|q−1|φ| � ‖wn‖q−1
q ‖φ‖q � C[φ]s1,p,

We choose φ = wn − w in (5.5), and take the limit as n→ ∞ to get
〈Ap(wn), wn − w〉 → 0. Further, since Ap is a continuous functional on W s1,p

0 (Ω),
we also have 〈Ap(w), wn − w〉 → 0. Further, using the definition of Ap

〈Ap(wn) −Ap(w), wn − w〉 �
(
[wn]p−1

s1,p − [w]p−1
s1,p

)
([wn]s1,p − [w]s1,p) . (5.6)

Therefore, [wn]s1,p → [w]s1,p, and hence the uniform convexity of W s1,p
0 (Ω) ensures

that wn → w in W s1,p
0 (Ω). Further, since [w]s1,p = 1 we also have w �= 0 in Ω. Now

using (5.5), we obtain

〈Ap(w), φ〉=α
∫

Ω

|w|p−2wφ, ∀ φ ∈W s1,p
0 (Ω).

Thus w is a nonnegative weak solution to the problem

(−Δ)s1
p u = α|u|p−2u in Ω, u = 0 in Ωc. (5.7)

Now by the strong maximum principle for fractional p-Laplacian [14, Proposi-
tion 2.6], we conclude that w > 0 a.e. in Ω. Therefore, the uniqueness of λ1

s1,p

(proposition 2.1) yields α = λ1
s1,p, resulting in a contradiction. Thus, the sequence

(un) is bounded in W s1,p
0 (Ω). By the reflexivity, up to a subsequence, un ⇀ ũ in

W s1,p
0 (Ω). By taking φ = un − ũ in (5.4) and using the compact embeddings of

W s1,p
0 (Ω) ↪→ Lγ(Ω) with γ ∈ [1, p], we get 〈Ap(un), un − ũ〉 + 〈Bq(un), un − ũ〉 →

0. Therefore, 〈Ap(un) −Ap(ũ), un − ũ〉 + 〈Bq(un) −Bq(ũ), un − ũ〉 → 0, which
implies 〈Ap(un) −Ap(ũ), un − ũ〉 → 0. Thus, [un]s1,p → [ũ]s1,p (by using (5.6)), and
from the uniform convexity, un → ũ in W s1,p

0 (Ω), as required. �

The following lemma discusses the mountain pass geometry of I+ for certain
ranges of α and β.
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Lemma 5.4. Let α > λ1
s1,p and β � α. For ρ > 0, let

Sρ = {u ∈W s1,p
0 (Ω) : [u]s1,p = ρ} .

The following hold:

(i) There exist δ = δ(ρ) > 0, and α1 = α1(ρ) > 0 such that if α ∈ (0, α1), then
I+(u) � δ for every u ∈ Sρ.

(ii) There exists v ∈W s1,p
0 (Ω) with [v]s1,p > ρ such that I+(v) < 0.

Proof. (i) Let ρ > 0 and u ∈ Sρ. Then using W s1,p
0 (Ω) ↪→ Lγ(Ω) for γ ∈ [1, p],

I+(u) �
[u]ps1,p

p
− α

‖u+‖p
p

p
− β

‖u+‖q
q

q

� [u]qs1,p

(
[u]p−q

s1,p

p
− Cα

[u]p−q
s1,p

p
− C

α

q

)
= ρqA(ρ), (5.8)

where A(ρ) = ρp−q

p − Cαρp−q

p − C α
q . Choose 0 < α1 <

ρp−q

p (C ρp−q

p + C
q )−1 and δ =

ρqA(ρ) with α ∈ (0, α1). Therefore, from (5.8), I+(u) � δ for all α ∈ (0, α1).
(ii) Note that

I+(tφs1,p) =
tp

p

(
[φs1,p]ps1,p − α‖φs1,p‖p

p

)
+
tq

q

(
[φs1,p]qs2,q − β‖φs1,p‖q

q

)
.

Since p > q and α > λ1
s1,p, we obtain I+(tφs1,p) → −∞, as t→ ∞. Hence there

exists t1 > ρ[φs1,p]−1
s1,p such that I+(tφs1,p) < 0 for all t � t1. Thus, v = tφs1,p with

t > t1 is the required function. �

5.1. Nehari manifold

This subsection briefly discusses the Nehari manifold associated with (EV; α, β)
and some of its properties.

Definition 5.5 Nehari Manifold. We define the Nehari manifold associated with
(EV; α, β) as

Nα,β :=
{
u ∈W s1,p

0 (Ω) \ {0} :
〈
I ′+(u), u

〉
=0
}
.

Note that every nonnegative solution of (EV; α, β) lies in Nα,β . Now we provide
a sufficient condition for which every critical point in Nα,β becomes a nonnegative
solution of (EV; α, β). We consider the following functionals on W s1,p

0 (Ω):

Hα(u) = [u]ps1,p − α‖u+‖p
p, and Gβ(u) = [u]qs2,q − β‖u+‖q

q, ∀ u ∈W s1,p
0 (Ω).

Clearly, Hα, Gβ ∈ C1(W s1,p
0 (Ω), R), and the identity

〈
I ′+(u), u

〉
= Hα(u) +Gβ(u)

holds.

Proposition 5.6. Let u ∈W s1,p
0 (Ω). Assume that either Hα(u) �= 0 or Gβ(u) �= 0.

If u is a critical point in Nα,β, then u is a critical point of I+.
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Proof. The proof follows using the arguments given in [8, Lemma 2]. �

Next, we state a condition for the existence of a critical point in Nα,β . Let
Hα(u), Gβ(u) �= 0 for some u ∈W s1,p

0 (Ω). Define

tα,β(= tα,β(u)) :=
(
−Gβ(u)
Hα(u)

) 1
p−q

.

Notice that, for t ∈ R, 〈I ′(tu), tu〉 = t(tp−1Hα(u) + tq−1Gβ(u)). In particular,
tα,βu ∈ Nα,β .

Proposition 5.7. Let u ∈W s1,p
0 (Ω). The following hold:

(i) If Gβ(u) < 0 < Hα(u), then I+(tα,βu) = min
t∈R+

I+(tu), and I+(tα,βu) < 0.

Moreover, tα,β is unique.

(ii) If Hα(u) < 0 < Gβ(u), then I+(tα,βu) = max
t∈R+

I+(tu), and I+(tα,βu) > 0.

Moreover, tα,β is unique.

Proof. The proof follows using the same arguments presented in [8, Proposition 6].
�

Remark 5.8.

(i) Let u ∈ Nα,β . Then Hα(u) +Gβ(u) = 0, and hence

I+(u) =
p− q

pq
Gβ(u) =

q − p

pq
Hα(u).

From the above identity, it is clear that if I+(u) �= 0, then either Gβ(u) < 0 <
Hα(u) or Hα(u) < 0 < Gβ(u).

(ii) If u ∈ Nα,β , and Hα, Gβ satisfy the assumptions given in the above propo-
sition, then from (i) and proposition 5.7, tα,β = 1 is the unique minimum or
maximum point on R

+.

Remark 5.9. Using proposition 2.1 and ‖u+‖γ � ‖u‖γ , we get

(i) if α < λ1
s1,p, then Hα(u) > [u]ps1,p − λ1

s1,p‖u+‖p
p � [u]ps1,p − λ1

s1,p‖u‖p
p � 0 for

u ∈W s1,p
0 (Ω) \ {0},

(ii) if β < λ1
s2,q, then Gβ(u) > [u]ps1,p − λ1

s2,q‖u+‖q
q � [u]qs2,q − λ1

s2,q‖u‖q
q � 0 for

u ∈W s1,p
0 (Ω) \ {0}.
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5.2. Method of sub and super solutions

We consider the following energy functional on W s1,p
0 (Ω):

I(u) =
[u]ps1,p

p
+

[u]qs2,q

q
− α

‖u‖p
p

p
− β

‖u‖q
q

q
, ∀ u ∈W s1,p

0 (Ω).

Notice that I ∈ C1(W s1,p
0 (Ω), R), and

〈I ′(u), φ〉= 〈Ap(u), φ〉+ 〈Bq(u), φ〉−α
∫

Ω

|u|p−2
uφdx

− β

∫
Ω

|u|q−2
uφ, ∀ u, φ ∈W s1,p

0 (Ω).

In this subsection, using sub and super solutions techniques, we discuss the existence
of critical points for I. We say u ∈W s1,p

0 (Ω) is a supersolution of (EV; α, β), if

〈Ap(u), φ〉+ 〈Bq(u), φ〉

� α

∫
Ω

|u|p−2
uφdx+ β

∫
Ω

|u|q−2
uφdx, ∀ φ ∈W s1,p

0 (Ω), φ � 0. (5.9)

A function u ∈W s1,p
0 (Ω) is called a subsolution of (EV; α, β) if the reverse

inequality holds in (5.9).

Definition 5.10 Truncation function. Let u, u ∈ L∞(Ω) be such that u � u a.e.
in Ω. For t ∈ R, we define the truncation function corresponds to f(t) = α|t|p−2

t+
β|t|q−2

t as follows:

f̃(x, t) :=

⎧⎨
⎩
f(u(x)) if t � u(x),
f(t) if u(x) < t < u(x),
f(u(x)) if t � u(x).

(5.10)

By definition, f̃(·, t) is continuous on R. Further, using u, u ∈ L∞(Ω) it is easy
to see that f̃ ∈ L∞(Ω × R). Now we consider the following functional associated
with f̃(·, u(x)):

Ĩ(u) =
[u]ps1,p

p
+

[u]qs2,q

q
−
∫

Ω

F̃ (x, u(x)) dx, ∀ u ∈W s1,p
0 (Ω),

where F̃ (x, u(x)) :=
∫ u(x)

0
f̃(x, τ) dτ . Note that, for u(x) ∈ (u(x), u(x)), Ĩ coincides

with the energy functional I. Further, Ĩ ∈ C1(W s1,p
0 (Ω), R), and〈

(Ĩ)′(u), φ
〉

= 〈Ap(u), φ〉+ 〈Bq(u), φ〉−
∫

Ω

f̃(x, u(x))φ(x) dx, ∀ u, φ ∈W s1,p
0 (Ω).

In the following proposition, we prove some properties of Ĩ that ensure the existence
of critical points for Ĩ.

Proposition 5.11. Let u, u ∈ L∞(Ω) be such that u � u a.e. on Ω. Then Ĩ is
bounded below, coercive and weak lower semicontinuous on W s1,p

0 (Ω).
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Proof. Since u, u ∈ L∞(Ω), there exists C > 0 such that |f̃(x, t)| � C, and
|F̃ (x, t)| � C|t|, for all x ∈ Ω, t ∈ R. Hence for u ∈W s1,p

0 (Ω)

Ĩ(u) �
[u]ps1,p

p
+

[u]qs2,q

q
− C‖u‖1 �

[u]ps1,p

p
+

[u]qs2,q

q
− C[u]s2,q|Ω| 1

q′ .

Now using similar arguments as in proposition 5.2, it follows that Ĩ is coercive and
bounded below on W s1,p

0 (Ω). Next, for a sequence un ⇀ u in W s1,p
0 (Ω),

lim
n→∞

Ĩ(un) �
[u]ps1,p

p
+

[u]qs2,q

q
− lim

n→∞

∫
Ω

F̃ (x, un(x)) dx. (5.11)

We claim that
∫
Ω
F̃ (x, un(x)) dx→ ∫

Ω
F̃ (x, u(x)) dx. By the compact embeddings

of W s1,p
0 (Ω) ↪→ Lp(Ω), we have un → u in Lp(Ω) and hence un → u in L1(Ω).

Further, using f̃ ∈ L∞(Ω × R),∣∣∣∣
∫

Ω

(
F̃ (x, un(x)) − F̃ (x, u(x))

)
dx
∣∣∣∣

�
∫

Ω

∫ un(x)

u(x)

|f̃(x, τ | dτdx � M

∫
Ω

|un(x) − u(x)|dx,

and the claim follows. Therefore, in view of (5.11), Ĩ is weak lower semicontinuous
on W s1,p

0 (Ω). �

In the following proposition, we prove that every critical point of Ĩ lies between
sub and super solutions.

Proposition 5.12. Let u, u ∈ L∞(Ω) be such that u � u a.e. in R
d. If u ∈

W s1,p
0 (Ω) is a critical point of Ĩ, then u � u � u a.e. in R

d.

Proof. From the definition of sub and super solutions, it is clear that u = u = u = 0
in R

d \ Ω, since each function lies in W s1,p
0 (Ω). Now we show that u � u � u a.e.

in Ω. Our proof is by the method of contradiction. On the contrary, assume that
u � u on A ⊂ Ω with |A| > 0. We choose (u− u)+ ∈W s1,p

0 (Ω) as a test function.
Using u is a supersolution of (EV; α, β) and u is a critical point of Ĩ, together with
(5.10) we get

〈
Ap(u), (u− u)+

〉
+
〈
Bq(u), (u− u)+

〉
� α

∫
Ω

|u|p−2
u(u− u) + β

∫
Ω

|u|q−2
u(u− u),

〈
Ap(u), (u− u)+

〉
+
〈
Bq(u), (u− u)+

〉
=
∫

Ω

f(u)(u− u)

=
∫

Ω

(
α|u|p−2 + β|u|q−2

)
u(u− u).

The above inequalities yield〈
Ap(u) −Ap(u), (u− u)+

〉
+
〈
Bq(u) −Bq(u), (u− u)+

〉
� 0. (5.12)
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From the definition of Ap,

〈
Ap(u) −Ap(u), (u− u)+

〉
=
∫∫

Rd×Rd

(|u(x) − u(y)|p−2(u(x) − u(y))

− |u(x) − u(y)|p−2(u(x) − u(y))
)

× ((u(x) − u(x))+−(u(y) − u(y))+
)

dμ1.

Now we consider the following cases:
2 � q < p: Without loss of generality, we assume that u(x) − u(x) � u(y) − u(y).
Otherwise, exchange the roll of x and y. Applying (ii) and (i) of lemma 2.2, we then
obtain〈

Ap(u) −Ap(u), (u− u)+
〉

� C(p)
∫∫

Rd×Rd

|(u(x) − u(x)) − (u(y) − u(y))|p−2

((u(x) − u(x)) − (u(y) − u(y))
(
(u(x) − u(x))+−(u(y) − u(y))+

)
dμ1

� C(p)[(u− u)+]ps1,p.

Similarly, we can show that
〈
Bq(u) −Bq(u), (u− u)+

〉
� C(q)[(u− u)+]qs2,q.

Therefore, from (5.12), [(u− u)+]s1,p = 0. By Poincarè inequality, ‖(u− u)+‖p �
C[(u− u)+]s1,p = 0, which is a contradiction.
q < 2 � p: In this case, using [28, Lemma 2.4] (for Bq) we obtain,〈

Ap(u) −Ap(u), (u− u)+
〉

� C(p)[(u− u)+]ps1,p;

〈
Bq(u) −Bq(u), (u− u)+

〉
� C(q)

[(u− u)+]2s2,q

([u]qs2,q + [u]qs2,q)
2−q .

Hence, we get a contradiction using (5.12). For q < p < 2, again using [28, Lemma
2.4], we similarly get a contradiction. Thus u � u a.e. in R

d. Now suppose u � u in
A ⊂ Ω with |A| > 0, then taking (u− u)− ∈W s1,p

0 (Ω) as a test function, we also
get a contradiction for all possible choices of p and q. Therefore, u � u � u a.e.
in R

d. �

6. Existence and non-existence of positive solutions

Depending on the ranges of α, β, this section is devoted to proving the existence
and non-existence of positive solutions for (EV; α, β). This section’s terminology
‘solution’ is meant to be nontrivial unless otherwise specified. First, we consider the
region where α, β do not exceed λ1

s1,p, λ
1
s2,q respectively.

Proposition 6.1. It holds

(i) Let (α, β) ∈ ((−∞, λ1
s1,p) × (−∞, λ1

s2,q)) ∪ ({λ1
s1,p} × (−∞, λ1

s2,q)) ∪ ((−∞,
λ1

s1,p) × {λ1
s2,q}). Then (EV; α, β) does not admit a solution.
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(ii) Let α = λ1
s1,p and β = λ1

s2,q. Then (EV; α, β) admits a solution if and only
if (LI) violates.

Proof. (i) Let α < λ1
s1,p and β < λ1

s2,q. Suppose u ∈W s1,p
0 (Ω) \ {0} is a solution of

(EV; α, β). Then using the definition of λ1
s1,p and λ1

s2,q (proposition 2.1), we get

0 < (λ1
s1,p − α)‖u‖p

p � [u]s1,p − α‖u‖p
p = β‖u‖q

q − [u]s2,q � (β − λ1
s2,q)‖u‖q

q < 0.
(6.1)

A contradiction. Therefore, (EV; α, β) does not admit a solution. For other cases,
contradiction similarly follows using (6.1). (ii) For α = λ1

s1,p and β = λ1
s2,q, if u ∈

W s1,p
0 (Ω) \ {0} is a solution of (EV; α, β), then the equality occurs in (6.1). As a

consequence, u becomes an eigenfunction corresponding to both λ1
s1,p and λ1

s2,q, i.e.,
(LI) violates. Conversely, suppose (LI) does not hold. For α � λ1

s1,p and β � λ1
s2,q,

using remark 5.9 we have I+(u) � 0 for any u ∈W s1,p
0 (Ω) \ {0}. Thus 0 is the global

minimizing point for I+. Further, since φs1,p = cφs2,q for some nonzero c ∈ R, by
setting ũ = c1φs1,p = c2φs2,q (where c1, c2 �= 0) we see that I+(ũ) = 0. Therefore,
ũ �= 0 is a solution of (EV; α, β). �

Before going to the proof of theorem 1.2, we recall a result from [30], where for
d > s1p the authors provided the existence of a positive solution of (1.3). However,
we stress that the same conclusion can be drawn for d � s1p. For 0 < s < 1 � r <∞
and mr ∈ L∞(Ω) with m+

r �≡ 0, we denote

λ1
s,r(Ω,mr) := inf

{
[u]rs,r : u ∈W s,r

0 (Ω) and
∫

Ω

mr|u|r = 1
}

as the first Dirichlet eigenvalue of the weighted eigenvalue problem of the fractional
r-Laplace operator (see [16]).

Theorem 6.2 [30, Theorem 1.1]. Let Ω ⊂ R
d be a bounded open set,

0 < s2 < s1 < 1 < q � p <∞, and mp, mq ∈ L∞(Ω) with m+
p , m

+
q �≡ 0. Let

λ1
s1,p(Ω, mp), λ1

s2,q(Ω, mq) be respectively the first Dirichlet eigenvalue of weighted
eigenvalue problems for fractional p-Laplace and fractional q-Laplace operators with
weights mp, mq. Suppose, λ1

s1,p(Ω, mp) �= λ1
s2,q(Ω, mq). Then for

α > min{λ1
s1,p(Ω,mp), λ1

s2,q(Ω,mq)},
the problem (1.3) admits a positive solution.

Proof of theorem 1.2. (i) α > λ1
s1,p, β < λ1

s2,q : Let β > 0. Then using α > λ1
s1,p

and β < λ1
s2,q, we get

λ1
s1,p

(
Ω,
α

β

)
=
λ1

s1,p

α
β < β < λ1

s2,q = λ1
s2,q(Ω, 1).

Hence β > min{λ1
s1,p(Ω,

α
β ), λ1

s2,q(Ω, 1)} and using theorem 6.2 with mp = α
β and

mq = 1 we obtain that (EV; α, β) admits a positive solution. Let β � 0. Then
using proposition 5.3 and lemma 5.4, I+ satisfies all the conditions of the Mountain
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pass theorem (see [1, Theorem 2.1]). Therefore, by the Mountain pass theorem and
remark 5.1, (EV; α, β) admits a nonnegative and nontrivial solution u ∈W s1,p

0 (Ω).
Further, from the strong maximum principle (proposition 4.3), u > 0 a.e. in Ω.
α < λ1

s1,p, β > λ1
s2,q : Let α > 0. Then using α < λ1

s1,p and β > λ1
s2,q, we get

λ1
s2,q(Ω,

β
α ) < α < λ1

s1,p(Ω, 1). Therefore, theorem 6.2 with mp = 1 and mq = β
α

yields a positive solution for (EV; α, β). If α � 0, then from proposition 5.2, we get
the existence of a global minimizer ũ of I+, and hence using remark 5.1, ũ is a non-
negative solution of (EV; α, β). Next, we show that ũ �= 0 in Ω. Observe that, for t >
0, Gβ(tφs2,q) = tqGβ(φs2,q) < 0, and using remark 5.9, Hα(tφs2,q) = tpHα(φs2,q) >
0. Now, if 0 < t << 1, then I+(tφs2,q) < 0, which implies that I+(ũ) < 0 and ũ �= 0.
Therefore, by the strong maximum principle (proposition 4.3), ũ > 0 a.e. in Ω.
α = λ1

s1,p, β = λ1
s2,q : Let (LI) violates. Then using (ii) of proposition 6.1, we see

that (EV; α, β) admits a nonnegative solution u ∈W s1,p
0 (Ω). Further, using the

strong maximum principle (proposition 4.3), u > 0 a.e. in Ω.
(ii) Suppose, there exists nonzero c ∈ R such that φs1,p = cφs2,q. We also assume
that (EV; α, β) admits a solution u > 0 a.e. in Ω. Using the Picone’s inequality ((i)
of lemma 2.3) and proposition 2.1, we get

∫∫
Rd×Rd

|uk(x) − uk(y)|p−2(uk(x) − uk(y))
(
φs1,p(x)p

uk(x)p−1
− φs1,p(y)p

uk(y)p−1

)
dμ1

�
∫∫

Rd×Rd

|φs1,p(x) − φs1,p(y)|p dμ1 = λ1
s1,p

∫
Ω

φs1,p(x)p dx.

Since for x, y ∈ R
d, uk(x) − uk(y) = u(x) − u(y) the above inequality yields

〈
Ap(u),

φp
s1,p

up−1
k

〉
� λ1

s1,p

∫
Ω

φs1,p(x)p dx. (6.2)

We again use the Picone’s inequality ((ii) of lemma 2.3) to obtain

∫∫
Rd×Rd

|uk(x) − uk(y)|q−2(uk(x) − uk(y))
(
φs1,p(x)p

uk(x)p−1
− φs1,p(y)p

uk(y)p−1

)
dμ2

�
∫∫

Rd×Rd

|φs1,p(x) − φs1,p(y)|q−2(φs1,p(x) − φs1,p(y))

×
(
φs1,p(x)p−q+1

uk(x)p−q
− φs1,p(y)p−q+1

uk(y)p−q

)
dμ2. (6.3)
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Since φs1,p ∈ L∞(Ω) ((v) of proposition 2.1), using lemma 2.4, uq−p
k φp−q+1

s1,p ∈
W s1,p

0 (Ω). Therefore, we have the following identity:∫∫
Rd×Rd

|φs1,p(x) − φs1,p(y)|q−2(φs1,p(x) − φs1,p(y))

×
(
φs1,p(x)p−q+1

uk(x)p−q
− φs1,p(y)p−q+1

uk(y)p−q

)
dμ2 = λ1

s2,q

∫
Ω

φs1,p(x)p

uk(x)p−q
dx. (6.4)

Set fk := uq−p
k φp

s1,p and f := uq−pφp
s1,p. It is easy to see that fk is increasing

and fk ∈ L1(Ω). Moreover, for γ � p, using uk(x)γ−p → u(x)γ−p a.e. in Ω, we
get fk(x) → f(x) a.e. in Ω. Therefore, the monotone convergence theorem yields
f ∈ L1(Ω), and

∫
Ω
fk(x) dx→ ∫

Ω
f(x) dx, as k → ∞. Hence from (6.3) and (6.4),

we obtain

lim
k→∞

〈
Bq(u),

φp
s1,p

up−1
k

〉
� λ1

s2,q

∫
Ω

φs1,p(x)p

u(x)p−q
dx. (6.5)

Now since u is a solution of (EV; α, β), taking u1−p
k φp

s1,p ∈W s1,p
0 (Ω) (by (v) of

proposition 2.1, and lemma 2.4) as a test function,〈
Ap(u),

φp
s1,p

up−1
k

〉
+

〈
Bq(u),

φp
s1,p

up−1
k

〉

= α

∫
Ω

u(x)p−1

uk(x)p−1
φs1,p(x)p dx+ β

∫
Ω

u(x)q−1

uk(x)p−1
φs1,p(x)p dx. (6.6)

Furthermore, for γ ∈ (1, p], the Hölder’s inequality with the conjugate pair (γ, γ′)
yields,∫

Ω

u(x)γ−1

uk(x)p−1
φs1,p(x)p dx � ‖u‖γ−1

γ ‖φ
p
s1,p

up−1
k

‖γ � C(Ω, γ)‖u‖γ−1
p ‖φ

p
s1,p

up−1
k

‖p.

Moreover, uγ−1

up−1
k

φp
s1,p → uγ−pφp

s1,p a.e. in Ω, and the sequence (u1−p
k ) is increasing.

Hence, again applying the monotone convergence theorem∫
Ω

up−1

up−1
k

φp
s1,p →

∫
Ω

φp
s1,p and

∫
Ω

uq−1

up−1
k

φp
s1,p →

∫
Ω

φp
s1,p

up−q
, as k → ∞.

Therefore, (6.2), (6.5) and (6.6) yield

α

∫
Ω

φp
s1,p + β

∫
Ω

φp
s1,p

up−q
= lim

k→∞

{〈
Ap(u),

φp
s1,p

up−1
k

〉
+

〈
Bq(u),

φp
s1,p

up−1
k

〉}

� λ1
s1,p

∫
Ω

φp
s1,p + λ1

s2,q

∫
Ω

φp
s1,p

up−q
.

The above inequality infer that, (α, β) ∈ ((λ1
s1,p, ∞) × (−∞, λ1

s2,q)) ∪ ((−∞, λ1
s1,p)

× (λ1
s2,q, ∞)) ∪ ({λ1

s1,p} × {λ1
s2,q}). This completes our proof. �
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Now we proceed to prove the existence and non-existence of positive solution for
(EV; α, β) on the line β = λ1

s2,q. Recall the following quantity:

α∗
s1,p :=

[φs2,q]ps1,p

‖φs2,q‖p
p

. (6.7)

Notice that, α∗
s1,p � λ1

s1,p and if (LI) holds, then α∗
s1,p > λ1

s1,p. In the rest of this
section, we assume that the condition (LI) holds. The following lemma states that
if α is smaller than α∗

s1,p, then Hα and Gβ possess a different sign on Nα,β .

Lemma 6.3. Let β = λ1
s2,q and α < α∗

s1,p. Then Hα(u) < 0 < Gβ(u) for every
u ∈ Nα,β.

Proof. Notice that, Gβ(u) = [u]qs2,q − λ1
s2,q‖u+‖q

q � [u]qs2,q − λ1
s2,q‖u‖q

q � 0 for u ∈
W s1,p

0 (Ω) \ {0}. Let u ∈ Nα,β . If Gβ(u) = 0, then we get

[u]qs2,q

‖u‖q
q

� λ1
s2,q �

[u]qs2,q

‖u‖q
q

.

By the simplicity of λ1
s2,q ((iv) of proposition 2.1), u = cφs2,q for some c ∈ R. Hence

Hα(u) > [u]ps1,p − α∗
s1,p‖u+‖p

p = C
(
[φs2,q]ps1,p − α∗

s1,p‖φs2,q‖p
p

)
= 0.

On the other hand, since u ∈ Nα,β , Hα(u) = −Gβ(u) = 0, a contradiction. There-
fore, we must have Gβ(u) > 0. Further, since u ∈ Nα,β , we obtain Hα(u) < 0 <
Gβ(u). �

Now we are ready to prove the existence and non-existence of positive solution
for β = λ1

s2,q.

Proposition 6.4. For β = λ1
s2,q the following hold:

(i) If λ1
s1,p < α < α∗

s1,p and (LI) holds, then (EV; α, β) admits a positive solution.

(ii) If α > α∗
s1,p, then there does not exist any positive solution of (EV; α, β).

Proof. (i) We show that d := min{I+(u) : u ∈ Nα,β} is attained. Let (un) be the
minimizing sequence in Nα,β , i.e.,

〈
I ′+(un), un

〉
= 0 for all n ∈ N and I+(un) → d

as n→ ∞. From lemma 6.3, Hα(un) < 0 < Gβ(un). Step 1: This step proves the
boundedness of (un) in W s1,p

0 (Ω). On a contrary, suppose [un]s1,p → ∞, as n→ ∞.
Set wn = un[un]−1

s1,p. By the reflexivity, wn ⇀ w in W s1,p
0 (Ω) and wn → w in Lp(Ω).

Since Hα(un) < 0, we have ‖wn‖p
p = ‖un‖p

p[un]−p
s1,p >

1
α . This gives ‖w‖p

p � 1
α , and
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hence w �= 0. Now using (i) of remark 5.8,

p− q

pq
Gβ(wn) =

I+(un)
[un]qs1,p

→ 0, as n→ ∞. (6.8)

Using (6.8) we obtain

0 � Gβ(w) � lim
n→∞

Gβ(wn) = 0.

Therefore, w = cφs2,q for some c ∈ R. Further, using (i) of remark 5.8, and (6.8),

[φs2,q]ps1,p − α‖φs2,q‖p
p = Hα(w) � lim

n→∞
Hα(wn) = − lim

n→∞
Gβ(wn)
[un]p−q

s1,p

= 0.

The above inequality yields α∗
s1,p � α, a contradiction. Therefore, (un) must

be bounded in W s1,p
0 (Ω). Step 2: By the reflexivity, un ⇀ ũ in W s1,p

0 (Ω). In
this step, we show (un) converges to ũ in W s1,p

0 (Ω). On a contrary, suppose
[un]s1,p �→ [ũ]s1,p. If limn→∞[un]s1,p < [ũ]s1,p, then limn→∞[un]s1,p < [ũ]s1,p con-
tradicts the weak lower semicontinuity of [·]s1,p. Henceforth, assume that [ũ]s1,p <
limn→∞[un]s1,p. Using this inequality we get [ũ]s1,p < limn→∞[un]s1,p and Hα(ũ) <
limn→∞Hα(un) � 0. This implies that ũ is nonzero. Now, Gβ(ũ) � 0, and if
Gβ(ũ) = 0, then ũ = cφs2,q for some c ∈ R. Hence Hα(φs2,q) < 0 which implies that
α > α∗

s1,p, a contradiction. Therefore, Hα(ũ) < 0 < Gβ(ũ). Now applying proposi-
tion 5.7 there exists a unique tα,β ∈ R

+ such that tα,βũ ∈ Nα,β and 0 < I+(tα,β ũ) =
maxt∈R+ I+(tũ). Moreover, from (ii) of remark 5.8, I+(un) = maxt∈R+ I+(tun).
Therefore,

d � I+(tα,β ũ) < lim
n→∞

I+(tα,βun) � lim
n→∞

I+(un) = d,

a contradiction. Thus, [un]s1,p → [ũ]s1,p in R
+. Hence from the uniform convexity

of W s1,p
0 (Ω), un → ũ in W s1,p

0 (Ω). Step 3: In this step we prove that ũ is a posi-
tive solution of (EV; α, β). Since un → ũ in W s1,p

0 (Ω), we obtain d = I+(ũ) and〈
I ′+(ũ), ũ

〉
= 0. Using the continuity of Hα and Gβ , Hα(ũ) � 0 � Gβ(ũ). Next,

we show ũ is nonzero. Set wn = un[un]−1
s1,p. Then wn ⇀ w in W s1,p

0 (Ω). Since
Hα(un) < 0, from the same arguments as in previous steps, w �= 0 and Gβ(w) > 0.
Next, suppose [un]s1,p → 0 as n→ ∞. Using Gβ(wn) � 0 we get

[w]ps1,p − α‖w‖p
p � Hα(w) � lim

n→∞
Hα(wn) = − lim

n→∞
Gβ(wn)
[un]p−q

s1,p

= −∞.

A contradiction, as w ∈ Lp(Ω). Thus infn∈N[un]s1,p > 0 and α‖ũ‖p
p � limn→∞[un]ps1,p >

0, which implies that ũ is nonzero in Ω, and hence ũ ∈ Nα,β . Moreover, from lemma
6.3, Hα(ũ) < 0 < Gβ(ũ). Now, using proposition 5.6 and remark 5.1, we conclude
ũ is a nonnegative solution of (EV; α, β). Furthermore, by proposition 4.3, ũ > 0
a.e. in Ω.
(ii) Our proof uses the method of contradiction. Let u ∈W s1,p

0 (Ω) and u > 0 a.e. in
Ω. From (v) of proposition 2.1 and Lemma 2.4, uq−p

k φp−q+1
s2,q , u1−p

k φp
s2,q ∈W s1,p

0 (Ω).
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Applying the discrete Picone’s inequality ((ii) of lemma 2.3),∫∫
Rd×Rd

|uk(x) − uk(y)|q−2(uk(x) − uk(y))
(
φs2,q(x)p

uk(x)p−1
− φs2,q(y)p

uk(y)p−1

)
dμ2

�
∫∫

Rd×Rd

|φs2,q(x) − φs2,q(y)|q−2(φs2,q(x) − φs2,q(y))

×
(
φs2,q(x)p−q+1

uk(x)p−q
− φs2,q(y)p−q+1

uk(y)p−q

)
dμ2 = λ1

s2,q

∫
Ω

φs2,q(x)p

uk(x)p−q
dx. (6.9)

The monotone convergence theorem yields uq−pφp
s2,q ∈ L1(Ω) and

∫
Ω
uq−p

k φp
s2,q →∫

Ω
uq−pφp

s2,q, as k → ∞. Next, we again use the Picone’s inequality ((i) of lemma
2.3), to get∫∫

Rd×Rd

|uk(x) − uk(y)|p−2(uk(x) − uk(y))
(
φs2,q(x)p

uk(x)p−1
− φs2,q(y)p

uk(y)p−1

)
dμ1

�
∫∫

Rd×Rd

|φs2,q(x) − φs2,q(y)|p dμ1 = α∗
s1,p

∫
Ω

φs2,q(x)p dx. (6.10)

If u is a solution of (EV; α, β), then taking u1−p
k φp

s2,q as a test function we write
〈
Ap(u),

φp
s2,q

up−1
k

〉
+

〈
Bq(u),

φp
s2,q

up−1
k

〉

= α

∫
Ω

u(x)p−1

uk(x)p−1
φs2,q(x)p dx+ λ1

s2,q

∫
Ω

u(x)q−1

uk(x)p−1
φs2,q(x)p dx. (6.11)

Further, applying the monotone convergence theorem∫
Ω

up−1

up−1
k

φp
s2,q →

∫
Ω

φp
s2,q;

∫
Ω

uq−1

up−1
k

φp
s2,q →

∫
Ω

φp
s2,q

up−q
, as k → ∞.

Therefore, from (6.9), (6.10), and (6.11), we conclude

α

∫
Ω

φp
s2,q + λ1

s2,q

∫
Ω

φp
s2,q

up−q
= lim

k→∞

{〈
Ap(u),

φp
s2,q

up−1
k

〉
+

〈
Bq(u),

φp
s2,q

up−1
k

〉}

� α∗
s1,p

∫
Ω

φp
s2,q + λ1

s2,q

∫
Ω

φp
s2,q

up−q
.

The above inequality yields α � α∗
s1,p, which is a contradiction. Thus there does

not exist any positive solution for α > α∗
s1,p. �

Remark 6.5. Let α = α∗
s1,p and β = λ1

s2,q. We assume that (LI) holds.
Then observe that I+(u) = p−q

pq Gβ(u) � 0 for every u ∈ Nα,β , and Hα(φs2,q) =
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Gβ(φs2,q) = 0. Therefore, for any t �= 0, we get tφs2,q ∈ Nα,β and d = I+(tφs2,q) =
0. On the other hand, suppose φs2,q is a solution of

(−Δ)s1
p u = α∗

s1,p|u|p−2u in Ω, u = 0 in R
d \ Ω. (6.12)

Then φs2,q has to change it’s sign in Ω (since α∗
s1,p > λ1

s1,p), a contradiction. Thus
φs2,q does not satisfy (6.12) and hence φs2,q is not a solution of (EV; α, β). Thus,
in this case, there does not exist any solution of (EV; α, β) which minimizes d.

For α � λ1
s1,p and β � λ1

s2,q, analogously as in [9] we consider the following
quantity:

β�(α) = inf

{
[u]qs2,q

‖u‖q
q

: u ∈W s1,p
0 (Ω) \ {0} and Hα(u) � 0

}
.

Since u ∈W s1,p
0 (Ω) ⊂W s2,q

0 (Ω), the quantity β�(α) <∞.

Proposition 6.6. Let α � λ1
s1,p and β � λ1

s2,q. Assume that (LI) holds. Then β�(α)
is attained. Further, if α < α∗

s1,p, then β�(α) > λ1
s2,q.

Proof. Due to the homogeneity,

β�(α) = inf
{
[u]qs2,q : u ∈ M}

, where

M :=
{
u ∈W s1,p

0 (Ω), ‖u‖q
q = 1, and Hα(u) � 0

}
.

Let (un) be a minimizing sequence for β�(α) in M. Suppose [un]s1,p → ∞. Then
Hα(un) � 0 implies α

1
p ‖un‖p � [un]s1,p → ∞. Set wn = un‖un‖−1

p . Then [wn]s1,p =

[un]s1,p‖un‖−1
p � α

1
p , and wn ⇀ w inW s1,p

0 (Ω). Using ‖un‖q = 1, we get ‖wn‖q → 0
in R

+. On the other hand, ‖wn‖p = 1. Now the compact embeddings ofW s1,p
0 (Ω) ↪→

Lγ(Ω); γ ∈ [1, p] yield:

(a) ‖w‖q = 0 which implies w = 0 a.e. in Ω; (b) ‖w‖p = 1.

Clearly, (a) and (b) contradict each other. Therefore, the sequence (un) is bounded
in W s1,p

0 (Ω). By the reflexivity, un ⇀ ũ in W s1,p
0 (Ω). Further, ũ ∈ M follows

from the compact embedding of W s1,p
0 (Ω) and weak lower semicontinuity of Hα.

Therefore,

β�(α) � [ũ]qs2,q � lim
n→∞

[un]qs2,q = β�(α).

Thus β�(α) is attained. Clearly, β�(α) � λ1
s2,q. If β�(α) = λ1

s2,q, then by the
simplicity of λ1

s2,q ((iv) of proposition 2.1), ũ = cφs2,q for some c ∈ R. Further,
since α < α∗

s1,p, we get Hα(ũ) = CHα(φs2,q) > 0, a contradiction to ũ ∈ M. Thus
β�(α) > λ1

s2,q. �

Now we prove the existence of a positive solution for (EV; α, β) when α, β are
larger than λ1

s1,p, λ
1
s2,q respectively.
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Proposition 6.7. Let λ1
s1,p � α < α∗

s1,p and λ1
s2,q < β < β�(α). Assume that (LI)

holds. Then (EV; α, β) admits a positive solution.

Proof. We adapt the arguments as given in [9, Theorem 2.5]. As before, we will show
that d := min{I+(u) : u ∈ Nα,β} is attained. Since β > λ1

s2,q and α < α∗
s1,p, we have

Gβ(φs2,q) < 0 < Hα(φs2,q). Then by proposition 5.7, there exists a unique tα,β ∈ R
+

such that 0 > I+(tα,βφs2,q) = mint∈R+ I+(tφs2,q). We also have tα,βφs2,q ∈ Nα,β .
Therefore, d < 0. Let (un) be the minimizing sequence in Nα,β for d. Then there
exists n0 ∈ N such that I+(un) < 0 for n � n0. Since un ∈ Nα,β , using (i) of remark
5.8, Gβ(un) < 0 < Hα(un) for n � n0. Step 1: In this step, we show that (un) is
a bounded sequence in W s1,p

0 (Ω). As before, to prove this we argue by contradic-
tion. Suppose [un]s1,p → ∞, as n→ ∞, and set wn = un[un]−1

s1,p. Then wn ⇀ w in
W s1,p

0 (Ω). Hence

Hα(w) � lim
n→∞

Hα(wn) = − lim
n→∞

Gβ(wn)
[un]p−q

s1,p

= 0, and 1 − ‖w‖p
p = lim

n→∞
Hα(wn) = 0,

which implies that w �= 0. Therefore, from the definition, β�(α) � [w]qs2,q‖w‖−q
q .

Using this inequality along with β < β�(α), we get Gβ(w) > 0. On the other hand,
Gβ(w) � limn→∞Gβ(wn) � 0, a contradiction. Step 2: Let un ⇀ ũ in W s1,p

0 (Ω).
This step shows that ũ is a positive solution of (EV; α, β). First, we claim
Hα(ũ) > 0. On a contrary, assume Hα(ũ) � 0. Since I+(ũ) � limn→∞ I+(un) � d <
0, we get ũ �= 0. Hence β�(α) � [ũ]qs2,q‖ũ‖−q

q and β < β�(α) imply Gβ(ũ) > 0. On
the other hand, Gβ(ũ) � limn→∞Gβ(un) � 0, a contradiction. Therefore, Hα(ũ) >
0. Further, Hα(ũ) +Gβ(ũ) = I+(ũ) � limn→∞ I+(un) � 0 yields Gβ(ũ) < 0. Now
we can use proposition 5.7, to get a unique tα,β ∈ R

+ that minimizes I+(tũ) over
R

+, and tα,βũ ∈ Nα,β . Hence

d � I+(tα,βũ) = min
t∈R+

I+(tũ) � I+(ũ) � lim
n→∞

I+(un) = d.

Thus, I+(tα,β ũ) = I+(ũ) = d and from the uniqueness of tα,β , we get ũ ∈ Nα,β .
Therefore, by proposition 5.6 and remark 5.1, ũ is a nonnegative solution of (EV;
α, β). Further, using proposition 4.3, ũ > 0 a.e. in Ω. �

Remark 6.8. Suppose (LI) holds. We consider

ε1 := min

{
α∗

s1,p − λ1
s1,p

2
,
β�(α) − λ1

s2,q

2

}
.

Then for each ε ∈ (0, ε1), using proposition 6.7 we can conclude that (EV; λ1
s1,p +

ε, λ1
s2,q + ε) admits a positive solution.

Recall that, λ∗(θ) (where θ ∈ R) is defined as

λ∗(θ) := sup {λ ∈ R : (EV; λ+ θ, λ) has a positive solution} .
Next, we prove some properties of the curve C := {(λ∗(θ) + θ, λ∗(θ)) : θ ∈ R}.
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Proof of proposition 1.5. Proofs of (iii), (iv), and (vi) directly follow from [8, Propo-
sition 3] with needful changes. So, we prove the remaining parts of the proposition.
(i) Suppose u ∈W s1,p

0 (Ω) is a positive solution of (EV; λ+ θ, λ) for some λ ∈ R.
For v ∈ C∞

c (Ω) with v � 0, and for k ∈ N, define φk := vp

up−1
k +uq−1

k

. By lemma 2.4,

φk ∈W s1,p
0 (Ω). Using the discrete Picone’s inequalities ((iii) and (iv) of lemma 2.3),

we obtain

∫∫
Rd×Rd

|u(x) − u(y)|p−2(u(x) − u(y))(φk(x) − φk(y)) dμ1 �
∫∫

Rd×Rd

|v(x) − v(y)|p dμ1,

∫∫
Rd×Rd

|u(x) − u(y)|q−2(u(x) − u(y))(φk(x) − φk(y)) dμ2

�
∫∫

Rd×Rd

∣∣∣v p
q (x) − v

p
q (y)

∣∣∣q dμ2.

Summing the above inequalities and by weak formulation of u (where we use φk as
a test function)

λ

∫
Ω

u(x)p−1 + u(x)q−1

uk(x)p−1 + uk(x)q−1
v(x)p dx+ θ

∫
Ω

u(x)p−1v(x)p

uk(x)p−1 + uk(x)q−1
dx

� [v]ps1,p +
[
v

p
q

]q
s2,q

.

Further, using the monotone convergence theorem

∫
Ω

up−1 + uq−1

up−1
k + uq−1

k

vp →
∫

Ω

vp and
∫

Ω

up−1vp

up−1
k + uq−1

k

→
∫

Ω

up−1vp

up−1 + uq−1
, as k → ∞.

This implies that

λ

∫
Ω

vp dx+ min
{

0, θ
∫

Ω

vp dx
}

� [v]ps1,p +
[
v

p
q

]q
s2,q

. (6.13)

Since v ∈ C∞
c (Ω), the R.H.S. of (6.13) is a positive constant independent of λ and

u. Hence, from (6.13) we conclude that λ∗(θ) <∞.
(ii) Sufficient condition: Suppose the property (LI) holds. By remark 6.8, we see
that (EV; λ1

s1,p + ε, λ1
s2,q + ε) admits a positive solution for ε > 0 small enough.

From the definition of θ∗, we have (λ1
s1,p + ε, λ1

s2,q + ε) = (λ1
s2,q + ε+ θ∗, λ1

s2,q + ε).
Hence from the definition of λ∗(θ∗), λ∗(θ∗) � λ1

s2,q + ε, and λ∗(θ∗) + θ∗ � λ1
s1,p + ε.

Necessary condition: On a contrary assume that (LI) violates. This gives φs1,p is
an eigenfunction of (−Δ)s2

q . Let u be a positive solution of (EV; α, β) for some
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α, β ∈ R. For k ∈ N, set

vk :=
φp

s1,p

up−1
k

and wk =
φp−q+1

s1,p

up−q
k

.

From lemma 2.4, vk, wk ∈W s1,p
0 (Ω). Using the discrete Picone’s inequalities ((i)

and (ii) of lemma 2.3) and proposition 2.1, we obtain∫∫
Rd×Rd

|u(x) − u(y)|p−2(u(x) − u(y))(vk(x) − vk(y)) dμ1

�
∫∫

Rd×Rd

|φs1,p(x) − φs1,p(y)|p dμ1

= λ1
s1,p

∫
Ω

φs1,p(x)p dx, (6.14)

and ∫∫
Rd×Rd

|u(x) − u(y)|q−2(u(x) − u(y))(vk(x) − vk(y)) dμ2

�
∫∫

Rd×Rd

|φs1,p(x) − φs1,p(y)|q−2 (φs1,p(x) − φs1,p(y)) (wk(x) − wk(y)) dμ2

= λ1
s2,q

∫
Ω

φs1,p(x)p

uk(x)p−q
dx � λ1

s2,q

∫
Ω

φs1,p(x)p

u(x)p−q
dx, (6.15)

where the last equality holds since (φs1,p, λ
1
s2,q) is an eigenpair. Summing (6.14),

(6.15) and using u is a solution of (EV; α, β) with the test function vk we obtain

α

∫
Ω

u(x)p−1 φs1,p(x)p

uk(x)p−1
dx+ β

∫
Ω

u(x)q−1 φs1,p(x)p

uk(x)p−1
dx

� λ1
s1,p

∫
Ω

φs1,p(x)p dx+ λ1
s2,q

∫
Ω

φs1,p(x)p

u(x)p−q
dx.

Therefore, by the monotone convergence theorem

α

∫
Ω

φs1,p(x)p dx+ β

∫
Ω

φs1,p(x)p

u(x)p−q
dx � λ1

s1,p

∫
Ω

φs1,p(x)p dx+ λ1
s2,q

∫
Ω

φs1,p(x)p

u(x)p−q
dx,

a contradiction if α > λ1
s1,p and β > λ1

s2,q hold simultaneously. Thus if (LI) is vio-
lated, then there does not exist any β > λ1

s2,q so that (EV; β + θ∗, β) admits a
positive solution.
(v) The proof consists of the following two cases.

Case 1 : If (LI) does not hold, then θ∗ = θ∗+ and also, λ∗(θ∗) � λ1
s2,q (by (ii)). Hence

using the decreasing property (iv) of λ∗(θ), we get λ∗(θ) � λ1
s2,q for all θ � θ∗+.

Therefore, the result follows in this case by using (iii).
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Case 2 : Let (LI) holds. We argue by contradiction. Suppose, there exists θ0 �
θ∗+ such that λ∗(θ0) > λ1

s2,q. By increasing property (iv) together with (ii), we
get λ∗(θ0) + θ0 � λ∗(θ∗) + θ∗ > λ1

s1,p. By the definition of λ∗(θ0), for any δ0 > 0
there exists δ ∈ [0, δ0) such that (EV; λ∗(θ0) + θ0 − δ, λ∗(θ0) − δ) admits a positive
solution and we let u be such solution. We choose δ0 > 0 sufficiently small such that
the following hold:

λ∗(θ0) + θ0 − δ0 > λ1
s1,p, and λ∗(θ0) − δ0 > λ1

s2,q. (6.16)

Now, by the weak formulation of u and using discrete Picone’s inequalities as in
(6.14) and (6.15) (where we replace φs2,q by φs1,p in the test function vk)

(λ∗(θ0) + θ0 − δ)
∫

Ω

u(x)p−1 φs2,q(x)p

uk(x)p−1
dx+ (λ∗(θ0) − δ)

∫
Ω

u(x)q−1 φs2,q(x)p

uk(x)p−1
dx

=
∫∫

Rd×Rd

|u(x) − u(y)|p−2(u(x) − u(y))(vk(x) − vk(y)) dμ1

+
∫∫

Rd×Rd

|u(x) − u(y)|q−2(u(x) − u(y))(vk(x) − vk(y)) dμ2

�
∫∫

Rd×Rd

|φs2,q(x) − φs2,q(y)|p dμ1 + λ1
s2,q

∫
Ω

φs2,q(x)p

u(x)p−q
dx.

Letting k → ∞ and applying the monotone convergence theorem in the above, we
obtain

(λ∗(θ0) + θ0 − δ)
∫

Ω

φs2,q(x)p dx+ (λ∗(θ0) − δ)
∫

Ω

u(x)q−pφs2,q(x)p dx

�
∫∫

Rd×Rd

|φs2,q(x) − φs2,q(y)|p dμ1 + λ1
s2,q

∫
Ω

φs2,q(x)p

u(x)p−q
dx. (6.17)

Again, since δ < δ0, we obtain from (6.16) that

(λ1
s2,q + θ0)

∫
Ω

φs2,q(x)p dx+ λ1
s2,q

∫
Ω

φs2,q(x)p

u(x)p−q
dx

< (λ∗(θ0) + θ0 − δ)
∫

Ω

φs2,q(x)pdx+ (λ∗(θ0) − δ)
∫

Ω

φs2,q(x)p

u(x)p−q
dx. (6.18)

Thus, from (6.17) and (6.18)

(λ1
s2,q + θ0)

∫
Ω

φs2,q(x)p dx <
∫∫

Rd×Rd

|φs2,q(x) − φs2,q(y)|p dμ1,

and this implies θ0 <
[φs2,q]ps1,p

‖φs2,q‖p
p

− λ1
s2,q = θ∗+, a contradiction to θ0 � θ∗+. This

completes the proof. �
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Proof of theorem 1.6. (i) Suppose β ∈ (λ1
s2,q, λ

∗(θ)). From the definition of λ∗,
there exists μ ∈ (β, λ∗(θ)) such that (EV; μ+ θ, μ) has a positive solution u ∈
W s1,p

0 (Ω) and from theorem 4.1, u ∈ L∞(Rd). Further, since μ > β, u is a superso-
lution for (EV; β + θ, β). Moreover, 0 is a subsolution for (EV; β + θ, β). Therefore,
using proposition 5.11, Ĩ admits a global minimizer ũ in W s1,p

0 (Ω), and then using
proposition 5.12 we infer that ũ ∈ L∞(Rd) is a solution of (EV; α, β), satisfy-
ing 0 � ũ(x) � u(x) a.e. in R

d. Next, we show that ũ is nonzero. Choose t > 0
so that tφs2,q < u a.e. in Ω. Also tφs2,q � 0 a.e. in Ω. From (5.10), we then get
Ĩ(tφs2,q) = tp

p Gα(φs2,q) + tq

q Gβ(φs2,q), where Gβ(φs2,q) < 0 since β > λ1
s2,q. More-

over, using q < p, we can choose t sufficiently small such that Ĩ(tφs2,q) < 0.
Therefore, since ũ is the global minimizer for Ĩ in W s1,p

0 (Ω), we must have Ĩ(ũ) < 0,
and hence ũ �= 0 in Ω. Now, applying the strong maximum principle (proposition
4.3), ũ > 0 a.e. in Ω.
(ii) If β > λ1

s2,q, then using the previous arguments existence result holds. Now we
assume β = λ1

s2,q. Since λ1
s2,q < λ∗(α− β) and λ∗(θ) (where θ = α− β) is decreas-

ing ((iv) of proposition 1.5), we have θ < θ∗+ (from (v) of proposition 1.5). From
the definition of θ∗+, it is easy to observe that θ < θ∗+ is equivalent to α < α∗

s1,p.
Therefore, for β = λ1

s2,q and α ∈ (λ1
s1,p, α

∗
s1,p) using proposition 6.4 we conclude

that (EV; α, β) admits a positive solution.
(iii) If β > λ∗(α− β), then from the definition of λ∗ we see that (EV; α, β) does
not admit any positive solution. �

Proof of theorem 1.7. (i) Let θ < θ∗+. From proposition 1.5, β := λ∗(θ) > λ1
s2,q, and

α := λ∗(θ) + θ > λ1
s1,p. From the definition of λ∗, there exists a sequence (βn) ⊂

(λ1
s2,q, λ

∗(θ)), such that βn → β and (EV; βn + θ, βn) admit a sequence of positive
solutions (un) (by (i) of theorem 1.6). Now, using the similar set of arguments as
given in proposition 5.3, we get un → ũ in W s1,p

0 (Ω). Thus, from the continuity of
I ′, ũ is a nonnegative solution of (EV; α, β). Next, we show ũ �= 0. On a contrary,
assume that ũ = 0. For each n, k ∈ N, set un,k(x) = un(x) + 1

k . From lemma 2.4,
u1−q

n,k φ
q
s2,q ∈W s1,p

0 (Ω). Therefore, since un is a solution of (EV; α, β)

〈
Ap(un),

φq
s2,q

uq−1
n,k

〉
+

〈
Bq(un),

φq
s2,q

uq−1
n,k

〉
=α
∫

Ω

up−1
n

φq
s2,q

uq−1
n,k

+ β

∫
Ω

uq−1
n

φq
s2,q

uq−1
n,k

. (6.19)

Using the monotone convergence theorem,
∫
Ω
up−1

n φq
s2,qu

1−q
n,k → ∫

Ω
up−q

n φq
s2,q and∫

Ω
uq−1

n φq
s2,qu

1−q
n,k → ∫

Ω
φq

s2,q as k → ∞. Next, from (i) of lemma 2.3 and using
un,k(x) − un,k(y) = un(x) − un(y), we get

〈
Ap(un),

φq
s2,q

uq−1
n,k

〉
�
∫∫

Rd×Rd

|φs2,q(x) − φs2,q(y)|q|un(x) − un(y)|p−q dμ1.

〈
Bq(un),

φq
s2,q

uq−1
n,k

〉
�
∫∫

Rd×Rd

|φs2,q(x) − φs2,q(y)|q dμ1 = λ1
s2,q‖φs2,q‖q

q. (6.20)
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Further, by the Hölder inequality with the conjugate exponent ( p
p−q ,

p
q ) we estimate

the following inequalities:∫∫
Rd×Rd

|φs2,q(x) − φs2,q(y)|q|un(x) − un(y)|p−q dμ1 � [un]p−q
s1,p[φs2,q]qs1,p, and

∫
Ω

up−q
n φq

s2,q � ‖un‖p−q
p ‖φs2,q‖q

p.

Therefore, since un → 0 in W s1,p
0 (Ω), from (6.19) and (6.20) we obtain

β‖φs2,q‖q
q = lim

n→∞ lim
k→∞

(〈
Ap(un),

φq
s2,q

uq−1
n,k

〉
+

〈
Bq(un),

φq
s2,q

uq−1
n,k

〉)
� λ1

s2,q‖φs2,q‖q
q.

The above inequality yields β � λ1
s2,q, a contradiction to β > λ1

s2,q. Therefore, ũ �= 0
and from the strong maximum principle (proposition 4.3), ũ > 0 a.e. in Ω.
(ii) If θ > θ∗+, then from (v) of proposition 1.5, the problem (EV; λ∗(θ) + θ, λ∗(θ)) is
equivalent to the problem (EV; α, β) where β = λ1

s2,q and α = λ1
s2,q + θ > λ1

s2,q +
θ∗+ > α∗

s1,p. Therefore, by (ii) of proposition 6.4, (EV; α, β) does not admit any
positive solution. �

Remark 6.9. Let θ = θ∗+ and (LI) holds. Then using (v) of proposition 1.5 and
remark 6.5 we see that (EV; λ∗(θ) + θ, λ∗(θ)) does not admit any solution which
minimizes d := min{I+(u) : u ∈ Nα,β}.
Remark 6.10. In this remark, we represent λ∗(θ) as a variational characteriza-
tion. Let Ω ⊂ R

d be a bounded open set with C1,1 boundary ∂Ω. We consider the
following quantity:

Λ∗(θ) := sup
u∈int(C(Ω)+)

inf
v∈C(Ω)+\{0}

〈Ap(u), v〉+ 〈Bq(u), v〉−θ
∫
Ω
|u|p−2

uv∫
Ω

(
|u|p−2

uv + |u|q−2
uv
) ,

where C(Ω)+ = {u ∈ C(Ω) : u � 0} and int(C(Ω)+) = {u ∈ C(Ω)+ : u > 0}. From
theorem 1.6, we see that for certain ranges of λ, (EV; λ+ θ, λ) admits a positive
solution u. Further, combining theorem 4.1 and [24, Corollary 2.1], it is evident
that the solution u is in C(Ω). Thus, int(C(Ω)+) is nonempty and Λ∗(θ) is well
defined. Now, using the same arguments as given in [8, Proposition 5] we conclude
that λ∗(θ) = Λ∗(θ) for every θ ∈ R.
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ers for the degenerate fractional p-Laplacian. Nonlinear Anal. 191 (2020), 111635.
doi:10.1016/j.na.2019.111635

29 D. Motreanu and M. Tanaka. On a positive solution for (p, q)-Laplace equation with
indefinite weight. Minimax Theory Appl. 1 (2016), 1–20.

30 T. H. Nguyen and H. H. Vo, Principal eigenvalue and positive solutions for fractional p − q
laplace operator in quantum field theory. preprint arXiv:2006.03233 (2020).

31 K. Perera, M. Squassina and Y. Yang. A note on the Dancer–Fuč́ık spectra of the
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