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Abstract
The conditional expectation mX(s) = E[X|S = s], where X and Y are two independent random variables with S =
X + Y , plays a key role in various actuarial applications. For instance, considering the conditional mean risk-sharing
rule, mX(s) determines the contribution of the agent holding the risk X to a risk-sharing pool. It is also a relevant
function in the context of risk management, for example, when considering natural capital allocation principles.
The monotonicity of mX(·) is particularly significant under these frameworks, and it has been linked to log-concave
densities since Efron (1965). However, the log-concavity assumption may not be realistic in some applications
because it excludes heavy-tailed distributions. We consider random variables with regularly varying densities to
illustrate how heavy tails can lead to a nonmonotonic behavior for mX(·). This paper first aims to identify situations
where mX(·) could fail to be increasing according to the tail heaviness of X and Y . Second, the paper aims to study the
asymptotic behavior of mX(s) as the value s of the sum gets large. The analysis is then extended to zero-augmented
probability distributions, commonly encountered in applications to insurance, and to sums of more than two random
variables and to two random variables with a Farlie–Gumbel–Morgenstern copula. Consequences for risk sharing
and capital allocation are discussed. Many numerical examples illustrate the results.

1. Introduction and motivation
Given independent random variables X and Y , the study of the stochastic monotonicity of each marginal
given the value of their sum S = X + Y (that is, X | S = s1 ≤st X | S = s2 for s1 ≤ s2 where ≤st represents
the usual stochastic order) is usually referred to as “Efron’s monotonicity property” after Efron (1965).
In this paper, it was proved that a sufficient condition for X and Y to be stochastically increasing in S is
that the summands X and Y possess log-concave densities. However, this assumption might be too strong
in certain applications, as log-concave densities are associated with light-tailed asymptotic behavior, as
discussed in see Asmussen and Lehtomaa (2017). Hence, this paper aims to study the implications of
considering heavy-tailed random variables.

Let mX(·) denote the conditional expectation of X given the sum S, defined by

mX(s) = E[X|S = s].

The monotonicity of mX(·), known as regression dependence, is weaker than Efron’s monotonicity.
Therefore, this paper delves into how heavy tailedness affects the monotonicity of mX(·). Regression
dependence plays an important role in various contexts, as discussed next.
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Within the framework of Peer-to-Peer (P2P) insurance, where risk-holders pool their resources to col-
lectively protect against the financial impact of a given threat, the study of risk-sharing rules is essential.
Consider, for instance, two economic agents with respective insurance losses modeled as independent
random variables X and Y , who decide to form a pool to share the total loss S = X + Y . Thus, once the
peril occurs, each agent pays an ex-post contribution to the pool. These contributions must verify that
their sum matches the aggregate loss of the pool. As proposed in Denuit and Dhaene (2012), the condi-
tional expectations mX(·) and mY(·) may be used by participants to distribute the total loss among them.
The conditional mean risk-sharing rule has been axiomatized by Jiao et al. (2022). If mX(·) decreases
over a range of values, then the participant bringing loss X may be tempted to exaggerate the loss, since
this would decrease his or her contribution to the pool. Non-decreasingness of mX(·) thus appears to be
a reasonable and useful requirement in the context of risk sharing, where this property is referred to as
the no-sabotage condition.

The results derived in this paper are also useful in the context of capital allocation. Note that the
difference between risk sharing and capital allocation is subtle, and both mechanisms are intimately
related. As explained above, risk-sharing consists of distributing a random aggregate loss among the
agents in the pool by means of ex-post contributions. That is, once the financial loss occurs, the total
loss is calculated and then shared among participants. On the other hand, capital allocation refers to
distributing a deterministic aggregate capital. For instance, if a corporation has two lines of business
with respective losses X, Y , a capital allocation principle determines KX , KY ∈R with aggregate capital
K = KX + KY . One popular form to decide the aggregate capital is to consider distortion risk mea-
sures. Consider an increasing concave distortion function g:[0, 1] → [0, 1] with g(0) = 0 and g(1) = 1.
The associated distortion risk measure ρ is defined such that, for a non-negative random variable Z ,
ρ(Z) = E[Zg′(F̄Z(Z))], where F̄Z(·) is the survival function of Z (see Dhaene et al., 2012 for further
detail). Then, the aggregate capital considered is K = ρ(S) with S = X + Y (see Denault, 2001; Tsanakas
and Barnett, 2003 and Chapter 10 in Mildenhall and Major, 2022), that is, for continuous losses and
distortion, K = E[S h(S)], where h(s) = g′(F̄S(s)). Hence, a natural allocation principle is to determine
KX = E[Xh(S)] and KY = E[Yh(S)] (see Sections 2 and 3 in Major and Mildenhall, 2020 for further
details). Since E[Xh(S)] = E[E[Xh(S)|S]] = E[mX(S)h(S)], the conditional expectation provides a great
simplification, reducing the allocation to a one-dimensional problem. That is, evaluating KX doesn’t
require knowing the full bivariate distribution of X and S, but only S and mX(S). In addition, the study
of the monotonicity of mX(·) is intimately related to portfolio diagnosis since a decreasing behavior
may indicate that the portfolio is not well balanced, as suggested by the cases considered in Chapter
15 in Mildenhall and Major (2022). We refer the interested reader to Major and Mildenhall (2020) and
Chapters 12 to 15 in Mildenhall and Major (2022) for a more extensive discussion on the role of mX(·)
in capital allocation.

The conditional expectation mX(·) exhibits different behaviors related to monotonicity when the log-
concavity assumption is violated. For instance, Denuit and Robert (2021b) showed that regression
dependence is not fulfilled when X and Y follow zero-augmented Gamma distributions, each highly
spiked in a different mode. A second typical set of distributions that do not have log-concave densities
are those with heavy tails, as log-concavity constrains the tails to be exponentially decreasing. In this
paper, we consider variables with regularly varying densities to explore how the tail-heaviness affects
the monotonicity of mX(·).

Denuit and Robert (2020) showed that for a set of random variables with regularly varying tails,
when one of the random variables dominates, the conditional expectations of the others are asymptoti-
cally vanishingly small with respect to the dominating one. However, this does not necessarily have any
implication on their monotonicity and neither means that the other conditional expectations are bounded.

Mildenhall and Major (2022) discussed, without proof but providing illustrative examples, the
behaviour of mX(·) for heavy-tailed losses. In particular, in Section 14.3 of their book, the authors state
that combining heavy-tailed distributions can produce humped, non-monotone mX(·). A second interest-
ing statement given in Example 250 in Mildenhall and Major (2022) is that, for two random variables
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X, Y , with X having a thinner tail, mX(S) behaves as S ∧ a, where a ∈R and ∧ stands for the minimum,
implying that mX(·) is bounded. Intuitively, we can expect that the more significant the difference in the
tail-heaviness, the smaller the other conditional expectations. Hence, in this paper, we aim to formalize
such behaviors and explore how differences in tail-heaviness result in different behaviors of mX(s) as the
sum s tends to infinity.

This paper innovates at both methodological and practical levels. First, the asymptotic behavior of
mX(·) is determined when X and Y have regularly varying densities, considering different scenarios
depending on the difference in the tail indices of X and Y . Then, asymptotic approximations are derived
for mX(·) according to these tail indices. The results are also extended to several scenarios, including
zero-augmented distributions, sums with more than two terms and a specific dependence structure.

The remainder of this paper is organized as follows. In Section 2, we recall some definitions and rep-
resentations of mX(·) and its first derivative. We also establish a lower bound on the asymptotic value of
mX(·). Section 3 shows that mX(·) may reach different asymptotic levels depending on the tail indices of X
and Y . An expansion formula for mX(·) is derived in Section 4. This expansion allows to study the asymp-
totic behavior of mX(·) based on the differences between the tail indices of X and Y . The extension to
zero-augmented distributions describing insurance losses is considered in Section 5. Section 6 discusses
these findings in the context of the examples considered in this paper and concludes with a discussion
of the main results. Technical material, as well as the extensions of the results to higher dimensional
frameworks and to the case where the random variables follow an FGM dependence structure, is given
in an appendix.

Let us say a few words about the notation adopted in this paper. For any positive functions f (·) and g(·),
we write f (x) ∼ g(x) as x → ∞ if limx→∞ f (x)/g (x) = 1, g(x) = o(f (x)) as x → ∞ if limx→∞ g(x)/f (x) =
0 and g(x) = O(f (x)) as x → ∞ if lim supx→∞ g(x)/f (x) < ∞.

2. Background and definitions
2.1. Regularly varying and asymptotically smooth density functions
Regularly varying survival functions have long been used in probability theory. For the study of the
properties of mX(·), it is preferable to consider regularly varying probability density functions because
mX(·) possesses a useful representation in terms of density functions as explained in Section 2.2. Note
that variables with regularly varying density functions have regularly varying survival functions, but the
reverse is not true. This is a direct consequence of Proposition 1.5.10 in Bingham et al. (1987). Recall
that a positive measurable function L(·) is said to be slowly varying if it is defined on some neighborhood
(x0, ∞) of infinity, with x0 ≥ 0, and limx→∞

L(tx)
L(x)

= 1 for all t > 0. Intuitively speaking, a slowly varying
function is a function that grows/decays asymptotically slower than any polynomial. For example, log (·)
or any function converging to a constant is a slowly varying function. We are now in a position to recall
the definition of a regularly varying probability density function for positive random variables.

Definition 2.1 (Regularly varying density.) A probability density function f (·) defined on (0, ∞) is
said to be regularly varying with index α > 1, if there exists a slowly varying function L(·) such that
f (x) = x−αL(x).

An important property of regularly varying densities of positive random variables is that they form
a stable family under convolution. Precisely, the convolution of two regularly varying densities is still
regularly varying with a tail index equal to the minimum of the tail indices of the convoluted density
functions. More precisely, we have the following property:

fX and fY regularly varying ⇒ lim
s→∞

fX+Y (s)

fX (s) + fY (s)
= 1, (2.1)

where fX+Y(·) is the convolution of fX(·) and fY(·). See, for example, Theorem 1.1 in Bingham et al. (2006)
for a proof.
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In Table 1, we summarize some distributions with regularly varying densities, along with the index
and slowly varying function L(·) appearing in the representation of the density f (·) as stated in Definition
2.1. The notation �(·) stands for the Gamma function and ζ (·) for the Riemann Zeta function. Note that
the parameters of the distribution and density functions have been chosen to have index α in all cases. To
this end, we may deviate from the standard parameter choices for these distributions. Type I and Type II
Pareto, Log-Gamma, and Dagun distributions are often defined with a parameter β = α − 1 instead of
the parameter α which appears in Table 1. Type III and Type VI Pareto distributions are often specified
with parameter γ = λ

α−1
(λ = 1 in the case of Type III) instead of α. Note that the support is (ϑ , ∞) for

certain distributions listed in Table 1. In the remainder of this paper, we assume that the supports of
X and Y (and hence of their sum S) are (0, ∞). If the support of the variables is of the form (ϑ , ∞),
we can either extend the density function f (·) by assuming f (x) = 0 for x ∈ (0, ϑ] or shift the random
variable under consideration by ϑ . Note that, even though assuming a regularly varying density is more
restrictive than assuming regular variation of the survival function, it is not such a restrictive assumption
in practice since, as seen in Table 1, it is verified by many well-known heavy-tailed distributions.

To conduct our study, we need to impose a condition known in the literature as asymptotic smoothness
after Barbe and McCormick (2005) and recalled next.

Definition 2.2. A density function f (·) defined on (0, ∞) is said to be asymptotically smooth with index
α > 1 if

lim
δ→0

lim sup
t→∞

sup
0<|x|≤δ

∣∣∣∣ f (t(1 − x)) − f (t)

xf (t)
− α

∣∣∣∣= 0.

Asymptotically smooth functions are related to regularly varying ones with the same index. When
f (·) is asymptotically smooth and differentiable, then it is also regularly varying with the same index.
Conversely, if f (·) is regularly varying, differentiable and has an ultimately monotone derivative, then it
is asymptotically smooth (see Proposition 2.1 in Barbe and McCormick, 2005). It must be remarked that
all regularly varying densities considered in Table 1 have ultimately monotone derivatives and therefore
are asymptotically smooth. The proof of this statement is given in Appendix A.

2.2. Representation of the conditional expectation given the sum in terms of size biasing
Let us consider a nonnegative random variable X with distribution function FX and finite and strictly
positive expected value. If X is a random variable having a regularly varying density with index α >

1, it is well known that k < α − 1 implies E[Xk] < ∞. Hence, E[X] < ∞ if α > 2, and we retain this
assumption for all variables considered throughout this paper. The distribution function of the size-
biased version X̃ of X is then given by

P[X̃ ≤ t] = 1

E[X]

∫ t

0

xdFX(x), t ≥ 0.

We refer the reader to Arratia et al. (2019) for an introduction to the size-biased transform. Note that
for any random variables X, Y with joint density f , the regression function can be expressed as

mX(s) = 1

fX+Y(s)

∫ s

0

xf (x, s − x)dx.

Under our framework, that is, considering independent random variables, in Denuit (2019) a rep-
resentation for the regression function mX(·) is established in terms of the size-biased transform of X.
Assume that X and Y have finite means and respective probability density functions fX(·) and fY(·).
Since X possesses a density function fX(·) and its expected value is finite, its size-biased version X̃ also
possesses a density given by fX̃(x) = xfX(x)/E[X]. If X̃ is independent of Y , then the representation
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Table 1. Families of distributions with regularly varying densities with index α.

Distribution
Parameters and

support
Survival (F) or density (f )

function
Slowly varying function L(x)

associated to f
Pareto (Type I) P(I)(θ , α) α > 1, θ > 0, x > θ F(x) = θα−1x−(α−1) L(x) = θα−1(α − 1)
Pareto (Type II) (Lomax dist. if
ϑ = 0) P(II)(θ , α, ϑ)

α > 1, θ > 0,
ϑ ≥ 0, x > ϑ

F(x) = θα−1 (x + θ − ϑ)
−(α−1) L(x) = θα−1(α − 1)

(
x

x+θ−ϑ

)α
Pareto (Type III) P(III)(θ , α, ϑ) α > 1, θ > 0,

ϑ ≥ 0, x > ϑ

F(x) =
(

1 + (
x−ϑ

θ

)α−1
)−1

L(x) = (α − 1)θ 1−α xα (x−ϑ)α−2(
1+( x−ϑ

θ )
α−1)2

Pareto (Type IV)
(Singh-Maddala dist.)
P(IV)(θ , α, ϑ , λ)

α > 1 , θ , λ > 0,
ϑ ≥ 0, x > ϑ

F(x) =
(

1 + (
x−ϑ

θ

) α−1
λ

)−λ

L(x) = (α−1)θ− α−1
λ xα (x−ϑ)−1+ α−1

λ(
1+( x−ϑ

θ )
α−1

λ

)λ+1

Log-Gamma LG(α, λ) α > 1, λ > 0, x > 1 f (x) = (α−1)λ

�(λ)
( log x)λ−1x−α L(x) = (α−1)λ

�(λ)
( log x)λ−1

Dagun distribution (Burr III
dist.) D(θ , α, λ)

α > 1 , θ , λ > 0,
x > 0

F(x) = 1 −
(

1 + (
x
θ

)−(α−1)
)−λ

L(x) = (α−1)λθα−1(
1+( x

θ )
−(α−1))λ+1

Davis distribution
Davis(α, b, ϑ)

α > 1, b, ϑ ≥ 0,
x > ϑ

f (x) = bα (x−ϑ)−1−α(
e

b
x−ϑ −1

)
�(α)ζ (α)

L(x) = bα( x
x−ϑ )

α+1(
e

b
x−ϑ −1

)
�(α)ζ (α)
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mX(s) = E[X]
fX̃+Y(s)

fX+Y(s)
(2.2)

holds true for any s > 0.

2.3. Minimum limit value of mX(·)
Understanding the asymptotic behavior of mX (s) as s gets large is important in practice. For example,
in the case of risk sharing, mX (s) represents the contribution to be paid by the participant bringing X
in the event of a large pool loss. If the supports of X and Y are not bounded, we might expect this
contribution to tend toward infinity when s tends to infinity. We shall see that this is not always the case.
However, under some technical assumptions, there exists a minimum value of the limit below which the
contribution cannot fall, which is E[X] as established below. This limit is reached in particular when
X and Y have regularly varying densities with tail indices whose difference is larger than 1 as it will
become clear in the next section.

Proposition 2.3. Assume that X and Y have densities fX(·) and fY(·) such that fY(·) is bounded and
ultimately decreasing, that is there exists y0 such that fY(·) is decreasing over (y0, ∞). Moreover, assume
that supx∈(s−y0,s) fX (x) = o(fX+Y(s)) as s → ∞, then

lim inf
s→∞

mX (s) ≥ E[X].

Proof. Note that, for s > y0,

mX (s) =
∫ s

0
xfX (x) fY (s − x) dx∫ s

0
fX (x) fY (s − x) dx

≥
∫ s−y0

0
xfX (x) fY (s − x) dx∫ s−y0

0
fX (x) fY (s − x) dx + ∫ s

s−y0
fX (x) fY (s − x) dx

. (2.3)

Since fY (s − ·) is increasing on (0, s − y0), we have

E[XfY (s − X) |X ≤ s − y0] ≥ E[X|X ≤ s − y0]E[fY (s − X) |X ≤ s − y0]

or equivalently ∫ s−y0

0
xfX (x) fY (s − x) dx∫ s−y0

0
fX (x) dx

≥
∫ s−y0

0
xfX (x) dx∫ s−y0

0
fX (x) dx

∫ s−y0

0
fX (x) fY (s − x) dx∫ s−y0

0
fX (x) dx

,

what implies ∫ s−y0

0
xfX (x) fY (s − x) dx∫ s−y0

0
fX (x) fY (s − x) dx

≥
∫ s−y0

0
xfX (x) dx∫ s−y0

0
fX (x) dx

= E[X|X ≤ s − y0].

Therefore, we deduce that∫ s−y0

0
xfX (x) fY (s − x) dx∫ s−y0

0
fX (x) fY (s − x) dx + ∫ s

s−y0
fX (x) fY (s − x) dx

(2.4)

=
∫ s−y0

0
xfX (x) fY (s − x) dx∫ s−y0

0
fX (x) fY (s − x) dx

1

1 + ∫ s

s−y0
fX (x) fY (s − x) dx/

∫ s−y0

0
fX (x) fY (s − x) dx

≥ E[X|X ≤ s − y0]
1

1 + ∫ s

s−y0
fX (x) fY (s − x) dx/

(
fX+Y(s) − ∫ s

s−y0
fX (x) fY (s − x) dx

) .

Moreover, ∫ s

s−y0
fX (x) fY (s − x) dx

fX+Y(s)
≤ FY(y0)

(
supx∈(s−y0,s) fX (x)

)
fX+Y(s)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.11
Downloaded from https://www.cambridge.org/core. IP address: 10.1.180.51, on 23 Jul 2025 at 01:23:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.11
https://www.cambridge.org/core


ASTIN Bulletin 455

and, since supx∈(s−y0,s) fX (x) = o(fX+Y(s)) as s → ∞, it follows that

lim
s→∞

∫ s

s−y0
fX (x) fY (s − x) dx

fX+Y(s)
= 0

And, therefore

lim
s→∞

1

1 + ∫ s

s−y0
fX (x) fY (s − x) dx/

(
fX+Y(s) − ∫ s

s−y0
fX (x) fY (s − x) dx

) = 1

and, as lims→∞ E[X|X ≤ s − y0] = E[X], from (2.3) and (2.4), lim infs→∞ mX (s) ≥ E[X]. �
Remark 2.4. As a direct consequence of the Uniform convergence theorem for regularly varying func-
tions (Theorem 1.5.2 in Bingham et al., 1987), if fX(·) is a regularly varying density on (0, ∞), with
tail index αX , then sups∈(x−y0,x) fX (s) = O(fX(x)). Considering fY(·) as a second regularly varying density
with respective index αY such that αX > αY , since fX(x) = o(fY(x)), by Equation (2.1) the assumption
sups∈(x−y0,x) fX (s) = o(fX+Y(x)) as x → ∞ is verified.

2.4. Representation of the first derivative of the conditional expectation given the sum
Let us assume that the first derivative f ′

Y(·) of the probability density function fY(·) exists and is well
defined. Let (X1, Y1) and (X2, Y2) be independent copies of (X, Y ), with respective sums S1 = X1 + Y1

and S2 = X2 + Y2. Then Denuit and Robert (2021a) demonstrated that the first derivative m′
X(·) of mX(·)

exists and can be represented as

m′
X(s) = 1

4
E

[
(X1 − X2)

(
f ′
Y(Y1)

fY(Y1)
− f ′

Y(Y2)

fY(Y2)

)
I [X1 > X2]

∣∣∣∣ S1 = s, S2 = s

]
where I[ · ] denotes the indicator function (equal to 1 when the condition appearing within brackets
is fulfilled and to 0 otherwise). In the latter expression, the inequality Y1 < Y2 must hold true because
X1 > X2 and the sums X1 + Y1 and X2 + Y2 are constrained to be equal to some fixed value s. We deduce
that if fY(·) is assumed to be log-concave, that is log fY(·) is concave, then the ratio f ′

Y(·)/fY(·) is decreasing
and the second factor in the last conditional expectation must thus be positive. Therefore m′

X(s) ≥ 0 for
any s > 0. Log-concavity of fY(·) thus guarantees that mX(·) is non-decreasing.

This expression clarifies the role that log-concavity plays in the monotonicity of mX(·). However, it
must be remarked that, under the assumption of log-concavity, not only mX(·) is non-decreasing, but the
variable {X | S = s} is non-decreasing in s in the usual stochastic order. This means that the expected
value of any increasing transformation of the variable is non-decreasing in the conditioning value s of
S. This result is a consequence of Section 2 in Efron (1965), and a proof computing m′

X(s) is provided in
Saumard and Wellner (2014) using symmetrization arguments for independent log-concave variables.

Consider a regularly varying density f (·) with tail index α such that f ′(·) is ultimately monotonic
(from Property A.1, this is the case for all distributions listed in Table 1). Then, we can derive from
Karamata’s theorem (Karamata, 1933) that

f ′(x)

f (x)
∼ −α

1

x

and therefore f ′(·)/f (·) cannot be ultimately decreasing. Hence, it is natural to investigate whether mX(·)
can be decreasing for some tail indices of X and Y and for some values s of S. This is precisely one of
the questions investigated in the present paper. Therefore, the following sections will delve into, for X,
Y independent, nonnegative random variables with well-defined density functions, how a heavier-tail of
Y affects the monotonicity of mX(·).
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3. Asymptotic level of the conditional expectation given the sum
When X and Y possess regularly varying density functions with respective indices αX and αY , it turns out
that the asymptotic level of mX(·) depends on the difference in the tail indices αX and αY . It is assumed that
min{αX , αY} > 2 so that E[X] < ∞ and E[Y] < ∞. Throughout this section, we will also assume αX ≥ αY .
If αX < αY , it will be sufficient to interchange the indices αX and αY in the results. Note that, under
the assumption αX ≥ αY , the next result shows that mY (·) diverges, no matter the size of the difference
between the indices:

Proposition 3.1. If X and Y possess regularly varying densities fX(·) and fY(·) with respective indices
αX and αY such that αY ≤ αX , then mY (s) → ∞ as s → ∞.

Proof. From (2.2), mY(s) = E[Y]
f̃Y+X (s)

fY+X (s)
, where Ỹ is the size-biased transformation of Y . Note that,

since fY(·) is regularly varying with index αY > 2, fỸ(·) is regularly varying with index 1 < αỸ = αY − 1 <

αY . Therefore, fY(s) = o (fỸ(s)). As fX(·) is a regularly varying density with index αX ≥ αY , it holds that
fX(s) = o (fỸ(s)) and:

mY(s) ∼ E[Y]
fỸ(s) + fX(s)

fY(s) + fX(s)
= E[Y]

fỸ(s) + o (fỸ(s))

o (fỸ(s)) + o (fỸ(s))
. (3.1)

Hence, from this expression we conclude that mY (s) → ∞ as s → ∞. �
From Proposition 5.1 in Denuit and Robert (2020) and since variables with regularly varying densities

have regularly varying tails, if αX > αY , then, as s tends to infinity, mX(s) = o(s). Although no information
can be obtained with respect to the asymptotic level or the monotonicity of mX(·). Therefore, in order to
study the behavior of mX (·), the following three cases can be distinguished.

3.1. Difference in tail indices larger than 1 (αX − αY > 1)
The next result shows that when the difference between tail indices exceeds 1, the conditional expectation
given the sum tends to the expected value for the term with a larger index, as the sum tends to infinity.

Proposition 3.2. If X and Y possess regularly varying densities fX(·) and fY(·) with respective indices
αX and αY such that αX > αY + 1, then

lim
s→∞

mX(s) = E [X] .

Proof. Since fX(·) is regularly varying with index αX > 2, we have that fX̃(·) is regularly varying with
index αX̃ = αX − 1. As αX > αY + 1, then αX̃ > αY and, therefore, fX̃ (s) = o (fY (s)) and fX (s) = o (fY (s)),
As a consequence of (2.1), then

lim
s→∞

mX(s) = E [X] lim
s→∞

fX̃ (s) + fY (s)

fX (s) + fY (s)
= E[X].

This ends the proof. �
Note that a direct implication of Proposition 3.2 for absolutely continuous distributions is that mX(·) is

bounded. The following result shows that mX(·) cannot be monotonic over (0, ∞) in the case considered
in Proposition 3.2.

Proposition 3.3. Assume that X and Y are as described in Proposition 3.2, then there exists a nonempty
interval in (0, ∞) where mX(·) is decreasing.

Proof. Let us proceed by contradiction. Assume that mX(·) is increasing on (0, ∞). Notice that mX(·)
is a positive and continuous function such that mX(0) = 0 and lims→∞ mX(s) = E [X] by Proposition 3.2.
Moreover, E[X] = E[mX(S)]. If mX(·) is increasing on (0, ∞) and, since both variables are continuous,
we do, however, deduce that E[mX(S)] < E [X], which is a contradiction. This ends the proof. �
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Figure 1. Conditional expectation mX(·) (solid line) and horizontal line at E[X] (dashed line) when
X ∼ LG(αX , λX) and Y ∼ P(IV)(θ , αY , ϑ , λY) with ϑ = θ = 1, λX = λY = 2, αX = 5, and αY = 2.

The following example illustrates the behavior of mX(·) in the case where the difference in the tail
indices exceeds 1.

Example 3.4. Let us consider two independent random variables X ∼ LG(αX , λX) and Y ∼
P(IV)(θ , αY , ϑ , λY) such that αX > αY + 1. Figure 1 shows a numerical representation considering the
parameter values ϑ = θ = 1, λX = λY = 2, αX = 5, and αY = 2. We can observe that mX(·) is not mono-
tonic over (0, ∞), in accordance with Proposition 3.3. Here, mX(·) reaches its maximum and starts
decreasing beyond F−1

S (0.91).

Let us remark that the preceding results serve to enhance the discussion provided in Section 4 of Major
and Mildenhall (2020) and Section 14.3 of Mildenhall and Major (2022), in which several examples
where, for combinations of heavy-tailed units, mX(·) may not be monotone. The authors also discussed
that a light-tailed unit combined with a heavy-tailed unit could lead to analogous behaviors, and this is,
indeed, the case. Note that Propositions 3.2 and 3.3 can be extended to scenarios where X does not have
a regularly varying density but has a density dominated by fY(·) in the tail. This follows from Theorem
2.1 in Bingham et al. (2006), which states that, if fX(·) and fY(·) are probability densities on R, with fY(·)
regularly varying and fX(x) = o(fY(x)) as x tends to infinity, then lims→∞

fX+Y (s)
fY (s)

= 1.

Corollary 3.5. If X and Y possess densities fX(·) and fY(·) with fY(·) regularly varying and fX(x) = o( fY (x)
x

)
as x tends to infinity, then lims→∞ mX(s) = E [X] and there exists a non-empty interval in (0, ∞) where
mX(·) is decreasing.

Since mX(s) + mY(s) = s, both functions cannot decrease simultaneously. Therefore, if either mX(·)
and mY(·) have a decreasing interval, as the other increases in such interval, it implies that, locally, mX(S)
and mY(S) are negatively dependent. This means that, given that S belongs to such interval, mX(S) tends
to take larger values as mY(S) takes smaller values and vice-versa. Although in the scenario considered
in this section, even if the conditional expectation given the sum must decrease over some values of the
sum according to Proposition 3.3, it is interesting to point out that, globally, mX(S) and mY(S) always
remain positively correlated. This is precisely stated next.

While this paper considers random variables X and Y possessing regularly varying density functions,
the next result holds more generally for any positive variables with finite second-order moments. Let us
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remark that, if X and Y possess regularly varying densities with tail indices αX and αY , respectively, then
the assumption of finite second-order moments is equivalent to min{αX , αY} > 3.

Proposition 3.6. Considering random variables X and Y, if their second-order moments are finite, then

Cov[mX(S), mY(S)] ≥ 0. (3.2)

Proof. First notice that for any s in the support of S = X + Y , we have

Var [X|S = s] = Var [X − s|S = s] = Var [−Y|S = s] = Var [Y|S = s] .

This implies that

Var[Y | S = s] = Var[X | S = s]. (3.3)

Now, we can write

0 = Var[S|S = s] = Var[X|S = s] + Var[Y | S = s] + 2Cov[X, Y|S = s].

It follows from (3.3) that

Cov[X, Y|S = s] = −Var[X|S = s]. (3.4)

Then,

Cov[X, Y] = E
[
Cov[X, Y | S]

]+ Cov
[
E[X | S], E[Y | S]

]
= −E

[
Var[Y | S]

]+ Cov
[
E[X | S], E[Y | S]

]
= Var

[
E[Y | S]

]− Var[Y] + Cov
[
E[X | S], E[Y | S]

]
.

so that we get

Cov
[
E[X | S], E[Y | S]

]= Cov[X, Y] + Var[Y] − Var
[
E[Y | S]

]
. (3.5)

Considering (3.5), Jensen’s inequality ensures that Var[Y] ≥ Var
[
E[Y | S]

]
. The announced inequality

(3.2) finally follows from Cov[X, Y] = 0. �
We can now briefly comment on the result stated in Proposition 3.5:

• As a direct consequence of (3.3), Var[X | S] = Var[Y | S] a.s.
• We see from (3.4) that Cov[X, Y|S = s] ≤ 0 for all s, which could be expected since both vari-

ables are positive and the sum is fixed. Therefore, a greater value taken by one of the variables
is negatively influencing the second variable. Again, (3.4) implies Cov[X, Y|S] = −Var[X | S]
a.s. Note that, considering variables with log-concave densities, X and Y would not only have
a negative covariance given S but would also be negatively associated (see Theorem 2.8 in
Joag-Dev and Proschan, 1983).

Regarding risk-sharing, positive dependence means that, overall, participants have common interests
as their contributions are likely to be large or small together. This positive global relationship between
mX(S) and mY(S) holds true even if the functions mX(·) and mY(·) are not everywhere increasing. When
mX(·) and mY(·) refer to the contributions to the pool, if one of them decreases in terms of the total loss, it
will then be at the expense of the other contribution assuming a greater part of such total loss. Inequality
(3.2) indicates that if there are values for which the monotonicity of mX(·) and mY(·) differ, those must
be values with a small probability of occurrence or with slight differences in the increasing/decreasing
rate, as overall, the dependence remains positive.
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Figure 2. Conditional expectation mX(·) when X ∼ P(II)(θ , αX , ϑ) and Y ∼ P(II)(θ , αY , ϑ) with
αX = 4.5, αY = 4, θ = 1, and ϑ = 0.

3.2. Difference in tail indices less than 1 (0 ≤ αX − αY < 1)
When the difference between tail indices is less than 1, the conditional expectation given the sum is not
bounded as the sum tends to infinity. This is in contrast with the preceding case.

Proposition 3.7. If X and Y possess regularly varying densities fX(·) and fY(·) with respective indices
αX and αY such that αX > 2 and αY ≤ αX < αY + 1, then mX(s) → ∞ as s → ∞.

Proof. Since fX(·) is regularly varying with index αX > 2, fX̃(·) is regularly varying with index αX̃ =
αX − 1 < αY . Because fY(·) is a regularly varying density, it implies that fY(s) = o (fX̃(s)). Since αX̃ < αX ,
it also follows that fX(s) = o (fX̃(s)). Therefore, by (2.1):

mX(s) = E[X]
fX̃+Y(s)

fX+Y(s)
∼ E[X]

fX̃(s) + fY(s)

fX(s) + fY(s)
= E[X]

fX̃(s) + o (fX̃(s))

o (fX̃(s)) + o (fX̃(s))
.

From this expression, we can see that, as s → ∞, mX(s) → ∞ and the assertion follows. �
From the previous result, we know that mX (·) diverges as s → ∞. However, this is not sufficient

to ensure that it is an increasing function. A variety of different behaviors may occur when the differ-
ence in tail indices is less than 1. Example 3.8 shows an increasing behavior of mX(·), while Example
3.9 shows that it may be decreasing over a range of central values. Note that we cannot ensure the
monotonicity of mX(·), but we can check it numerically over an interval (0,b) for a large b (e.g.
b > E[X + Y] + 102Var[X + Y]). Finally, in Section 4, we will see under which cases it is asymptotically
monotonic.

Example 3.8. Let us consider two independent random variables X ∼ P(II)(θ , αX , ϑ) and Y ∼
P(II)(θ , αY , ϑ) such that αX = 4.5, αY = 4, θ = 1, and ϑ = 0. Figure 2 shows that mX(·) increases over
(0, 120).

Example 3.9. Let us consider two independent random variables X ∼ P(I)(αX , θ ) and Y ∼ LG(αY , λ)
with αY + 1 > αX > αY . Figure 3 shows that the conditional expectation given the sum decreases over a
range of central values.
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Figure 3. Conditional expectation mX(·) when X ∼ P(I)(αX , θ ) and Y ∼ LG(αY , λ) with αX = 8,
αY = 7.8, λ = 2.5, and θ = 1.

3.3. Boundary case: Difference in tail indices equal to 1 (αX − αY = 1)
The next result shows that when the difference between tail indices is exactly 1, the asymptotic behavior
of the conditional expectation given the sum depends on the asymptotic behavior of the ratio between
the slowly varying functions associated with the densities.

Proposition 3.10. Let X and Y possess regularly varying densities fX(·) and fY(·) with respective
indices αX and αY verifying αX = αY + 1 and respective associated slowly varying functions LX(·)
and LY(·).

• If LX (s)
LY (s)

→ ∞ as s tends to infinity, then mX(s) → ∞.
• If lims→∞

LX (s)
LY (s)

= k with k ≥ 0, then lims→∞ mX(s) = E[X] + k.

Proof. Since fX is regularly varying with index αX > 3, then fX̃(·) is regularly varying with index
αX̃ = αX − 1 = αY . As a consequence of (2.1), taking into account that fX(·) and fY(·) are regularly varying
densities, fX(s) = o (fY(s)) and fX̃(s) = s

E[X]
fX(s) then

mX(s) = E[X]
fX̃+Y(s)

fX+Y(s)
∼ E[X]

fX̃(s) + fY(s)

fY(s) + o(fY(s))
= LX(s) + E[X]LY(s)

LY(s) + o(LY(s))
∼ LX(s)

LY(s)
+ E[X]. (3.6)

Hence, if LX (s)
LY (s)

→ ∞ as s tends to infinity, it is direct that mX(s) diverges. On the other hand, if
lims→∞

LX (s)
LY (s)

= k with k ≥ 0, from (3.6) then lims→∞ mX(s) = E[X] + k. �
The following example illustrates the different cases of Proposition 3.10.

Example 3.11 (Log-Gamma). Consider two independent random variables X ∼ LG(αX , λX) and Y ∼
LG(αY , λY) with αX = αY + 1. Here,

fX(x) = (αX − 1)λX

�(λX)
( log x)λX−1x−αX , x ≥ 1.

Then LX(x) = (αX−1)λX

�(λX )
( log x)λX−1 and,

LX(x)

LY(x)
= (αX − 1)λX

(αX − 2)λY

�(λY)

�(λX)
( log x)λX−λY .
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(a) (b)

(c)

Figure 4. Conditional expectation mX(·) when X ∼ LG(αX , λX) and Y ∼ LG(αY , λY) with αX = αY + 1
with αX = 5, αY = 4, λX = 3 and considering different values of λY in each case.

Hence, Figure 4 illustrates that in accordance with Proposition 3.10:

• If λX < λY , the latter ratio converges to zero and lims→∞ mX(s) = E[X] =
(

αX−1
αX−2

)λX

;

• If λX = λY , then LX (x)
LY (x)

= E[X] and, therefore, lims→∞ mX(s) = 2E[X];

• If λX > λY , the ratio LX (x)
LY (x)

diverges and mX(s) → ∞ as s → ∞.

Note that in the case where the difference between the tail indices is exactly one and the constant
considered in Proposition 3.10 is k = 0, similarly to Proposition 3.3, we can ensure that there exists a
nonempty interval in (0, ∞) where mX(·) is decreasing. However, contrary to this case or to the case
where the difference in tail indices exceeds 1, there is no guarantee that there exists a nonempty inter-
val of (0, ∞) where mX(·) is decreasing when tail indices differ by one and k > 0. Nevertheless, when
the ratio among the slowly varying functions associated with the densities is finite, since the limit is
finite, mX(·) is necessarily bounded. Under this framework, we can now encounter a variety of different
behaviors for mX(·), as illustrated in Example 3.12. In the first situation considered there, the conditional
expectation given the sum is monotonically increasing over an interval (0,b) for a large b. However, in
the second situation, the conditional expectation given the sum peaks before decreasing to tend to its
limit from above.

Example 3.12. Let us consider two independent random variables X ∼ P(I)(θ , αX) and Y ∼ P(I)(θ , αY)

such that αX = αY + 1. Then, X̃ ∼ P(I)(θ , αX − 1) so that X̃
d= Y , where d= stands for “equally dis-

tributed”. Note that k = E[X] in Proposition 3.10, and from Proposition 3.10, lims→∞ mX(s) = 2E[X].
However, the behavior of mX(·) differs according to the value of αY , as shown in the two following
situations:
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Figure 5. Conditional expectation mX(·) (blue solid line) and horizontal line at 2E[X] (orange dashed
line) when X ∼ P(I)(θ , αX) and Y ∼ P(I)(θ , αY) with θ = 1, αX = 6 and αY = 5.

Figure 6. Conditional expectation mX(·) (blue solid line) and horizontal line at 2E[X] (orange dashed
line) when X ∼ P(I)(θ , αX) and Y ∼ P(I)(θ , αY) with θ = 1, αX = 3.5, and αY = 2.5.

1. Figure 5 shows that there are situations where mX(·) increases over (0,50) and, numerically, we
observe that it tends to its limit from below.

2. Figure 6 shows that there are situations where mX(·) attains a maximum before decreasing
to its limit. Specifically, we can see there that, considering the values θ = 1, αX = 3.5 and
αY = 2.5, mX(·) increases over (0, 64.46) where 64.46 � F−1(0.998) and then decreases over
(64.46, 1000). From the plot, we conjecture that it tends to its limit from above.
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From this section, we can conclude that if the difference between the indices exceeds one, mX(·) will
decrease in an interval; if the difference is less than one, mX(·) diverges; and in the boundary case (i.e.
if the difference is exactly one) it can be either bounded or not, depending on the asymptotic behavior
of the ratio between the associated slowly varying functions.

In the following section, in addition to the asymptotic levels, we aim to delve into the rate at which
mX(·) is either converging or diverging as the argument gets larger.

4. Asymptotic behavior of the conditional mean given the sum
The asymptotic levels of the conditional expectation given the sum were discussed in the preceding
section. In this section, we supplement these results with the asymptotic behavior of mX(·) and illustrate
the accuracy of the resulting approximations with various examples.

4.1. Asymptotic expansion of the conditional mean given the sum
Define the truncated mean function for a nonnegative random variable Z as

μZ (t) =
∫ t

0

xfZ (x) dx. (4.1)

If the expectation is finite (i.e. αZ > 2), the truncated mean tends to the expected value, which is
denoted by μZ:

lim
t→∞

μZ (t) = μZ = E[Z] < ∞.

The variance of Z will be denoted by σ 2
Z . The following result provides an asymptotic expansion of

the density function of the sum X + Y when X and Y both possess asymptotically smooth densities. This
is an extension of Theorem 1.1 in Bingham et al. (2006).

Proposition 4.1. Let X and Y be positive random variables with asymptotically smooth density functions
fX(·) and fY(·) with tail indices αX and αY such that min{αX , αY} ≥ 2. Then, as s tends to infinity,

fX+Y (s) = fX (s)

(
1 + αX

μY (s)

s
(1 + o (1))

)
+ fY (s)

(
1 + αY

μX (s)

s
(1 + o (1))

)
.

In particular, if min{αX , αY} > 2,

fX+Y (s) = fX (s)
(

1 + αX

μY

s
(1 + o (1))

)
+ fY (s)

(
1 + αY

μX

s
(1 + o (1))

)
.

Proof. The density function of X + Y can be written as

fX+Y (t) =
∫ t

0

fX (t − x) fY (x) dx = TYfX (t) + TXfY (t)

where

TYfX (t) =
∫ t/2

0

fX (t − x) fY (x) dx.

The announced result then follows from the expressions for TYfX (t) and TXfY (t) derived in
Proposition B.1 in Appendix B. �

An asymptotic expansion for the conditional mean given the sum is then deduced from this result.
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Proposition 4.2. Let X and Y be positive random variables with asymptotically smooth density functions
fX(·) and fY(·) with tail indices αX and αY such that min{αX − 1, αY} > 2. Then, as s tends to infinity,

mX(s) = fX (s)
(
s + (αX − 1)μY

(
1 + o (1)

))+ μXfY (s)
(
1 + αY μX̃

s

(
1 + o (1)

))
fX (s)

(
1 + αXμY

s

(
1 + o (1)

))+ fY (s)
(
1 + αY μX

s

(
1 + o (1)

)) . (4.2)

Proof. Representation (2.2) shows that mX(·) can be expressed with the help of the ratio of the
densities of X̃ + Y of X + Y . Applying Proposition 4.1 to these densities, and taking into account that
αX̃ = αX − 1 > 2, we get

fX̃+Y (s) = fX̃ (s) + fY (s) +
(

αX̃

fX̃ (s)

s
μY + αY

fY (s)

s
μX̃

)
(1 + o (1))

= sfX (s)

μX

+ fY (s) +
(

(αX − 1)
fX (s)

μX

μY + αY

fY (s)

s
μX̃

)
(1 + o (1))

and

fX+Y (s) = fX (s) + fY (s) +
(

αX

fX (s)

s
μY + αY

fY (s)

s
μX

)
(1 + o (1))

as s tends to infinity. The announced result then follows from (2.2). �
Proposition 4.2 allows us to study the asymptotic behavior of the conditional expectation given the

sum according to the values of the tail indices. In the following sections, we will study it under different
frameworks and we assume again that αX ≥ αY . Note that, if αY > αX , the asymptotic expression of mX(·)
can be obtained by computing the asymptotic expression of mY(·) and noting that mX(s) = s − mY(s).
Although it must be noted that, in order to obtain the asymptotic expression of mX (·), it is required that
αX > 3 and αY > 2. Hence, if computing the asymptotic expression of mY (·), we need to assume αY > 3
and αX > 2.

Based on Proposition 4.2, we derive different types of asymptotic behaviors of the conditional mean
of X given the sum, as detailed in the next sections. We consider two cases where mX (·) converges to
the unconditional expected value: when the difference of the indices is greater than two and when it is
in between one and two. In addition, we compare the asymptotic behavior of mX (·) as it diverges, by
deriving the asymptotic expansion when indices are “near” (their difference is positive but smaller than
one) and when both variables have the same index. Figure 7 illustrates the different cases considered
in the next sections within the plane (αX , αY). As is common to the different cases, throughout the next
sections, we will assume αX > 3 and αY > 2. In the following sections, we will denote by m̂X (·) an
approximation of mX (·) at infinity.

4.2. Difference in the tail indices larger than 2 (αX − αY > 2)
From Proposition 4.2, we can write mX (·) as the ratio of two asymptotic expansions, each considering
four terms. Note that, assuming αX − αY > 1, the terms of the denominator are regularly varying with
arranged indices {αY , αY + 1, αX , αX + 1}. Therefore, αY and αY + 1 are the two smallest indices (i.e.,
the two greatest orders). With respect to the numerator, the (non-arranged) indices of the terms are
{αX − 1, αX , αY , αY + 1}. Under the assumption αX − αY > 1, the smallest index is αY . However, if αX −
αY > 2, the second smallest index is αY + 1 and, if αX − αY < 2, it is αX − 1. This motivates the study of
the behavior of mX (·) separately if the difference between indices trespasses two.

Proposition 4.3. Let X and Y be positive random variables possessing asymptotically smooth density
functions fX(·) and fY(·) with respective tail indices αX and αY . If αX > αY + 2, then

mX(s) = μX + αY

1

s
σ 2

X (1 + o (1))

as s tends to infinity.
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Figure 7. Discussion according to the position of (αX , αY) in (3, ∞) × (2, ∞) with αX ≥ αY .

Proof. Notice that σ 2
X = μX̃μX − μ2

X . Since min{αX − 1, αY} > 2, (4.2) allows us to write

mX(s) = sfX (s) + μXfY (s) + (
(αX − 1)fX (s) μY + αY

fY (s)
s

(
σ 2

X + μ2
X

))
(1 + o (1))

fX (s) + fY (s) + (
αX

fX (s)
s

μY + αY
fY (s)

s
μX

)
(1 + o (1))

as s tends to infinity. As αY > 2 and αX > αY + 2, we have that fX (s) = o( fY (s)
s2 ), and we can write

mX(s) = μX

fY (s) + αY
fY (s)

s
(μX + σ 2

X
μX

) (1 + o (1))

fY (s) + αY
fY (s)

s
μX (1 + o (1))

= μX

1 + αY
1
s
(μX + σ 2

X
μX

) (1 + o (1))

1 + αY
1
s
μX (1 + o (1))

= μX

(
1 + αY

1

s

σ 2
X

μX

(1 + o (1))

)
.

This ends the proof. �
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Figure 8. Conditional expectation mX(·) when X ∼ P(II)(θ , αX , ϑ) and Y ∼ P(II)(θ , αY , ϑ) with
αX = 10, αY = 5, θ = 1, and ϑ = 0.

The following example illustrates Proposition 4.3.

Example 4.4. Let us consider two independent random variables X ∼ P(II)(θ , αX , ϑ) and Y ∼
P(II)(θ , αY , ϑ) such that αX = 10, αY = 5, θ = 1, and ϑ = 0. Figure 8 shows the same asymptotic
behavior of mX(·) and m̂X(s) = μX

(
1 + αY

1
s

σ 2
X

μX

)
.

4.3. Difference in the tail indices between 1 and 2 (1 < αX − αY < 2)

Proposition 4.5. Let X and Y be positive random variables possessing asymptotically smooth density
functions fX(·) and fY(·) with respective tail indices αX and αY . If αY + 2 > αX > αY + 1, then

mX(s) = μX + s
fX (s)

fY (s)
(1 + o (1))

as s tends to infinity.

Proof. Since αY > 2 and αY + 2 > αX > αY + 1, we have that fX (s) = o
(

fY (s)
s

)
and fY (s)

s
= o(sfX (s) ).

Hence, we can write

mX(s) = μXfY (s) + sfX (s) (1 + o (1))

fY (s) + αY
fY (s)

s
μX (1 + o (1))

= μX + s
fX (s)

fY (s)
(1 + o (1)) .

This ends the proof. �
The following example illustrates Proposition 4.5

Example 4.6. Let us consider two independent random variables X ∼ Davis(αX , b, ϑ) and Y ∼
Davis(αY , b, ϑ) such that αX = 6, αY = 4.5, b = 2, and ϑ = 0. Figure 9 shows the same asymptotic
behavior of mX(·) and m̂X(s) = μX + s fX (s)

fY (s)
.
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Figure 9. Conditional expectation mX(·) when X ∼ Davis(αX , b, ϑ) and Y ∼ Davis(αY , b, ϑ) with
αX = 6, αY = 4.5, b = 2, and ϑ = 0.

From Proposition 4.3, if αX − αY > 2, the asymptotic behavior of mX (·) can be approximated by
m̂X(s) = μX + αY

1
s
σ 2

X , where the second term behaves proportionally to 1/s. However, if 1 < αX − αY <

2, by Proposition 4.5, asymptotically, mX (·) can be approximated by m̂X(s) = μX + s fX (s)
fY (s)

, whose sec-
ond term is s−αX+1+αY LX (s)

LY (s)
. Note that −αX + 1 + αY > −1. Hence, as we could expect, if αX − αY > 2,

asymptotically, mX (·) decreases faster as it does if 1 < αX − αY < 2.

4.4. Difference in the tail indices less than 1 (0 < αX − αY < 1)
When the indices are similar, and by similar, we mean here that they do not differ by more than one
unit, the following result provides the asymptotic expression of mX (·), where the second and third terms
vary depending on how similar are the indices. Note that the expressions are arranged in terms of their
order, so even if the terms considered are the same in the two first cases, they are given separately to
emphasize that the second-order term differs in the two cases.

Proposition 4.7. Let X and Y be positive random variables possessing asymptotically smooth density
functions fX(·) and fY(·) with respective tail indices αX and αY . If αY + 1 > αX > αY then, as s tends to
infinity:

(a) if 1 > αX − αY > 1
2
, then:

mX(s) = s
fX(s)

fY(s)

(
1 + μX

fY(s)

sfX(s)
− fX(s)

fY(s)
(1 + o(1))

)
;

(b) if 1
2
> αX − αY > 1

3
, then:

mX(s) = s
fX(s)

fY(s)

(
1 − fX(s)

fY(s)
+ μX

fY(s)

sfX(s)
(1 + o(1))

)
;
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(c) if 1
3
> αX − αY > 0, then:

mX(s) = s
fX(s)

fY(s)

(
1 − fX(s)

fY(s)
+
(

fX(s)

fY(s)

)2

(1 + o(1))

)
Proof. If αY + 1 > αX > αY , since αX > 3 and αY > 2, then, as s tends to infinity:

mX(s) = fX (s)
(
s + (αX − 1)μY (1 + o (1))

)+ μXfY (s)
(
1 + αYμX̃s−1 (1 + o (1))

)
fX (s)

(
1 + αXμYs−1 (1 + o (1))

)+ fY (s)
(
1 + αYμXs−1 (1 + o (1))

)
= s

fX (s)

fY (s)

1 + μX
fY (s)
sfX (s)

+ 1
s
(αX − 1)μY (1 + o (1)) + αYμX̃μX

fY (s)
s2fX (s)

(1 + o (1))

1 + fX (s)
fY (s)

+ αYμX
1
s
(1 + o (1)) + αXμY

fX (s)
sfY (s)

(1 + o (1))

= s
fX (s)

fY (s)

1 + μX
fY (s)
sfX (s)

+ 1
s
(αX − 1)μY (1 + o (1))

1 + fX (s)
fY (s)

+ αYμX
1
s
(1 + o (1))

.

where the last step holds since we can write αYμX̃μX
fY (s)

s2 fX (s)
= 1

s
o(1) and αXμY

fX (s)
sfY (s)

= 1
s
o(1). The term

fX (s)
fY (s)

+ αYμX
1
s

tends to zero as s tends to infinity and therefore we can write:

1

1 + fX (s)
fY (s)

+ αYμX
1
s
(1 + o (1))

= 1 − fX (s)

fY (s)
− αYμX

1

s
(1 + o (1)) +

(
fX (s)

fY (s)

)2

(1 + o (1)) .

Therefore, as s tends to infinity, mX(s) = s fX (s)
fY (s)

g(s) with

g(s) = 1 − fX (s)

fY (s)
+ μX

fY (s)

sfX (s)
+
(

fX (s)

fY (s)

)2

(1 + o (1)) + (αX − 1)μY − (αY − 1)μX

s
(1 + o (1)) .

We can now consider the different cases.

(a) If αX − αY > 1
2
, then fX (s)

fY (s)
= o(μX

fY (s)
sfX (s)

) and, by noticing that
(

fX (s)
fY (s)

)2 = o( fX (s)
fY (s)

) and 1
s
= o( fX (s)

fY (s)
), as

s tends to infinity:

mX(s) = s
fX(s)

fY(s)

(
1 + μX

fY(s)

sfX(s)
− fX(s)

fY(s)
(1 + o(1))

)
.

(b) If 1
2
> αX − αY > 1

3
, then μX

fY (s)
sfX (s)

= o( fX (s)
fY (s)

) and
(

fX (s)
fY (s)

)2 = o( fY (s)
sfX (s)

). Therefore, because 1
s
=

o( fY (s)
sfX (s)

), as s tends to infinity:

mX(s) = s
fX(s)

fY(s)

(
1 − fX(s)

fY(s)
+ μX

fY(s)

sfX(s)
(1 + o(1))

)
.

(c) If 1
3
> αX − αY > 0, then μX

fY (s)
sfX (s)

= o( fX (s)
fY (s)

) and fY (s)
sfX (s)

= o(
(

fX (s)
fY (s)

)2

). Therefore, because 1
s
=

o(
(

fX (s)
fY (s)

)2

), as s tends to infinity:

mX(s) = s
fX(s)

fY(s)

(
1 − fX(s)

fY(s)
+
(

fX (s)

fY (s)

)2

(1 + o(1))

)
.

This ends the proof. �
The following example illustrates Proposition 4.7.

Example 4.8. Let us consider two independent random variables X ∼ P(II)(θ , αX , ϑ) and Y ∼
P(II)(θ , αY , ϑ). Figure 10 shows the same asymptotic behavior of mX(·) and:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.11
Downloaded from https://www.cambridge.org/core. IP address: 10.1.180.51, on 23 Jul 2025 at 01:23:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.11
https://www.cambridge.org/core


ASTIN Bulletin 469

(a) (b)

(c)

Figure 10. Conditional expectation mX(·) when X ∼ P(II)(θ , αX , ϑ) and Y ∼ P(II)(θ , αY , ϑ) with
αX = 5, θ = 1, and ϑ = 0 and considering different values of αY in each case.

• m̂X(s) = s fX (s)
fY (s)

(
1 + μX

fY (s)
sfX (s)

− fX (s)
fY (s)

)
in cases (a) and (b).

• m̂X(s) = s fX (s)
fY (s)

(
1 − fX (s)

fY (s)
+
(

fX (s)
fY (s)

)2
)

in case (c).

4.5. Equal indices (αX = αY)
The following results describe the asymptotic behavior of mX(·) when both variables have the same
index, and under the assumption of asymptotic proportionality between the densities. Let us note that if
X

d= Y , then mX(s) = mY(s) for all s in the support of S. Hence, as mX(s) + mY(s) = s, it is direct to see that,
for equally distributed variables, mX(s) = s

2
. The following result provides the asymptotic expression of

mX(·) when both densities have the same index and are asymptotically proportional but not necessarily
equal.

Proposition 4.9. Let X and Y be positive random variables possessing asymptotically smooth den-
sity functions fX(·) and fY(·) with respective tail indices αX and αY such that αY = αX and fX(s) =
cfY(s) (1 + o (1)) with c > 0. Then

mX(s) = c

1 + c
s

(
1 + 1

s

(
α

1 + c
(μY − μX) + μX

c
− μY

)
(1 + o (1))

)
(4.3)

as s tends to infinity.
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Proof. We consider α = αY = αX , and we can write:

mX(s) = sfX (s) + μXfY (s) + (
(αX − 1)fX (s) μY + αY

fY (s)
s

(
σ 2

X + μ2
X

))
(1 + o (1))

fX (s) + fY (s) + (
αX

fX (s)
s

μY + αY
fY (s)

s
μX

)
(1 + o (1))

= c

1 + c
s

fY (s) + fY (s)
s

(
(α − 1)μY + μX

c

)
(1 + o (1))

fY (s) + fY (s)
s

(
αμY

c
1+c

+ μXα
1

1+c

)
(1 + o (1))

= c

1 + c
s

(
1 + 1

s

(
μY

(
α

1+c
− 1

)+ μX

(
1
c
− α

1+c

))
(1 + o (1))

1 + 1
s

(
αμY

c
1+c

+ μXα
1

1+c

)
(1 + o (1))

)

= c

1 + c
s

(
1 + 1

s

(
α

1 + c
(μY − μX) + μX

c
− μY

)
(1 + o (1))

)
.

This ends the proof. �
If X

d= Y , since c = 1 and μX = μY , the term 1
s

(
α

1+c
(μY − μX) + μX

c
− μY

)
in (4.3) is zero and the

expression provided in Proposition 4.9 corresponds to mX(s) = s
2

as expected.

Example 4.10. Consider two independent random variables X ∼ P(IV)(θX , α, ϑ , λX) and Y ∼
P(IV)(θY , α, ϑ , λY) with α > 3. Without loss of generality, we can assume ϑ = 0. Here, the slowly varying
function associated to the density fX(·) is given by:

LX(x) = (α − 1)θ
− α−1

λX
X

xα(x)−1+ α−1
λX(

1 +
(

x
θX

) α−1
λX

)λX+1 .

Note that fX (s)
fY (s)

= LX (s)
LY (s)

. Therefore, we can write fX(s) = cfY(s) (1 + gIV (x)), where

gIV(x) = x− (α−1)(λX−λY )
λXλY θ

1−α
λX

X

(
1 +

(
x

θX

) α−1
λX

)−(1+λX ) (
θX

θY

)1−α

θ
α−1
λY

Y

(
1 +

(
x

θY

) α−1
λY

)1+λY

− 1,

verifying gIV(x) = o(1) and c =
(

θX
θY

)α−1

. In particular, if λ = λX = λY , then

gIV(x) =
(

θ
α−1

λ

Y + x
α−1

λ

θ
α−1

λ

X + x
α−1

λ

)(1+λ)

− 1.

Let us consider two independent random variables X ∼ P(IV)(θX , α, ϑ , λ) and Y ∼ P(IV)(θY , α, ϑ , λ)
such that α = 7, θX = 1, θY = 2, λ = 2 and ϑ = 0. Figure 11 shows the same asymptotic behavior of mX(·)
and

m̂X(s) = c

1 + c
s

(
1 + 1

s

(
α

1 + c
(μY − μX) + μX

c
− μY

))
, c = 1

64
.

From Proposition 4.9, when the densities have equal tail indices and they are asymptotically pro-
portional, mX (·) can be approximated by a function where the term which dominates is c

1+c
s. However,

from Proposition 4.7, if 1 > αX − αY > 0, the asymptotic behavior of mX (·) can be approximated by a
function where the dominant term is sαY +1−αX LX (s)

LY (s)
, with 1 > αY + 1 − αX > 0. Hence, if 0 < αX − αY < 1,

asymptotically, mX (·) increases faster than it does if the indices are equal. And, the nearer the indices,
the faster that mX (·) asymptotically increases.
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Figure 11. Conditional expectation mX(·) when X ∼ P(IV)(θX , α, ϑ , λ) and Y ∼ P(IV)(θY , α, ϑ , λ) with
α = 7, θX = 1, θY = 2, λ = 2 and ϑ = 0.

5. Extensions to zero-augmented random variables
Zero-augmented distributions combine a continuous distribution on the positive real line and a point
probability mass at zero. For instance, in the context of risk-sharing schemes, zero-augmented distribu-
tions are often encountered since the probability mass at zero corresponds to participants who do not
file any claim against the scheme.

In this section, we show that, adding a probability mass at 0 to a distribution with regularly varying
density, tail indices still play a role in the limit behavior of the conditional mean given the sum. The next
result extends Propositions 4.1 and 4.2 to the zero-augmented case.

Proposition 5.1. Let X and Y be nonnegative random variables such that X = IXCX and Y = IYCY where
IX , CX , IY , and CY are independent, IX and IY are Bernoulli distributed with mean pX and pY , 0 < pX , pY ≤
1, and CX and CY possess asymptotically smooth density functions fCX (·) and fCY (·) with tail indices αCX

and αCY such that min{αCX , αCY } > 2. Then, as s tends to infinity,

fX+Y (s) = pXfCX (s)
(

1 + pYαCX

μCY

s
(1 + o (1))

)
+pYfCY (s)

(
1 + pXαCY

μCX

s
(1 + o (1))

)
.

In addition, if min{αCX , αCY } > 3, μC̃X , μC̃Y are finite and the conditional mean given the sum satisfies
that, as s tends to ∞,

mX(s) =
fCY (s)

μCY

(
1 + αY

μC̃X
s

(1 + o (1))
)

+ fCX (s)

μCX

(
s

pY μCY
+ (αX − 1) (1 + o (1))

)
fCY (s)

μCY

(
1

pXμCX
+ αY

s
(1 + o (1))

)
+ fCX (s)

μCX

(
1

pY μCY
+ αX

s
(1 + o (1))

) (5.1)

Proof. As the sum of two random variables obeying zero-augmented distributions, X + Y also
obeys a zero-augmented distribution with probability mass (1 − pX)(1 − pY) at 0. For s > 0, the density
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function of X + Y can be written as

fX+Y (s) = pX(1 − pY)fCX (s) + (1 − pX)pYfCY (s) + pXpYfCX+CY (s) .

Now, Proposition 4.1 applies to fCX+CY (·) so that

fX+Y (s) = pX(1 − pY)fCX (s) + (1 − pX)pYfCY (s)

+pXpY

(
fCX (s)

(
1 + αCX

μCY (s)

s
(1 + o (1))

)
+fCY (s)

(
1 + αCY

μCX (s)

s
(1 + o (1))

))
,

which ends the first part of the proof.
In order to obtain the expression of the conditional mean, it is known from Proposition 2.2(iii) in

Denuit (2019) that

mX(s) = pXμCX fC̃X+Y(s)

pXμCX fC̃X+Y(s) + pYμCY fC̃Y +X(s)
s = s

1 + pY μCY
pXμCX

r(s)
, (5.2)

with r(s) = fC̃Y +X (s)

fC̃X+Y (s)
. Analogously as above, C̃Y + X is a mixture of C̃Y (with probability 1 − pX) and C̃Y +

CX (with probability pX). A similar representation holds for C̃X + Y . Therefore, we can write:

r(s) = (1 − pX)fC̃Y (s) + pXfC̃Y +CX (s)

(1 − pY)fC̃X (s) + pYfC̃X+CY (s)
.

Since C̃Y , C̃X , CY , and CX are positive random variables with αC̃Z = αCZ − 1 for Z = X, Y , using the
asymptotic expansion provided in Proposition 4.1, we can obtain

r(s) =
(1 − pX)fC̃Y (s) + pX

(
fC̃Y (s) + fCX (s) +

(
αC̃Y

fC̃Y
(s)

s
μCX + αCX

fCX (s)

s
μC̃Y

)
(1 + o (1))

)
(1 − pY)fC̃X (s) + pY

(
fC̃X (s) + fCY (s) +

(
αC̃X

fC̃X
(s)

s
μCY + αCY

fCY (s)

s
μC̃X

)
(1 + o (1))

)
=

s
fCY (s)

μCY
+ pXfCX (s) + pX

((
αCY − 1

) fCY (s)

μCY
μCX + αCX

fCX (s)

s
μC̃Y

)
(1 + o (1))

s
fCX (s)

μCX
+ pYfCY (s) + pY

((
αCX − 1

) fCX (s)

μCX
μCY + αCY

fCY (s)

s
μC̃X

)
(1 + o (1))

.

Hence, from (5.2), and noticing that
μC̃Y

s
= o (1),

mX(s) = s

⎛⎝1 +
sfCY (s)

μCY

(
1

pXμCX
+ (αCY −1)

s
(1 + o (1))

)
+ fCX (s)

μCX

(
1 + αCX

μC̃Y
s

(1 + o (1))
)

sfCX (s)

μCX

(
1

pY μCY
+ (αCX −1)

s
(1 + o (1))

)
+ fCY (s)

μCY

(
1 + αCY

μC̃X
s

(1 + o (1))
)
⎞⎠−1

=
fCY (s)

μCY

(
1 + αCY

μC̃X
s

(1 + o (1))
)

+ fCX (s)

μCX

(
s

pY μCY
+ (αCX − 1) (1 + o (1))

)
fCY (s)

μCY

(
1

pXμCX
+ αCY

s
(1 + o (1))

)
+ fCX (s)

μCX

(
1

pY μCY
+ αCX

s
(1 + o (1))

) .

This ends the proof. �
When pX = pY = 1, Proposition 5.1 reduces to Propositions 4.1 and 4.2, as expected. Similarly as

in Section 3, we can derive the asymptotic level of mX(·) when we consider zero-augmented random
variables. Let us remark that, in order to obtain the asymptotic expression of mX(·), contrary to the
case of continuous random variables, where it is required that αX > 3 and αY > 2, when consider-
ing zero-augmented random variables the hypothesis min{αCX , αCY } > 3 is included. This assumption
is required because, by Denuit (2019), for zero-augmented distributions, we use the expression
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mX(s) = pXμCX fC̃X+Y (s)

pXμCX fC̃X+Y (s)+pY μCY fC̃Y +X (s)
s, instead of the expression mX(s) = μX

fX̃+Y (s)

fX+Y (s)
for continuous variables.

Hence, the expectations of both size-biased transformations of CX and CY are required to be finite.

Corollary 5.2. Let X and Y be nonnegative random variables such that X = IXCX and Y = IYCY where IX ,
CX , IY , and CY are independent, IX and IY are Bernoulli distributed with mean pX and pY , 0 < pX , pY ≤ 1,
and CX and CY possess asymptotically smooth density functions fCX (·) and fCY (·) with tail indices αCX

and αCY such that min{αCX , αCY } > 3 and respective associated slowly varying functions LCX and LCY .

• If αCX > αCY + 1, then lims→∞ mX(s) = E[X],
• If αCY + 1 > αCX ≥ αCY , then mX(s) → ∞ as s → ∞.
• If αCX = αCY + 1: - If LCX (s)

LCY (s)
→ ∞ as s → ∞, then mX(s) → ∞ as s → ∞.

- If lims→∞
LCX (s)

LCY (s)
= k with k ≥ 0, then lims→∞ mX(s) = E[X] + pX

pY
k.

Proof. Let us note that expression 5.1 can be rewritten as

mX(s) = pXμCX

pYfCY (s) (1 + o (1)) + fC̃X (s) (1 + o (1))

pYfCY (s) (1 + o (1)) + pXfCX (s) (1 + o (1))
.

And, therefore, as s → ∞.

mX(s) ∼ pXμCX

pYfCY (s) + fC̃X (s)

pYfCY (s) + pXfCX (s)
. (5.3)

As fCX (·) and fCY (·) are asymptotically smooth densities with respective indices αCX , αCY > 2, then:

• If αCX > αCY + 1, then fCX (s) = o
(
fCY (s)

)
, fC̃X (s) = o

(
fCY (s)

)
. Since E[X] = pXμCX , from (5.3),

lims→∞ mX(s) = E[X].
• If αCY + 1 > αCX ≥ αCY , then fCY (s) = o

(
fC̃X (s)

)
and fCX (s) = o

(
fC̃X (s)

)
. From (5.3), it is direct

that mX(s) → ∞ as s → ∞.
• If αCX = αCY + 1, then fCX (s) = o

(
fCY (s)

)
and we can rewrite (5.3) as, if s → ∞, by

mX(s) ∼ pX

μCX pYLCY (s) + LCX (s)

pYLCY (s) + o
(
LCY (s)

) .

By replacing the limit behavior of LCX (s)

LCY (s)
, the assertion follows.

This ends the proof. �
As expected, considering pX = pY = 1, Corollary 5.2 reduces to the asymptotic levels provided in

Section 3. Note that, similarly to the continuous case, we can obtain the asymptotic expansion of the con-
ditional mean given the sum considering zero-augmented random variables. However, in order to provide
simpler expressions for the zero augmented case, distinctly as in some cases considered in the con-
tinuous framework, here we provide expansions considering two significant terms. Therefore, the case
αY + 1 > αX > αY is divided into two “sub-cases” instead of three as it was considered in Proposition 4.7.
Let us note that if pX = pY = 1, the asymptotic expressions (except the one mentioned) are the expansions
provided in Section 4, as expected.

Corollary 5.3. Let X and Y be nonnegative random variables such that X = IXCX and Y = IYCY where IX ,
CX , IY , and CY are independent, IX and IY are Bernoulli distributed with mean pX and pY , 0 < pX , pY ≤ 1,
and CX and CY possess asymptotically smooth density functions fCX (·) and fCY (·) with tail indices αCX

and αCY such that min{αCX , αCY } > 3.

1. If αCX > αCY + 2, then, as s tends to infinity,

mX(s) = pXμCX + αCY

pX

s
σ 2

CX
(1 + o (1)) .
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2. If αCY + 2 > αCX > αCY + 1, then, as s tends to infinity,

mX(s) = pXμCX + s
pX

pY

fCX (s)

fCY (s)
(1 + o (1)) .

3. If αCY + 1 > αCX > αCY + 1
2
, then, as s tends to infinity,

mX(s) = s
fCX (s)

fCY (s)

(
pX

pY

+ pXμCX fCY (s)

sfCX (s)
(1 + o (1))

)
.

4. If αCY + 1 > αCX > αCY + 1
2
, then, as s tends to infinity,

mX(s) = s
pX

pY

fCX (s)

fCY (s)

(
1 − pX

pY

fCX (s)

fCY (s)
(1 + o (1))

)
.

5. If αCY = αCX and fCX (s) = cfCY (s) (1 + o (1)) with c > 0, then as s tends to infinity,

mX(s) = c
pY

pX
+ c

s

(
1 + 1

s

(
μCX pY

c
− pYμCY + α

pY
pY

pX
+ c

(
pY

pX

μCY − μCX

))
(1 + o (1))

)
.

The proof of the Corollary is provided in Appendix C.
In addition to zero-augmented distributions, note that the findings derived in this paper can also be

extended to the case of considering more than two random variables. This is a more realistic scenario for
a risk-sharing pool, and the extension to this framework is provided in Appendix D. Within a larger pool
with risks having regularly varying densities, if two tail indices differ in more than one unit, a sabotage
scenario exists and the contribution of the risk holder with a greater index converges to the unconditional
expectation as in the bivariate scenario.

Even if the results of this paper assume that the random variables are independent, an extension to
an dependence setting where the dependence structure follows a Farlie–Gumbel–Morgenstern (FGM)
copula can be derived, and it is considered in Appendix 11. Under this setting, a difference of more than
one unit between the tail indices also leads to a sabotage scenario and the contribution of the risk holder
with a greater index converges again to a constant, which, however, is different from the one obtained in
the case of independence.

6. Conclusion
The monotonicity of the conditional expectations of variables given their sum is known to be rele-
vant in several contexts. For instance, it is of great utility for actuarial applications, as the conditional
expectations of variables given their sum correspond to the conditional mean risk-sharing rule and its
monotonicity is referred to as the no-sabotage condition. It is also relevant in risk management, both for
portfolio diagnosis and as a useful simplification to determine the natural allocation principle.

To ensure the monotonicity of mX(s) = E[X|X + Y = s], it is common to assume log-concave densi-
ties, meaning that variables are supposed to be light tailed, an assumption which might be too strong.
In this paper, we studied the behavior of mX(·) when variables are heavy tailed. In particular, we studied
the behavior of the conditional expectation given the sum considering variables with regularly varying
densities. We showed that, under the independence assumption, (i) a difference higher than one on the
respective tail indices of X and Y implies that mX(·) cannot be monotonic over its domain, converging to
the unconditional expected value and (ii) if the difference is smaller than 1, mX(·) is not bounded as the
value of the sum diverges. These implications still hold when considering independent zero-augmented
random variables, as seen in Section 5, or when variables are not independent but their dependence
structure follows a Farlie–Gumbel–Morgenstern copula, as seen in Appendix E. However, under this
dependence structure, when indices differ in more than one unit, mX(·) does not converge to the uncon-
ditional expected value but to a different constant provided in Proposition E.1(b). In addition, implication
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(i) also holds in larger pools with independent risks as long as there exist two variables with a difference
higher than one on the respective tail indices.

Considering a risk-sharing scheme scenario, the result implies that, if the risks associated with the
pool members have tail indices differing by more than one unit, with the conditional mean risk sharing
rule there will always exist a sabotage scenario. Hence, a direct implication of this paper is that it enables
practitioners to identify a necessary condition when forming a pool, based on risks having a similar tail
behavior. The rule is simple: when forming a risk-sharing pool, there cannot exist tail indices of two
losses’ distributions differing in more than one unit. Analogously, if the difference among all tail indices
is less than one, even if we cannot state that the contribution of each participant is increasing in the total
loss, we know that they are asymptotically increasing. This means that the risk-sharing will not lead
to extreme cases of sabotage. Concerning risk management, an implication of the results is to provide
theoretical support and formalization of the intuitions and ideas described in Major and Mildenhall
(2020) and Mildenhall and Major (2022) with respect to the monotonicity of the conditional expectations
for heavy-tailed distributions. It is of particular interest to see the cases described in Chapter 15.4.1. of
Mildenhall and Major (2022) considering a price allocation framework for different lines of business.
The connection between the difference between the tail-heaviness of the lines and the behavior of the
conditional expectations provides illustrative examples of the results described in the present paper.

Under the assumption that random variables involved have finite second moments, we have also pro-
vided the asymptotic expression of mX(·). This allowed us to study its asymptotic behavior depending on
the differences between the tail indices. These results have been extended to zero-augmented distribu-
tions. In this case, the difference between the tail indices of the continuous components determines the
limit behavior of mX(·). An extension to several terms has also been proposed, to study the presence of
sabotage opportunities within pools gathering more than two participants. Throughout the paper, several
numerical examples with parametric families are provided in order to illustrate the results.

The analysis conducted in this paper is restricted to independent random variables X and Y . We
acknowledge that this assumption may be restrictive in some applications to insurance. For instance,
Gatzert et al. (2019) showed that industry loss warranties play an important role in risk management of
natural catastrophes, where X and Y cannot be assumed to be independent. In addition, it is interesting to
study how the dependence structure may change the studied monotonicity. Under positive dependence
(i.e., if X and Y are likely to be large or small together), we can intuitively expect that an increase in s
affects {X | S = s} and {Y | S = s} similarly, and therefore, mX(s) and mY(s) either grow or decrease in the
same direction. Since mX(s) + mY(s) = s, both functions cannot simultaneously decrease, so, for posi-
tively dependent X and Y , intuition suggests that both mX(·) and mY(·) are increasing. For instance, if X
and Y are comonotonic (that is, there exists a random variable Z and nondecreasing functions gX , gY such
that X = gX(Z) and Y = gY(Z)), then both conditional expectations are increasing. Therefore, extending
the results derived in the present paper to correlated random variables X and Y is certainly relevant for
future research. The case with the Farlie–Gumbel–Morgenstern copula worked out in Appendix E is a
first step in that direction.
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Appendix
A Examples of asymptotically smooth distributions

Property A.1. The densities of all distributions listed in Table 1 are asymptotically smooth with
index α.

Proof. By Proposition 2.1(ii) in Barbe and Mc Cormick (2005), we know that if the density f (·) is
regularly varying and it has an ultimately monotone derivative (monotone on (x0, ∞) for some x0 > 0),
then f (·) is asymptotically smooth. It is thus enough to show that the regularly varying densities of all
distributions listed in Table 1 have an ultimately monotone derivative. This is done next:

• Pareto Type II (Type I is particular case of Type II with ϑ = θ ). If X ∼ P(II)(θ , α, ϑ) then the
second derivative of the density f (x) = (x + θ − ϑ)

−α
θα−1(α − 1) is

f ′′(x) = θα−1(α − 1)α(α + 1) (x + θ − ϑ)
−(α+2) ≥ 0 for all x ≥ ϑ .

• Pareto Type IV (Type III is a particular case of Type IV with λ = 1). If X ∼ P(IV)(θ , α, ϑ , λ),
then the second derivative of the density

f (x) = (α − 1)θ− α−1
λ (x − ϑ)−1+ α−1

λ

(
1 +

(
θ

x − ϑ

)− α−1
λ

)−(λ+1)
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is given by f ′′(x) = g1(x) g2(x) where

g1(x) =
(α − 1)θ

1−α
λ

(
1 + (

θ

x−ϑ

) 1−α
λ

)−λ (
θ

x−ϑ

)α/λ
(x − ϑ)−3+ α−1

λ

λ2
((

θ

x−ϑ

)1/λ + (
θ

x−ϑ

)α/λ
)3 > 0

and

g2(x) = α(α + 1)λ2

(
θ

x − ϑ

)2/λ

+ (2λ + 1 − α)(λ + 1 − α)

(
θ

x − ϑ

) 2α
λ

+(1 + λ − α)(α + 3αλ + λ − 1)

(
θ

x − ϑ

) 1+α
λ

.

Clearly, g2 has the same sign as g2(x)
(

θ

x−ϑ

)−2/λ. Since

lim
x→∞

g2(x)

(
θ

x − ϑ

)−2/λ

= α(α + 1)λ2 > 0,

we see that g2 is ultimately positive and, in consequence, f ′(·) is ultimately increasing.
• Log-Gamma. If X ∼ LG(α, λ), then the second derivative of the density f (x) =

(α−1)λ

�(λ)
( log x)λ−1x−α, x ≥ 1, can be written as f ′′(x) = g1(x) g2(x), where

g1(x) = x−(α+2)(α − 1)λ( log (x))λ−3

�(λ)
> 0

and

g2(x) = 2 − 3λ + λ2 − (2α + 1)(λ − 1) log (x) + α(1 + α) log (x)2.

As α(1 + α) > 0 and log (x) is an increasing function, limx→∞ g2(x) = ∞ and therefore g2 is
ultimately positive and f ′(·) is ultimately increasing.

• Dagun distribution. It can be checked that it has an ultimately increasing density by taking into
account that, since

(
x
θ

)−(α−1) = (
y−μ

θ

) α−1
λ ⇔ y = θ

(
x
θ

)−λ + μ, we have

FDagun (x) = FPareto(IV)

(
θ
( x

θ

)−λ + ϑ

)
.

• Davis distribution. If X ∼ Davis(α, b, ϑ) then the density satisfies f (x) ∝
(

e
b

x−ϑ − 1
)−1

(x −
ϑ)−(1+α). Hence, f ′′(x) ∝ (x−ϑ)−(5+α)(

e
b

x−ϑ −1

)3 d(x), with (x−ϑ)−(5+α)(
e

b
x−ϑ −1

)3 > 0 and where

d(x) = b2e
b

x−ϑ

(
1 + e

b
x−ϑ

)
+
(

e
b

x−ϑ − 1
)

(1 + α)(2 + α)(x − ϑ)2

− 2be
b

x−ϑ

(
e

b
x−ϑ − 1

)
(2 + α)(x − ϑ)

= b2e
b

x−ϑ

(
1 + e

b
x−ϑ

)
+
(

e
b

x−ϑ − 1
)

(x − ϑ)(2 + α) · h(x),

with h(x) =
(

e
b

x−ϑ − 1
)

(1 + α)(x − ϑ) − 2be
b

x−ϑ . It can be checked that b2e
b

x−ϑ

(
1 + e

b
x−ϑ

)
>

0 and
(

e
b

x−ϑ − 1
)

(x − ϑ)(2 + α) > 0. In addition, by l’Hôpital rule, limx→∞ e
b

x−ϑ −1
(x−ϑ)−1 = b and

limx→∞ h(x) = b(α − 1) > 0. Therefore, g is ultimately positive and f ′ ultimately increasing.

This ends the proof. �
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B Extension of Lemma 5.2 in Barbe and Mc Cormick (2005)
The proof of Proposition 4.1 requires the following extension of Lemma 5.2 in Barbe and Mc Cormick
(2005).

Proposition B.1. Let X and Y be continuous positive random variables with respective asymptotically
smooth and regularly varying density functions fX and fY with indices αX and αY such that min{αX , αY} ≥
2. Then,

TXfY (t) = fY (t) + αY

fY (t)

t
μX (t)

(
1 + o (1)

)
TYfX (t) = fX (t) + αX

fX (t)

t
μY (t)

(
1 + o (1)

)
as t → ∞. In particular, if min{αX , αY} > 2, as t → ∞,

TXfY (t) = fY (t) + αY

fY (t)

t
μX

(
1 + o (1)

)
TYfX (t) = fX (t) + αX

fX (t)

t
μY

(
1 + o (1)

)
.

Proof. It is enough to establish the representation for TYfX . For ε > 0, as fX is asymptotically smooth,
there exists 1

2
> δ > 0 such that for all large t

sup
0<x≤δt

∣∣∣∣ fX (t − x) − fX (t)
x
t
fX (t)

− αX

∣∣∣∣≤ ε. (B1)

As in Barbe and Mc Cormick (2005), we write TYfX (t) − fX (t) − αX
fX (t)

t
μY (t) as a sum of four terms,∫ tδ

0

(
fX (t − x) − fX (t)

(
1 + αX

x

t

))
fY (x) dx +

∫ t/2

tδ

fX (t − x) fY (x) dx

− fX (t) FY(tδ) − αX

fX (t)

t

∫ t

tδ

xfY (x) dx.

(B2)

Since x
t
fX (t) is positive, we know from (B1) that for all 0 < x ≤ δt,∣∣∣fX (t − x) − fX (t) − αX

x

t
fX (t)

∣∣∣≤ ε
x

t
fX (t) .

Therefore, the first term of (B2) is bounded by∫ tδ

0

(
fX (t − x) − fX (t)

(
1 + αX

x

t

))
fY (x) dx ≤

∫ tδ

0

∣∣∣fX (t − x) − fX (t)
(

1 + αX

x

t

)∣∣∣ fY (x) dx

≤
∫ tδ

0

ε
x

t
fX (t) fY (x) dx

= ε
fX (t)

t
μY(δt)

≤ ε
fX (t)

t
μY(t).

Let us consider f ∗
X (t) = sup t

2 <x<(1−δ)t fX (x). If tδ ≤ x ≤ t/2, then t/2 ≤ t − x ≤ t(1 − δ) and∫ t/2

tδ

fX (t − x) fY (x) dx ≤ f ∗
X (t)

∫ t/2

tδ

fY (x) dx ≤ f ∗
X (t)

∫ ∞

tδ

fY (x) dx = FY(δt)f ∗
X (t) .
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Hence, (B2) can be bounded as follows:

TYfX (t) − fX (t) − αX

fX (t)

t
μY (t)

=
∫ tδ

0

(
fX (t − x) − fX (t)

(
1 + αX

x

t

))
fY (x) dx +

∫ t/2

tδ

fX (t − x) fY (x) dx

− fX (t) (FY(tδ)) − αX

fX (t)

t

∫ t

tδ

xfY (x) dx

≤ fX (t)

t
μY (t) ε + FY(δt)f ∗

X (t) − fX (t) FY(tδ) − αX

fX (t)

t

∫ t

tδ

xfY (x) dx

= αX

fX (t)

t

(
μY (t)

ε

αX

−
∫ t

tδ

xfY (x) dx

)
+ FY(δt)

(
f ∗
X (t) − fX (t)

)
= αX

fX (t)

t
μY (t)

(
ε

αX

− 1

μY (t)

∫ t

tδ

xfY (x) dx + FY(δt)f ∗
X (t) t

αXfX (t) μY (t)
− FY(δt)t

αXμY (t)

)
.

Therefore, the announced result follows if we can prove that

ε

αX

− 1

μY (t)

∫ t

tδ

xfY (x) dx + FY(δt)f ∗
X (t) t

αXfX (t) μY (t)
− FY(δt)t

αXμY (t)
= o(1). (B3)

Since fX(·) is regularly varying, FY(δt) is trivially O(FY(t)). In addition, note that the convergence of
slowly varying functions is uniform on compact sets (Bojanic and Seneta, 1971), that is, if L is a slowly
varying function, then for every [a, b], 0 < a < b < ∞, limx→+∞ supa�λ�b

∣∣∣ L(λx)
L(x)

− 1
∣∣∣= 0. Since fX(x) =

x−αX LX(x) for a slowly varying function LX ,

f ∗
X (t) = sup

1
2 <λ<(1−δ)

fX (λt) ≤
( t

2

)−αX

sup
1
2 <λ<(1−δ)

LX (λt) ,

and, therefore, f ∗
X (t) is O(fX(t)). In consequence, (B3) holds if

FY(t) = o

(
μY (t)

t

)
and

∫ t

tδ

xfY (x) dx = o (μY (t)) .

Note that if μY is finite (αY > 2), these assertions come as a direct consequence of Proposition 1.5.8
in Bingham et al. (1987), which states that limt→∞

t2fY (t)
μY (t)

= −αY + 2, and the fact that F̄Y(·) is a regu-
larly varying function with index αY − 1. Thus, we consider the case αY = 2. By Proposition 1.5.9.a in
Bingham et al. (1987), μY(t) is slowly varying. Therefore,

∫ t

tδ
xfY (x) dx = μY(t)

(
1 − μY (δt)

μY (t)

)
= o(μY(t)).

For αY = 2, Formula (1.5.8) in Bingham et al. (1987) states that μY (t)
tF̄Y (t)

→ ∞, and, hence FY(t) = o
(

μY (t)
t

)
.

The second assertion follows as min{αX , αY} > 2 implies that the random variables X and Y have finite
first order moments. �

C Proof of Corollary 5.3
Considering expression (5.1), we can obtain:
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(1) If αCX > αCY + 2, then fCX (s) = o(
fCY (s)

s2 ). Hence, as s → ∞,:

mX(s) = pXμCX

sfCY (s)

μCY

(
1 + αCY

1
s
(

σ 2
CX

μCX
+ μCX ) (1 + o (1))

)
+ o(1)

sfCY (s)

μCY

(
1 + pXμCX

s
αCY (1 + o (1))

)+ o(1)

= pXμCX

⎛⎜⎝1 +
αY

1
s

σ 2
CX

μCX
(1 + o (1))

1 + pXμCX
s

αCY (1 + o (1))

⎞⎟⎠
= pXμCX

(
1 + αCY

1

s

σ 2
CX

μCX

(1 + o (1))

)
.

(2) If αCY + 2 > αCX > αCY + 1, then fCX (s) = o
(

fCY (s)

s

)
and fCY (s) = o(s2fCX (s) ). Hence, we can

write:

mX(s) =
fCY (s)

μCY

(
1 + αCY

μC̃X
s

(1 + o (1))
)

+ fCX (s)

μCX

(
s

pY μCY
+ (αCX − 1) (1 + o (1))

)
fCY (s)

μCY

(
1

pXμCX
+ αCY

s
(1 + o (1))

)
+ o

(
fCY (s)

s

)
= pXμCX

fCY (s)

μCY

(
s + αCY μC̃X (1 + o (1))

)+ s
fCX (s)

μCX

(
s

pY μCY
+ (αCX − 1) (1 + o (1))

)
fCY (s)

μCY

(
s + pXμCX αCY (1 + o (1))

)
= pXμCX

⎛⎝1 + o(1) +
s

fCX (s)

μCX

(
s

pY μCY
+ (αCX − 1) (1 + o (1))

)
fCY (s)

μCY

(
s + pXμCX αCY (1 + o (1))

)
⎞⎠

= pXμCX + s
pX

pY

fCX (s)

fCY (s)
(1 + o (1)) .

(3-4) If αCY + 1 > αCX > αCY , then, we can write:

mX(s) =
fCY (s)

μCY

(
1 + αCY

μC̃X
s

(1 + o (1))
)

+ fCX (s)

μCX

(
s

pY μCY
+ (αCX − 1) (1 + o (1))

)
fCY (s)

μCY

(
1

pXμCX
+ αCY

s
(1 + o (1))

)
+ fCX (s)

μCX

(
1

pY μCY
+ αCX

s
(1 + o (1))

)
= s

pX

pY

fCX (s)

fCY (s)

fCY (s)

fCX (s)μCY

pY

s
(1 + o (1)) + 1

μCX

(
1

μCY
+ pY (αCX −1)

s
(1 + o (1))

)
1

μCY μCX
+ pXαCY

μCY s
(1 + o (1)) + fCX (s)

fCY (s)μCX

(
pX

pY μCY
+ pXαCX

s
(1 + o (1))

)
= s

pX

pY

fCX (s)

fCY (s)
(1 + r(s)).

where

r(s) =
pY

s

fCY (s)

fCX (s)μCY
(1 + o (1)) + 1

s

(
pY (αCX −1)

μCX
− pXαCY

μCY

)
(1 + o (1)) − pX

pY

fCX (s)

fCY (s)

(
1

μCY μCX
(1 + o (1))

)
1

μCY μCX
+ pXαCY

sμCY
(1 + o (1)) + pX

pY

fCX (s)

fCY (s)

(
1

μCY μCX
+ pY αCX

μCX s
(1 + o (1))

) .

We can proceed analogously as in Proposition 4.7 and differ among the different frameworks.
If αCX − αCY > 1

2
, then, the dominant term in the numerator is fCY (s)

sfCX (s)
and we can write r(s) =

pY μCX fCY (s)

sfCX (s)
(1 + o (1)). However, if αCX − αCY < 1

2
, then the dominant term is fCX (s)

fCY (s)
and r(s) =

− pX

pY

fCX (s)

fCY (s)
(1 + o (1)).
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(5) If α = αCY = αCX and and fCX (s) = cfCY (s) (1 + o (1)) with c > 0, then, we can write:

mX(s) =
fCY (s)

μCY

(
1 + α

μC̃X
s

(1 + o (1))
)

+ cfCY (s)

μCX

(
s

pY μCY
+ (α − 1)

)
(1 + o (1))

fCY (s)

μCY

(
1

pXμCX
+ α

s
(1 + o (1))

)
+ cfCY (s)

μCX

(
1

pY μCY
+ α

s

)
(1 + o (1))

= s

1
sμCY

(1 + o (1)) + c
μCX

(
1

pY μCY
+ (α−1)

s

)
(1 + o (1))

1
μCY

(
1

pXμCX
+ α

s
(1 + o (1))

)
+ c

μCX

(
1

pY μCY
+ α

s

)
(1 + o (1))

= c
pY

pX
+ c

s
μCX pY

c s
(1 + o (1)) + (

1 + pYμCY
(α−1)

s

)
(1 + o (1))(

1 + α

s

pY(c μCY +μCX )
pY
pX

+c

)
(1 + o (1))

= c
pY

pX
+ c

s

⎛⎜⎝1 + 1

s

μCX pY

c
(1 + o (1)) + (

pYμCY (α − 1)
)
(1 + o (1)) − α

pY(c μCY +μCX )
pY
pX

+c(
1 + α

s

pY(c μCY +μCX )
pY
pX

+c

)
(1 + o (1))

⎞⎟⎠
= c

pY

pX
+ c

s

(
1 + 1

s

(
μCX pY

c
− pYμCY + α

pY
pY

pX
+ c

(
pY

pX

μCY − μCX

))
(1 + o (1))

)
.

D Extension to more than two terms in the sum
Until now, we have considered sums of two random variables X and Y . In applications to risk sharing,
pools often comprise many participants so this section studies the non-decreasingness of conditional
expectations given sums of n random variables. Precisely, let us consider n independent, nonnegative,
and continuous random variables X1, X2, . . . , Xn with regularly varying densities. Let Sn =∑n

i=1 Xi. Note
that, under a risk-sharing pool considering the conditional mean risk rule, the contribution of the risk
holder i, mi(s) = E[Xi | Sn = s], only depends on the pair (Xi, Sn − Xi). Since regularly varying densities
are closed under convolutions, Sn − Xi has a regularly varying density and, therefore, the results obtained
in the bivariate framework can be extended to a higher dimensional setting. Formally, the following result
states the closure under convolutions of random variables with regularly varying densities. Proceeding
by induction, the result comes as a direct consequence of Theorem 2.1 in Bingham et al. (2006).

Corollary D.1. Let fX1 , fX2 , . . . , fXn be the probability density functions of X1, X2, . . . , Xn which are reg-
ularly varying with respective indices α1, α2, . . . , αn. If αj < αk, fork j, where αj = min{α1, . . . , αn}, so
that fXk (x) = o(fXj (x)) for k �= j, then the convolution product fX1+X2+...+Xn of fX1 , fX2 , . . . , fXn satisfies

lim
s→∞

fX1+X2+...+Xn (s)

fXj (s)
= 1

and is a regularly varying density with index αj.

Let Sn =∑n
j=1 Xj be the total loss of the pool, where the subscript n emphasizes the number of eco-

nomic agents forming the pool. The contribution paid ex post by participant i is mi(s) = E[Xi | Sn = s].
We are now in a position to determine a sufficient condition for the existence of a sabotage opportunity.

Proposition D.2. Consider independent, nonnegative and continuous random variables X1, . . . , Xn with
regularly varying density functions fX1 , fX2 , . . . , fXn having respective tail indices α1, . . . , αn. Let us con-
sider j(i) the index of the minimum tail index excluding αi. That is, αj(i) := min{α1, . . . αi−1, αi+1 . . . αn}
and let us assume that αj(i) < αk for all k �= j(i). If αi > αj(i) + 1 then

1. lims→∞ mi(s) = E[Xi],
2. there exists a nonempty interval in (0, ∞) where mi(·) is decreasing.
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Figure D1. Functions s �→ E[Xi | S4 = s] for i = 1, 2, 3, 4 where S4 =∑4
i=1 Xi and Xi ∼ P(I)(1, αi) with

α1 = 2.9, α2 = 1.6, α3 = 2.4, α4 = 2.

Proof. Using the representation of the conditional expectation given the sum in terms of size-biasing
provided in Proposition 2.2 in Denuit (2019), we can write

mi(s) = E [Xi]
fSn−Xi+X̃i (s)

fSn (s)
= E [Xi]

fSn−Xi+X̃i
(s)

fXj(i) (s)

fSn (s)

fXj(i) (s)

.

Hence, by Corollary D.1,

lim
s→∞

fSn−Xi+X̃i (s)

fXj(i) (s)
= lim

s→∞
fSn (s)

fXj(i) (s)
= 1 and lim

s→∞
mi(s) = E[Xi].

The latter assertion follows as in the proof of Proposition 3.3, taking into account that mi(0) = 0,
lims→∞ mi(s) = E [Xi] and E[Xi] = E[mi(Sn)]. This ends the proof. �

A direct consequence of this result is that once any two indices differ in more than one unit, there
exists an index i such that mi(·) decreases in an interval.

Corollary D.3. Consider independent, nonnegative and continuous random variables X1, . . . , Xn with
regularly varying density functions having respective indices α1, . . . , αn. If there exists i and j(i) such that
αj(i) = min{α1, . . . αi−1, αi+1 . . . αn} with αj(i) < αk for k �= j(i) and αj(i) + 1 < αi, then there is an interval
where mi(·) is decreasing.

Corollary D.3 indicates that in a pool where the risks Xi have regularly varying densities, a necessary
condition to avoid sabotage is to remove participants whose index differ by more than one unit from the
others. The following example illustrates this situation.

Example D.4. Let us consider four independent random variables Xi ∼ P(I)(1, αi) (i = 1, 2, 3, 4) with
α1 = 2.9, α2 = 1.6, α3 = 2.4, α4 = 2. Since α1 > α2 + 1, we know from Proposition D.2 that there must
be an interval where E[X1 | S4 = s] decreases with s, which is indeed visible on Figure D1. Specifically,
considering a pool with the four risks included, Figure D1 shows the contribution of each participant
in terms of the total loss, where we can see that E[X1 | S4 = s] converges to E[X1] and starts decreasing
when S4 exceeds a threshold around 15. Therefore, the no-sabotage condition does not hold.
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(a) (b)

Figure D2. Contributions considering Xi ∼ P(I)(1, αi) (i = 1, 2, 3, 4) with α1 = 2.9, α2 = 1.6, α3 = 2.4,
α4 = 2 where S3 = X1 + X3 + X4 and S′

3 = X1 + X3 + X4.

Removing either X1 or X2 from the pool so that no index differs by more than one unit from the others,
there is no evidence of a sabotage scenario. The contributions in the new pools, without participant 1 or 2
appear in Figure D.4(a) and (b), and we can observe that, for these numerical examples, all contributions
increase in the sum.

E Extension considering the Farlie–Gumbel–Morgenstern copula
The results obtained throughout the paper are based on the assumption that the random variables are
independent. Consequently, their conclusions may not be directly applicable in scenarios where the
random variables exhibit correlation. However, considering that the dependence structure between the
variables follows a Farlie–Gumbel–Morgenstern (FGM) copula, it is still possible to study the asymp-
totic level of the conditional expectation. The FGM copula is a dependence structure that introduces
only light dependence. However, it can serve to model both positive and negative dependence. Due to
its simplicity and practical representations, the family of FGM copulas has been widely employed in
risk management and in the actuarial literature (see, for instance, Bargès et al., 2011 or Mao and Yang,
2015). In particular, within a risk-sharing framework, in Blier-Wong et al. (2023), the expression of
the contributions under the conditional mean risk-sharing rule is studied for vectors with mixed Erlang
distributed marginals and the FGM copula. In addition, in Bargès et al. (2009), TVaR-based insurance
capital allocation is discussed for risks following exponential marginals and the FGM copula.

The FGM copula is defined as

C(u, v) = uv [1 + λ(1 − v)(1 − u)] for u, v ∈ [0, 1], λ ∈ [ − 1, 1].

The density is therefore given by

c(u, v) = 1 + λ(1 − 2v)(1 − 2u) for u, v ∈ [0, 1], λ ∈ [ − 1, 1].

If X,Y have respective densities and survival functions given by fX , fY , F̄X , F̄Y and copula FGM with
parameter λ ∈ [ − 1, 1], then the joint density is given by

f (x, y) = fX(x)fY(y)
(
1 + λ(2F̄X(x) − 1)(2F̄Y(y) − 1)

)
= fX(x)fY(y)

(
1 + λ − 2λF̄X(x) − 2λF̄Y(y) − 4λF̄Y(y)F̄X(x)

)
(E1)

For a random variable Z with regularly varying density, let us denote by Z∗ the random variable with
density

fZ∗ (x) = 2F̄Z(x)fZ(x). (E2)
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The density fZ∗ (·) is regularly varying with tail index 2α − 1. Considering X∗, Y∗ the variables derived
as described, the joint density of two variables X,Y with a FGM copula can be written as a linear
combination of four joint densities of independent random variables,

f (x, y) = (1 + λ)fX(x)fY(y) − λfX∗(x)fY(y) − λfY∗ (y)fX(x) + λfX∗ (x)fY∗ (y). (E3)
Hence, we can extend some of the results derived under independence as follows.

Proposition E.1. Let (X,Y) be a random vector with an FGM copula with parameter λ ∈ [− 1, 1]. Let
X,Y posses regularly varying densities fX(·) and fY(·) with respective indices αX and αY verifying αX > αY

and respective associated slowly varying functions LX(·) and LY(·). Let X∗ be defined from X according
to (E2).

(a) If αY + 1 > αX > αY , then mX(s) → ∞ as s tends to infinity.
(b) If αX > αY + 1 then lims→∞ mX(s) = (1 + λ)E[X] − λE[X∗].

Proof. The conditional expectation is given by

mX(s) =
∫ s

0
xf (x, s − x)dx

fX+Y(s)
.

Let us denote by XI , YI two independent variables such that XI
d= X, YI

d= Y . In a similar manner, we
denote X∗

I , Y∗
I the variables obtained as in (E2) to emphasize that they are independent. Then, using

(E3), we have
fX+Y(s) = (1 + λ)fXI+YI (s) − λfX∗

I +YI (s) − λfY∗
I +XI (s) + λfX∗

I +Y∗
I
(s). (E4)

In a similar form ∫ s

0

xf (x, s − x)dx = (1 + λ)E[X]fX̃I+YI (s) − λE[X∗]fX̃∗
I +YI

(s)

−λE[X]fX̃I+Y∗
I
(s) + λE[X∗]fX̃∗

I +Y∗
I
(s). (E5)

Since the densities involved are regularly varying, taking (2.1) into account and since, for any random
variable Z with regularly varying density, as s tends to infinity, fZ∗ (s) = o(fZ(s)), we can write

mX(s) =
(
(1 + λ)E[X]

(
fX̃I (s) + fYI (s)

)− λE[X∗]fYI (s) − λE[X]fX̃I (s)
)
(1 + o(1))(

(1 + λ)
(
fXI (s) + fYI (s)

)− λfYI (s) − λfXI (s)
)
(1 + o(1))

.
�

Similarly as in Proposition 3.7, we can conclude that, if αY + 1 > αX > αY , then, as s tends to infinity,
fXI (s) = o(fYI (s)) and fYI (s) = o(fX̃I (s)) and m(s) → ∞. Analogously as in Proposition 3.3, if αX > αY + 1,
then fXI (s) = o(fYI (s)) and fX̃I (s) = o(fYI (s)) and

lim
s→∞

m(s) = (1 + λ)E[X] − λE[X∗]. (E6)

Example E.2. Consider two random variables X ∼ P(I)(θX , αX) and Y ∼ P(I)(θY , αY) with FGM
copula with dependence parameter λ ∈ [ − 1, 1] and with αX > αY + 1, θX , θY > 0. Then, fX∗ (x) =
θ

2(αX−1)

X 2 (αX − 1) x−2αX+1, X∗ ∼ P(I)(θX , 2αX − 1), and by (E6):

lim
s→∞

mX(s) = (1 + λ)E[X] − λE[X∗].

Figure E1 shows the asymptotic level of mX(·) considering θX = θY = 1, λ = −0.5, αX = 7 and αY = 3. E

Let us remark that

E[X∗] = 2E[X]
∫ ∞

0

P[X > x]
x

E[X]
f (x)dx = 2E[X]P[X > X̃].

Therefore, the limit in Proposition E.1(b) can also be written as
(1 + λ)E[X] − λE[X∗] = E[X]

(
1 + λ

(
1 − 2P[X > X̃]

))
. (E7)
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Figure E1. Conditional expectation mX(·) when X ∼ P(I)(θX , αX) and Y ∼ P(I)(θY , αY) with FGM
copula with dependence parameter λ with θX = θY = 1, λ = −0.5, αX = 7 and αY = 3.

It is direct to see, as X �LR X̃, where �LR stands for the likelihood ratio order (see Shaked and
Shanthikumar, 2007), that P[X > X̃] ≤ 1

2
and, therefore,

(
1 − 2P[X > X̃]

)≥ 0. Intuitively, if X is a ran-
dom variable with regularly varying density and tail index αX , considering a greater αX would imply
that X̃ is more similar to X and, therefore, P[X > X̃] approaches 1

2
. For instance, if X ∼ P(I)(θ , αX),

then P[X > X̃] = αX−1
2αX−1

, which converges to 1
2

as αX tends to infinity. Therefore, we can intuitively
expect that for variables with heavier tails, the dependence parameter has less influence on the limit
in Proposition E.1(b) because the term

(
1 − 2P[X > X̃]

)
is smaller.

Since
(
1 − 2P[X > X̃]

)≥ 0, if λ ≤ 0, then E[X]
(
1 + λ

(
1 − 2P[X > X̃]

))≤ E[X] and proceeding as
in Proposition 3.3, if αX > αY + 1, there exists a nonempty interval in (0, ∞) where mX(·) is decreasing.
On the other hand, if λ > 0, we cannot ensure the existence of a non-empty interval but, since the limit
is finite, mX(·) is necessarily bounded. Under the framework of a risk-sharing pool, this means that,
even if we cannot guarantee the existence of a sabotage scenario, the risk holder of X may exaggerate
the loss up to infinity with no great consequence (as their contribution is bounded). Similarly to the
sabotage framework, this would neither be a desirable characteristic of a risk-sharing scheme. Therefore,
if the dependence among risks follows an FGM copula, we can obtain similar conclusions as in the
independence framework. Under this dependence structure, it is neither advisable to form risk-sharing
pools when the tail indexes of the densities involved differ in more than one unit.
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