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Upper bounds on the growth of instabilities in gyrokinetic systems have recently been
derived by considering the optimal perturbations that maximise the growth of a chosen
energy norm. This technique has previously been applied to two-species gyrokinetic
systems with fully kinetic ions and electrons. However, in tokamaks and stellarators, the
expectation from linear instability analyses is that the most important kinetic electron
contribution to ion-scale modes often comes from the trapped electrons, which bounce
faster than the time scale upon which instabilities evolve. As a result, a fully kinetic
electron response is not required to describe unstable modes in many cases. Here, we
apply the optimal mode analysis to a reduced two-species system consisting of fully
gyrokinetic ions and bounce-averaged electrons, with the aim of finding a tighter bound
on ion-scale instabilities in toroidal geometry. This analysis yields bounds that are greatly
reduced in comparison with the earlier two-species result. Moreover, if the energy norm
is properly chosen, wave–particle resonance effects can be captured, reproducing the
stabilisation of density-gradient-driven instabilities in maximum-J devices. The optimal
mode analysis also reveals that the maximum-J property has an additional stabilising
effect on ion-temperature-gradient-driven instabilities, even in the absence of an electron
free energy source. This effect is explained in terms of the concept of mode inertia, making
it distinct from other mechanisms.

Keywords: fusion plasma, plasma nonlinear phenomena, plasma instabilities

1. Introduction

In a recent series of papers (Helander & Plunk 2021, 2022; Plunk & Helander 2022,
2023) a new theory has been developed that bounds the growth of linear and nonlinear
instabilities in gyrokinetic systems by considering the energy balance that must be obeyed
by these systems (from now on we will refer to these publications as Parts 1, 2 and 3,
respectively). These upper bounds are attained by the optimal modes of the system – states
of the gyrokinetic system that maximise the growth of a chosen ‘energy norm’ within the
limits allowed by energy balance. The optimal modes form a complete orthogonal basis
for the space of distribution functions. Unlike the ‘normal’ modes of the linear gyrokinetic
operator (solutions to the gyrokinetic system which evolve as exp(−iωt)), the velocity
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space dependence of the optimal modes is significantly simpler. Moreover, the optimal
modes possess a closed-form solution in terms of a finite set of gyrofluid-like moments,
without any closure approximation, resulting in a low-dimensionality eigenvalue problem
for the optimal growth rate, which can be solved at low computational cost. This makes
the optimal modes an attractive lens with which to explore gyrokinetic systems.

There is a wide range of energy norms that can be used in these optimal mode analyses.
In Parts 1 and 2 the bounds were developed using the Helmholtz free energy as an energy
norm, culminating in upper bounds on fully electromagnetic, multispecies instabilities.
Part 3 extended the optimal mode analysis by considering the generalised free energy,
a linear combination of the Helmholtz free energy and the electrostatic energy, for a
single kinetic species (kinetic ions with adiabatic electrons). The optimal growth of this
generalised free energy yields the lowest possible upper bound that can be formed from the
balance of these two energies, as will become clearer below. Importantly, the generalised
free energy adds an explicit dependence on magnetic geometry into the optimal mode
analysis by retaining the wave–particle interaction effects, including magnetic drifts,
which contribute in a physically transparent way to the evolution of the field energy of
the system.

While the bounds derived for the system with kinetic ions and adiabatic electrons have
been found to be quite close to the results of linear gyrokinetic simulations in tokamaks and
stellarators, the upper bounds for two kinetic species in the electrostatic limit derived in
Part 2 tends to be several times larger than the simulated linear instability growth in these
geometries (Podavini et al. 2025). This is most evident at small values of the perpendicular
wavenumber k⊥, where the simulated growth rates in the toroidal geometries tend to zero,
and the upper bound tends to a non-zero value of considerable size. This discrepancy
in qualitative behaviour is because the upper bound of Part 2 is geometry independent
and must also bound the growth of instabilities in closed-field-line geometries, like the
z-pinch (Ricci et al. 2006), which exhibit finite growth as k⊥ → 0. As we will see, the
difference in these geometries lies in the transit average of the passing-electron response,
which may be non-adiabatic in closed-field-line geometry but is largely adiabatic on the
typical instability time scale in toroidal geometry, where the trapped electrons dominate
the non-adiabatic electron response.

In this work, we aim to increase the applicability of the optimal mode theory
with a kinetic electron response to stellarator and tokamak geometry. This is done
by considering a reduced two-species system, in the electrostatic limit, in which the
electron transit time along the magnetic field is assumed to be much faster than the
evolution of the instabilities. In toroidal geometry, this eliminates the passing-electron
contribution to instabilities, at lowest order, leaving only a bounce-averaged trapped
electron response. The resulting gyrokinetic system is often used to describe electrostatic
instabilities such as trapped-electron modes (TEMs) (Helander, Proll & Plunk 2013) and
ion-driven TEMs (ITEMs) (Plunk, Connor & Helander 2017), but is also applicable to
ion-temperature gradient modes (ITGs) (Proll et al. 2022). We note that we exclude modes
such as the electron-temperature-gradient mode (ETG) (Dorland et al. 2000; Plunk et al.
2019) and the universal mode (Helander & Plunk 2015; Landreman, Plunk & Dorland
2015) which evolve on time scales comparable to, or shorter than, the electron transit time.

To include wave–particle resonance effects, particularly involving the magnetic drifts,
we construct the generalised free energy (of which the Helmholtz free energy is a special
case) of the system with gyrokinetic ions and bounce-averaged electrons. We first study
the Helmholtz free energy limit, which is directly comparable with the two-species result
of Part 2. We then consider the full generalised free energy and explore the impact of
magnetic curvature on the optimal modes and the resulting upper bounds. We confirm
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that the previously known linear stability benefits of maximum-J magnetic geometries
associated with the presence of an electron free energy source (Proll et al. 2012; Helander
et al. 2013) are exhibited by the optimal modes. The optimal mode analysis also reveals
an additional stabilising effect that the maximum-J property has on ITGs – even in the
absence of an electron free energy source. We explain this effect through the concept of
mode inertia, which is sensitive to the degree of depletion of the Boltzmann response by
the trapped electrons. This is distinct from other mechanisms described in previous works
that enhance microstability in maximum-J stellarators, which involve a lack of resonance
between bounce-averaged curvature and diamagnetic drifts.

2. Gyrokinetic system

To begin, we consider a local, electrostatic gyrokinetic system, where the domain is
a narrow flux tube centred around a magnetic field line in the plasma. In this local
approximation, a Fourier decomposition may be applied in the directions perpendicular to
the magnetic field assuming periodicity in these coordinates. The electrostatic gyrokinetic
equation for a species a, and the Fourier component k is

∂ga,k

∂t
+ v‖

∂ga,k

∂l
+ iωdaga,k + 1

B2

∑
k′

B · (k × k′)δφk′J0a ga,k−k′

= eaFa0

Ta

(
∂

∂t
+ iωT

∗a

)
δφkJ0a, (2.1)

where ga,k is the non-adiabatic part of the perturbed distribution function ga(R,Ea, μa, t)
= δf (r, v, t)+ eaδφ(r, t)Fa0/Ta, Fa0 is the background Maxwellian distribution and δφ
is the electrostatic potential. The phase-space coordinates for the gyrocentre distribution
function ga are the magnetic moment, μa = mav

2
⊥/(2B) and the kinetic energy, Ea =

mav
2/2. We also use Clebsch magnetic coordinates, in which the magnetic field is of the

form B = ∇ψ × ∇α, where ψ is the toroidal magnetic flux (acting as a radial coordinate
in toroidal geometry), and α is the binormal coordinate, which labels different field lines
on surfaces of constant ψ . In these coordinates, the field-line following coordinate is l, the
unit vector along the magnetic field is b = B/B and the perpendicular wavenumber is k =
k⊥ = kα∇α + kψ∇ψ . The argument of the Bessel function is J0 = J0(k⊥v⊥/Ωa) with the
gyrofrequency defined as Ωa = eaB/ma. The magnetic drift frequency is ωda = k⊥ · vd,
where vd = b × (v2

⊥/2∇ ln B + v2
‖κ)/Ωa. In the low-plasma pressure limit (assuming

∇ ln B ≈ κ), the drift frequency can be approximated by

ωda ≈ ω̂da(l)

(
v2

⊥
2v2

Ta
+ v2

‖
v2

Ta

)
, (2.2)

where vTa = √
2Ta/ma is the thermal speed and ω̂da(l) is a geometry dependent factor. The

energy-dependent diamagnetic drift frequency is

ωT
a = ω∗a

[
1 + ηa

(
v2

v2
Ta

− 3
2

)]
, (2.3)

where the plasma gradients enter via ω∗a = (kαTa/ea) d ln na/dψ and the gradient ratio
ηa = d ln Ta/d ln na. In the electrostatic limit, the system is closed by the quasineutrality
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condition ∑
a

e2
ana

Ta
δφk =

∑
a

ea

∫
ga,kJ0a d3v. (2.4)

In Clebsch coordinates, we may write the nonlinear term of (2.1) in the more convenient
form

1
B2

∑
k′

B · (k × k′)δφk′J0a ga,k−k′ =
∑

k′

(
kψk′

α − kαk′
ψ

)
δφk′J0a ga,k−k′ . (2.5)

3. Bounce-averaged electrons

To simplify the electron gyrokinetic equation, we employ a standard ordering. We
assume that the time scale of the dynamics of interest in the gyrokinetic system τD (i.e.
the growth time of an instability) is much longer than the time scale on which thermal
electrons transit the typical parallel length scale of the system, such that τD 
 L/vTe.
Expanding the electron distribution in orders of L/(vTeτD) as ge,k = g0

e,k + g1
e,k . . . we find

that, to leading order,

v‖
∂g0

e,k

∂l
= 0, (3.1)

such that the lowest-order electron distribution function is constant along the magnetic
field line. This, it turns out, is a highly consequential result of this ordering, and how it
is interpreted is the key to tailoring the forthcoming optimal mode analysis to capture the
behaviour of the electron response for ion-scale instabilities that satisfy our ordering in
toroidal geometry.

The constancy of g0
e = g0

e(Ee, μe, ψ, α) in l implies that its value is entirely determined
by the parallel boundary conditions. For the passing particles in toroidal geometry, and for
kα �= 0, the relevant boundary conditions are the so-called ‘incoming’ boundary conditions
of ballooning space where

ge,k(v‖>0, l = −∞) = 0, (3.2)

ge,k(v‖<0, l = ∞) = 0. (3.3)

As explained in an appendix by Plunk et al. (2014), these boundary conditions are required
to preserve causality (Connor, Hastie & Taylor 1980), such that information from the
boundary, which is infinitely far away, cannot be communicated in a finite time. Therefore,
it must be the case that g0

e(kα �= 0) = 0 in the passing region of velocity space to satisfy the
boundary conditions. For the kα = 0 component, ballooning space boundary conditions
are not appropriate because there is no mechanism that should cause the mode to decay
along the flux tube. Thus, for kα = 0 the electron distribution function has a zeroth-order
contribution from the passing electrons.

The trapped particles on the other hand (in the absence of collisions), are confined to a
limited region of ballooning space. As such, the appropriate boundary conditions for these
particles are the ‘turning-point’ boundary conditions (Connor et al. 1980),

ge,k(v‖>0, l = l1) = ge,k(v‖<0, l = l1), (3.4)

ge,k(v‖>0, l = l2) = ge,k(v‖<0, l = l2) (3.5)

where l1,2 are the bounce points for a particle defined by λB(l1,2) = 1, where λ is the
particle pitch angle, λ = v2

⊥/(v
2B). These boundary conditions can be satisfied with
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g0
e,k �= 0, and so, for kα �= 0, only the trapped electrons contribute to the non-adiabatic

electron response in this limit. Note that this is not the case in closed-field-line geometries
where the parallel boundary conditions can be periodic, allowing g0

e,k to be non-zero in the
passing region of velocity space to zeroth order.

At next order in L/(vTeτD), we find

∂g0
e,k

∂t
+ v‖

∂g1
e,k

∂l
+ iωdeg0

e,k +
∑

k′

(
kψk′

α − kαk′
ψ

)
δφk′J0eg0

e,k−k′

= −eFe0

Te

(
∂

∂t
+ iωT

∗e

)
δφkJ0e. (3.6)

We now define the bounce average as

(. . .) =

∫ l2

l1

(. . .) dl/v‖∫ l2

l1

dl/v‖

= 1
τB

∫ l2

l1

(. . .) dl√
1 − λB , (3.7)

where we have introduced the bounce time τB = ∫ l2
l1
(dl/

√
1 − λB).1 In pitch-angle

coordinates, the velocity space element is defined as

d3v =
∑
σ

πv2B dv dλ√
1 − λB , (3.8)

where σ = v‖/|v‖|. Applying the bounce average to (3.6) annihilates the g1
e,k contribution,

leaving an equation for g0
e,k. Additionally ordering k⊥ρe  1, where ρa = vTa/|Ωa|, for

simplicity and omitting the superscript ‘0’ for brevity gives

∂ge,k

∂t
+ iωdege,k +

∑
k′

(
kψk′

α − kαk′
ψ

)
δφk′ ge,k−k′ = −eFe0

Te

(
∂

∂t
+ iωT

∗e

)
δφk. (3.9)

We now consider (3.9) as the governing equation for the bounce-averaged electrons in our
gyrokinetic system, which is accurate to lowest order in L/(vTeτD). Here, we restrict our
view to toroidal geometry such that, for kα �= 0, ge is only non-zero in the trapped region
of velocity space.

4. Energy balance

In the limit of τD 
 L/vTe, we have a gyrokinetic system comprised of ions described
by (2.1), with finite ion-Larmor-radius effects, and bounce-averaged electrons described by
(3.9). As described in Parts 1, 2 and 3, we can construct energy norms for this two-species
system that are conserved by the nonlinear terms of the gyrokinetic equations. These
nonlinear invariants are the Helmholtz free energy, detailed in Parts 1 and 2, and the
electrostatic energy, described in Part 3. We now derive these invariants in our system
with bounce-averaged electrons.

1H ere τB has units of length, due to the cancellation of v when changing to pitch-angle coordinates, but is typically
referred to as the bounce time for trapped particles.
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4.1. Helmholtz free energy
For simplicity, we will consider a two-species hydrogen plasma with ni = ne = n, but the
following can be easily generalised to multiple ion species. Constructing the Helmholtz
free energy of this system proceeds in the same manner as in the general multispecies case,
shown in Part 2, except for our assumption that k⊥ρe  1. This is done by multiplying the
gyrokinetic equation for each species by the factor Tag∗

a,k/Fa0, integrating over velocity
space, applying the flux-tube average defined by

〈. . .〉 = lim
L→∞

∫ L

−L
(. . .)

dl
B

/∫ L

−L

dl
B

= lim
L→∞

1
V

∫ L

−L
(. . .)

dl
B
, (4.1)

summing the equations for both species, and taking the real part. Applying the flux-tube
average has no impact on the bounce-averaged electron equation, but we leverage the
identity 〈∫

f (v, l) d3v

〉
=
〈∫

f (v, l) d3v

〉
(4.2)

to allow us to combine the electron and ion contributions to the Helmholtz free energy.
After using quasineutrality, we arrive at the Helmholtz free energy, which looks similar to
that of Parts 1 and 2,

H(k, t) =
∑

a

〈
Ta

∫ |ga,k|2
Fa0

d3v − e2
an

Ta
|δφk|2

〉
. (4.3)

The Helmholtz free energy balance reads, as before,

∑
k

d
dt

H(k, t) = 2 Re
∑
a,k

〈
ea

∫
iωT

∗aδφkJ0ag∗
a,k d3v

〉

= 2
∑

k

(
Di(k, t)+ Dtr

e (k, t)
) ; (4.4)

the only difference here is that we have considered the limit J0e ≈ 1 and ge =
ge(Ee, μe, ψ, α) with ge = 0 for λ < 1/Bmax. We have denoted the electron contribution
with a ‘tr’ superscript to signify that only the trapped region of velocity space contributes.
The total free energy drive for a given k is then given by D(k, t) = Di(k, t)+ Dtr

e (k, t),
which determines the rate at which the system can grow given the presence of gradients in
the plasma.

4.2. Electrostatic energy
To construct the generalised free energy, as demonstrated for a single kinetic species
in Part 3, we first need to derive the electrostatic energy balance of the system with
bounce-averaged electrons. As shown in Appendix A of Part 3, the electrostatic energy
balance equation of a multispecies system may be constructed by applying the operator

Re
∑

k

〈∫
eaδφ

∗
kJ0a (. . .) d3v

〉
(4.5)

to the gyrokinetic equations for each species and summing over species. When this
operator is applied to the electron equation, the nonlinear term is annihilated. This can
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be shown by noticing that its contribution,

Re
∑
k,k′

〈∫ (
kψk′

α − kαk′
ψ

)
δφ∗

kδφk′ ge,k−k′ d3v

〉
, (4.6)

when expressed in pitch-angle coordinates (3.8) and using the identity (Helander et al.
2013) ∫ +∞

−∞
dl
∫ 1/B(l)

1/Bmax

dλ→
∫ 1/Bmin

1/Bmax

dλ
∑

j

∫ l2,j

l1,j

dl, (4.7)

where the subscript j denotes the different magnetic trapping wells along the flux tube,
becomes

Re
∑

k,k′,σ,j

π

V

∫ 1/Bmin

1/Bmax

dλ τB,j

∫ ∞

0
dv v2 (kψk′

α − kαk′
ψ

)
δφ

∗
kδφk′ ge,k−k′ . (4.8)

Since δφ∗
k = δφ−k and g∗

e,k = ge,−k, upon taking the real part, this contribution is
proportional to

(
kψk′

α − kαk′
ψ

) (
δφ−kδφk′ ge,k−k′ + δφkδφ−k′ ge,−k+k′

)
(4.9)

which changes sign if k and k′ are swapped, such that this term vanishes upon summation
over k and k′.

What remains of the electron equation when this operator is applied is

Re
∑

k

〈∫
−eδφ∗

k

(
∂ge,k

∂t
+ iωdege,k

)
d3v

〉

= Re
∑

k

〈
e2

Te

∫
Fe0δφ

∗
k

(
∂

∂t
+ iωT

∗e

)
δφk d3v

〉
. (4.10)

We may also use the identity (4.7) to rewrite the right-hand side of this expression. Upon
taking the real part of the right-hand side, the term proportional to ωT

∗e vanishes leaving

Re
∑

k

〈∫
−eδφ∗

k

(
∂ge,k

∂t
+ iωdege,k

)
d3v

〉
= 1

4V
d
dt

∑
k

e2n
Te

∑
j

∫ 1/Bmax

1/Bmin

τB,j|δφk,j|2 dλ.

(4.11)
Applying the operator (4.5) to the ion gyrokinetic equation proceeds similarly, albeit
without bounce averages, yielding

Re
∑

k

〈∫
eδφ∗

kJ0i

(
∂gi,k

∂t
+ v‖

∂gi,k

∂l
+ iωdigi,k

)
d3v

〉
= d

dt

∑
k

e2n
Ti

〈
Γ0i(b)|δφk|2

〉
,

(4.12)
where Γ0i(b) = I0(b) exp(−b) and b = k2

⊥ρ
2
i . If we now sum the contributions from the

ions and the electrons, given by (4.12) and (4.11), after using quasineutrality, we arrive at
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electrostatic energy balance,

d
dt

∑
k

E(k, t) = 2
∑

k

(
Ki(k, t)+ Ktr

e (k, t)
)
. (4.13)

Here, E(k, t) is electrostatic energy contained in the potential fluctuations in this system
given by

E(k, t) = e2n
Ti

[〈
(1 + τ − Γ0i(b)) |δφk|2

〉− τ

2V

∑
j

∫ 1/Bmax

1/Bmin

τB,j|δφj,k|2 dλ

]
, (4.14)

where τ = Ti/Te. The drive terms Ki(k, t) and Ktr
e (k, t) are the work performed by the

ions and trapped electrons on the electric field, respectively, and are given by

Ki(k, t) = − Re
〈
e
∫
δφ∗

kJ0i

(
v‖
∂gi,k

∂l
+ iωdigi,k

)
d3v

〉
, (4.15)

and

Ktr
e (k, t) = Re

〈
e
∫

iωdeδφ
∗
kge,k d3v

〉
. (4.16)

The total electrostatic energy drive is then K(k, t) = Ki(k, t)+ Ktr
e (k, t). The drive, K,

determines the rate at which the electrostatic energy of the system can grow, given the
energy transfer possible by wave–particle interactions. This form of electrostatic energy
balance is similar to forms derived by Helander et al. (2013) and Plunk et al. (2017), where
they were concerned with normal modes.

4.3. Generalised free energy
Now that we have found forms for both the electrostatic energy and the Helmholtz free
energy, we can construct the generalised free energy, as shown in Part 3, by considering
the linear combination

H̃ = H −�E, (4.17)

whereΔ is a real constant. Here H̃ can be guaranteed to be a positive-definite energy norm
ifΔ is chosen correctly; for example, any negative real choice ofΔ gives a positive definite
energy measure. However, positive-definiteness will not be fulfilled beyond a certain
magnitude of positive Δ. Note that H̃ does not define a single energetic norm, but rather
an infinite set of norms for each allowable value of Δ, all of which are invariant under
nonlinear interactions between different wavenumbers if Δ is chosen to be independent
of k (Plunk & Helander 2023). The Helmholtz free energy is a special case in this set of
energy norms for which Δ = 0.

The energy balance equation for H̃ is

d
dt

∑
k

H̃(k, t) = 2
∑

k

(D(k, t)−�K(k, t)) . (4.18)

This energy balance is now ‘aware’ of both the source of free energy growth (the
gradients), and the mechanism by which it is extracted (wave–particle interactions). As
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defined in Part 3, the instantaneous growth rate of the generalised free energy is

Λ = (D −�K) /H̃. (4.19)

Note that because H̃ defines a positive definite square norm, the linear, normal mode
growth γL is bounded by the maximum possible value of Λ,

γL � max
ge,gi

Λ. (4.20)

5. Optimal modes

We now seek the distribution functions gi and ge which extremise the value of Λ
– the optimal modes. These optimal modes are found by varying (4.19) with respect
to the distribution function for each species and seeking an extremum (δΛ = 0). This
optimisation procedure yields two coupled variational problems, one for each species,
given by

Λ
δH̃
δga

= δD
δga

−Δ
δK
δga

. (5.1)

However, when performing the variation, we must take into consideration that the electron
distribution function is independent of the field-line-following coordinate l. To enforce
this, when computing the variation of a functional F[ge] as

δF
δge

= d
dε

∣∣∣∣
ε=0

F[ge + εhe], (5.2)

the perturbation he is taken to be independent of l. To make the impact of l-independence
clearer, we define the inner product on the space of trapped-electron distribution functions
as

(ge, ge)tr = 2π

V

∑
j

∫ 1/Bmin

1/Bmax

dλ
∫ ∞

0
dv v2τB,jTe

|ge|2
Fe0

, (5.3)

which can be derived from the inner product for ion distributions (which we also use for
the ion distributions here) defined in Part 3,

(gi, gi) =
〈
Ti

∫ |gi|2
Fi0

d3v

〉
(5.4)

by expressing the velocity space integration in pitch-angle coordinates, under the
assumptions of l-independence, and ge being zero in the passing region of velocity space.

Evaluating the two variational problems (5.1) and expressing the result in terms of
the inner products defined above, for the respective species over which the variation is
performed, yields two coupled eigenvalue problems for the optimal modes and the growth
rate Λ,

Λ
∑

b

H̃abgb =
∑

b

(Dabgb −�Kabgb) , (5.5)

where the operators H̃ab, Dab and Kab are given in Appendix A. Here, and from now on,
we will omit the subscript ‘k’ for simplicity. These operators are expressed in terms of a
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finite set of velocity-space moments of the distributions,

κ1a = 1
n

∫
gaJ0a d3v, (5.6)

κ2a = 1
n

∫ (
v2

v2
Ta

)
gaJ0a d3v, (5.7)

κ3e = 1
n

∫
f (l)(1 − λB/2)

(
v2

v2
Te

)
ge d3v, (5.8)

κ3i = 1
n

∫ (
v2

⊥
2v2

Ti
+ v2

‖
v2

Ti

)
giJ0i d3v, (5.9)

κ4i = 1
n

∫ (
v‖
vTi

)
giJ0i d3v, (5.10)

κ5i = 1
n

∫ (
v‖
vTi

)
gi
∂J0i

∂l
d3v, (5.11)

where we have written ω̂de(l) = ω̃def (l), f (l) is a dimensionless function which captures
the l-dependence of ω̂de, and ω̃de is a constant with units of inverse time. Note that, due
to the appearance of the bounce average in each of the electron operators in Appendix A,
the equation which results from the variation of the electron distribution function gives an
optimal ge which is independent of l as required.

This eigenvalue problem for the optimal mode growth has ‘full’ dependence on the
magnetic geometry of the flux tube, i.e. the magnetic field strength, the curvature and the
metric coefficients, all as a function of l. The system can be closed exactly in terms of the
moments κna by taking moments of the two equations given by (5.5). This results in an
8 × 8 system of integrodifferential equations which must be solved for the eigenvalue Λ.

This system of equations can be solved for any choice of Δ, for which H̃ is positive
definite, allowing us to compute the optimal mode growth rate for any element in the set
of energy norms defined by H̃. Thus, for a given scenario (e.g. plasma parameters and
geometry), we can seek the value of Δ which corresponds to the most restrictive norm on
the dynamics of the system within this set. This will give the tightest possible bound on
linear instability growth in accordance with (4.20).

In practical terms, this means that for each scenario we can optimise over Δ to find the
tightest upper bound on instability growth in the system. Here, this optimisation will be
carried out numerically. As explained in Part 3, this tightest upper bound is guaranteed to
be less than (or equal to) that of the Helmholtz free energy at Δ = 0 and the magnitude
of the optimal Δ can be thought of as the relative importance of wave–particle effects in
restricting the optimal growth for a given scenario.

Note that, due to the complexity of the system in general magnetic geometry, we are
unable to derive generally the limiting value of Δ beyond which positive definiteness is
no longer guaranteed. However, this does not pose a problem when solving the system
numerically as positive definiteness can be checked at each step when optimising over Δ.

6. Solving the system in the slow-ion-transit limit

To make finding the solution to the eigenvalue problem more straightforward, we
consider the limit L/vTi 
 τD, where the ion transit time is much longer than the typical
instability time scale. In this limit, we can neglect the derivatives along the magnetic field
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line that arise due to the parallel ion motion. This reduces the dimensionality of the system
by removing κ4i and κ5i from the problem, leaving a 6 × 6 system of integroalgebraic
equations. Note that this ordering is the typical ‘toroidal’ ITG and TEM ordering often
applied in linear, normal-mode analyses (Biglari, Diamond & Rosenbluth 1989; Helander
et al. 2013; Plunk et al. 2017). The system of moment equations in this limit is given in
Appendix B.

6.1. A square magnetic well
We cannot make much progress towards an analytical solution of this system for a general
magnetic geometry. Thus, to gain some insight into the behaviour of the system, we
consider a ‘square’ magnetic field of the form

B(l) =
{

Bmin, −L/2 < l < L/2,
Bmax, |l| � L/2,

(6.1)

with ωda(l) = const. and k⊥ = const. In this simplified geometry, the κna eigenfunctions
are constant inside the magnetic well between −L/2 < l < L/2 and the κne moments must
vanish for |l| � L/2. In this case, there are two possibilities, either the ion moments must
also vanish in this region, or the electron moments are zero everywhere, corresponding
to the system with adiabatic electrons. Both of these solutions are realisable, with the
adiabatic electron solution being described in Part 3. Here, we concern ourselves with
the eigenfunctions that vanish at Bmax, whilst keeping in mind that the adiabatic electron
solution is also present in the system outside the well.

The solution to the eigenvalue problem in this square magnetic geometry is given in
appendix C and is denoted as ΛSW. We find that the value of Δ beyond which the system
is not guaranteed to be Hermitian (i.e. implying a violation of positive-definiteness) is

Δ <
1 + τ

Γ0 + τε
, (6.2)

where ε = √
1 − Bmin/Bmax. While we will mostly employ this solution as a benchmark

for comparison with numerical solutions, it can provide some insight into the behaviour of
the optimal mode system in this limit. Firstly, in the Helmholtz limit with Δ = 0, we
see that ΛSW reduces to an expression of the same form as the fully kinetic electron
Helmholtz bound derived in Appendix D of Part 2, with the only difference being the
lack of finite-electron-Larmor-radius effects in the solution here, and the reduction of the
size of the electron response by the trapped-particle fraction ε. Later, we will see that
this reduction of the population of electrons which contributes to instability growth has
a profound impact on the qualitative behaviour of the bound. Moreover, in the limit of
ε → 0, we recover the adiabatic electron Helmholtz bound of Part 1. Thus, the system
studied here behaves like an intermediate limit between the fully kinetic and adiabatic
electron limits.

For the generalised free energy case, with Δ �= 0, we also note that, in the limit of
ε → 0, ΛSW reduces to the adiabatic electron result of Part 3 in the toroidal ITG limit.

6.2. Numerically solving the system
The analytical solution in the square well, ΛSW, already provides some insight into
the behaviour of the eigenvalue problem but does not capture the subtleties of the
bounce-averaged electron response. In realistic magnetic geometries, the local curvature
along the field line may differ vastly from the bounce-averaged curvature felt by trapped
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electrons due to the variation of the magnetic field strength along the field line. As a
result, the ions and electrons in the bounce-averaged limit can experience drifts which are
vastly different. This could be captured in the square well geometry by stipulating that the
ions and electrons experience different curvatures in the well, but this would be a coarse
approximation of the realistic situation.

To get a better sense of the behaviour of the system in more realistic geometries,
we resort to numerically solving the system of integroalgebraic equations given by the
moment form of the kinetic eigenvalue problem (5.5) in the slow-ion-transit limit (L/vTi 

τD). For the sake of simplicity, we do this in simple, toy-model magnetic fields. Here, we
discretise the system on a basis of cosines in l, with zeros at the maximum of magnetic
field strength (the eigenfunctions of interest are purely even in a symmetric geometry, and
must vanish at B = Bmax), and use a recently developed numerical package to evaluate the
bounce averages and integrals over λ (Mackenbach et al. 2023a).

7. Helmholtz free energy (Δ = 0) bounds

For the case ofΔ = 0, the generalised free energy reduces to the Helmholtz free energy,
and the κ3a moments do not contribute to the system of equations. This reduces the
dimensionality of the system to 4 × 4. In this limit, the optimal modes do not depend
on magnetic curvature, but retain dependency on B(l) and the variation of k⊥ with l. We
will refer to the optimal mode growth rate of this system with Δ = 0 as the Helmholtz
bound. To get a sense of how the optimal modes behave in response to the presence of
different plasma gradients, we consider three cases: the case of a pure ion-temperature
gradient in the plasma (∇n = 0, ∇Te = 0) that we refer to as the ‘pure ITG case’; a pure
density gradient (∇Ti = 0, ∇Te = 0) case that we refer to as the ‘pure TEM case’; and
a case with only an electron temperature gradient (∇n = 0, ∇Ti = 0 which we refer to
as the ‘pure ETG-TEM case’. While we have only considered single gradients here for
simplicity, we note that the optimal modes can equally be applied to mixed gradient cases.

In figure 1, we show the Helmholtz bound of the system as a function of bi = k2
⊥ρ

2
i .

Here, for the numerical solution, we consider a magnetic field of the form B(l) = B0 −
B1 cos(l) with B0 = 1 and B1 = 0.2, and use k⊥ = const. for simplicity. In a sinusoidal
field such as this, the magnetic trapping wells are identical and are separated by identical
maxima (like in an omnigenous field), thus we need only solve the system in a single well
with −π � l � π. Note that numerically solving the integroalgebraic system results in a
spectrum of eigenvalues (an example of which can be seen in figure 2), which are all real
due to the Hermiticy of the system, and come in pairs of positive and negative values of
equal magnitude due to the time reversibility of the system (Plunk & Helander 2022). In
figure 1 we only show the fastest-growing optimal mode growth rate (the largest positive
eigenvalue) for clarity.

We also show the analytical Helmholtz bound of the system in a square magnetic
trapping well of the same depth, ΛSW, given by (C18) with Δ = 0. We compare these
Helmholtz bounds with the bounce-averaged trapped electron response to the Helmholtz
bounds with adiabatic electrons, given by (6.20) in Helander & Plunk (2022), and the
Helmholtz bound with fully kinetic electrons, taken from Appendix C of Plunk & Helander
(2022). For all gradients considered, we find that the numerical solution in the sinusoidal
magnetic field closely follows the analytical solution for the square magnetic trapping well.

For the pure ITG case (figure 1a), we find that the Helmholtz bound of the system with
the bounce-averaged trapped electron response lies between the bounds for the adiabatic
and fully kinetic electron systems. Moreover, in figure 2 we see that this is true of the
entire spectrum of solutions, which appear to be bounded from below in magnitude by
the adiabatic electron bound. We note that, for all gradients, the optimal mode growth
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(a) (b)

(c)

FIGURE 1. Optimal mode growth ratesΛ of the Helmholtz free energy with τ = 1 as a function
of k2

⊥ρ
2
i for the various electron models. Panel (a) shows the pure ITG case, (b) shows the pure

TEM case and (c) shows the pure ETG-TEM case.

FIGURE 2. Spectrum of numerical solutions to the kinetic eigenvalue problem (5.5) for a
sinusoidal magnetic field strength with τ = 1 for the pure-ITG case alongside the adiabatic
electron optimal growth rate. Shown are the six largest eigenvalues found numerically.
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(a) (b)

FIGURE 3. Eigenfunctions of the kinetic eigenvalue problem (5.5), obtained numerically, for
Δ = 0 (Helmholtz limit of the generalised free energy) with τ = 1, bi = 1.5, in the pure TEM
case. Here, the absolute values of the κna moments are shown as a function of l, alongside the
magnetic field strength B(l), for the eigenfunction with the largest eigenvalue (a) and the second
largest (b).

rate tends to zero as k⊥ → 0 in the bounce-averaged system. This signifies the removal
of the ‘magnetohydrodynamic-like’ instability mechanism present in the fully kinetic
electron Helmholtz bound, which causes the bound to approach a finite value in this limit.
Mathematically, the cause of this difference is illustrated by the square well solution ΛSW
where as k⊥ → 0, the numerator tends to zero and the denominator is proportional to
(1 − ε), which is finite unless the trapped particle fraction is unity. Thus, we haveΛSW →
0 as k⊥ → 0. This is in contrast to the fully kinetic electron bound of Part 2, whose
denominator goes to zero in the limit k⊥ → 0 in such a way that the bound remains finite.
Physically, the Helmholtz bound with fully kinetic electrons overestimates the degree of
instability because it contains a contribution from non-adiabatic passing electrons which,
in toroidal geometry, does not contribute on time scales longer than the electron transit
time.

The bounce-averaged electron system also yields a Helmholtz bound for the pure TEM
case and the pure ETG-TEM case; see figures 1(b) and 1(c). In this bounce-averaged
electron system, this provides a bound on the growth of ∇n and ∇Te-driven TEMs (this
does not extend to ‘true’ ETGs, which exist at larger values of k⊥ thus violating our
assumption of k⊥ρe  1 and require a non-adiabatic passing electron response).

In figure 3, an example of two of the fastest-growing eigenmodes is shown for the
pure TEM case. The eigenfunctions are similar (in l-variation) to the expectation from
the linear theory, with the fastest growing mode having a maximum where the largest
fraction of trapped electrons reside at the minimum of the magnetic field strength. The
fastest-growing eigenmode has a significant contribution from the κne moments, indicating
their importance for extracting free energy at these parameters.

8. Generalised free energy bounds

We now turn our attention to the general problem in whichΔ is a free parameter. For this
case where Δ �= 0, the species moments κ3a, are retained. Thus, the optimal modes of this
system depend on the magnetic curvature drift, ωda, for each species. We seek values of
Δ which minimise the maximum growth rate Λ of the generalised free energy, giving the
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FIGURE 4. The optimal mode growth rate of generalised free energy, at the minimising
value of Δ, versus the drive parameter κd at τ = 1. The analytical square well with constant
curvature solution is shown alongside the numerical solutions of the eigenvalue problem in a
cosine magnetic well with constant curvature. These are computed for a density-gradient-driven
case (pure TEM case), an ion-temperature-gradient-driven case (pure ITG case) and an
electron-temperature-gradient-driven case (pure ETG-TEM case).

lowest possible upper bound. The largest resulting optimal growth rate, at this minimising
value of Δ, gives an upper bound on instabilities, in the considered limit, that depends on
the magnetic curvature.

Because of the complexity of the general system, we perform the optimisation over Δ
numerically and exclude values for which positive definiteness is violated. However, we
have found that the optimisation space ofΛ(Δ) is very smooth and that a global minimum
is easily found.

As a first test for the numerical solution, to facilitate comparison with the analytical
solution for square magnetic trapping well with constant curvature, we solve the system
numerically for the case of a magnetic field of the form B(l) = B0 − B1 cos(l) with
B0 = 1 and B1 = 0.1 with constant curvature, ω̂da(l) = const. Following the analysis of the
generalised free energy with adiabatic electrons of Part 3, we consider the instability drive
parameter κd = ω∗i/ω̂di or (κd = ω∗iηi/ω̂di for the pure ITG case and κd = |ω∗eηe|/ω̂di
for the pure ETG-TEM case). We thus have ω̂da/ω∗i = sign(ea)κ

−1
d Ta/Ti for each species.

Under this normalisation, if κd > 0, then ω̂daω∗a > 0 for both species, corresponding to
‘bad’ curvature where linear instability is expected. The case of κd < 0 corresponds to
‘good’ curvature, where the system is expected to be linearly stable.

In figure 4, we show the optimal mode growth for the pure TEM case, the pure
ETG-TEM case, and for the pure ITG case, as the curvature-drive parameter κd is varied.
We see that the square and the cosine trapping wells follow similar trends with κd, attaining
a maximum for a finite positive value of κd, where the optimal bound is obtained forΔ = 0
and therefore coincides with the Helmholtz bound. This feature of the generalised free
energy bound overlapping with the Helmholtz bound at a particular value of the curvature
drive was also found for the adiabatic electron analysis in Part 3. The optimal bound
decreases monotonically away from this maximum towards the ‘strongly driven’ limit of
large positive κd and in the direction of small κd in the ‘resonant limit’. The bound also
decreases for κd � 0 where the curvature is favourable (‘good’).

In figure 5, we compare the optimal mode growth in the square well,ΛSW, with constant
curvature to the solution to the linear dispersion relation with bounce-averaged electrons
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FIGURE 5. Comparison between the generalised upper bound ΛSW, and the linear growth rate,
for a pure ITG case in a square magnetic well with Bmin/Bmax = 0.1, τ = 1, and constant
curvature (see Appendix D). Here, the drift-kinetic limit has been considered for simplicity
(J0i ≈ 1).

(details given in appendix D) in the same geometry, in the pure ITG case. Once again, we
vary the drive parameter κd to compare how each solution depends on the curvature inside
the well. We confirm that the linear result lies below the upper bound, and we find that,
much like the behaviour of the upper bound, the presence of bounce-averaged electrons in
the linear dispersion relation ‘lifts up’ the linear growth rate of the ITG. In regions where
the normal modes are stable, the optimal modes have a finite but reduced growth rate, as
was found in Part 3 for the adiabatic electron system.

8.1. Impact of the maximum-J property
A class of magnetic configurations in which the gyrokinetic system with bounce-averaged
electrons is particularly interesting is provided by so-called ‘maximum-J’ geometries,
where the radial profile of the parallel adiabatic invariant,

J(v, λ, ψ, α) = mev

∫ l2

l1

√
1 − λB dl, (8.1)

has a maximum at the magnetic axis, and decreases radially (Rosenbluth 1968). In such
geometries, the electrons experience good curvature everywhere because

ω∗eωde = −Tek2
α

e2τB

d ln n
dψ

∂J
∂ψ

(8.2)

is negative for all trapped electrons if ∂J/∂ψ < 0 and d ln n/dψ < 0, as is usually the case
in fusion plasmas (Proll et al. 2012; Helander et al. 2013). Quasi-isodynamic stellarators
are a particular type of optimised stellarator (Helander & Nührenberg 2009; Nührenberg
2010) which can be designed to have this property (Sánchez et al. 2023; Rodríguez,
Helander & Goodman 2024). In such devices, the local curvature (as seen by the ions)
may be unfavourable, but the bounce-averaged curvature for trapped electrons is always
favourable. Many results from normal-mode theory, as well as gyrokinetic simulations,
have found that the trapped electron population in these geometries have a stabilising
influence if a plasma density gradient is present (Proll et al. 2012; Plunk et al. 2014;
Alcusón et al. 2020; Proll et al. 2022). The physical reason for this enhanced stability
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(a) (b)

FIGURE 6. An example of an approximately maximum-J toy geometry, where most trapped
electrons, particularly those that are deeply trapped, experience bounce-averaged good curvature.
(a) The curvature is shown alongside the magnetic field strength, where negative values indicate
bad curvature. (b) The λ-dependence of the bounce-averaged electron drift is shown.

can be traced back to the fact that relatively little of the thermal energy is ‘available’ for
conversion to instabilities (Helander 2017; Mackenbach et al. 2023b).

To investigate if this property is present in the optimal mode system, we require a test
geometry where the ions may experience bad curvature locally, while the bounce-averaged
curvature of the electrons can be independently varied. A simple model magnetic
geometry can be seen in figure 6. In this geometry, we choose a curvature of the form
ω̂da(l)/ω∗i = sign(ea)σd cos(l)Ta/Ti and B(l) = B0 + B1 cos(l), where once again, we take
B0 = 1.0 and B1 = 0.1. In this toy geometry, σd is a parameter which determines the
relative magnitude of the gradient length scale and the maximum radius of curvature,
similar to the familiar R/Ln or R/LTa normalisation, where R is the major radius of the torus
and Ln,Ti is the scale length of the density or temperature gradients, respectively. With this
model geometry, by changing the sign of σd we can choose between a mostly maximum-J
geometry for σd < 0, where most trapped electrons, particularly those which are deeply
trapped, experience bounce-averaged good curvature, and a mostly minimum-J geometry
for σd > 0. Importantly, we can make this change between maximum-J and minimum-J
geometry without changing the field-line-average curvature (zero in this case), whilst
always having a region of unfavourable curvature along the field line.

In figure 7, we show the optimal growth rate Λ as σd is varied, the pure ITG case, pure
TEM case and pure ETG-TEM case. The upper bound in the pure TEM case is lower in
the maximum-J geometries (negative σd) than in the equivalent minimum-J geometries
(positive σd). To explore the physical mechanism at play, we also test the dependence
of the optimal mode growth on the curvature drift for each species separately. For σd <

0 (maximum-J), removing the electron drift frequency (the instability mechanism that
remains is analogous to the ITEM of Plunk et al. (2017)) increases growth rates if |σd| is
small, and has little effect for σd large and negative. Thus, ωde has a stabilising effect in
the maximum-J geometries, in agreement with the expectation linear theory. Moreover, in
maximum-J geometries at large negative values of σd, the instability mechanism is largely
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(a) (b)

(c)

FIGURE 7. The optimal mode growth rate of generalised free energy, for the minimising Δ,
versus the drive parameter σd. Negative and positive values of this parameter correspond to the
‘maximum-J’ and ‘minimum-J’ cases of the model geometry shown in figure 6. (a) The pure
TEM case is shown at k⊥ρi = 1.5, (b) the pure ITG case in the drift kinetic limit (J0i ≈ 1) is
shown and (c) shows the pure ETG-TEM case at k⊥ρi = 1.5. The impact of species-dependent
curvature drifts on each case is explored by zeroing out ω̂di or ωde independently.

reliant on the ion curvature drift, as is expected from the linear ITEM or ubiquitous mode
(Coppi & Pegoraro 1977).

For σd > 0 (minimum-J), the removal of the curvature drift for either species in the pure
TEM case serves to move the maximum value of the optimal growth rate towards lower
values of σd and greatly reduces the growth rate for large σd. This suggests that the drifts
of both species are important for the optimal extraction of free energy from the gradients.

In the pure ETG-TEM case, we see a reduction of the optimal mode growth for σd <
0. This is in keeping with the expectation from the dispersion relation of Plunk et al.
(2017), which shows that the maximum-J property, associated with the relative direction
of the bounce-averaged drift to the electron diamagnetic frequency, also exerts a stabilising
influence in the strongly driven limit when ηe is finite. The optimal mode analysis here
suggests that this benefit extends into the resonant limit (small σd).

We observe that maximum-J configurations also exhibit lower optimal growth in the
ITG scenario (∇n = 0, ∇Te = 0). This is despite the absence of any electron free energy
source, something which has not been predicted previously from linear normal-mode
theory. It is found that beyond a negative value of σd of sufficient magnitude, the ITG upper
bound with bounce-averaged electrons coincides with that of the adiabatic electron upper
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bound of Part 3 computed in this geometry (because the bound with adiabatic electrons is
local in this limit, here we evaluate the bound at each point in l in the toy geometry and
plot the largest value found). This is also reflected in the eigenfunction (not shown), which
tends towards a delta function at the location of maximum magnetic field strength, where
the trapped electron contribution is zero, suggesting that the adiabatic ITG solution to (5.5)
becomes the solution with the largest Λ for these values of σd. As shown in figure 7, this
mechanism of stabilisation in maximum-J geometry is present even if ωde = 0. Thus, this
stabilising mechanism in maximum-J geometries is distinct from the known mechanism
that follows from the difference in sign between ωde and ωT

∗e (Proll et al. 2022).

8.1.1. Interpreting with linear theory
To interpret the observed reduction of the ITG-driven optimal mode growth in

maximum-J geometries without a source of electron free energy, we turn to expressions
from linear normal-mode theory (i.e solutions to the gyokinetic equation which evolve in
time like exp(−iωt), where ω is the complex frequency). The comparable linear dispersion
relation is given by (3.5) in Plunk et al. (2017), for the case of a pure ITG, which is valid
if the mode frequency satisfies ω/(ω∗iηi) ∼ (ωdi/ω∗iηi)

1/2  1 (i.e. in the regime of large
κd). Taking the drift-kinetic limit (J0i ≈ 1), the normal mode frequency is given by

ω = ±
√

−ω∗iηi

∫ +∞

−∞
ω̂di(l)|δφ|2 dl

B

/
(
τ

∫ +∞

−∞
|δφ|2 dl

B
− τ

2

∑
j

∫ 1/Bmax

1/Bmin

τB,j|δφj|2 dλ

)1/2

, (8.3)

where instability growth is given by a positive imaginary part of ω which arises due to
regions of bad curvature along the magnetic field (ω∗iηiω̂di > 0). We see that when the ITG
is unstable, the trapped electron contribution in the denominator acts to further destabilise
the mode by making the denominator (which is always positive (Helander et al. 2013))
smaller. This destabilising effect is due to the depletion of the Boltzmann response by the
population of non-adiabatic trapped electrons.

The effect of the maximum-J property on this dispersion relation is most easily
illustrated when the case of the ‘square well’ magnetic field with constant curvature
inside the well is considered. Inside the well, the ITG frequency becomes ω =
±
√

−ω∗iηiω̂di/(τ(1 − ε)), where ε is the trapped particle fraction, and outside the well
it is given by ω = ±

√
−ω∗iηiω̂di/τ . If we consider a series of these square magnetic

trapping wells with minima of B = Bmin separated by regions of B = Bmax, with a magnetic
curvature that alternates sign (from ‘good’ curvature to ‘bad’ curvature) between regions
of B = Bmax and B = Bmin, then there are two possibilities: either the bad curvature
is located at the minimum of magnetic field strength, corresponding to a minimum-J
geometry; or the bad curvature is located outside the well, corresponding to a maximum-J
geometry.

In the minimum-J case, the ITG is unstable inside the well, with a growth rate given by
ω = ±

√
−ω∗iηiω̂di/(τ(1 − ε)). In this scenario, the non-adiabatic population of trapped

electrons can raise the ITG growth rate by depleting the Boltzmann response. On the other
hand, in the maximum-J case, the ITG is stable inside the well because the curvature is
favourable there (ω̂diω∗iηi > 0). Instead, the unstable ITG is outside of the well at B = Bmax

and the growth rate is ω = ±
√

−ω∗iηiω̂di/τ , corresponding to the ITG growth rate if the
electrons are treated adiabatically.
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This behaviour can also be inferred from the ITG growth rate in general geometry (8.3),
in which it can be seen that for instability to occur, the average of ω∗iηiω̂di|δφ|2 along
the magnetic field line must be positive, such that δφ must have large amplitude in the
regions of bad curvature. In maximum-J geometry, the regions of bad curvature are at
different locations in l than the minima of magnetic field strength. In these geometries,
for the instability criterion to be fulfilled, the non-adiabatic electron response, which
is proportional to the average potential seen by the trapped electrons as they bounce in
the magnetic well, will be necessarily small. Otherwise, if the electron contribution were
large, the potential would have a large amplitude in a region of favourable curvature, thus
impacting the instability criterion. As a result, the destabilising impact of trapped electrons
on the ITG is diminished in such geometries.

This is not the case in minimum-J geometries, where the regions of bad curvature
are located at the minima of B along the field line. In these geometries, the instability
criterion and the magnitude of the trapped electron contribution are not in conflict, thus
the ITG growth can be increased by the trapped electron population without impacting the
instability mechanism.

In the optimal mode analysis, this effect is slightly obscured due to the optimisation
over the Δ parameter, but the same basic behaviour can be observed in the expression
for E(k, t) given by (4.14), which is of the same form as the denominator in (8.3). Thus,
the magnitude of E(k, t) affects the magnitude of Λ via the denominator of (4.19), for
non-zero values ofΔ. This stabilising effect of maximum-J can be seen in figure 7, where
for the ITG scenario, the upper bound with bounce averaged electrons approaches the
adiabatic electron result for large negative values of σd, corresponding to an approximately
maximum-J geometry.

To summarise this section, the impact of the trapped electron response on ITG
instability in the absence of electron free energy is always destabilising, but the amount
of destabilisation is impacted by the location of the most deeply trapped particles relative
to the regions of bad curvature. To use a term coined in the literature for zonal-flows
(Diamond et al. 2005), the location of the trapped particles changes the inertia of the
ITG mode, with ITGs possessing lower inertia in minimum-J configurations than in
those which are maximum-J. This may go some way towards explaining why simulations
performed in newly optimised, highly maximum-J stellarators (Goodman et al. 2024)
show a smaller increase in ITG-driven heat fluxes with the addition of kinetic electrons in
comparison with configurations which do not satisfy the maximum-J property to the same
degree.

9. Conclusion

We have studied the optimal modes of the generalised free energy for the case of a
two-species system with fully gyrokinetic ions and bounce-averaged electrons. The central
result of this effort is a system of integrodifferential equations (B1)–(B3) and (B10)–(B12),
the solutions to which provide an upper bound on the possible instantaneous growth of any
instabilities which satisfy L/vTe  τD. These bounds depend explicitly on the magnetic
field strength of the chosen flux tube. Despite being more difficult to solve than the optimal
mode systems of Parts 1–3 (requiring a numerical treatment for all but the simplest of
magnetic fields), the eigenvalue problem here, which involves a relatively small number
of velocity space moments of the distribution function, is still much simpler than the
equivalent normal mode problem, which involves computing the full distribution function
as a function of velocity space.

As is discussed in Parts 1–3, the upper bounds given by the fastest growing
optimal modes not only give an upper bound on linear instability, but also have
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nonlinear implications. This is because the nonlinear growth of the system is bounded
by the growth of the fastest growing optimal mode. Here, however, the removal of
the ‘finite-electron-Larmor-radius’ effects associated with retaining k⊥ρe results in an
unbounded growth of Λ as k⊥ → ∞. As a result, the nonlinear growth is also unbounded
if all values of k⊥ are considered. Thus, when seeking a bound on nonlinear growth,
the spectrum in k⊥ must be cut off at a chosen value, limiting its applicability to cases
in which only the ion-scale dynamics are of interest, as is often done in gyrokinetic
simulations. Other nonlinear implications of optimal modes also discussed in Part 2, such
as their required presence in statistically steady turbulence (DelSole 2004; Landreman
et al. 2015), also hold true for the optimal modes studied here.

The upper bounds computed here are specific to toroidal geometries with non-periodic
flux tubes (i.e. tokamaks and stellarators) and as such, the Helmholtz bound we find
behaves as expected in these geometries at small values of k⊥ρi. This is in contrast to the
fully kinetic electron Helmholtz bound of Part 2 which, in its generality, must also bound
growth in closed-field-line geometries. The Helmholtz bounds of the bounce-averaged
system are significantly lower than the Part 2 result for all gradients, as long as k⊥ρe  1.

Moreover, the generalised bound, which is optimised over the free parameterΔ, depends
explicitly on all the geometry quantities associated with the flux-tube domain. Here, we
neglected parallel ion motion in our system of equations for the sake of simplicity, focusing
on the typical toroidal ITG-TEM limits familiar from normal-mode theory. We have found
that the optimal modes exhibit much of the behaviour expected from normal modes,
attaining a maximum growth rate (relative to the strength of the plasma gradients) when
the curvature drift for both species is unfavourable and when the ratios of the diamagnetic
frequencies and drift frequencies are close to unity. We have also demonstrated that the
beneficial properties of maximum-J configurations expected from normal-mode theory
are also captured by the optimal modes. This was also found to be the case for another
measure of turbulent transport that is valid nonlinearly, the available energy of trapped
electrons (Helander 2017; Mackenbach et al. 2023b).

An unexpected consequence of this work was the observation of reduced ITG mode
growth rates in maximum-J configurations in comparison with a similar minimum-J
configuration when trapped electrons are included, even in the absence of a source of
free energy in the electron equation. This effect, observed in both the optimal modes and
the normal modes, was found to be related to the ‘inertia’ of the ITG mode, which is larger
in maximum-J devices.

The optimal modes presented in this work could form the basis of a ‘target function’
for stellarator optimisation, given that they depend explicitly on the magnetic geometry
and plasma parameters. The optimal modes studied here exhibit the effects present in the
adiabatic electron optimal modes of Part 3. In particular, the two-species upper bound
here shows a reduction of instability in both the ‘strongly driven’ and ‘resonant’ limits
of the drive parameter κd (or σd); these limits are also visible in the available energy
analysis of Mackenbach et al. (2023b). This suggests that, for fixed plasma gradients,
one could choose to reduce the amount of bad curvature experienced by both species
thus increasing κd (or σd). Alternatively, in so-called ‘critical-gradient optimisation’, the
amount of bad curvature could be increased (decreasing κd into the resonant limit),
as performed by Roberg-Clark et al. (2023) for ITG-driven turbulence with adiabatic
electrons. Our findings suggest that both strategies are viable for reducing the growth
of instabilities including the response of trapped electrons. Moreover, as we have seen,
these optimal modes capture the interaction of several physical effects associated with the
maximum-J property and thus may directly inform the optimisation of the benefits of this
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property in a way that is not captured by present maximum-J targets, which are generally
not designed with turbulence in mind.
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Appendix A. Determining the Hermitian linear operators

The Hermitian linear operators in (5.5) can be identified from the variational problem
(5.1). To make the variation of H̃ more straightforward we invert the identity (4.7) to arrive
at

H̃ =
〈
Te

∫ |ge|2
Fe0

d3v + Ti

∫ |gi|2
Fi0

d3v

−e2n
Ti

(
α|δφ|2 − �τ

2
δφ∗

∫ 1/B(l)

1/Bmax

B dλ√
1 − λBδφ

)〉
, (A1)

where we have defined α = 1 + τ +Δ(1 + τ − Γ0i). Written in this form, all that remains
is to insert δφ from quasineutrality,

δφ = Ti

en(1 + τ)

(∫
giJ0i d3v −

∫
ge d3v

)
, (A2)

and perform the variation over gi and ge, writing the result in terms of the inner product
defined for each species given by (5.3) and (5.4) yielding

δH̃
δgi

=
〈∫

d3v
Ti

Fi0
g∗

i

{∑
b

H̃ibgb

}〉
+ c.c., (A3)

and
δH̃
δge

= 2π

V

∑
j

∫ 1/Bmin

1/Bmax

dλ
∫ ∞

0
dv v2τB,j

Te

Fe0
g∗

e

{∑
b

H̃ebgb

}
+ c.c., (A4)

from which the operators can be identified. The construction of the operators associated
with D proceeds similarly. However, due to the derivatives with respect to l, care must be
taken when finding the operators associated with K. This involves integration by parts,
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and because the derivatives with l are taken at constant Ea and μa, we require the identity
given in an appendix of Plunk & Helander (2023),

∫
v‖
∂gi

∂l
J0i d3v = B

∂

∂l

(
1
B

∫
v‖gi d3v

)
−
∫
v‖gi

∂J0i

∂l
d3v. (A5)

After some manipulation, the Hermitian linear operators can be found to be

∑
b

H̃ibgb = gi − Fi0J0i

(1 + τ)2

(
α(κ1i − κ1e)− �τ

2

∫ 1/B(l)

1/Bmax

B dλ√
1 − λB(κ̄1i − κ̄1e)

)
, (A6)

∑
b

H̃ebgb = ge + τFe0

(1 + τ)2

(
α(κ1i − κ1e)− �τ

2

∫ 1/B(l)

1/Bmax

B dλ√
1 − λB(κ̄1i − κ̄1e)

)
, (A7)

∑
b

Dibgb = iFi0J0i

2(1 + τ)

(
ω∗i

(
1 + ηi

(
v2

v2
Ti

− 3
2

))
(κ1i − κ1e)

−ω∗i(1 − 3ηi/2)κ1i − ω∗iηiκ2i + ω∗e(1 − 3ηe/2)κ1e + ω∗eηeκ2e

)
, (A8)

∑
b

Debgb = − iτFe0

2(1 + τ)

(
ω∗e

(
1 + ηe

(
v2

v2
Te

− 3
2

))
(κ̄1i − κ̄1e)

+ω∗e(1 − 3ηe/2)κ̄1e + ω∗eηeκ̄2e − ω∗i(1 − 3ηi/2)κ̄1i − ω∗iηiκ̄2i

)
, (A9)

∑
b

Kibgb = Fi0

2(1 + τ)

(
−J0iB

∂

∂l

(vTi

B
κ4i

)
+ vTiκ5i + v‖

∂

∂l
(J0i(κ1i − κ1e))

−iJ0i

[
ω̂di(l)κ3i − ω̃deκ3e − ω̂di(l)

(
v2

⊥
2v2

Ti
+ v2

‖
v2

Ti

)
(κ1i − κ1e)

])
, (A10)

∑
b

Kebgb = τFe0

2(1 + τ)

(
B
∂

∂l

(vTi

B
κ4i

)
− vTiκ5i + i

[
ω̂di(l)κ3i

−ω̃deκ̄3e − ω̂de(l)

(
v2

⊥
2v2

Te
+ v2

‖
v2

Te

)
(κ̄1i − κ̄1e)

⎤
⎦
⎞
⎠ , (A11)

where we have used the moment representation given by (5.6)–(5.11). Inserting these
operators into (5.5), for a = i and a = e, gives the equation for the optimal distribution
function for ions and electrons, respectively.

Appendix B. Moment form of eigenvalue problem

Here, we give the (quite lengthy) closed set of equations which arise upon taking
moments of (5.5). The moment equations which come from the optimal ion distribution
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function equation are

2Λ
(
(1 + τ)κ1i − G0

(1 + τ)

{
α(κ1i − κ1e)− �τ

2

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB(κ̄1i − κ̄1e)

})

= i
(
ω∗iηiG1(κ1i − κ1e)− ω∗iηiG0κ2i − ω∗i(1 − 3ηi/2)G0κ1e + ω∗eηeG0κ2e

+ω∗e(1 − 3ηe/2)G0κ1e −Δ

{
ω̂di(l)G3(κ1i − κ1e)+ ω̃deG0κ3e − ω̂di(l)G0κ3i

})
,

(B1)

2Λ
(
(1 + τ)κ2i − G1

(1 + τ)

{
α(κ1i − κ1e)− �τ

2

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB(κ̄1i − κ̄1e)

})

= i
(
ω∗iηiG2(κ1i − κ1e)− ω∗iηiG1κ2i − ω∗i(1 − 3ηi/2)G1κ1e + ω∗eηeG1κ2e

+ω∗e(1 − 3ηe/2)G1κ1e −Δ

{
ω̂di(l)G4(κ1i − κ1e)+ ω̃deG1κ3e − ω̂di(l)G1κ3i

})
,

(B2)

2Λ
(
(1 + τ)κ3i − G3

(1 + τ)

{
α(κ1i − κ1e)− �τ

2

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB(κ̄1i − κ̄1e)

})

= i
(
ω∗iηiG4(κ1i − κ1e)− ω∗iηiG3κ2i − ω∗i(1 − 3ηi/2)G3κ1e + ω∗eηeG3κ2e

+ω∗e(1 − 3ηe/2)G3κ1e −Δ

{
ω̂di(l)G5(κ1i − κ1e)+ ω̃deG3κ3e − ω̂di(l)G3κ3i

})
. (B3)

Here, the functions Gni = Gni(b) come from evaluating the integrals over velocity space
which contain J2

0i in the integrand. We use the same notation as was used in Part 3, where,
in an appendix, these functions were computed and are given as

G0 = Γ0, (B4)

G1 = ( 3
2 − b

)
Γ0 + bΓ1, (B5)

G2 = 1
4

((
6b2 − 20b + 15

)
Γ0 + 2b ((10 − 4b)Γ1 + bΓ2)

)
, (B6)

G3 = 1
2 (bΓ1 − (b − 2)Γ0) , (B7)

G4 = 1
4

((
3b2 − 11b + 10

)
Γ0 + b ((11 − 4b)Γ1 + bΓ2)

)
, (B8)

G5 = 1
8

((
3b2 − 12b + 14

)
Γ0 + b (bΓ2 − 4(b − 3)Γ1)

)
, (B9)

where Γn(b) = In(b) exp(−b) and In is the modified Bessel function of the first kind.
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The equations which arise upon taking velocity space moments of the optimal electron
distribution are

2Λ
(
(1 + τ)κ1e + τ

2(1 + τ)

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB

{
α(κ1i − κ1e)

− �τ

2

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB(κ̄1i − κ̄1e)

})

= τ i
2

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB

(
3
2
ω∗eηe(κ̄1e − κ̄1i)

− ω∗e(1 − 3ηe/2)κ̄1i − ω∗eηeκ̄2e + ω∗i(1 − 3ηi/2)κ̄1i + ω∗iηiκ̄2i

−Δ
{
ω̂diκ3i − ω̃deκ̄3e − 3

2
ω̂de(1 − λB/2)(κ̄1i − κ̄1e)

})
, (B10)

2Λ
(
(1 + τ)κ2e + 3τ

4(1 + τ)

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB

{
α(κ1i − κ1e)

− �τ

2

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB(κ̄1i − κ̄1e)

})

= 3τ i
4

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB

(
5
2
ω∗eηe(κ̄1e − κ̄1i)

− ω∗e(1 − 3ηe/2)κ̄1i − ω∗eηeκ̄2e + ω∗i(1 − 3ηi/2)κ̄1i + ω∗iηiκ̄2i

−Δ
{
ω̂diκ3i − ω̃deκ̄3e − 5

2
ω̂de(1 − λB/2)(κ̄1i − κ̄1e)

})
, (B11)

2Λ
(
(1 + τ)κ3e + 3τ

4(1 + τ)

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λBf (l)(1 − λB/2)

{
α(κ1i − κ1e)

− �τ

2

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB(κ̄1i − κ̄1e)

})

= 3τ i
4

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λBf (l)(1 − λB/2)

×
(

5
2
ω∗eηe(κ̄1e − κ̄1i)− ω∗e(1 − 3ηe/2)κ̄1i − ω∗eηeκ̄2e + ω∗i(1 − 3ηi/2)κ̄1i

+ω∗iηiκ̄2i −Δ

{
ω̂diκ3i − ω̃deκ̄3e − 5

2
ω̂de(1 − λB/2)(κ̄1i − κ̄1e)

})
. (B12)

Appendix C. Eigenvalue problem in the square magnetic well

In the slow-ion-transit limit with a square magnetic trapping well, the l-dependence of
the eigenvalue problem (5.5) is trivial. This makes the system of moment equations purely
algebraic, allowing us to adopt a ‘supermoment’ representation akin to that of Part 2. We
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define

σa = ean

(∑
a

ne2
a

Ta

)−1/2

, (C1)

κ̃1 =
∑

a

σaκ1a, (C2)

κ̃2 =
∑

a

σaω
′
∗a ((1 − 3ηa/2))κ1a + ηaκ2a) , (C3)

κ̃3 =
∑

a

σaω
′
daκ3a, (C4)

where we have introduced the normalisation ω′
∗a = ω∗a/ω∗i and ω′

da = ω̂da/ω∗i. We may
also define the following velocity-space-dependent factors:

ψ1a = J0a ψ2a = v2

v2
Ta

J0a (C5a,b)

ψ3a =
(
v2

⊥
2v2

Ta
+ v2

‖
v2

Ta

)
J0a, (C6)

where we once again take J0e ≈ 1. If we adopt the compact notation

κ̃m =
∑
n,b

c(b)mnκnb, I (a)mn = c(a)mnσa

nTa
, (C7a,b)

then (5.5) for the species ‘a’ can be written as

Λ

ω∗i

(
ga + α̃Fa0

nTa
(−σaψ1aκ̃1)

)
= i

2
Fa0

nTa

(
ω′

∗a(1 − 3ηa/2)σaψ1aκ̃1 + ω′
∗aηaσaψ2aκ̃1

−σaψ1aκ̃2 −Δ
[
σaω

′
daψ3aκ̃1 − σaψ1aκ̃3

])
. (C8)

Here, we have evaluated the integral,

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λB = 2

√
1 − B(l)

Bmax
= 2ε(l) (C9)

and defined α̃ = (α −�τε(l))/(1 + τ). We can take moments of (C8) by multiplying by
the constant c(a)mn and the function ψma, summing over the index n and the species label, and
integrating over velocity space to arrive at

Λ

ω∗i

(
κ̃m + α̃

∑
a,n

{
I (a)mn X(a)

1n κ̃1

})

=
∑
a,n

i
2

(
ω′

∗a(1 − 3/2ηa)I (a)mnX(a)
1n κ̃1 + ω′

∗aηaI (a)mnX(a)
2n κ̃1 − I (a)mnX(a)

1n κ̃2

−Δ
[
ω′

daI (a)mnX(a)
3n κ̃1 − I (a)mnX(a)

1n κ̃3

])
, (C10)
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where the factors X(a)
mn are integrals over velocity space defined by

X(a)
mn = 1

n

∫
F0aψmaψnaJ0a d3v, (C11)

where, for the electron species, the velocity space integral is carried out in the trapped
region of velocity space, defined by 1/Bmax � λ � 1/Bmin.

Written in this form, the system reduces to a simple 3 × 3 generalised eigenvalue
problem which may be solved for the eigenvalue Λ. The X(a)

nm s are given by

X(e)
11 = ε, X(i)

11 = G0(b), (C12a,b)

X(e)
12 = 3

2ε, X(i)
12 = G1(b), (C13a,b)

X(e)
13 = 3

4

(
ε + 1

3ε
3) , X(i)

13 = G3(b), (C14a,b)

X(e)
22 = 15

4 ε, X(i)
22 = G2(b), (C15a,b)

X(e)
32 = 15

8

(
ε + 1

3ε
3) , X(i)

32 = G4(b), (C16a,b)

X(e)
33 = 15

8

(
ε

2
+ 1

3
ε3 + 1

10
ε5

)
, X(i)

33 = G5(b), (C17a,b)

where the functions Gn(b) are given in appendix B. In this simple limit, the eigenvalue
problem can be solved analytically to yield

Λ2
SW = (C∗∗

eeω
2
∗e + C∗∗

ie ω∗eω∗i + C∗∗
ii ω

2
∗i + C∗d

ii ω∗iω̂di + Cdd
ii ω̂

2
di + C∗d

eeω∗eω̂de + Cdd
ee ω̂

2
de

+ C∗d
ie ω∗iω̂de + Cd∗

ie ω∗eω̂di + Cdd
ie ω̂deω̂di)/(16(1 + τ)(1 + τ − α̃(X(i)

11 + τX(e)
11 ))),

(C18)

where we define the following factors:

C∗∗
ee = τX(e)

11 ((2 − 3ηe)
2)X(i)

11 + 4τη2
eX(e)

22 )+ 4τηe(X
(i)
11 ((2 − 3ηe)X

(e)
12 + ηeX

(e)
22 )− τηeX

(e)
12

2
),

(C19)

C∗∗
ie = −2τ((3ηe − 2)X(e)

11 − 2ηeX
(e)
12 )((3ηi − 2)X(i)

11 − 2ηiX
(i)
12 ), (C20)

C∗∗
ii = τX(e)

11 ((2 − 3ηi)
2X(i)

11 + 4ηi((2 − 3ηi)X
(i)
12 + ηiX

(i)
22))− 4η2
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(i)
11 + τX(e)

11 )− τX(e)
13

2
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(e)
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Appendix D. Linear theory

To make a comparison between the upper bounds derived here in the bounce-averaged
electron response limit, we must solve the integral equation

(1 + τ − Ri(ξi, l))φ = τ

∫ 1/B(l)

1/Bmax

B(l) dλ√
1 − λBRe(λ, ξe)φ̄, (D1)

where ξi = ω/ω̂di(l), ξe = ω/(ω̂de(1 − λB/2)) and the ion response Ri is given by the
standard expression of Biglari et al. (1989),

Ri(ξi, l) = Y(ξi)
2 + κdi

{[
ηi − 1
ξi

− 2ηi

]
Y(ξi)

2 + 2ηiY(ξi)

}
, (D2)

where κdi = ω∗i/ω̂di(l) and Y(ξi) = −√
ξiZ(

√
ξi) with Z being the plasma dispersion

function and where the principal branch of
√
ξi has been selected. The electron response

function Re is

Re(λ, ξe) = 2√
π

∫ ∞

0
x2e−x2

(
ξe − κde

ξe − x2

)
dx, (D3)

where x = v/vTe, κde = ω∗e/(ω̂de(1 − λB/2)) and we have taken ηe = 0 for simplicity.
Here, because the integrand is even in x, the integration domain can be extended to
x ∈ [−∞,∞]. Additionally, a partial fraction expansion can be employed to yield

Re(λ, ξe) = (κde − ξe)√
π

1
2
√
ξe

∫ ∞

−∞
e−x2

(
x2

x − √
ξe

− x2

x + √
ξe

)
dx,

where we have selected the principal branch of
√
ξe. The above integrals can be written

in terms of the standard definition of the plasma dispersion function, but care must be
taken. Because we are interested in unstable eigenmodes, defined as Im ξi > 0 (which
corresponds to Im ξe < 0), we can express the integral in terms of the plasma dispersion
function by evaluating Z in the complex-conjugate plane when the imaginary component
of its argument is negative and then taking the complex conjugate of the output. This
avoids the contribution from analytic continuation into the lower-half of the complex plane
which is included in the definition of Z but is not relevant here;

Re(ξe, λ) = (κde − ξe)

{
1 + 1

2

√
ξe

[
Z
(
−
√
ξe

)]}
. (D4)

Which is equivalent to previous derivations by Connor et al. (1980). For this work, we only
consider the solution to this equation in a square magnetic trapping well with constant
curvature. In this case, φ = φ̄ and ω̂da(l) = const. The integral over λ and the roots of the
dispersion relation can both be computed numerically. The solution is shown in figure 5.
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