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Abstract

Let W be a real vector space and let V be an orthogonal representation of a group G such that V¢ = {0} (for
the set of fixed points of G). Let S(V) be the sphere of V and suppose that f : S(V) — W is a continuous
map. We estimate the size of the (H, G)-coincidences set if G is a cyclic group of prime power order Z
or a p-torus Z’;.
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1. Introduction

Let G be a finite group which acts on a space X and let f : X — Y be a continuous map
from X into another space Y. If H is a subgroup of G, then H acts on the right on each
orbit Gx of G as follows: if y € Gx and y = gx, with g € G, then i - y = gh™'x. A point
x € X is said to be an (H, G)-coincidence point of f (as introduced by Gongalves et al.
in [6]) if f sends every orbit of the action of H on the G-orbit of x to a single point.
Of course, if H is the trivial subgroup, then every point of X is an (H, G)-coincidence.
If H = G, this is the usual definition of a G-coincidence point, that is, f(x) = f(gx)
for all g € G. Let us denote by A(f, H, G) the set of all (H, G)-coincidence points.
Borsuk-Ulam theorems estimate the size of the set A(f, H, G). For the case when the
target space Y is a CW-complex, this problem was considered by Gongalves et al.
[6] (for the subgroup H = Z, of a finite group G, X a homotopy sphere and Y a
CW-complex) and Gongalves et al. [7] (for the subgroup H = Z, of a finite group
G, X under certain (co)homological assumptions and ¥ a CW-complex). In [5], by
considering the target space Y = M a manifold and H a proper nontrivial subgroup
of G, we proved a formulation of the Borsuk—Ulam theorem for manifolds in terms
of (H, G)-coincidences which has applications to the famous topological Tverberg
problem (see for example, [1]).
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Let W be a real vector space and let V be an orthogonal representation of a group
G with VY = {0}. Let S(V) be the sphere of V and suppose that f : S(V) — W is a
continuous map. We estimate the size of A(f, H, G) if G is a cyclic group of prime
power order Z,« or a p-torus Z’; (Theorems 3.1, 3.2 and 3.5).

2. Bourgin-Yang versions of the Borsuk-Ulam theorem for Z, and Zl;

Let G = Z,x be a cyclic group of prime power order, k > 1. Given two powers p™, p"
ofpwithl <m<n<k-1, weset

Ampn :={G/H|H C G,p" <|H| < p"},

where |H| is the cardinality of H. We write Ay for a set of all the G-orbits of a space X
(up to a homeomorphism and thus up to an isomorphism of finite G-sets).

Let V be an orthogonal representation of G =Z,, p prime, k > 1, such that
VG = {0} (for the set of fixed points of G). For G = Zy, with p odd, every nontrivial
irreducible orthogonal representation is even dimensional and admits a complex
structure [10], so V also admits such a structure. We write d(V) = dimc V = % dimg V,
an integral numerical invariant of V.

The following Bourgin—Yang versions of the Borsuk—Ulam theorem for complex
orthogonal representations of G = Z, p prime, k > 1 and for real orthogonal repre-
sentations of G = Zy, k > 1 are from [8].

THEOREM 2.1 [8, Theorem 3.6]. Let V, W be two complex orthogonal representations
of the cyclic group G =Zy, p > 2 prime, k > 1, such that V¢ = W¢ = {0}. Let f :
SV) g W be an equivariant map and Z; := f‘l(O) ={veS(V)| f(v) = 0}. Suppose
ﬂs(v) C ﬂmﬂ and ﬂg(w) C ﬂm,n- Then

==

dim Z; > 2 - d(W)).

THEOREM 2.2 [8, Theorem 3.9]. Let V, W be two real orthogonal representations
of the cyclic group G = Zo, k > 1, such that V¢ = WS = {0}. Let f : S(V) S W be an
equivariant map and Zy = f ~1(0). Suppose that Asvy C Amp and Asowy C Appn. Then

[ (d(V)n— 1)m"

dim(Zy) > —d(W).

The next result is the classical version of the Bourgin—Yang theorem for a p-torus
Z’I‘, =Z, X Zy X - X Z, (k times).

THEOREM 2.3 [9, Theorem 2.1]. Let V and W be two orthogonal representations of
the group G = Z’I‘, such that V¢ = WG = {0}. Let f : S(V) — W be a continuous map.
Then

dim Zy > dimg V — dimg W — 1.

For further recent extensions of the Bourgin—Yang theorem, see [2, 3].
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3. Estimating the size of the (H, G)-coincidences set

Let W’ be a real vector space and f : S(V) — W’ a continuous map. In this section,
we estimate the size of the set A(f, pr, Zpk) under various assumptions.

THEOREM 3.1. Let V be a complex orthogonal representation of the cyclic group G =
Zp, p 2 3 prime and k > 1, such that VG = {0} and let W’ be a real vector space. Let
f:8(V) > W’ be a continuous map.

(D) If Asvy € Ay pi1, then for all i with 1 < i <k,
div)-1 .
dmA(f, Zy, Zp) > 2[%} — (= Py AW,
=
(2) If Asvy C Ayt for some i with 1 < i < k, then
av)-1 ;
dimA(f,Z,, Zy) 2 Z[L} —(p* = pHaw’.
pl—l
PROOF. Let i be fixed with 1 <i < k. Consider the real vector space @J‘.”:kl W’, which
is the direct sum of p* copies of W’. The space EB}',’:IW’ admits an action of the cyclic
group G = Zy, given by

g(Wl,WZa cee »ka) = (Wz, cee ,ka,Wl)

for a fixed generator g € G and for each (wy,...,wpy) € EB;’:I W’
Denote by A(W'”") the diagonal of 69117:1 W =w""& -.@W?"” . Then

pk

Bw = s e aw )",
=1
where A(W'? ) is the orthogonal complement of A(W'”"). Now AW’”") is a
k f —i . .
G-subspace of 69]'.’:1 W’ of dimension p*~' dim W’, so AWP )tisa G-subrepresentation

of EB;’:I W’ of dimension (p* — p¥~) dim W” for which (A(W’”"")%)C = {0}.
Denote by ay,...,a, a set of representatives of the left lateral classes of G/Z,,,
where r = p*~i. Consider the map

F SV = AW ye Aw? )t
defined by
F(x) = (Fo(x), F1(x), ..., Fpi_1(x)),

where Fj(x) = (f(ailx), ..., f(a,Wx)), j=0,1,...,p" =1, for a fixed generator
h € Z,. The linear orthogonal projection along the diagonal A(W’pkﬂ) defines a
G-equivariant map p : A(W”") @ AW”)* — A(W’”"):. Let us denote by [ the
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composition
Svy 5 aw Ty AW B A
with
Z =1"'0) = (po F)(0) = F'(AW'™"™) = A(f, Z,, Z,).

k—i k—i
For a fixed generator g € G, we can take h = g ,a=e,ap=g,...,a,= g’ -1
and then F is a G-equivariant map. Moreover,

ﬂS(A(W,pk—i)l) C \7{17[,171 C ﬂl’pk—l.

To check the validity of the inclusion ?(S( AW
that the cardinality of the orbit Z,«w belongs to the set {p*, p*!,..., p*~™*1} for any
w=(Wp,...,wpy) € S(A(W”’H)l). From [4, Ch. 1, Proposition 4.1], the cardinality of
the orbit Zxw belonkg_s to the set {pk,pk‘l, .o D, p0 =1}. Letw = (wy,...,wy) be an
element in S(A(W'” ")*) and suppose that [Z«w| € {p*i, pt=i=1, ... p® = 1}, that is,
|Zxw| = p’ for some j with 0 <j < k —i.

, C Ay i1, it suffices to prove

Assertion. We have Zyw = {w, gw, ..., g”‘/‘lw}, for a fixed generator g of Z .

In fact, consider a cyclic group G, g € G a fixed generator and {w, gw, ..., g 'w}
the maximum set of the first s elements of the orbit Gw that are distinct from each
other. From this definition, g*w € {w, gw, ..., g*~'w}. Suppose that

gw=gw forsomeiwithl <i<s-—1.
Then
¢ w=w wherel <s—i<s-1.

However, this contradicts the definition of the set {w, gw, ..., g“"lw}.
Now, if g'w € Gw, for some ¢ € N, we have t = ns + r with 0 < r < s — 1. Therefore,

ns+r

gw=g""w=g¢"@w=gwe{wgw,.. .,g‘?_lw},

since g™"w =(g* - g )w=wand 0 <r<s-1.
Thus, for a fixed generator g of Z,

J J
w=glw=gl (Wi, Whise o s Wipki)pisls o s Wpt)
= (ij+1, . ,szj, ey W(pk—j_l)pj+1, . ,ka,Wl, . ,ij)
and sow € A(W’pj). Since
k—i—1 k—i
AW C AWy - c AWy c AW

andj € {0, 1,...,k — i}, we conclude that w € A(W’pf) C A(W”’H), which is a contra-
diction since AWy N S(AW'” ' )*) = 0.
This proves the assertion and the theorem follows from Theorem 2.1. o
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We also have the following estimate for the size of A(f, Zyi, Zok).

THEOREM 3.2. Let V be a real orthogonal representation of the cyclic group G = Zy,
k > 1, such that V¢ = {0} and let W' be a real vector space. Let f : S(V) — W’ be a
continuous map.

(1) If Aswyy C Ay, then for all i with 1 <i <k,

dim A(f, Zyi, Zot) > {%} -kt — 2y aw.
(2) If Aswyy € Ao, then for some i with 1 <i <k,

dmA(f, Zor, o) > [d(g)—_l—w _ @ — 2y g
PROOF. For G = Zy, k > 1, using the same steps as in the proof of Theorem 3.1 and
applying Theorem 2.2 gives the result. ]

REMARK 3.3. We observe that Theorems 3.1 and 3.2 have peculiar characteristics that
differentiate them from the classic results on (H, G)-coincidences. The first is that the
action of the group G on the sphere S(V) is not necessarily free. The second is that the
theorems provide an estimate for the dimension of the set of (H, G)-coincidences of a
continuous function f : S(V) — W’, for all subgroups H = Z,; of G = Z .

EXAMPLE 3.4. Let G and W’ be Z4 and R, respectively. Let 7:S' — R be the
projection on the first factor and p : R — R be the polynomial function p(x) =
x(x — 1)(x + 1). Consider the action of Z, on S! as the rotation of 7/4. Then f = p o ris
such that A(f,Z,,Z4) = {(1,0), (0, 1), (—1,0), (0, —1)} and therefore dim A(f, Z,,Z4) =
0. In this case, we have the equality

dv)-1

dimA(f, Zy, Zos) = [ -

“ _ (2/(—1 _ 2k—i) dWI,

where V=R2, k=2andi=1.

If we take p(x) =x*(x—1)(x+1) and f=pon, then all points of S' are
(Z,,Z4)-coincidence points of f, that is, A(f,Z»,Z4)=S' and therefore,
dll’nA(f, ZQ,Z4) =1.

The next result is an (H, G)-coincidence version of the Bourgin—Yang theorem for
p-torus Z’I‘,.

THEOREM 3.5. Let V and W' be two orthogonal representations of the group G = Z’;,
such that V6 = WS = {0}. Let f : S(V) — W’ be a continuous map. Then

dimA(f, Z}, Zy) > dimg V + (p* — p*~) dimg W’ - 1.

PROOF. Let ay,...,a, be a set of representatives of the left lateral classes of G/Z!
where r = p*~. Let Zl, = {hy,...,h,} be a fixed enumeration of elements of Z.
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Consider the map
F:S(V) = AW Yo AW )*
defined by
F(x) = (F1(x), F2(x), ..., Fji(x)),

where Fj(x) = (f(a1hjx), ..., f(ahix),j=1,.. Lph

For a fixed enumeration Zj = {gi,...,gy} of the elements of Z%, we define
a Zk-action on AW y@ AW'P ™) as follows: for each g € Z, and for each
V1.5 Yp) € AWy AWP T, set

g] (yls cee ,yp]‘) = (yO'g,-(l)" . "yO'gj(pk))’

where the permutation o, is defined by o (k) = u, grgj = gu- Then F becomes
Z’I‘,-equivariant.

The linear orthogonal projection along the diagonal A(W’pk_i) defines a
G-equivariant map

0 AW Y AW Y o AW

Let us denote by [ the composition
Sv) 5 AWy AW B Ay

with Z; = I71(0) = (p o F)™1(0) = F-{(AW'P)) = A(f, Z ,Z}). From Theorem 2.3,
dimZ; > dimg V + dimg A(W’? )+ — 1, that is,

dimA( f,Z,,Z}) > dimg V + (p* - p*~) dimg W’ — 1. O
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