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Abstract

Let W be a real vector space and let V be an orthogonal representation of a group G such that VG = {0} (for
the set of fixed points of G). Let S(V) be the sphere of V and suppose that f : S(V)→ W is a continuous
map. We estimate the size of the (H, G)-coincidences set if G is a cyclic group of prime power order Zpk

or a p-torus Zk
p.
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1. Introduction

Let G be a finite group which acts on a space X and let f : X → Y be a continuous map
from X into another space Y. If H is a subgroup of G, then H acts on the right on each
orbit Gx of G as follows: if y ∈ Gx and y = gx, with g ∈ G, then h · y = gh−1x. A point
x ∈ X is said to be an (H, G)-coincidence point of f (as introduced by Gonçalves et al.
in [6]) if f sends every orbit of the action of H on the G-orbit of x to a single point.
Of course, if H is the trivial subgroup, then every point of X is an (H, G)-coincidence.
If H = G, this is the usual definition of a G-coincidence point, that is, f (x) = f (gx)
for all g ∈ G. Let us denote by A( f , H, G) the set of all (H, G)-coincidence points.
Borsuk–Ulam theorems estimate the size of the set A( f , H, G). For the case when the
target space Y is a CW-complex, this problem was considered by Gonçalves et al.
[6] (for the subgroup H = Zp of a finite group G, X a homotopy sphere and Y a
CW-complex) and Gonçalves et al. [7] (for the subgroup H = Zp of a finite group
G, X under certain (co)homological assumptions and Y a CW-complex). In [5], by
considering the target space Y = M a manifold and H a proper nontrivial subgroup
of G, we proved a formulation of the Borsuk–Ulam theorem for manifolds in terms
of (H, G)-coincidences which has applications to the famous topological Tverberg
problem (see for example, [1]).
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Let W be a real vector space and let V be an orthogonal representation of a group
G with VG = {0}. Let S(V) be the sphere of V and suppose that f : S(V)→ W is a
continuous map. We estimate the size of A( f , H, G) if G is a cyclic group of prime
power order Zpk or a p-torus Zk

p (Theorems 3.1, 3.2 and 3.5).

2. Bourgin–Yang versions of the Borsuk–Ulam theorem for Zpk and Zk
p

Let G = Zpk be a cyclic group of prime power order, k ≥ 1. Given two powers pm, pn

of p with 1 ≤ m ≤ n ≤ k − 1, we set

Am,n := {G/H | H ⊂ G, pm ≤ |H| ≤ pn},

where |H| is the cardinality of H. We writeAX for a set of all the G-orbits of a space X
(up to a homeomorphism and thus up to an isomorphism of finite G-sets).

Let V be an orthogonal representation of G = Zpk , p prime, k ≥ 1, such that
VG = {0} (for the set of fixed points of G). For G = Zpk , with p odd, every nontrivial
irreducible orthogonal representation is even dimensional and admits a complex
structure [10], so V also admits such a structure. We write d(V) = dimC V = 1

2 dimR V ,
an integral numerical invariant of V.

The following Bourgin–Yang versions of the Borsuk–Ulam theorem for complex
orthogonal representations of G = Zpk , p prime, k ≥ 1 and for real orthogonal repre-
sentations of G = Z2k , k ≥ 1 are from [8].

THEOREM 2.1 [8, Theorem 3.6]. Let V, W be two complex orthogonal representations
of the cyclic group G = Zpk , p > 2 prime, k ≥ 1, such that VG = WG = {0}. Let f :

S(V)
G→ W be an equivariant map and Z f := f −1(0) = {v ∈ S(V) | f (v) = 0}. Suppose

AS(V) ⊂ Am,n andAS(W) ⊂ Am,n. Then

dim Z f ≥ 2
(⌈ (d(V) − 1)m

n

⌉
− d(W)

)
.

THEOREM 2.2 [8, Theorem 3.9]. Let V, W be two real orthogonal representations

of the cyclic group G = Z2k , k ≥ 1, such that VG = WG = {0}. Let f : S(V)
G→ W be an

equivariant map and Z f = f −1(0). Suppose thatAS(V) ⊂ Am,n andAS(W) ⊂ Am,n. Then

dim(Z f ) ≥
⌈ (d(V) − 1)m

n

⌉
− d(W).

The next result is the classical version of the Bourgin–Yang theorem for a p-torus
Z

k
p = Zp × Zp × · · · × Zp (k times).

THEOREM 2.3 [9, Theorem 2.1]. Let V and W be two orthogonal representations of
the group G = Zk

p such that VG = WG = {0}. Let f : S(V)→ W be a continuous map.
Then

dim Z f ≥ dimR V − dimRW − 1.

For further recent extensions of the Bourgin–Yang theorem, see [2, 3].
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3. Estimating the size of the (H, G)-coincidences set

Let W ′ be a real vector space and f : S(V)→ W′ a continuous map. In this section,
we estimate the size of the set A( f ,Zpi ,Zpk ) under various assumptions.

THEOREM 3.1. Let V be a complex orthogonal representation of the cyclic group G =
Zpk , p ≥ 3 prime and k ≥ 1, such that VG = {0} and let W′ be a real vector space. Let
f : S(V)→ W′ be a continuous map.

(1) IfAS(V) ⊂ A1,pk−1 , then for all i with 1 ≤ i ≤ k,

dim A( f ,Zpi ,Zpk ) ≥ 2
⌈d(V) − 1

pk−1

⌉
− (pk − pk−i) dW ′.

(2) IfAS(V) ⊂ A1,pi−1 for some i with 1 ≤ i ≤ k, then

dim A( f ,Zpi ,Zpk ) ≥ 2
⌈d(V) − 1

pi−1

⌉
− (pk − pk−i) dW ′.

PROOF. Let i be fixed with 1 ≤ i ≤ k. Consider the real vector space ⊕pk

j=1W ′, which

is the direct sum of pk copies of W′. The space ⊕pk

j=1W ′ admits an action of the cyclic
group G = Zpk , given by

g(w1, w2, . . . , wpk ) = (w2, . . . , wpk , w1)

for a fixed generator g ∈ G and for each (w1, . . . , wpk ) ∈ ⊕pk

j=1W ′.

Denote by Δ(W′p
k−i

) the diagonal of ⊕pk

j=1W ′ = W ′p
k−i ⊕ · · · ⊕W′p

k−i
. Then

pk⊕
j=1

W ′ = Δ(W ′p
k−i

) ⊕ (Δ(W′p
k−i

))⊥,

where Δ(W′p
k−i

)⊥ is the orthogonal complement of Δ(W′p
k−i

). Now Δ(W′p
k−i

) is a
G-subspace of⊕pk

j=1W ′ of dimension pk−i dim W ′, soΔ(W pk−i
)⊥ is a G-subrepresentation

of ⊕pk

j=1W ′ of dimension (pk − pk−i) dim W ′ for which (Δ(W′p
k−i

)⊥)G = {0}.
Denote by a1, . . . , ar a set of representatives of the left lateral classes of G/Zpi ,

where r = pk−i. Consider the map

F : S(V)→ Δ(W′p
k−i

) ⊕ Δ(W′p
k−i

)⊥

defined by

F(x) = (F0(x), F1(x), . . . , Fpi−1(x)),

where Fj(x) = ( f (a1hjx), . . . , f (arhjx)), j = 0, 1, . . . , pi − 1, for a fixed generator
h ∈ Zpi . The linear orthogonal projection along the diagonal Δ(W′p

k−i
) defines a

G-equivariant map ρ : Δ(W′p
k−i

) ⊕ Δ(W′p
k−i

)⊥ → Δ(W′p
k−i

)⊥. Let us denote by l the
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composition

S(V)
F→ Δ(W′p

k−i
) ⊕ Δ(W′p

k−i
)⊥

ρ
→ Δ(W′p

k−i
)⊥,

with

Zl = l−1(0) = (ρ ◦ F)−1(0) = F−1(Δ(W ′p
k−i

)) = A( f ,Zpi ,Zpk ).

For a fixed generator g ∈ G, we can take h = gpk−i
, a1 = e, a2 = g, . . . , ar = gpk−i−1,

and then F is a G-equivariant map. Moreover,

AS(Δ(W′ pk−i )⊥) ⊂ A1,pi−1 ⊂ A1,pk−1 .

To check the validity of the inclusion AS(Δ(W′ pk−i )⊥) ⊂ A1,pi−1 , it suffices to prove
that the cardinality of the orbit Zpk w belongs to the set {pk, pk−1, . . . , pk−i+1} for any
w = (w1, . . . , wpk ) ∈ S(Δ(W′p

k−i
)⊥). From [4, Ch. 1, Proposition 4.1], the cardinality of

the orbit Zpk w belongs to the set {pk, pk−1, . . . , p, p0 = 1}. Let w = (w1, . . . , wpk ) be an
element in S(Δ(W′p

k−i
)⊥) and suppose that |Zpk w| ∈ {pk−i, pk−i−1, . . . , p0 = 1}, that is,

|Zpk w| = p j for some j with 0 ≤ j ≤ k − i.

Assertion. We have Zpk w = {w, gw, . . . , gp j−1w}, for a fixed generator g of Zpk .

In fact, consider a cyclic group G, g ∈ G a fixed generator and {w, gw, . . . , gs−1w}
the maximum set of the first s elements of the orbit Gw that are distinct from each
other. From this definition, gsw ∈ {w, gw, . . . , gs−1w}. Suppose that

gsw = giw for some i with 1 ≤ i ≤ s − 1.

Then

gs−iw = w where 1 ≤ s − i ≤ s − 1.

However, this contradicts the definition of the set {w, gw, . . . , gs−1w}.
Now, if gtw ∈ Gw, for some t ∈ N, we have t = ns + r with 0 ≤ r ≤ s − 1. Therefore,

gtw = gns+rw = gr(gns)w = grw ∈ {w, gw, . . . , gs−1w},

since gnsw = (gs · · · gs)w = w and 0 ≤ r ≤ s − 1.
Thus, for a fixed generator g of Zpk ,

w = gp j
w = gp j

(w1, . . . , wp j , . . . , w(pk−j−1)p j+1, . . . , wpk )
= (wp j+1, . . . , w2p j , . . . , w(pk−j−1)p j+1, . . . , wpk , w1, . . . , wp j )

and so w ∈ Δ(W′p
j
). Since

Δ(W ′) ⊂ Δ(W ′p) ⊂ · · · ⊂ Δ(W′p
k−i−1

) ⊂ Δ(W ′p
k−i

)

and j ∈ {0, 1, . . . , k − i}, we conclude that w ∈ Δ(W′p
j
) ⊂ Δ(W ′p

k−i
), which is a contra-

diction since Δ(W′p
k−i

) ∩ S(Δ(W′p
k−i

)⊥) = ∅.
This proves the assertion and the theorem follows from Theorem 2.1. �
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We also have the following estimate for the size of A( f ,Z2i ,Z2k ).

THEOREM 3.2. Let V be a real orthogonal representation of the cyclic group G = Z2k ,
k ≥ 1, such that VG = {0} and let W′ be a real vector space. Let f : S(V)→ W′ be a
continuous map.

(1) IfAS(V) ⊂ A1,2k−1 , then for all i with 1 ≤ i ≤ k,

dim A( f ,Z2i ,Z2k ) ≥
⌈d(V) − 1

2k−1

⌉
− (2k−1 − 2k−i) dW ′.

(2) IfAS(V) ⊂ A1,2i−1 , then for some i with 1 ≤ i ≤ k,

dim A( f ,Z2i ,Z2k ) ≥
⌈d(V) − 1

2i−1

⌉
− (2k−1 − 2k−i) dW ′.

PROOF. For G = Z2k , k ≥ 1, using the same steps as in the proof of Theorem 3.1 and
applying Theorem 2.2 gives the result. �

REMARK 3.3. We observe that Theorems 3.1 and 3.2 have peculiar characteristics that
differentiate them from the classic results on (H, G)-coincidences. The first is that the
action of the group G on the sphere S(V) is not necessarily free. The second is that the
theorems provide an estimate for the dimension of the set of (H, G)-coincidences of a
continuous function f : S(V)→ W′, for all subgroups H = Zpi of G = Zpk .

EXAMPLE 3.4. Let G and W′ be Z4 and R, respectively. Let π : S1 → R be the
projection on the first factor and p : R→ R be the polynomial function p(x) =
x(x − 1)(x + 1). Consider the action of Z4 on S1 as the rotation of π/4. Then f = p ◦ π is
such that A( f ,Z2,Z4) = {(1, 0), (0, 1), (−1, 0), (0,−1)} and therefore dim A( f ,Z2,Z4) =
0. In this case, we have the equality

dim A( f ,Z2i ,Z2k ) =
⌈d(V) − 1

2i−1

⌉
− (2k−1 − 2k−i) dW ′,

where V = R2, k = 2 and i = 1.
If we take p(x) = x2(x − 1)(x + 1) and f = p ◦ π, then all points of S1 are

(Z2,Z4)-coincidence points of f, that is, A( f ,Z2,Z4) = S1 and therefore,
dim A( f ,Z2,Z4) = 1.

The next result is an (H, G)-coincidence version of the Bourgin–Yang theorem for
p-torus Zk

p.

THEOREM 3.5. Let V and W′ be two orthogonal representations of the group G = Zk
p

such that VG = W ′G = {0}. Let f : S(V)→ W′ be a continuous map. Then

dim A( f ,Zi
p,Zk

p) ≥ dimR V + (pk − pk−i) dimRW ′ − 1.

PROOF. Let a1, . . . , ar be a set of representatives of the left lateral classes of G/Zi
p,

where r = pk−i. Let Zi
p = {h1, . . . , hpi} be a fixed enumeration of elements of Zi

p.
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Consider the map

F : S(V)→ Δ(W′p
k−i

) ⊕ Δ(W′p
k−i

)⊥

defined by

F(x) = (F1(x), F2(x), . . . , Fpi (x)),

where Fj(x) = ( f (a1hjx), . . . , f (arhjx)), j = 1, . . . , pi.
For a fixed enumeration Zk

p = {g1, . . . , gpk } of the elements of Zk
p, we define

a Zk
p-action on Δ(W′p

k−i
) ⊕ Δ(W′p

k−i
)⊥ as follows: for each gj ∈ Zk

p and for each
(y1, . . . , ypk ) ∈ Δ(W ′p

k−i
) ⊕ Δ(W′p

k−i
)⊥, set

gj (y1, . . . , ypk ) = (yσgj (1), . . . , yσgj (pk)),

where the permutation σgj is defined by σgj (k) = u, gkgj = gu. Then F becomes
Z

k
p-equivariant.
The linear orthogonal projection along the diagonal Δ(W′p

k−i
) defines a

G-equivariant map

ρ : Δ(W′p
k−i

) ⊕ Δ(W′p
k−i

)⊥ → Δ(W′p
k−i

)⊥.

Let us denote by l the composition

S(V)
F→ Δ(W′p

k−i
) ⊕ Δ(W′p

k−i
)⊥

ρ
→ Δ(W′p

k−i
)⊥,

with Zl = l−1(0) = ( ρ ◦ F)−1(0) = F−1(Δ(W ′p
k−i

)) = A( f ,Zi
p,Zk

p). From Theorem 2.3,
dim Zl ≥ dimR V + dimR Δ(W ′p

k−i
)⊥ − 1, that is,

dim A( f ,Zi
p,Zk

p) ≥ dimR V + (pk − pk−i) dimRW ′ − 1. �
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