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Abstract

The significant increase in the contribution of unconventional oil and gas reservoirs
to the world’s total petroleum production has led to a corresponding interest
in the study of these resources over the last decade. Various researchers have
focused on the study of storage and transport mechanisms that are unique to
these naturally fractured unconventional resources. In this chapter, we show how
to extend the MATLAB Reservoir Simulation Toolbox (MRST) to model these
physical mechanisms using a shale module we have developed. Some of the
features of this module include the modeling of sorption, molecular diffusion,
stress-sensitive permeability, and realistic fractures in any orientation. This chapter
starts with a discussion of the design of the shale module. We then present the
governing equations for compositional simulation and show how to use the hfm

and compositional modules in MRST to perform a compositional simulation
in a fractured reservoir. To demonstrate the practicality of the shale module, we
model an Eagle Ford shale oil reservoir with hundreds of natural fractures. We
conclude this chapter with a discussion of how to implement certain storage and
transport mechanisms that are unique to shale oil/gas reservoirs.

10.1 Introduction

Unlike conventional petroleum reservoirs, unconventional oil and gas (UOG)
reservoirs have very low matrix permeability and porosity. Although the terms
shale gas/oil reservoirs and UOG reservoirs are typically used interchangeably,
they include organic-rich source rocks with considerable amounts of mudstone,
siltstone, or carbonate. These source rocks are known to be made up of mostly
inorganic matter (such as quartz, clay, pyrites), in addition to the organic matter
(called kerogen). The total organic carbon contents of these source rocks range
from approximately 1% to 12% by mass.
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Figure 10.1 This sketch illustrates the presence of fractures at multiple scales
in organic-rich source rocks. The man-made hydraulic fractures are on the order
of millimeters and tens/hundreds of meters in aperture and length, respectively,
whereas the microcracks are on the order of micrometers in length. The natural
fractures are at an intermediate scale between these two and could be on the order
of meters in length.

Pore-size distributions from UOG reservoirs show that the pores in these source
rocks could be less than 2 nm in the shale matrix and could be on the order of
micrometers in the largest pores and natural fractures [16]. UOG reservoirs are
also known to contain fractures across multiple scales, as illustrated in Figure 10.1.
Microfractures (or microcracks) and larger-scale natural fractures are both naturally
occurring cracks or openings in the organic-rich source rocks, whereas hydraulic
fractures are man-made. Microfractures are typically developed from internal pro-
cesses (such as crack nucleation due to the maturation of kerogen or dehydration
of clay) or external processes such as tectonic loading [28].

Natural fractures are much larger cracks that occur within a rock and are typically
characterized by a lack of displacement across the crack surface. Even though the
terms “fractures” and “faults” are sometimes used interchangeably, a fault differs
from a fracture in that there is displacement along the crack surface in faults but
there is no rock displacement in fractures. The orientation of each fracture in a
fractured rock is controlled by the prevailing stress states when the fracture was
created. These stress states typically evolve over many years, leading to different
natural fracture orientations [31]. Some of these natural fractures get sealed by
the accumulation of fine-grained particles (called cementing materials) within the
fractures and are referred to as “sealing fractures.” The other natural fractures with
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little or no sealing materials are more conductive to the flow of reservoir fluids and
are referred to as “conductive fractures.”

The reservoir fluids (oil, gas, and water) we produce from UOG reservoirs
are stored in void spaces in the rock matrix, microcracks, and natural fractures.
Although fluids tend to flow through the path of least resistance (the largest pores
and hundreds/thousands of conductive natural fractures), a considerable amount
of the reservoir fluids is stored in the nanoscale pores. This, coupled with the
low connectivity between larger pores and fractures, results in the low matrix
permeability and consequently low recovery from UOG reservoirs. To produce
commercially from these reservoirs, we typically employ the combination of
horizontal wells with multistage hydraulic fracturing.

Hydraulic fractures are large-scale fractures that are artificially induced by
pumping in a mixture of water and chemical additives (known as slickwater) at high
pressures. They are typically created by plugging and perforating the horizontal
wells in stages, starting from the toe of the well and progressing toward the heel
of the well. After these fractures are initiated, we usually pump in proppants,
which are solid particles dispersed in the fracturing fluid. These help to prevent
the fractures from closing during production, when the pressure near the fracture
surfaces drops and additional compressive stresses are induced. The solid proppants
occupy a significant proportion of the void space in the hydraulic fractures, leading
to a fracture porosity that is typically much less than 100%. These proppants also
make the permeability of propped hydraulic fractures orders of magnitude lower
than the values that would be obtained using the cubic law, which is applicable for
cracks without proppants.

Hydraulic fractures facilitate the commercial production from UOG reservoirs
by connecting the conductive natural fracture networks to the horizontal produc-
tion wells. Figure 10.1 illustrates the relative length scales of the microcracks and
natural and hydraulic fractures, which are on the scale of micrometers, meters,
and tens or hundreds of meters, respectively. Their apertures are much smaller,
with propped hydraulic fractures having apertures on the order of a millimeter. The
apertures of the microcracks and natural fractures are less known but are expected
to be much smaller than those of the hydraulic fractures. This contributes to the
wide variation in the pore-size distribution of these UOG reservoirs, which have
multiscale fractures and nanoporous source rocks.

The wide spread in the pore-size distribution of UOG reservoirs could lead to
differences in the storage and transport mechanisms at different length scales. To
simulate flow in these reservoirs, we typically modify the mass-balance equations
in conventional petroleum reservoirs to account for the specific storage and trans-
port mechanisms expected in these organic-rich source rocks. This, coupled with
the multiphase and compositional nature of fractured UOG reservoirs, makes the
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modified governing equations very nonlinear and difficult to solve using analyti-
cal or semi-analytical methods [11]. Therefore, we focus only on the solution of
these complex nonlinear equations using the numerical methods available in the
MATLAB Reservoir Simulation Toolbox (MRST). For more details on the state-
of-the-art analytical and semi-analytical methods for modeling UOG reservoirs, the
interested reader is referred to chapter 10 of the Dynamic Data Analysis report [12].

In shale-gas reservoirs, we could have gas stored in the compressed form as free
gas within the large pores (which is usually the only storage mechanism considered
in conventional gas reservoirs) and in the sorbed state. The storage of gas molecules
in the sorbed state refers to the adsorption of the gas molecules on the internal
surfaces of the organic-rich source rock, as well as the dissolution of some gas
molecules into the solid matrix. We usually consider sorption in the gas phase but
not in the liquid phase because in gases the density of the sorbed fluid near the
pore walls is much higher than the fluid density in the middle of the pores [6].
However, this is typically not the case in the liquid state, where oil molecules are
much more closely packed even in the middle of the pores. Some of the models that
have been proposed for sorption in shale-gas reservoirs include the Langmuir [18]
and Brunauer–Emmett–Teller [3] isotherms, among others. The Langmuir isotherm
assumes that only one layer of fluid is adsorbed on the pore walls, whereas the
Brunauer–Emmett–Teller isotherm assumes that multiple layers of the fluid are
adsorbed on the pore walls. The Langmuir is the most common sorption model
because of the simplicity in its use of only two parameters.

Transport mechanisms in UOG reservoirs are also more complex than in con-
ventional reservoirs. For instance, in conventional reservoirs, molecular diffusion
(driven by the concentration gradient) is usually neglected because the high matrix
permeability causes the advective mass transfer (driven by the pressure gradient)
to dominate the mass transport mechanism. However, in unconventional reservoirs
with very low matrix permeability, the contribution of the diffusive flux of each
hydrocarbon component to the total mass flux could be significant. This chapter
shows how to model the diffusion of multicomponent hydrocarbon mixtures using
Fick’s law.

In UOG reservoirs, we also need to account for the tendency of hydraulic and
natural fractures to close because of the compressive stresses induced when pres-
sure drops during production. As in Olorode et al. [26], the model presented in Guo
and Liu [10] can be implemented in a coupled flow and geomechanics simulator
and used to model the closing of the propped hydraulic fractures. On the other
hand, the change in the permeability of a fractured rock can be modeled using
the Gangi [7] model. This model uses a conceptual bed of nails to represent a
naturally fractured rock, with the bed of nails representing the surface roughness
or asperity of the natural fracture surfaces. It relates the permeability of a matrix
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and natural fracture system to the pore pressure and confining stresses acting to
close the natural fractures. This chapter shows how to implement the Gangi model
in MRST and provides an example that illustrates the effect of this permeability
reduction on production.

This chapter starts with a presentation of the design of the shale module,
which leverages the rapid prototyping features of MRST to facilitate the simulation
of UOG reservoirs. Considering that most of the standard MRST modules were
designed for conventional petroleum reservoirs, we discuss the functions, classes,
and scripts we have added or modified to enable the simulation of UOG reservoirs.
For instance, we provide additional codes that augment the hfm module from
Chapter 9 to allow us use the projection-based embedded discrete fracture model
(pEDFM) instead of the embedded discrete fracture model (EDFM), which has
been shown to be inaccurate at low fracture conductivities [32]. We also provide
additional codes that augment the compositional module to model shale
mechanisms such as sorption, diffusion, and geomechanics.

In Section 10.3, we present the governing equations for compositional flow
in conventional petroleum reservoirs. In a later section (Section 10.7), we will
show how these equations are modified to include each of the shale mechanisms
discussed in this chapter. Although compositional reservoir simulation is more
computationally challenging than the black-oil simulation approach, we focus
on compositional simulation so that the shale module can be used to model
enhanced/improved oil recovery (EOR/IOR) by miscible CO2 or lean-gas injection.
EOR/IOR in unconventional oil reservoirs is an active research area because these
reservoirs have very low recovery factors that are typically less than 10%. It is
worth mentioning that the modeling of EOR/IOR processes in UOG reservoirs
is complicated by the presence of multiscale natural fracture networks in these
organic-rich source rocks.

To provide a broad perspective on the modeling of fractured reservoirs, we dis-
cuss the different groups of modeling approaches that have been used for frac-
tured reservoirs. We then focus on three specific modeling approaches that will be
demonstrated in this chapter. These include the full-dimensional modeling of the
fractures using several three-dimensional (3D) cells to represent the fractures in a
3D reservoir model, the use of the EDFM disscussed in Chapter 9, and the use of the
3D pEDFM model proposed by Olorode et al. [27]. Considering the significance of
natural and hydraulic fractures in these ultra-low-permeability reservoirs, a great
part of this chapter focuses on the modeling of hydraulic and natural fractures
using EDFM and pEDFM. We show that pEDFM is more accurate, using a UOG
reservoir with hundreds of sealing natural fractures in addition to the conductive
natural fractures in the reservoir.
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In Section 10.4, we systematically show how to use the hfm and compositional
modules to model the production from a fractured compositional reservoir. For
simplicity and computational speed, the case presented in this section only models
a two-component mixture (10% CO2 and 90% n-decane) with three fractures using
EDFM. To model more realistic fractured reservoirs with hundreds or thousands
of fractures in arbitrary orientations, we use the Alghalandis Discrete Fracture
Network Engineering (ADFNE) code [1], an open-source MATLAB code to
generate a stochastic fracture network distribution, in Section 10.5. Considering
that there is currently no technology available to find the location, orientation, and
dimension of all of the natural fractures in the subsurface, several realizations of
the fracture network can be generated and simulated to evaluate the effect of the
uncertainties in these fracture properties.

Section 10.6 shows how to model a representative Eagle Ford shale oil reser-
voir using the 3D pEDFM implemented in the shale module. We provide
the eagleFord.m and eagleFordEDFM.m scripts (in the examples folder
of the shale module) to regenerate the results presented in this section. The
eagleFord.m script uses the 3D pEDFM functionality in the shale module,
whereas eagleFordEDFM.m uses EDFM in the hfm module and is provided only
for comparison. In both cases, we use the representative Eagle Ford compositional
fluid given in Yu et al. [37]. In the final section of this chapter, we discuss how
to implement three physical mechanisms that are unique to shale-gas reservoirs,
namely, sorption, diffusion, and geomechanics. For each of these mechanisms,
we present the corresponding mathematical model and modified governing mass-
balance equation. In a tutorial style, we discuss the steps required to implement
each of these models in MRST. Each subsection on these mechanisms ends with
simulation results that illustrate the effect of the mechanism on production. We
have also provided sorption.m, diffusion.m, and gangi.m scripts to facilitate
the reproduction of the results presented in these subsections. They can be found in
the examples folder of the shale module, which is discussed in the next section.

10.2 Shale Module

This section discusses the features and design of the shale module. Figure 10.2
shows that all of the codes in this module are contained within six folders. The
design of the shale module is such that it depends on the compositional and
hfm modules, which are discussed in Chapters 8 and 9, respectively. The module
extends a few functions and classes from the original compositional module (which
are stored in the compositionalFns folder) to facilitate the modeling of physical
mechanisms unique to UOG reservoirs. The NatVarsShaleModel class extends

https://doi.org/10.1017/9781009019781.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.016


Numerical Modeling of Fractured Unconventional Oil and Gas Reservoirs 415

Figure 10.2 This data diagram shows the design of the shale module, as well as
the functions and classes modified from the hfm and compositional modules.

the functionalities provided in the NaturalVariablesCompositionalModel

class in the compositional module to model the shale mechanisms
outlined in the previous section. The NatVarsShaleModel class uses its
eqnsShaleNaturalVarsmethod to model the equations that govern flow in UOG
reservoirs. Although the examples presented in this chapter use the natural variables
approach, the overall composition approach can also be used to model these shale
mechanisms by extending the OverallCompositionCompositionalModel

class instead of the natural variables class.
The shale module also depends on the module for EDFM and provides mod-

ifications of some hfm functions in the hfmFns folder. The functions that are
unique to our 3D projection algorithm discussed in Subsection 10.3.2 are stored
in the pEDFM_nnc folder. Considering that most of the shale mechanisms involve
some modification of the setupEDFMOperatorsTPFA function in the hfm mod-
ule, we created setupShaleEDFMOpsTPFA and setupShalePEDFMOpsTPFA to
facilitate the integration of these additional physical mechanisms with the EDFM
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and pEDFM fracture modeling approaches, respectively. These two functions call
setupEDFMOperatorsTPFA, before making the additional changes required to
implement the shale mechanisms in EDFM and pEDFM. In the next listing, we
show how we modify the s field returned from setupEDFMOperatorsTPFA to
make the discrete operators compatible with the 2019b version of MRST:

s = setupEDFMOperatorsTPFA(G, G.rock, tol);
n = size(s.N,1);
C = (s.C)'; % transpose it only once for speed
if n == 0

s.AccDiv = @(acc, flux) acc;
s.Div = @(x) zeros(G.cells.num, 1);

else
s.AccDiv = @(acc, flux) acc + C*flux;
s.Div = @(x) C*x;

end

The examples folder contains the MATLAB scripts that can be used to regenerate
all of the results presented in this chapter. The sorption.m, diffusion.m,
and gangi.m scripts demonstrate how we model these three shale mechanisms.
As shown in Section 10.7, they all use the shaleMechanisms field to specify
the shale mechanism to be modeled. The otherMRSTfns folder contains mod-
ifications to functions taken from other parts of MRST, and utils contains
utility functions that are used in the example scripts. To run these examples
smoothly, the user is advised to first add the shale module and its subfolders to the
MATLAB path.

The shale module also depends on the use of ADFNE [1], an open-source
toolkit for stochastic fracture network generation. ADFNE requires the
Statistics & Machine Learning Toolbox in MATLAB, so we provide
the EagleFordEDFM.mat and StochasticFracs.mat files generated with
ADFNE to allow users reproduce our simulation results without installing any
toolboxes. The reader is also encouraged to explore the use of the discrete fracture
network (DFN) generator in the hfm module, as discussed in Chapter 9. We discuss
stochastic fracture modeling and its application in a fractured reservoir simulation
in Sections 10.5 and 10.6. We also provide Table 10.1 to help readers identify the
sources of the different functions discussed throughout this chapter.

To lay a foundation for the discussion of the physical mechanisms implemented
in these functions, the next section discusses the governing equations for compo-
sitional flow in conventional petroleum reservoirs. Subsequent sections will show
how these equations are modified to account for the storage and transport mecha-
nisms expected in UOG reservoirs.
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Table 10.1 Location of all functions discussed.

hfm shale ADFNE

EDFMgrid processStochFracs DFN

fracturematrixNNC3D plotfracSystemNF Field

fracturefractureNNCs3D createMultiStageHFs Orientation

setupEDFMOpsTPFA setupPEDFMOpsTPFA Stereonet

wellfractureNNCs3D

pMatFracNNCs3D

makeShaleRock

10.3 Compositional Flow and Modeling of Fractured Reservoirs

This section starts with a presentation of the governing equations for compositional
flow in conventional petroleum reservoirs. We summarize how these equations are
discretized and solved in MRST and provide appropriate references for further
details on the numerical solution procedure employed in MRST. We also discuss
how the discretized form of the governing equations are modified to model frac-
tured reservoirs with EDFM and pEDFM.

10.3.1 Governing Equations for Compositional Flow
in Conventional Reservoirs

In this chapter, we consider a petroleum reservoir where the hydrocarborn fluids can
exist only in either the liquid or the gas phase. The equation for the conservation of
each hydrocarbon species i in the oil (liquid) or gas (vapor) phase is given as

∂t

[
φ(ρlSlX

i
l + ρvSvX

i
v)
]+∇ · (ρlX

i
l �vl + ρvX

i
v �vv)

− (ρlX
i
l ql + ρvX

i
vqv

)
/V = 0. (10.1)

If an aqueous phase (water) is present, its conservation equation can be written as

∂t (φρwSw) +∇ · (ρw�vw) − ρwqw/V = 0. (10.2)

In these conservation equations, φ represents porosity, ρα and Sα respectively rep-
resent the mass density and saturation of phase α, and Xi

l and Xi
v are the mass

fractions of each component i in the liquid and vapor phases, respectively. The
division of the volumetric flow rates (qα) by volume (V ) ensures that all terms in
the equation are dimensionally consistent. Subscripts w, l, and v, refer to the water,
liquid, and vapor hydrocarbon phases. Thus, �vw, �vl , and �vv represent the Darcy
velocity for the water, liquid, and vapor hydrocarbon phases, which is defined as

https://doi.org/10.1017/9781009019781.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.016


418 O. Olorode, B. Wang, and H. U. Rashid

�vα = −K
kα(s)

μα

(∇pα − ραg∇z) = −Kλα(∇pα − ραg∇z). (10.3)

Using the subscript α for the liquid and vapor phases, (10.1) can be rewritten in
terms of Xi

α (which is the mass fraction of a component i in phase α) as follows:

∂t

[
φ
∑
α=l,v

ραSαX
i
α

]
+
∑
α=l,v

∇ · (ραX
i
α �vα

)− ∑
α=l,v

ραX
i
αqα/V = 0. (10.4)

Here, the three terms on the left-hand side of the equation (which are the accumu-
lation, flux, and source/sink terms, respectively) are expressed as a sum over each
phase, α. The capillary pressure definitions, as well as saturation and composition
constraints (that is, saturations and compositions sum up to one) are also applied
to the governing equations. The primary variables selected depend on the mathe-
matical formulation used for the simulation. Although we can use either the natural
variables formulation [4] or the overall composition variables formulation [5] in
MRST as discussed in Chapter 8, we focus on the use of the natural variables in this
chapter. This approach involves the use of pressure, phase saturation(s), and phase
composition of each component as the primary variables. Voskov and Tchelepi
[33] provides further details and other alternative formulations for compositional
simulation, and Møyner and Tchelepi [23] gives more details on the governing
equations, their discretization, and numerical solution procedure.

10.3.2 Modeling of Fractured Reservoirs in MRST

Depending on whether each individual fracture in a fractured reservoir is modeled
or not, we can classify the modeling approach into three broad groups (see also
discussion in Chapter 11):

1. Effective medium models: These fracture models represent a fractured system
with an effective medium. They include the dual-porosity, dual-permeability,
and multicontinuum models [30, 34]. They are computationally faster than the
discrete models but are based on the assumption that the reservoir is densely
fractured and has homogeneous fracture properties. This limits their application
in UOG reservoirs, which could have a heterogeneous fracture distribution and
fractures with very different lengths, apertures, permeabilities, orientations, etc.

2. Discrete models: These models account for each individual fracture in the reser-
voir. They include the full-dimensional model, discrete fracture model (DFM)
[14, 15], EDFM [19], pEDFM [32], etc. The added flexibility of modeling
each fracture explicitly makes these models more computationally expensive.
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Considering the importance of modeling the multiscale fractures in UOG reser-
voirs accurately, we focus on these DFMs in this chapter. To clarify, even though
we use the term “discrete fracture models” in this chapter, we also model the
reservoir matrix.

3. Hybrid models: These fracture models combine some form of effective
medium modeling with a DFM. Examples include the multiple subregion
model [8], multilevel DFMs [9, 20], etc.

Full-Dimensional Modeling

This is the most direct approach to model fractures. It involves a full volumetric
representation that subdivides each fracture into cells in the same way the matrix
is subdivided into cells. Cells that make up the fractures are referred to as fracture
cells, whereas those that make up the matrix are referred to as matrix cells. The
properties (such as porosity and permeability) of all of the fracture cells are set to
the corresponding property for that fracture. For a 3D reservoir simulation domain,
the fracture cells are also three-dimensional. Therefore, for a vertical fracture that
is parallel to the (y,z)-plane, the width of each fracture cell in the x-direction
(�x) is specified as the fracture aperture. The full-dimensional model is the most
computationally expensive of all of the fracture models because it requires the
largest number of n-dimensional cells (where n is the number of dimensions of
the reservoir domain). In most cases, the large number of cells, the small fracture
apertures, and their typically high permeabilities make such models computation-
ally intractable.

Embedded Discrete Fracture Modeling

EDFM involves gridding the matrix and fractures independently of each other.
For an n-dimensional model, the matrix cells will be n-dimensional, whereas the
fracture cells are of dimension n−1. The lower dimensionality of the fracture cells
and its independent gridding give the flexibility to embed one or more fracture
cells within a matrix cell. To account for the flow of fluids between the matrix
and fracture cells, the governing equations presented in Subsection 10.3.1 are
modified to include an additional source/sink term, which is implemented like the
non-neighboring source/sink terms in commercial reservoir simulators. Chapter 9
provides a detailed discussion on the EDFM and how it is implemented in the
hfm module.

Although EDFM is more computationally efficient than the full-dimensional and
discrete fracture models, it is limited by its inability to accurately capture the effects
of low conductivity or sealing faults/fractures on flow. Although UOG reservoirs
have low matrix permeabilities, it could be misleading to treat all natural fractures
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as having high conductivity given that many of these fractures are no longer active
in the current stress state of the rock. By the critically stressed fault hypothesis,
faults that are mechanically alive or active act as conduits for fluid flow, whereas
inactive faults act as barriers to flow [38]. To address the inaccuracy of the EDFM
in modeling low-conductivity fractures, Ţene et al. [32] developed the pEDFM,
which is discussed in the next subsection.

Projection-Based Embedded Discrete Fracture Modeling

The pEDFM basically modifies EDFM by adding two more types of non-
neighboring connections (NNCs). It involves projecting the fracture cells into some
of its neighboring matrix cells and computing the additional transmissibilities
introduced as a result of this projection. Jiang and Younis [13] presented an
algorithm to find the matrix cells into which the fracture cells will be projected.
Their algorithm only applies to 2D or extruded 2D (2.5D) systems, where all
fractures have to be perfectly vertical. In Olorode et al. [27], we presented a 3D
pEDFM algorithm that provides the capability of modeling fractures with any
arbitrary orientation in 3D space. This algorithm was developed for structured
hexahedral meshes for the matrix but could be extended for use with corner-
point grids. The general idea in pEDFM is to project a fracture in a cell into
three of the six neighbors of the matrix cell in which the fracture is located. The
matrix cell that hosts the fracture is referred to as the “host matrix cell,” whereas
the neighboring cells into which the fracture is projected are referred to as the
“projection matrix cells.” Fracture cells within a host matrix cell are referred to
as “interior fracture cells.” In the rare cases where fractures lie at the interface
between two matrix cells, pEDFM simplifies into the DFM [32].

Figure 10.3 shows the flowchart for the 3D pEDFM algorithm, as presented in
Olorode et al. [27]. It starts with a loop that estimates the distances between all
interior fracture centroids and the six faces of their host matrix cells. Because
these are hexahedral grids, the algorithm compares each pair of distances in the
same spatial direction. For instance, we chose one projection face out of either
the left or right face (in the x-direction). Depending on the computed values of the
six distances, we could have a total of four possible scenarios. In all four cases,
whenever a fracture cell is closer to one of a pair of faces in more than one spatial
direction, the closer of the pair of faces is selected. We then compute the area
that the fracture projects on each of the selected projection faces (called projection
area) and its corresponding transmissibility (called projection transmissibility). We
summarize each of these four cases here but refer to Olorode et al. [27] for more
details and graphical examples of these cases.
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Figure 10.3 The proposed algorithm automatically determines the three neighbor-
ing cells, whose transmissibilities and connection areas need to be modified in 3D
pEDFM.

– No pair of equidistant faces in any spatial direction: When a fracture cell
is closer to one of a pair of faces in all three directions, we select the three
projection cells (based on proximity to the fracture centroid). We then compute
the projection areas and transmissibilities for all three selected projection faces
using the equations presented in the next section. The algorithm then proceeds
to the next fracture cell.
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Table 10.2 Selection of remaining two faces based on a combination of the node
index and the direction of the only selected face.

Node index Face 1 Face 2 Face 1 Face 2 Face 1 Face 2

1 Front Bottom Left Bottom Left Front
2 Back Bottom Left Top Right Front
3 Back Top Right Top Right Back
4 Front Top Right Bottom Left Back

– One equidistant pair of faces in one of the three spatial directions: Because
there is only one equidistant pair of faces, we readily determine two projection
faces based on the proximity to the fracture centroid and compute their corre-
sponding projection areas and transmissibilities. We then find which of the two
nodes common to the selected projection faces is farther from the fracture plane
and select the third projection face as the one that contains this shared node.
The last step in this case is to compute the area and transmissibility for the third
projection face and continue with the next interior fracture cell.

– Two equidistant pairs of faces: We determine one projection face based on
the proximity to the fracture centroid and compute its corresponding projection
area and transmissibility. We then find which of the four nodes of this selected
projection face is farthest from the fracture plane and combine this with the
direction of the selected face to select the other two projection faces. We use
Table 10.2 to facilitate the selection of the projection faces and ensure that they
do not meet along the path of the fracture plane; see Olorode et al. [27]. For
each cell, the faces are ordered from face 1 to face 6, representing the left, right,
front, back, top, and bottom faces, respectively. The algorithm continues with
the computation of the area and transmissibility for these two newly selected
(second and third) faces before proceeding to the next interior fracture cell.

– Three equidistant pairs of faces: We randomly select one face as the projection
face and compute its projection area and transmissibility. The rest of the algo-
rithm in this case then becomes identical to that of the previous case with two
equidistant pairs of faces.

The algorithm discussed in this section has been implemented as a function named
pMatFracNNCs3D within the shale module. This module leverages the EDFM
functionality that is already built into the hfm module. The additional code needed
to implement the 3D pEDFM involves the computation of the transmissibilities for
two distinct groups of NNCs that are absent in EDFM. These two pEDFM NNCs
are discussed in the next subsection.
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10.3.3 The pEDFM Transmissibilities

In this subsection, we discuss the two additional NNC transmissibilities that are
required in the pEDFM model. These are the transmissibilities between projec-
tion matrix cells and fracture cells (referred to as the projection matrix/fracture
transmissibilities) and those between projection matrix cells and host matrix cells
(referred to as the projection matrix/matrix transmissibilities).

Projection Matrix/Fracture Transmissibility The projection matrix/fracture
transmissibility (TpMF) is expressed as [32]

TpMF = A⊥xKpMF

dpMF
, (10.5)

where

KpMF = KpMKf

KpM +Kf

. (10.6)

Here, KpMF represents the harmonic average of the projection matrix and fracture
cell permeabilities, dpMF represents the distance between the centroid of the fracture
and that of the projection cell, and A⊥x is the area of the fracture projection along
each dimension. The projection matrix/fracture transmissibility is computed in the
computeNNCprojAreanTrans function, which is provided in pMatFracNNCs3D.

Projection Matrix/Matrix Transmissibility The projection matrix/matrix trans-
missibility (TpMM) is given as

TpMM = K
A− A⊥x

� �xe

. (10.7)

In (10.7), � �xe refers to the cell sizes in all three spatial directions, A refers to the
area of the face between the projection and the host matrix cells, and A⊥x refers to
the projection area. When the interior fracture cell fully intersects the host matrix
cell and is parallel to the interface between the projection and host matrix cells, the
projection area obtains its maximum value and is equal to A. It reduces to zero as
the orientation of the interior fracture cell becomes perpendicular to the interface
between the projection and host matrix cells.

To simplify the computation of TpMM in MRST, we take advantage of the stan-
dard matrix–matrix transmissibilities (TMM) already computed as

TMM = K
A

� �xe

. (10.8)
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Combining this with (10.7) yields

TpMM = TMM
A− A⊥x

A
. (10.9)

The fractional term in this equation is implemented as a transmissibility multiplier,
as shown in the last couple of lines in the transmultpEDFM.m script:

oldArea = newarealist(globalFaceIdx); % denominator in eq (9)
newArea = oldArea - projectedArea; % numerator in eq (9)
newArea(newArea<tol) = 0; % zeros out very small areas
newarealist(globalFaceIdx) = newArea; % broadcasting numerator to T array
transmultp = newarealist./oldarealist; % fraction in eq (9)

The transmissibility multiplier computed in transmultpEDFM is then
multiplied with the EDFM transmissibility multiplier that is computed in the
transmultEDFM function of the hfm module. This is implemented in
setupPEDFMOpsTPFA as shown:

T = getFaceTransmissibility(G, rock, opt.deck);
transmultMFM = transmultEDFM(G,tol); % EDFM NNCs already implemented
transmultpMM = transmultpEDFM(G,tol); % pEDFM update: compute T_pM-M mults
T = T.*transmultMFM.*transmultpMM; % pEDFM update: using the multipliers
s.T_all = T; % T_all will not contain nnc transmissibilities
T = [T; G.nnc.T]; % modified line
T = T(intInx);

The next section shows how to perform a compositional simulation of frac-
tured reservoirs using a combination of both the compositional and hfm

modules.

10.4 EDFM and Compositional Simulation in MRST

The objective of this section is to provide a tutorial on how to perform a simple
compositional simulation of a reservoir with only three fractures. The idea is to
provide the reader with the fundamentals required to simulate more complex and
realistic compositional fractured reservoirs. Figure 10.4 presents the simplistic
scenario to be simulated in this section. It shows the location of a water injection
and a production well at two diagonally opposite edges of the simulation domain.
The injection well injects 100% water at a constant rate, whereas the production
well produces the reservoir fluid at a constant flowing bottom-hole pressure.
The hydrocarbon fluid simulated is a two-component mixture of 90% n-decane
and 10% CO2. To facilitate further compositional studies of recovery processes
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Figure 10.4 The three yellow planes represent the fractures in the 3D structured
mesh of the simulation domain. The injection and production wells are shown as
the vertical red lines at two corners of the simulation domain.

(like EOR/IOR) in UOG reservoirs, the complete code for this simplistic case
is included as compositional3D.m in the examples folder. For instance, an
interested reader could replace the water in the injection well with a lean gas or
replace the simplistic fractures with the stochastic fractures discussed in the next
section.

The simple case discussed here starts by loading the required modules:

mrstModule add compositional hfm;

Select fluid composition and compute surface densities: The first line of List-
ing 10.1 shows how to select the multicomponent fluid for compositional simula-
tion. The compositional module provides a getBenchmarkMixture function
that facilitates the specification of the composition, chemical properties, and initial
conditions of the multicomponent hydrocarbon mixture to be simulated. The func-
tion is generic enough to allow the simulation of single hydrocarbon components,

Listing 10.1 Create single cell model with selected composition.

casename = 'verysimple'; % Simple 2-component fluid
%% Create a single-cell model with a given initial composition
[fluid, info] = getBenchmarkMixture(casename);
eosname = 'pr'; % Select the Peng-Robinson equation of state
G1cell = cartGrid([1 1],[1 1]); % Create a single-cell grid
G1cell = computeGeometry(G1cell);
EOSModel = EquationOfStateModel(G1cell, fluid, eosname);
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as well as fluid mixtures with tens of hydrocarbon components. To speed up the
simulation runs in this section, we simulate the flow of a simple fluid that is made
up of 10% CO2 and 90% n-decane. The fluid is specified via a casename called
'verysimple', which is defined in the getBenchmarkMixture function. We
use the Peng–Robinson equation of state [29] to compute the fluid properties such
as phase compressibility factors (Z) and densities.

To convert the reservoir fluid volumes to volumes at surface conditions, we
flash the selected fluid composition to surface conditions in a single-cell model
and obtain the surface densities of the oil and gas phases (as shown in List-
ing 10.2). The reader is reminded that formation volume factor can be expressed
as the ratio of the surface densities to the corresponding densities at reservoir
conditions.

Listing 10.2 Flash fluid in single-cell model to surface conditions.

%Surface Conditions
p_sc = 101325; % atmospheric pressure
T_sc = 288.706; % 60 Farenheit
[~, ~, ~, ~, ~, rhoO_S, rhoG_S] = ...

standaloneFlash(p_sc, T_sc, info.initial, EOSModel);
flowfluid = initSimpleADIFluid('phases', 'WOG', 'n', [2, 2, 2], ...

'rho', [1000, rhoO_S, rhoG_S]);

Select compositional formulation to be used: Listing 10.3 shows how to use
the natural variables approach for compositional simulation. To prevent the use of
the standard two-point approach to calculate the transmissibilities, we do not pro-
vide a second argument to setupShaleEDFMOpsTPFA. Note that we use our own
function instead of setupEDFMOperatorsTPFA from the hfm module because our
modification makes the function compatible with the 2019b version of MRST, as
discussed in Section 10.2.

Listing 10.3 Use the natural variables formulation.

model = NaturalVariablesCompositionalModel(G, [], flowfluid, ...
fluid, 'water', true);

% Setup TPFA operators that incorporate all the EDFM NNCs
model.operators = setupShaleEDFMOpsTPFA(G, G.rock, tol);

Specify the initial composition of the injection/production wells: We provide
the initial composition of the injected and produced fluids after the definition of
the injector and producer. The actual composition of the fluid produced will be

https://doi.org/10.1017/9781009019781.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.016


Numerical Modeling of Fractured Unconventional Oil and Gas Reservoirs 427

determined based on the thermodynamics and flow processes implemented in the
reservoir simulator. The last line of the code listing shows how to initialize a
compositional reservoir model using the initCompositionalState function:

W(1).components = info.injection; % obtained from getBencharkMixture
W(2).components = info.initial;
%% Set up initial state and schedule
s0 = [0, 1, 0];
state = initCompositionalState(G, pRef, info.temp, s0, info.initial, ...

model.EOSModel);

Simulation results: Figure 10.5 presents the pressure and ternary (water, gas, and
oil) saturation profiles after simulating production, and water injection for three and
a half years. These profiles show a marked change in the pressure and saturations
near the surfaces of the fractures modeled. This is because the fractures act as the
paths of least resistance to flow, and they accelerate the rate of flow of the injected
water toward the production well. Although we modeled only three fractures in
this section, real fractured reservoirs can have hundreds or thousands of natural
fractures with any orientation in a 3D space. The next section discusses how to
generate such realistic fractures using a stochastic approach.

Figure 10.5 The pressure (top) and overall saturation (bottom) profiles after three
and a half years of production show the effect of the fractures on the flow of fluids.
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10.5 Stochastic Generation of Fractures with Arbitrary
Orientations in 3D

Considering that there is no technology available to determine the exact location
of all natural fractures in the subsurface, we could evaluate the effect of the uncer-
tainties in the fracture location and orientation by generating several realizations of
the fracture network. This section shows how to generate such realistic stochastic
fracture networks in 3D using an open-source MATLAB code called ADFNE. Our
pEDFM example codes assume that ADFNE has been added to the MATLAB path.
To minimize MATLAB crashes on the Windows platform, the user is also advised
to delete the R2015a folder within the ADFNE folder. Alghalandis [1] provides a
comprehensive tutorial on the stochastic generation of fractures using ADFNE. The
Demo.m file in the ADFNE folder illustrates virtually all of the functionality avail-
able in this package. Our goal in this section is to show the modifications required
to use the stochastic fractures from ADFNE in the hfm and shale modules.

10.5.1 Generation of Fracture Sets Using ADFNE

We start by demonstrating how to generate two sets of natural fractures with 350
fractures each. The complete code is available as stochasticFracs.m in the
examples folder. The first fracture set contains fractures with a dip angle and a
dip direction of 45◦, and the second contains fractures with a dip angle of 45◦

and a dip direction of 315◦ (or −45◦). As illustrated in Figure 10.6, the dip angle
is the acute angle that a rock surface makes with a horizontal plane, whereas
the dip direction is the azimuth of the direction of the dip, as projected to the
horizontal.

Figure 10.6 Illustration of the dip (angle) and dip direction of a fracture or fault
surface. x
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In the code excerpt, the DFN function generates random DFNs when no argu-
ments are provided and customizes the fracture networks when the function
arguments are given. The Field function takes two arguments: a DFN and a
field that is set to either line (for 2D models) or poly (for 3D models). In
the DFN function arguments, dim is the number of dimensions modeled, n is
the number of fractures, dip is the dip angle, and dir is the dip direction. The
minimum, mean, and maximum lengths (used in the exponential distribution for
the lengths) of each of these fractures in any direction are set to 4, 10, and 30 m,
respectively ('minl',4,'mu',10,'maxl',30). All fractures are constrained
to lie within the reservoir domain, which is specified with a bounding box
(bbx). Considering that the pEDFM algorithm requires each matrix cell that
hosts a fracture (called “host matrix cell”) to have six neighbors, we prevent
the fractures from touching the reservoir boundary by starting the minimum
spatial coordinate from a very small value (tol=0.01) instead of the origin.
This tolerance value is also subtracted from the maximum values of the spatial
coordinate of the box:

tol = 0.01;
physdim = [3300 1300 250]*ft;
set1 = Field(DFN('dim',3,'n',350,'dir',45,'ddir',-100,'minl',4,'mu',10, ...

'maxl',30,'bbx',[tol,tol,tol,physdim(1)-tol, ...
physdim(2)-tol,physdim(3)-tol],'dip',45,'ddip',-100, ...
'shape','l','q',4),'Poly');

set2 = Field(DFN('dim',3,'n',350,'dir',-45,'ddir',-100,'minl',4,'mu',10, ...
'maxl',30,'bbx',[tol,tol,tol,physdim(1)-tol, ...
physdim(2)-tol,physdim(3)-tol],'dip',45,'ddip',-100, ...
'shape','l','q',4),'Poly');

[set1_,nonPlanarSets1,fracArea1] = processStochFracs(set1);

The processStochFracs function used in the last line of the code excerpt
provides a robust test for coplanarity and removes unrealistic fractures that either
have negligible areas or appear as lines (instead of planes). This is needed
because the EDFM and pEDFM codes presented herein require the vertices of
each fracture to be coplanar. To allow the orientation of fractures to vary, we
provide ddip and ddir as function arguments that control the degree of the
variation in the dip and dip directions, respectively. The degree of variation
in the fracture orientation increases as the magnitudes of these two negative
numbers increase. We set both variables to –100 and use plotfracSystemNF

to plot the resulting fracture network and wellbore trajectories in Figure 10.7.
The plotfracSystemNF function extends the plotting functionality in MRST to
allow us plot the wellbore trajectories and hydraulic and natural fractures with
custom colors as shown in Figures 10.7 and 10.10. The yellow-colored fractures in
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Figure 10.7 This figure illustrates the two fracture sets created. The 350 fractures
in the first fracture set are colored yellow, and the remaining 350 fractures in the
second fracture set are colored blue.

Figure 10.7 belong to the first fracture set, whereas the blue-colored fractures
belong to the second. We compute the dip and dip direction of the two fracture sets
using the Orientation function and plot these using the Stereonet function
from ADFNE:

plotfracSystemNF(G, fracplanes, numHFplanes, wells, 'label', false)
o = Orientation([set1;set2]); % extract and store dip angle and direction
figure,
Stereonet([o.Dip],[o.Dir],'density',true,'marker','*','ndip',6,...

'ndir',24,'cmap',@jet,'color','y');

This yields the stereonet in Figure 10.8, which is similar to a scatterplot in the
sense that it plots the dip and dip direction of each fracture as a point (with a yellow
asterisk). The red and blue colors in this stereonet indicate the relative number
of fractures in each segment of the stereonet. The red (or hotter) colors indicate
the segments with the largest number of fractures, whereas the blue (or cooler)
colors indicate the segments with fewer fractures. As seen in the figure, the white
segments are the regions of the stereonet with no fractures. In this stereonet, a
positive dip direction is read starting from the 0◦ point and moving in a counter-
clockwise direction, whereas the dip angle starts out from the circumference of the
outermost circle and increases to a maximum of 90◦ in the center of the circle. The
stereonet allows us to summarize the orientation of all of the fractures in the system
in one simple plot. The reader is encouraged to modify the dip, dip direction, and
their degrees of variation and observe the change in the orientation of the fractures
in both Figures 10.7 and 10.8. The next section shows how we model an Eagle
Ford shale oil reservoir using natural fracture networks generated as described in
this section.
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Figure 10.8 This stereonet shows the limited variation in the orientation of the
fractures in the two fracture sets modeled. Each yellow asterisk represents a
fracture, whereas the red and blue segments indicate the regions with the most
and fewest number of fractures, respectively.

10.6 Applications of 3D pEDFM to Model UOG Reservoirs

This section discusses how to model unconventional reservoirs (with hundreds
of natural fractures in any orientation) using the 3D pEDFM algorithm recently
presented by Olorode et al. [27]. Although we only model a realization from a
stochastic fracture network, our goal is to show how the shale module can be used
to predict the production corresponding to any realization from a stochastic fracture
model. This could then be used to study and evaluate the sensitivity of model
forecasts to the uncertainty in the amount, distribution, geometry, and orientation
of these natural fractures.

10.6.1 Basic Model Parameters Representative of the Eagle Ford Shale

Most of the model parameters presented in this section were taken from Yu
et al. [37]. Table 10.3 summarizes the well, matrix, and fracture properties,
and Tables 10.4 and 10.5 present the compositional data and binary interaction
constants, respectively. These parameters are used in the Peng–Robinson equation
of state [29], which is implemented in the compositional module. To obtain a
high-resolution discretization of the simulation domain, we take advantage of the
symmetry observed in bi-wing planar hydraulic fractures. The idea is that we can
represent the multiply fractured horizontal well system with a smaller repeatable
fraction of the entire domain, called a “stencil.” Figure 10.9 illustrates the stencil
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Table 10.3 Representative Eagle Ford shale parameters.

Parameters SI units Field units

Stencil model dimension 150 × 300 × 38.1 m 492.1 × 984.3 × 125.0 ft

Initial reservoir pressure, pi 5.6 · 107 Pa 8 125 psia

Reservoir temperature, T 405.4 K 270◦F

Reservoir thickness, h 76.2 m 250.0 ft

Matrix permeability, Km 8.88 · 10−19 m2 9 · 10−7 D

Matrix porosity, φ 0.12 0.12

Hydraulic fracture porosity, φfrac 0.5 0.5

Hydraulic fracture half-length, xf 180 m 590.6 ft

Hydraulic fracture aperture, wf 0.003 m 0.01 ft

Hydraulic fracture height, hf 45.7 m 150 ft

Hydraulic fracture permeability 9.87 · 10−13 m2 1.0 D

Natural fracture aperture 1 · 10−7 m 3.28 · 10−7 ft

Conductive natural fracture
permeability

9.87 · 10−17 m2 1 · 10−4 D

Sealing natural fracture
permeability

9.87 · 10−22 m2 1 · 10−9 D

Number of fracture stages 7 7

Number of fractures per stage 3 3

Cluster spacing 10 m 32.8 ft

Fracture spacing 150 m 492.13 ft

Well radius, rw 0.1 m 0.33 ft

Initial water saturation, Sw 0.17 0.17

Flowing bottom-hole pressure, pwf 6.895 · 106 Pa 1 000 psia

Number of natural fractures 150 150

Well length 920 m 3 018.4 ft

Table 10.4 Compositional data for Eagle Ford shale oil.

Components
Mole
fraction

Critical
pressure
(atm)

Critical
temperature
(K)

Critical
volume
(L/mol)

Molar
weight (g/g
mol)

Acentric
factor Parachor

CO2 0.01183 72.80 304.20 0.0940 44.01 0.2250 78.0

N2 0.00161 33.50 126.20 0.0895 28.01 0.0400 41.0

C1 0.11541 45.40 190.60 0.0990 16.04 0.0080 77.00

C2−C5 0.26438 36.50 274.74 0.2293 52.02 0.1723 171.07

C6−C10 0.38089 25.08 438.68 0.3943 103.01 0.2839 297.42

C11+ 0.22588 17.55 740.29 0.8870 267.15 0.6716 661.45
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Table 10.5 Binary interaction constants for Eagle Ford shale oil.

CO2 N2 C1 C2–C5 C6–C10 C11+
CO2 0 0.0200 0.1030 0.1299 0.1500 0.1500
N2 0.0200 0 0.0310 0.0820 0.1200 0.1200
C1 0.1030 0.0031 0 0.0174 0.0462 0.1110
C2−C5 0.1299 0.0820 0.0174 0 0.0073 0.0444
C6−C10 0.1500 0.1200 0.0462 0.0073 0 0.0162
C11+ 0.1500 0.1200 0.1110 0.0444 0.0162 0

Figure 10.9 Plan view of grid shows a multiply fractured horizontal well with
seven fracture stages (top) and the “minimum repetitive element” or “stencil”
(bottom).

in relation to a multiply fractured horizontal well system. The red horizontal line in
the middle of the figure shows the well location. The stencil in the bottom figure is
a model of half of the simulation domain around one fracture stage and half of this
domain in the z-direction. Thus, it is essentially a quarter of the domain around one
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fracture stage. The production rates obtained for the stencil can then be multiplied
by the number of times the stencil is repeated in the full simulation domain. This
means that for a system with seven fracture stages, we will multiply the simulation
results for the stencil by 28. Olorode [24] showed that the use of the stencil is able
to replicate the behavior of the full system of multiple fractures for the expected
production period of a typical shale oil/gas well.

10.6.2 Implementation Steps

This section discusses the steps required to perform a compositional simulation of
fractured UOG reservoirs using MRST. We use an Eagle Ford shale oil reservoir
as a case study and provide the complete code (eagleFord.m) in the examples

folder of the shale module. We also provide an eagleFordEDFM.m script, which
only differs from eagleFord.m in that it uses EDFM instead of pEDFM. The next
three subsections show and explain excerpts from eagleFord.m.

Create the hydraulic fractures: We provide a createMultiStageHFs func-
tion to facilitate the modeling of multiple stages of hydraulic fractures with one
or more fractures per stage. Using this function, we can model either the stencil
discussed in the previous subsection or a multiply fractured horizontal well system
with any number of hydraulic fractures. Here, we show how we model a stencil
with the three fractures that make up one of the stages of the multiply fractured
horizontal well. All other examples in the shale module involve modeling the
complete system with multiple fracture stages.

We use clusterSpacing to specify that the three fractures in a fracture stage
are 10 m apart, whereas fracSpacing is used to specify that the fracture stages
are 150 m apart in a multistage fracture system. In this stencil case, the fracture
spacing is inferred from the size of the domain in the x-direction (which is 150 m,
as in Table 10.3). We also show how to specify the input values for the aperture,
porosity, and permeability of each hydraulic fracture:

[fracplanes,frac_centroid_s] = createMultiStageHFs('numStages',NumStages,...
'fracSpacing',fractureSpacing,'numFracsPerStage',fracPerStage,...
'fracHalfLength',fracHalfLength,'fracHeight',fracHeight,...
'clusterSpacing', clusterSpacing,'fracCentroid1',fracCentroid1,...
'isStencil',1);

for i=1:numel(fracplanes)
fracplanes(i).aperture = fracAperture;
fracplanes(i).poro = fracPoro;
fracplanes(i).perm = fracPerm;

end
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Figure 10.10 This figure shows the hydraulic (in yellow) and natural (in blue)
fractures in the stencil used in our simulation of the Eagle Ford test case. This
stencil is essentially a quarter of the simulation domain around one fracture stage.

Create the natural fractures: Next, we use ADFNE (as shown in Subsec-
tion 10.5.1) to generate the natural fractures. To demonstrate the advantage of
pEDFM over EDFM, we randomly set half of the natural fractures as highly
conductive and the other half as sealing (or flow barriers). The reader is reminded
that the main advantage of pEDFM over EDFM is that pEDFM models both low-
and high-conductivity fractures accurately, whereas EDFM is unable to model
low-conductivity fractures accurately. The following code excerpt shows how
to specify the properties of the natural fractures, such as aperture, porosity, and
permeability:

for i=1:numNFplanes
idxGlobal = numHFplanes + i;
fracplanes(idxGlobal).points = fracSet{i}(1:end-1,:);
fracplanes(idxGlobal).aperture = 100*nano*meter;
fracplanes(idxGlobal).poro=0.5; % high because HF is not propped everywhere
if(mod(i,2)==false) %even NF index set as conductive fractures

fracplanes(idxGlobal).perm=100*micro*darcy;
else %odd NF index set as sealing fractures

fracplanes(idxGlobal).perm=1*nano*darcy;
end

end

Figure 10.10 shows the hydraulic and natural fractures obtained. The three
hydraulic fracture planes that make up a hydraulic fracture stage are shown in
yellow, whereas the natural fractures are shown in blue.
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Listing 10.4 Required NNCs for pEDFM.

[G,fracplanes]=EDFMgrid(G,fracplanes,...
'Tolerance',tol,'plotgrid',false,'fracturelist',1:numel(fracplanes));

G = fracturematrixNNC3D(G,tol); % Frac-Matrix NNCs
[G,fracplanes]=fracturefractureNNCs3D(G,fracplanes,tol); % Frac-Frac NNCs
[G,wells] = wellfractureNNCs3D(G,fracplanes,wells,tol); % Well-Fracs NNCs
G = pMatFracNNCs3D(G,tol); % pEDFM NNCs
TPFAoperators = setupPEDFMOpsTPFA(G, G.rock, tol); % Setup pEDFM operators

Compute all pEDFM NNCs: The last three function calls in Listing 10.4
show how we model the well/fracture, projection matrix/matrix, and projection
matrix/fracture NNCs in the shale module. The other parts of this code listing are
identical to those used in embedded fracture modeling with the hfm module.

To model fractures that are connected to a production well, we use the well

fractureNNCs3D function to find all of the fracture cells that intersect the
well. We then compute the effective wellbore index (WI) for each of these
fracture–well intersections using a form of the Peaceman model presented in
Moinfar [21]:

WIf = 2πKf wf

ln (re/rw)
, (10.10)

where

re = 0.14
√

l2
f + h2

f . (10.11)

Here, Kf is fracture permeability, wf is fracture aperture, re is effective or
representative wellbore radius, and rw is the actual wellbore radius given in
Table 10.3. Additionally, lf and hf represent the length and height of a fracture
segment that is bounded within the fracture cell. The pMatFracNNCs3D function
implements our pEDFM algorithm to find the projection cells, as well as the
non-neighboring transmissibilities between the projection and host matrix cells.
Similarly, the setupPEDFMOpsTPFA function computes the non-neighboring
transmissibilities between the projection cells and fracture cells, in addition to
the other standard and EDFM transmissibilities, as discussed in Subsection 10.3.3.

10.6.3 Eagle Ford Shale Reservoir Simulation Results

We ran the Eagle Ford shale oil simulation case for 15 years and obtained the results
presented in Figures 10.11–10.16. From the pressure profile given in Figure 10.11,
we observe a sharp drop in the pressure near the hydraulic fracture surfaces. An
inspection of Darcy’s law in the context of a fractured ultra-low matrix permeability
reservoir confirms that the pressure gradient in the matrix has to be large to sustain
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Figure 10.11 Pressure profile after 15 years of production shows the typical sharp
drop in pressure near the fracture surfaces. The pressure right by the fracture
surface is approximately equal to the flowing bottom-hole pressure of 1 000 psia.

Figure 10.12 The profiles of water, oil, and gas saturation after 15 years of
production show that oil vaporizes in the vicinity of the fracture surface due to
the sharp pressure drop in this region.

the much higher flow rates expected in the fractures. In highly conductive fractures,
the fluid pressure is also expected to drop rapidly toward the value of the flowing
bottom-hole pressure. It is worth noting that the results shown in this section are
for the stencil and have not been multiplied by the number of times the stencil is
repeated in the actual multistage fracture system of interest.

Figure 10.12 presents a ternary plot of the three-phase saturation profile obtained
after 15 years of simulated production. An inspection of the three saturations
reveals that the gas saturation near the fracture surface is higher than elsewhere in
the reservoir. This is because at initial conditions, the reservoir fluid exists only
in two phases (oil and water). However, as the pressure near the fracture surfaces
drops below the bubble-point pressure, gas comes out of the solution. This results in
the localized increase in gas saturation and corresponding decrease in oil saturation
in Figure 10.12, whereas the change in water saturation is negligible. Although we
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Figure 10.13 The profiles of the mole fractions of C1 and C2–C5 show the change
in composition due to the vaporization of the oil near the fracture surfaces. The
profiles of the other four fluid components are not presented for brevity.

modeled a six-component hydrocarbon mixture, we show only the mole fractions
of the first two hydrocarbon components in Figure 10.13. The marked change
in composition near the fracture surface is because the mole fractions of the
hydrocarbon components in the oil and gas phases deviate from the original single-
phase oil composition when the pressure drops below the bubble point near these
fractures.

Figure 10.14 compares the oil and gas rates from the pEDFM implemented in
the shale module to the corresponding rates from the EDFM implemented in the
hfmmodule. The oil-rate plot shows the typical half-slope that is indicative of linear
flow after about 100 days of production. The gas-rate plot shows that gas production
begins after approximately 15 days of production and rises sharply to a peak gas
rate of about 5 Mscf/day. The gas rate then declines because the total reservoir fluid
withdrawal declines, as shown in Figure 10.16. As expected, the use of a log–log
plot in Figure 10.14 (left) masks the overestimation of oil production when EDFM
is used. Therefore, we provide the corresponding cumulative production plots in
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Figure 10.14 The simulation results show that both oil and gas production rates
from EDFM are higher than those from pEDFM. Note that the oil rates are
presented on a log–log plot, whereas the gas rates are shown on a Cartesian plot.
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Figure 10.15 The results show that EDFM overestimates the oil and gas expected
ultimate recovery by 4.78% and 3.44%, respectively (in comparison to pEDFM).

Figure 10.15. It shows that EDFM overestimates the expected ultimate recovery of
oil and gas by 4.78% and 3.44%, respectively (when compared to the results from
pEDFM). Figure 10.16 shows that the total reservoir fluid withdrawal from EDFM
is 4.32% more than that from pEDFM. This is expected because half of the natural
fractures are essentially flow barriers and EDFM is unable to account for sealing
fractures accurately. Additionally, the modeling of the hydraulic fractures with
pEDFM is more accurate than with EDFM when the fracture lies on the interface
between two matrix cells. In this case, pEDFM simplifies to DFM whereas EDFM
does not [32], and this adds to its overestimation of production.
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Table 10.6 Some transport and storage mechanisms expected in shale reservoirs.

Mechanism Models Continuum Type

Adsorption Langmuir Matrix Storage
Diffusion Fick’s law Matrix and fracture Storage
Geomechanics Gangi Fracture Transport
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Figure 10.16 The results show that EDFM overestimates the total reservoir fluid
withdrawal volume by 4.32% (in comparison to pEDFM).

10.7 Modeling Transport and Storage Mechanisms
in Organic-Rich Source Rocks

The study of the physical mechanisms in unconventional oil and gas reservoirs
has been an active research area over the last decade. Most of these studies have
focused on the understanding of the storage, flow, and transport mechanisms in
the shale plays. Consequently, several models have been developed to describe the
complex nature of adsorption, diffusion, and fracture closure in UOG reservoirs.
This section shows how to implement some of these physical mechanisms in MRST
and provides tutorial cases that illustrate the application of these mechanisms in
shale-gas reservoir simulation. Our goal with these examples is to show how to
easily incorporate additional physical mechanisms as needed. Table 10.6 summa-
rizes the physical mechanisms and models discussed in this section. The remaining
subsections show how the governing equations are modified and implemented to
account for these physical mechanisms.

To illustrate the significance of all of the shale mechanisms discussed in this
section, we model a Barnett shale-gas reservoir with the parameters summarized
in Table 10.7. These parameters were taken from Ambrose [2], Olorode et al. [26],
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Table 10.7 Representative Barnett shale-gas model parameters.

Parameters SI units Field units

Fracture half-length, xf 91.4 m 300 ft

Fracture width, wf 3 · 10−3 m 9.84 · 10−3 ft

Reservoir thickness, h 100.6 m 330 ft

Matrix permeability, Km 1.0 · 10−19 m2 1.0 · 10−4 md

Fracture permeability, Kf 5.0 · 10−11 m2 5.0 · 104 md

Matrix porosity, φ 0.04 0.04

Fracture porosity, φfrac 0.33 0.33

Temperature, T 366.5 K 200◦F

Well radius, rw 0.1 m 0.32 ft

Initial reservoir pressure, pi 3.45 · 107 Pa 5 000 psia

Initial mole fractions, zi [0.85, 0.1, 0.05] [0.85, 0.1, 0.05]

Flowing bottom-hole pressure, pwf 1.03 · 107 Pa 1 500 psia

Tortuosity, τ 2–10 2–10

Biot’s constant, α 0.5 0.5

Confining pressure, Pc 1.03 · 108 Pa 15 000 psia

Effective stress, P1 1.8 · 108 Pa 26 000 psia

ρsL of C1, C2, and C3 [3.0, 4.9, 9.6] kg/m3 [56, 91, 179] scf/ton

Langmuir pressure, pL for C1, C2, C3 [10.8, 5.6, 5.8] · 106 Pa [1 562, 811, 844] psia

Bulk density, ρb 2 500 kg/m3 1.56 · 105 lb/ft3

Figure 10.17 Simple Barnett shale-gas simulation domain with 10 fractures. This
grid is used in all of the remaining simulation results presented in this chapter.

and Xiong et al. [36]. Figure 10.17 shows the multiply-fractured horizontal well
and dimensions of the reservoir modeled in this section. The reservoir domain is
meshed with a structured Cartesian grid, and we simulate 10 planar and orthogonal
hydraulic fractures connected to a horizontal well.
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Figure 10.18 The Langmuir isotherm illustrates that the change in the amount of
gas adsorbed is much less at high pressures.

10.7.1 Sorption

Shale-gas reservoirs have been observed to have a wide pore size distribution that
ranges from as low as 2 nm to hundreds of nanometers or more. As pore sizes get
smaller than approximately 10 nm, gas molecules begin to interact a lot more with
the pore walls, leading to a deviation from the classical bulk behavior of fluids.
In conventional gas reservoirs, gas is stored in the compressed (or free) state, but
in unconventional gas reservoirs, gas could also be stored in the sorbed (adsorbed
plus dissolved) state, in addition to free gas storage. Next, we present the Langmuir
isotherm and show how it is modeled in the shale module.

Langmuir Isotherm

For a single-component gas, the Langmuir isotherm can be written as

ρs = ρsL

p

p + pL

. (10.12)

Here, ρs refers to the mass density of gas sorbed, and ρsL refers to the maximum
mass density of gas that can be sorbed in the reservoir rock. The SI unit for both
variables is kilograms per cubic meter. The variables p and pL refer to the reservoir
and Langmuir pressures, respectively. As shown in Figure 10.18, the Langmuir
pressure is the pressure at which ρs is equal to half of ρsL.

For multicomponent gas mixtures, it is common to use the extended Langmuir
isotherm, which is given as

ρi
s = ρi

sL

yi
p

pi
L

1 +∑n
j=1 yj

p

p
j
L

, (10.13)
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where the superscripts and subscripts i and j refer to each hydrocarbon component.
Thus, yi refers to the mole fraction of component i in the gas phase. The other
parameters remain as defined in the single-component case. To obtain the total
sorbed-gas density (ρs) at any pressure, we take the sum of the sorbed-gas density
of each component (ρi

s) in the multicomponent fluid. To account for the sorption of
each hydrocarbon gas component i on the nanoporous shale pore walls, we modify
the storage (first) term in the governing equation (10.1) as in Moridis et al. [22]:

∂t

[
φ
∑
α=l,v

ραSαX
i
α + δs(1 − φ)ρi

s

]
+
∑
α=l,v

∇ · (ραX
i
α �vα

)− ∑
α=l,v

ραX
i
αqα/V = 0,

(10.14)

where ρs is sorbed-gas density in kilograms per cubic meter of shale. The multipli-
cation of the sorbed-gas density of component i by 1 − φ accounts for the fact that
the sorbed-gas amount is considered per mass unit of rock. Therefore, each term in
this equation is in units of component mass per unit bulk volume and per unit time
(kg m−3 s−1). As in Moridis et al. [22], δs is a logical parameter that is set to one in
the shale matrix and zero elsewhere. This allows us to model sorption only in the
shale matrix.

Implementation of the Extended Langmuir Isotherm

We provide a sorption.m script (in the examples folder) to illustrate our imple-
mentation of sorption in MRST. We use makeShaleRock to add an isMatrix

field to the G.rock data structure. It is set to one for every matrix cell and zero
otherwise. This allows us to turn on certain physical mechanisms (such as sorption)
only in the matrix if needed. We then activate sorption by setting the sorption

subfield of the shaleMechanisms field to one, as shown:

G_matrix.rock = makeShaleRock(G_matrix, matrix_perm, matrix_poro);
G.rock.shaleMechanisms.sorption = 1; % set to 0 to turn off sorption

In setupShaleEDFMOpsTPFA and setupShalePEDFMOpsTPFA, we compute
and store the grain volume as shown:

if isfield(G.rock,'shaleMechanisms') && isfield(G.rock.shaleMechanisms,'sorption')
s.isSorbed = rock.isMatrix;
s.gv = s.isSorbed.*(1-rock.poro) .* G.cells.volumes;

end

Given that the parameters of the extended Langmuir isotherm are specified for
each pure component in the fluid mixture, we provide these sorption parameters
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and other standard compositional fluid parameters in getShaleCompFluid

Case. We also provide a SorbedCompositionalFluid class that extends the
TableCompositionalFluid class to include these sorption parameters.

To demonstrate our implementation of sorption, we provide a representative
Barnett shale-gas fluid case named barnett3comps. In getShaleCompFluid

Case, we store the multicomponent ρsL and pL values from Ambrose [2] in the
first and second columns of the isotherm field as shown:

case 'barnett_3comps'
names = {'Methane', 'Ethane', 'n-Propane'};
% Pressure in Pa in first column, rho_sL in kg/m^3 in 2nd column
isotherm = [10769611, 2.99; 5591648, 4.86; 5819175, 9.56];
fluid = SorbedCompositionalFluid(names,isotherm');

Our eqnsShaleNaturalVars function shows how we compute the sum in the
denominator of (10.13) at the current and previous timesteps:

if isfield(model.G.rock, 'shaleMechanisms') && ...
isfield(model.G.rock.shaleMechanisms,'sorption')
sumIso = y{1}./model.EOSModel.fluid.isotherm(1,1);
sumIso0 = y0*(1./model.EOSModel.fluid.isotherm(1,:)');
for ii=2:numel(y)

sumIso = sumIso + y{ii}./model.EOSModel.fluid.isotherm(1,ii);
end

end

We then modify the governing equations in eqnsShaleNaturalVars to
include sorption when necessary, using the if block in Listing 10.5. The reader
is encouraged to compare this code to the modified governing equations (10.12)
and (10.14). The next subsection shows our simulation results with and without
sorption.

Simulation Results With and Without Sorption

Figure 10.19 reports a comparison of the gas production obtained with and without
the effect of sorption. These results show that sorption contributes an additional
7% of gas production over 15 years. The contribution of sorption is usually limited
because the shape of the Langmuir isotherm (as in Figure 10.18) is such that it
flattens out at high pressures. The average reservoir pressures need to be very low
to see a more significant contribution from sorption.
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Listing 10.5 Option to choose to model sorption or not.

if isfield(model.G.rock, 'shaleMechanisms') && ...
isfield(model.G.rock.shaleMechanisms,'sorption')
eqs{i} = (1/dt).*( ...

rhoO.*pv.*sO.*xM{i} - rhoO0.*pv0.*sO0.*xM0{i} + ...
rhoG.*pv.*sG.*yM{i} - rhoG0.*pv0.*sG0.*yM0{i} +...
(s.gv.*model.EOSModel.fluid.isotherm(2,i) ...
./model.EOSModel.fluid.isotherm(1,i)).*...
((y{i}.*p)./(1+p.*sumIso)- (y0(:,i).*p0)./(1+p0.*sumIso0) ) );

else
eqs{i} = (1/dt).*( ...

pv.*rhoO.*sO.*xM{i} - pv0.*rhoO0.*sO0.*xM0{i} + ...
pv.*rhoG.*sG.*yM{i} - pv0.*rhoG0.*sG0.*yM0{i});

end
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Figure 10.19 Comparison of (left) gas production rate and (right) cumulative
gas production of a fractured reservoir with and without sorption. The incorpo-
ration of sorption in the model results in an increase of 7% in the cumulative gas
production.

10.7.2 Molecular Diffusion

The two primary mass transport mechanisms considered in petroleum reservoirs are
the advective (also referred to as convective) and diffusive mass transport mech-
anisms. Advective transport is driven by a pressure gradient and modeled using
Darcy’s law, whereas molecular diffusion is driven by a concentration gradient
and is part of a more general phenomenon referred to as “hydrodynamic disper-
sion.” Hydrodynamic dispersion basically incorporates both molecular diffusion
and mechanical dispersion but tends to be dominated by molecular diffusion at the
very low flow velocities expected in a shale matrix [17].

https://doi.org/10.1017/9781009019781.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.016


446 O. Olorode, B. Wang, and H. U. Rashid

In conventional petroleum reservoirs under primary recovery, molecular diffu-
sion is usually neglected because the high matrix permeability causes the advective
mass transfer to dominate the mass transport mechanism. In such reservoirs, molec-
ular diffusion is expected to be on the same order as the numerical dispersion asso-
ciated with the typical block sizes used in field-scale reservoir simulation. However,
in unconventional reservoirs with very low matrix permeability, the advective
fluxes are much lower. Therefore, the contribution of the diffusive flux to the
total mass flux could be significant and needs to be modeled. The next subsection
presents Fick’s law, which is used to model hydrodynamic dispersion or molecular
diffusion.

Fick’s Law

Fick’s law is one of the most common models used to describe the diffusive trans-
port of multicomponent mixtures due to a gradient in concentration. For the diffu-
sion of a component i in a box filled with a single-phase fluid, it is written as

J i
α = −Di

α∇
(
ραX

i
α

)
, (10.15)

where the product ραX
i
α refers to the mass concentration of component i in phase α.

To account for the presence of multiple phases, a tortuous path, and a solid matrix
in porous systems, the diffusion coefficient Di

α (in m2/s) of component i in phase α

is typically multiplied by the porosity φ and saturation S and divided by tortuosity
τ , which is the ratio of the actual length of the flow path in the porous medium to
the thickness of the medium in the direction of the flow. The modified form of the
Fickian diffusion for a porous medium is given as

J i
α = −φSα

τα

Di
α∇

(
ραX

i
α

)
. (10.16)

As in Lake et al. [17], the governing equation can be modified to include molec-
ular diffusion by adding J i

α (in kg m−2 s−1) to (10.1) as follows:

∂t

[
φ
∑
α=l,v

ραSαX
i
α

]
+
∑
α=l,v

∇ · (ραX
i
α �vα + J i

α

)− ∑
α=l,v

ραX
i
αqα/V = 0. (10.17)

Implementation of Fickian Diffusion

The complete code that illustrates our implementation of Fickian diffusion is
found as diffusion.m in the examples folder. As in the implementation
of sorption, we turn diffusion on by setting the diffusion subfield of
G.rock.shaleMechanisms to one. We also provide the two additional param-
eters needed to implement Fickian diffusion (Di

α and τ ). Considering that gases
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diffuse much faster than liquids, our focus in this section is on the implementation
of diffusion in the gas phase only. We specify the effective diffusion coefficient
using the values given in Xiong et al. [36], as shown:

G.rock.shaleMechanisms.diffusion = 1; % Turns diffusion on
G.rock.Di=[2.8,2.5,1.9]*10 -̂7; % in m^2/s
G.rock.tau = 2; % Specify tortuosity

Finally, we implement Fickian diffusion by adding the diffusive flux equa-
tion (10.17) to the governing equations in eqnsShaleNaturalVars. This is done
only when the diffusion transport mechanism is turned on, as shown:

if isfield(model.G.rock, 'shaleMechanisms') && ...
isfield(model.G.rock.shaleMechanisms,'diffusion')
Sg_rhoG_poro = s.faceUpstr(upcg,sG.*model.G.rock.poro);
eqs{i} = eqs{i} - s.Div(model.G.rock.Di(i)./model.G.rock.tau ...

.*Sg_rhoG_poro.*s.Grad(yM{i}.*rhoG));
end

Simulation Results with and without Diffusion

To illustrate the effect of molecular diffusion, we model the same Barnett shale-gas
reservoir discussed in Subsection 10.7.1 but with a matrix permeability of 1 nD
(instead of 100 nD, as in the table). The production profiles obtained with and
without diffusion (given in Figure 10.20) show that molecular diffusion contributes
up to 14% additional production when the matrix permeability is set to 1 nD.
This extremely low permeability value results in the rather flat decline observed
in the log–log rate plot after approximately 5 days. At the higher permeability
values in the other shale mechanisms studied, the effect of molecular diffusion
is negligible. The reader is encouraged to increase this matrix permeability in
multiples of 10 and observe that this contribution becomes much less significant
at higher permeability values. These results indicate that it is important to account
for the diffusive transport mechanism in shale-gas reservoirs, which typically have
very low matrix permeability.

10.7.3 Geomechanics Effect

As illustrated in Figure 10.1, UOG reservoirs contain multiscale fractures in addi-
tion to the hydraulic fractures we create. As reservoir fluids are produced from
these reservoirs, the pore pressure reduces, leading to an increase in effective stress.
These induced effective stresses are compressive and tend to close the fractures.
The next subsection discusses one of the common models that have been applied to
estimate the closure of natural fractures in UOG reservoirs.
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Figure 10.20 Comparison of (left) gas production rate and (right) cumulative gas
production with and without diffusion. In this fractured reservoir with a matrix
permeability of 1 nD, diffusion increases the cumulative production by 14%.

Figure 10.21 Modifed sketch of Gangi’s “bed of nails” model from Wasaki [35],
who used it to model changes in the effective permeability of fractured organic-
rich source rocks.

Gangi Model

Gangi [7] developed a model to account for the change in the permeability of a
fracture (or fractured rock) with pressure and confining stress. This model uses a
conceptual bed of nails (Figure 10.21) to represent the expected fracture surface
roughness or asperity. Considering that UOG reservoirs contain propped hydraulic
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Figure 10.22 Permeability correction factor Fk versus pore pressure with m = 0.5,
pL = 180 MPa, σc = 38 MPa, and α = 0.5. The reduction in Fk results in a decrease
in the permeability (of a naturally fractured rock) as the pore pressure drops.

fractures in addition to the multiscale natural fractures, Olorode [25] modeled the
change in the hydraulic fracture permeability using the analytical model from Guo
and Liu [10] in a fully coupled geomechanics simulator, whereas the Gangi model
was used to account for the “effective” permeability of organic-rich source rocks
with multiscale fractures. The Gangi model [7] is given as

K = K0

[
1 −

(
σc − αBp

σ1

)m]3

, (10.18)

where αB is Biot’s constant, σc is the confining stress, σ1 is the maximum effective
stress that closes the fracture completely, K0 is the permeability at zero confining
pressure, and m is a constant related to the surface roughness of the fracture. To
simplify the implementation of the Gangi model, all of the terms on the right-hand
side of the equation (with the exception of K0) can be grouped together and referred
to as the apparent Gangi permeability correction factor, Fk. Figure 10.22 presents
a plot of this permeability correction factor against pressure. It shows that Fk (and
consequently permeability) decreases as the pore pressure decreases.

Implementation of the Gangi Model

The complete code that demonstrates the implementation of the Gangi model is
found in gangi.m. In Listing 10.6, we specify the Gangi model parameters and
implement the equation in the gangiFn function. The actual implementation of the
Gangi model in gangiFn is shown as the last line commented in Listing 10.6. The
reader is encouraged to implement other types of pressure-dependent permeability
functions in a similar manner.
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It is important to note that K0 is the matrix permeability at zero confining
stress and is not the same as the matrix permeability at initial reservoir condi-
tions. We divide K0 by the initial matrix permeability, so that the result of this
function can be multiplied by the standard flow velocity obtained from the Darcy
equation.

Listing 10.6 Gangi model implementation.

Pc = 10000*psia;
alpha = 1.0;
Pmax = 14000*psia;
m = 0.4;
k0 = 2090.2259*nano*darcy;
flowfluid.KGangiFn = @(p) gangiFn(p, Pc, alpha, Pmax, m, k0, matrix_perm);
%gangiFn = (k0./matrix_perm).*power((1-power(((Pc - alpha.*p)./Pmax),m)),3);

In the modified eqnsShaleNaturalVars, we compute the apparent perme-
ability correction factor and use the Boolean isMatrix variable to ensure that the
Gangi model is only applied in the matrix cells. Because the number of items in F_k
is equal to the number of cells in the domain but the number of items in the Darcy
oil velocity, vO, is equal to the number of faces, we use the splitFaceCellValue
function to map the cell F_k values to the corresponding faces. The standard
Darcy flow velocity is then scaled to account for the pressure-dependent matrix
permeability. Although the following code excerpt only shows the scaling of
the oil velocity (vO), the same correction factor is applied to the gas and water
velocities:

if isfield(model.G.rock, 'shaleMechanisms') && ...
isfield(model.G.rock.shaleMechanisms, 'Gangi')
F_k = model.fluid.KGangiFn(p);
F_k(~s.isMatrix) = 1;
[KGangif, ~] = s.splitFaceCellValue(s, upco, F_k);
vO = (KGangif.*vO);

end

Simulation Results with and without the Pressure-Dependent Permeability

To illustrate the effect of a pressure-dependent matrix permeability, we model the
representative Barnett shale-gas reservoir described at the beginning of this sec-
tion. Figure 10.23 shows that the decrease in matrix permeability (as a result of
fluid withdrawal) can lead to a 24% reduction in the cumulative gas production
over 15 years. This result indicates that it is important to account for the pressure
dependence of the matrix permeability in UOG reservoirs.
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Figure 10.23 Comparison of (left) gas production rate and (right) cumulative
gas production from a Barnett shale-gas reservoir with and without a pressure-
dependent matrix permeability. The Gangi correction decreases the cumulative
gas production by 24%.
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