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ABSTRACT 

 

The propagation of elastic-flexural gravity waves through an ice shelf is modeled by full 3-D 

elastic models that are coupled to a treatment of under-shelf sea-water flux: (i) finite-difference 

model (Model 1); (ii) finite-volume model (Model 2); (iii) depth-integrated finite-difference 

model (Model 3). The sea water flow under the ice shelf is described by a wave equation 

involving the pressure (the sea water flow is treated as a “potential flow”). Numerical 

experiments were undertaken for an ice shelf with “rolling” surface morphology, which implies a 

periodic structure of the ice shelf. The propagation of ocean waves through an ice shelf with 

rolling surface morphology is accompanied by Bragg scattering (also called Floquet band 

insulation). The numerical experiments reveal that band gaps resulting from this scattering occur 

in the dispersion spectra in frequency bands that are consistent with the Bragg’s law. Band gaps 

render the medium opaque to wave, i.e., essentially, the abatement of the incident ocean wave by 

ice shelf with rolling surface morphology is observed in the models. This abatement explains the 

ability of preserving of ice shelves like Ward Hunt Ice Shelf, Ellesmere Island, Canadian Arctic, 

from the possible resonant-like destroying impact of ocean swell.  

Keywords: ice shelf vibrations, Bragg scattering, under-shelf sea-water flux, ice shelf with 

periodic structure, “rolling” morphology of the ice surface, abatement of incident ocean wave 

 

INTRODUCTION 

 

The Ward Hunt (west) Ice Shelf located near Ward Hunt Island (830 6′ 0′′ 𝑁; 740 10′ 0′′ 𝑊 ), 

on the north coast of Ellesmere Island, Nunavut, Canada, constitutes a ~ 50 m thick rim of land-

fast multi-year marine ice. The Ward Hunt Ice Shelf is not strictly an ice shelf in the sense 

commonly used in reference to Antarctic ice shelves, because it originates as multi-year land fast 
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sea ice that has become immobile to the point of no longer drifting with wind and ocean current 

(Dowdeswell and Jefferies, 2017). Owing to this immobility, the Ward Hunt Ice Shelf represents 

a secure floating platform that allows observation of sea swell and other types of surface gravity 

waves (e.g., impulsive waves generated from ridging, thermal fracturing, “micro tsunamis” 

generated by ice-cliff calving, etc.) using broadband seismometers (Cathles and others, 2009). 

The concept of using ice-shelf platforms as observatories for sea swell in sea-ice covered waters 

is well supported in various Antarctic examples (e.g., Cathles and others, 2009; Bromirski and 

others, 2015; Cannata and others, 2019); however, the concept has never been tried before on ice 

shelves that fringe the Canadian Archipelago and Greenland. Seismometers have been deployed 

on embayed sea ice, for example in Svalbard; however, these deployments are at risk due to sea-

ice breakup and drift (e.g., Serripierri and others, 2022).  

Broadband seismographs deployed on floating ice shelves have the ability to observe a variety of 

oceanic and sea-ice phenomena including sea swell (both locally generated and trans oceanic 

(Cathles and others, 2009; Tsai and McNamara, 2011), hydro acoustic signals (tremor) generated 

by colliding icebergs and sea ice floes (MacAyeal and others, 2008), impulsive waves generated 

by iceberg calving and sea-ice ridging (MacAyeal and others, 2009), ice quakes associated with 

sea-ice deformation, and thermal fracturing of sea ice (Lewis and others, 1994) and 

superimposed ice layers (MacAyeal and others, 2019). In recent years, these observations have 

been used to demonstrate how seismological observation can define conventional properties such 

as sea-ice concentration and thickness (Cannata and others, 2019), as well as to infer difficult to 

observe properties such as depth of snow superimposed on sea ice (e.g., Chaput and others, 

2018; Schlindwein and others, 2020; Serripierri and others, 2022; Guillemot and others, 2021). 

An example of ice-shelf deployed seismic data can be found in (Cathles and others, 2009). 

The surface elevation of the now-diminished Ellesmere Ice Shelf and the Ward Hunt Ice Shelf 

consists of periodic waves, called “rolls” by the European explorers who first described them 

(Hattersley-Smith and others, 1955; Hattersley-Smith, 1957), that have an amplitude of meters 
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and wavelength of hundreds of meters. Rolls are rarely found on ice shelves of the Antarctic, and 

only in limited areas, not the pervasive full coverages seen on the Ward Hunt Ice Shelf. Their 

origin is unknown, and many hypotheses have been offered to explain them (Jeffries, 2017; 

Coffee and others, 2022). Whatever their origin, the fact that they dominate an ice shelf that 

grew from multi-year sea ice in the Last Ice Area, a region in the high latitudes of the Canadian 

Arctic and Greenland (e.g. Newton and others, 2021), demands attention. A hypothesis that we 

put forward is that the rolling surface morphology, created by whatever mechanism, offers an 

advantage to the survival of the multi-year sea ice which has this morphology. Specifically, the 

periodic variation of ice thickness creates ‘band gaps’, or frequency bands which prohibit the 

propagation of air- and water-coupled flexural gravity waves (Freed-Brown and others, 2012; 

Nekrasov and MacAyeal, 2023). If the right frequencies of waves are prohibited from 

propagating through the ice shelf (they will be reflected at the ice front), it is possible that the 

band gap will protect the ice shelf from wave-flexure induced damage and fracture.  

The propagation of elastic-flexural waves through an ice shelf can be modeled by elastic models 

(e.g. Holdsworth and Glynn, 1978, in addition to many others), based on elastic thin plate / 

elastic beam approximations. There are models among these that consider coupled ice-shelf / 

sub-ice shelf cavity systems (Holdsworth and Glynn, 1978; Sergienko, 2013, 2017; 

Papathanasiou and others, 2015, 2019; Meylan and others, 2017; Ilyas and others, 2018; 

Kalyanaraman and others, 2019, 2020; McNeil and Meylan 2023; Bennetts and others, 2024) 

and permit estimation of possible effects of tides and ocean swell actions on the calving process. 

In particular, these models consider the eigenvalue problem for the ice-shelf / sub-ice sea water 

systems (Holdsworth and Glynn, 1978; Papathanasiou and others, 2019), which is of interest in 

terms of possible resonances in the system. Further advancement of elastic-beam models occured 

in the direction of visco-elastic rheological model development. In particular, tidal flexure of an 

ice-shelf was obtained using the linear visco-elastic Burgers model (Reeh and others, 2003; 

Walker and others, 2013), nonlinear thin-plate visco-elastic model (MacAyeal and others, 2015) 
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and the nonlinear 3D visco-elastic full-Stokes model (Rosier and others, 2014). In particular, 

visco-elastic modeling provides a way (i) to explain the observed tidal flexure data; (ii) to 

explain ice-shelf response to sudden changes of surface loads and applied bending moments (e.g. 

draining supraglacial lakes, iceberg calving, surface and basal crevassing).  

Investigation of modeled dispersion spectra reveals that the spectra obtained for an ice shelf with 

crevasses can be qualitatively different from the spectra in the case of no crevasses (Freed-

Brown and others, 2012). Crevasses are widely distributed features in all ice shelves, and their 

appearance, growth and penetration is the subject of many studies (e.g. Van der Veen, 1998, 

2002; Scambos and others, 2000). Essentially, the dispersion spectra obtained for a crevasse-

ridden ice shelf reveal “band gaps” that are absent from the spectra obtained for an ice shelf 

without crevasses. These band gaps are the frequency ranges over which no eigenmodes exist 

(Freed-Brown and others, 2012) and are a phenomenon which emerges when a wave is 

propagated through periodic structure (Sheng, 2006). Band gaps arise in many different systems, 

including crystallography, photonic crystals, electron transport in metals and semiconductors 

(Ashcroft and Mermin, 1976), the formation of nearshore underwater sandbars (Mei, 1985), and 

gravity wave propagation through periodical structures of floating ice (Chou, 1998; Bennetts and 

others, 2009; Bennets and Squire, 2009; Bennets and Williams, 2010; Bennets and Squire, 

2012). 

In this study the propagation of elastic-flexural waves through an ice shelf with rolling surface 

morphology (Ward Hunt Ice Shelf morphology) was modeled by full 3-D finite-difference 

elastic models that are coupled to a treatment of under-shelf sea-water motion. These models 

differ in their approximation of the momentum equations: (i) Model 1 is based on the known 

differential form of the momentum equations and on the finite-difference approximation of the 

momentum equations (Konovalov, 2020, 2021b); (ii) Model 2 is based on the integral form of 

the momentum equations and the approximation of this form by the finite-volume method 

(Konovalov, 2023b, 2023c); (iii) Model 3 (Konovalov, 2021c) is based on the integro-
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differential form of the momentum equations and on a finite-difference approximation of this 

form (in this model the depth integration does not imply a thin plate approximation). In all three 

of these models, seawater under the ice shelf is treated as a homogeneously dense fluid, and the 

flow of water under ice shelf as is treated as a “potential flow”. The sea water motion in all 

developed models is described by a wave equation involving the pressure, and couples to the 

elastic motions of the ice through the pressure at the ice/water interface (Holdsworth and Glynn, 

1978). 

Numerical experiments show that “rolling” surface morphology of the ice shelf, a distinctive 

feature of Arctic ice shelves along Ellesmere Island, can have a profound effect on how elastic-

flexural waves propagate through the system. The experiments show that rolling surface 

morphology produces Bragg scattering (also called Floquet band insulation) that is potentially 

effective in preventing an incident wave from entering the ice shelf and causing subsequent 

fracture damage. The numerical results show frequency band gaps (band insulation) that are 

consistent with the Bragg’s law. The numerical results further show that these band gaps render 

the ice shelf/ocean system opaque to wave propagation with frequencies that fall within the 

range of the band gaps. By abating incident ocean wave activity, the rolling surface morphology 

inadvertently provides a fitness to the ice shelf that protects it from damage. 

 

FIELD EQUATIONS 

 

The 3D elastic model is based on the well-known momentum equations (e.g. Landau and 

Lifshitz, 1986; Lurie, 2005): 

{
  
 

  
 

𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜎𝑥𝑦

𝜕𝑦
+ 

𝜕𝜎𝑥𝑧

𝜕𝑧
= 𝜌 

𝜕2𝑈

𝜕 𝑡2
;  

𝜕𝜎𝑦𝑥

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
+ 

𝜕𝜎𝑦𝑧

𝜕𝑧
= 𝜌 

𝜕2𝑉

𝜕 𝑡2
;

𝜕𝜎𝑧𝑥

𝜕𝑥
+
𝜕𝜎𝑧𝑦

𝜕𝑦
+ 

𝜕𝜎𝑧𝑧

𝜕𝑧
= 𝜌 

𝜕2𝑊

𝜕𝑡2
+ 𝜌𝑔;

0 < 𝑥 < 𝐿; 𝑦1(𝑥) < 𝑦 < 𝑦2(𝑥); ℎ𝑏(𝑥, 𝑦) < 𝑧 < ℎ𝑠(𝑥, 𝑦),

    (1) 
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where (𝑋𝑌𝑍) is a rectangular coordinate system with x-axis along the central line (in the 

direction of wave propagation), and z-axis is pointing vertically upward; 𝑈, 𝑉 and 𝑊 are two 

horizontal and one vertical ice displacements, respectively; 𝝈 is the stress tensor; and 𝜌 is ice 

density. The ice shelf is of length L along the central line. The geometry of the ice shelf is 

assumed to be given by lateral boundary functions 𝑦1,2(𝑥) at sides labeled 1 and 2 and functions 

for the surface and base elevation, ℎ𝑠,𝑏(𝑥, 𝑦), denoted by subscripts s and b, respectively. Thus, 

the domain on which Eqs. (1) are solved is 𝛺 = {0 < 𝑥 < 𝐿, 𝑦1(𝑥) < 𝑦 < 𝑦2(𝑥), ℎ𝑏(𝑥, 𝑦) <

𝑧 < ℎ𝑠(𝑥, 𝑦)}. 

Equations (1) can be rewritten in integro-differential form. This integro-differential form results 

from the vertical integration of the momentum equations (1) from the current vertical coordinate 

to the ice surface. In particular, considering the first equation from (1) and integrating over 𝑧′ 

from the current z-coordinate to ℎ𝑠 we obtain the equation 

∫
𝜕𝜎𝑥𝑥

𝜕𝑥
 𝑑𝑧′

ℎ𝑠

𝑧
+ ∫

𝜕𝜎𝑥𝑦

𝜕𝑦
 𝑑𝑧′

ℎ𝑠

𝑧
+ 𝜎𝑥𝑧|𝑧=ℎ𝑠 − 𝜎𝑥𝑧 = 𝜌∫

𝜕2𝑈

𝜕𝑡2
𝑑𝑧′

ℎ𝑠

𝑧
    (2) 

Next, using the Leibniz integral rule, we replace the first and second terms in equation (2) with 

the following, respectively 

∫
𝜕𝜎𝑥𝑥

𝜕𝑥
 𝑑𝑧′

ℎ𝑠

𝑧
=

𝜕

𝜕𝑥
 ∫ 𝜎𝑥𝑥 𝑑𝑧′
ℎ𝑠

𝑧
− (𝜎𝑥𝑥)𝑧=ℎ𝑠

𝜕ℎ𝑠

𝜕𝑥
;      (3.1) 

∫
𝜕𝜎𝑥𝑦

𝜕𝑦
 𝑑𝑧′

ℎ𝑠

𝑧
= 

𝜕

𝜕𝑦
 ∫ 𝜎𝑥𝑦 𝑑𝑧′
ℎ𝑠

𝑧
− (𝜎𝑥𝑦)𝑧=ℎ𝑠

𝜕ℎ𝑠

𝜕𝑦
.      (3.2) 

Thus, instead of equation (2) we obtain the following equation 

𝜕

𝜕𝑥
 ∫ 𝜎𝑥𝑥 𝑑𝑧′
ℎ𝑠

𝑧
+ 

𝜕

𝜕𝑦
 ∫ 𝜎𝑥𝑦 𝑑𝑧′
ℎ𝑠

𝑧
− (𝜎𝑥𝑥)𝑧=ℎ𝑠

𝜕ℎ𝑠

𝜕𝑥
− (𝜎𝑥𝑦)𝑧=ℎ𝑠

 
𝜕ℎ𝑠

𝜕𝑦
+ (𝜎𝑥𝑧)𝑧=ℎ𝑠 − 𝜎𝑥𝑧 =

𝜌∫
𝜕2𝑈

𝜕𝑡2
𝑑𝑧′

ℎ𝑠

𝑧
.            (4) 

Taking in to account that the expression 
− (𝜎𝑥𝑥)𝑧=ℎ𝑠

𝜕ℎ𝑠
𝜕𝑥
 − (𝜎𝑥𝑦)𝑧=ℎ𝑠

 
𝜕ℎ𝑠
𝜕𝑦
 + (𝜎𝑥𝑧)𝑧=ℎ𝑠

√(
𝜕ℎ𝑠
𝜕𝑥
)
2
+(
𝜕ℎ𝑠
𝜕𝑦
)
2
+1

 is the x-component 

of the force acting on a unit square of the ice surface (e.g. Landau and Lifshitz, 1986) and it is 
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equal to zero accordingly the boundary conditions (ice surface is stress free), we finally obtain 

the following equation 

𝜕

𝜕𝑥
 ∫ 𝜎𝑥𝑥 𝑑𝑧′
ℎ𝑠

𝑧
+ 

𝜕

𝜕𝑦
 ∫ 𝜎𝑥𝑦 𝑑𝑧′
ℎ𝑠

𝑧
− 𝜎𝑥𝑧 = 𝜌∫

𝜕2𝑈

𝜕𝑡2
𝑑𝑧′

ℎ𝑠

𝑧
.     (5) 

Performing similar manipulations with the second and third equations from (1), we obtain the 

following equations  

𝜕

𝜕𝑥
 ∫ 𝜎𝑦𝑥 𝑑𝑧′
ℎ𝑠

𝑧
+ 

𝜕

𝜕𝑦
 ∫ 𝜎𝑦𝑦 𝑑𝑧′
ℎ𝑠

𝑧
− 𝜎𝑦𝑧 = 𝜌∫

𝜕2𝑉

𝜕𝑡2
𝑑𝑧′

ℎ𝑠

𝑧
     (6) 

and 

𝜕

𝜕𝑥
 ∫ 𝜎𝑥𝑥 𝑑𝑧′
ℎ𝑠

𝑧
+ 

𝜕

𝜕𝑦
 ∫ 𝜎𝑧𝑦 𝑑𝑧′
ℎ𝑠

𝑧
− 𝜎𝑧𝑧 = 𝜌𝑔(ℎ𝑠 − 𝑧) + 𝜌 ∫

𝜕2𝑊

𝜕𝑡2
𝑑𝑧′

ℎ𝑠

𝑧
.   (7) 

 

Thus, combining equations (5) – (7), we obtain the depth-integrated momentum equations, which 

are expressed as 

 

{
  
 

  
 

𝜕

𝜕𝑥
 ∫ 𝜎𝑥𝑥𝑑𝑧′
ℎ𝑠

𝑧
+

𝜕

𝜕𝑦
∫ 𝜎𝑥𝑦𝑑𝑧′
ℎ𝑠

𝑧
− 𝜎𝑥𝑧 = 𝜌∫

𝜕2𝑈

𝜕𝑡2
𝑑𝑧′

ℎ𝑠

𝑧
;

𝜕

𝜕𝑥
 ∫ 𝜎𝑦𝑥𝑑𝑧′
ℎ𝑠
𝑧

+
𝜕

𝜕𝑦
∫ 𝜎𝑦𝑦𝑑𝑧′
ℎ𝑠
𝑧

− 𝜎𝑦𝑧 = 𝜌∫
𝜕2𝑉

𝜕𝑡2
𝑑𝑧′

ℎ𝑠
𝑧

;

𝜕

𝜕𝑥
 ∫ 𝜎𝑧𝑥𝑑𝑧′
ℎ𝑠

𝑧
+

𝜕

𝜕𝑦
∫ 𝜎𝑧𝑦𝑑𝑧′
ℎ𝑠

𝑧
− 𝜎𝑧𝑧 = 𝜌𝑔(ℎ𝑠 − 𝑧) + 𝜌 ∫

𝜕2𝑊

𝜕𝑡2
𝑑𝑧′

ℎ𝑠

𝑧
;

0 < 𝑥 < 𝐿; 𝑦1(𝑥) < 𝑦 < 𝑦2(𝑥); ℎ𝑏(𝑥, 𝑦) < 𝑧 < ℎ𝑠(𝑥, 𝑦).

   (8) 

 

Similar manipulations, for example, yield equations describing ice flow in a 2D ice-flow model 

(Pattyn, 2000, 2002). 

 

Sub-ice water flow is described by the wave equation (Holdsworth and Glynn, 1978): 

 

𝜕2𝑊𝑏

𝜕 𝑡2
= 

1

𝜌𝑤
 
𝜕

𝜕 𝑥
 (𝑑0

𝜕 𝑃′

𝜕 𝑥
) + 

1

𝜌𝑤

𝜕

𝜕 𝑦
(𝑑0

𝜕 𝑃′

𝜕 𝑦
),       (9) 
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where 𝜌𝑤 is sea water density; 𝑑0(𝑥, 𝑦) is the depth of the sub-ice water layer; 𝑊𝑏(𝑥, 𝑦, 𝑡) is the 

vertical deflection of the ice-shelf base, and 𝑊𝑏(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑦, ℎ𝑏(𝑥, 𝑦), 𝑡); and 𝑃′(𝑥, 𝑦, 𝑡) is 

the deviation of the sub-ice water pressure from the hydrostatic value. 

 

The boundary conditions to the ice shelf are: (i) a stress free ice surface; (ii) the normal stress 

exerted by seawater at the ice-shelf free edges and at the ice-shelf base; and (iii) rigidly fixed 

edges at the grounding line of the ice-shelf. Moreover, the linear combination of the boundary 

conditions (Konovalov, 2019) also was applied in the models considered in this study. This 

linear combination is expressed as 

𝛼1 𝐹𝑖(𝑈, 𝑉,𝑊) + 𝛼2 Φ𝑖(𝑈, 𝑉,𝑊) = 0, 𝑖 = 1,2,3,       (10) 

where:  

(i) 𝐹𝑖(𝑈, 𝑉,𝑊) = 0 is the typical form of the boundary conditions, i.e. 𝜎𝑖𝑘 𝑛𝑘 = 𝑓𝑖 

where, 𝑓𝑖 is given forcing on the boundary (𝑛⃗  is the unit vector normal to the surface); 

(ii) Φ𝑖(𝑈, 𝑉,𝑊) = 0 is the approximation based on integration of the typical form of the 

boundary conditions to the momentum equations (Eqs (1) or Eqs (8));  

(iii) the coefficients 𝛼1 and 𝛼2 satisfy the condition 𝛼1 + 𝛼2 = 1. 

The boundary conditions to the sea water layer correspond to the frontal incident wave. They are  

(i) at 𝑥 = 0: 
𝜕𝑃′

𝜕𝑥
= 0; 

(ii) at 𝑦 = 𝑦1, 𝑦 = 𝑦2: 
𝜕𝑃′

𝜕𝑦
= 0; 

(iii) at 𝑥 = 𝐿: 𝑃′ = 𝐴0 𝜌𝑤𝑔 𝑒
𝑖𝜔𝑡, where 𝐴0 is the amplitude of the incident wave. 

 

The full description of Model 1 based on equations (1), is presented in (Konovalov, 2019, 2020 

2021a, 2021b). Model 2 is based on the finite volume method of approximation of momentum 

equations (1) and is presented in (Konovalov, 2023b, 2023c). The full description of Model 3 

based on equations (8), is presented in (Konovalov, 2021c, 2023a). 
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MODEL SET-UP 

 

The numerical experiments with forced vibrations were undertaken for a physically idealized ice 

shelf with the geometry shown in Figure 1. In the undeformed ice shelf, the four edges had 

coordinates 𝑥 = 0, 𝑥 = 𝐿, 𝑦1 = 0, 𝑦2 = 𝐵, where 𝐿 is the plate length along the x-axis and 𝐵 is 

the plate width along the y-axis (𝐵 = 𝑦2 − 𝑦1, see Eq. (1)).  

The ice plate had only one fixed edge (at 𝑥 = 0), while the other edges (at 𝑥 = 𝐿, 𝑦1 = 0, 𝑦2 =

𝐵) were free. This is the special case of an ice shelf, which is also known as an “ice tongue” (e.g. 

Holdsworth and Glynn, 1978). The intact ice tongue was 2 km in longitudinal extent, 0.1-0.2 km 

width.  

The “rolling” surface morphology (Coffey and others, 2022) was modeled by sinusoidally 

varying ice thickness 

𝐻(𝑥) =  𝐻0 + 𝐴𝐻  
𝜌𝑤

𝜌
 cos (

2𝜋𝑥

∆𝑙𝑟
),        (11) 

where 𝐴𝐻 is the amplitude of ice thickness oscillations, which was considered as a parameter of 

the models; ∆𝑙𝑟 is the spatial periodicity of the “rolls” (∆𝑙𝑟 in the models was equal to 0.5 km); 

𝐻0 in the models was equal to 25m. Essentially, this ice tongue was considered as a part of the 

Ward Hunt Ice Shelf. 

Taking into account the hydrostatic balance, the elevation of the ice surface ℎ𝑠(𝑥, 𝑦) and the 

elevation of the ice base ℎ𝑏(𝑥, 𝑦) are determined by the following equations, respectively: 

ℎ𝑠(𝑥, 𝑦) = 𝐻 (1 −
𝜌

𝜌𝑤
),         (12.1) 

ℎ𝑏(𝑥, 𝑦) = −𝐻
𝜌

𝜌𝑤
,          (12.2) 

where 𝐻 is the ice thickness (11). 
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That is, on the Ward Hunt Ice Shelf, both the ice surface and the ice base also had sinusoidal 

changes along the centerline (Figure 1).  

The water-layer depth in the case of the intact ice tongue also had sinusoidal variation (Figure 1). 

The periodic structure of the ice tongue is expected to provide Bragg scattering if the double 

spatial periodicity of the rolls 2 ∆𝑙𝑟 is a multiple of the wavelength  𝜆. Respectively, the Bragg 

wavenumbers 𝑘𝑏
(𝑛)

, at which we expect to observe band gaps in the modeled dispersion spectra, 

are expressed as 

𝑘𝑏
(𝑛)
=
𝜋 𝑛

 ∆𝑙𝑟
, 𝑛 = 1,2, …          (13) 

In all performed experiments, the physical properties of ice were defined by the following 

values: Young's modulus E=9GPa, Poisson's ratio is equal to 0.33 (Schulson, 1999). 

 

NUMERICAL EXPERIMENTS 

 

Numerical experiments were carried out using three models with different combinations of 

parameters 𝛼1 and 𝛼2 in equation (10). The results presented below were obtained using Model 

1 for (i) 𝛼1 = 1; 𝛼2 = 0 and (ii) 𝛼1 = 0.2; 𝛼2 = 0.8; using Model 2 for (i) 𝛼1 = 1; 𝛼2 = 0 and 

(ii) 𝛼1 = 0; 𝛼2 = 1; and using Model 3 for 𝛼1 = 1; 𝛼2 = 0. 

The supplemental file contains the results obtained from the experiments performed using 

Model 1 and Model 3. Here are the results obtained using Model 2. 

Figure 2 shows vertical deflections of the ice shelf. In general, using the second type of boundary 

conditions (Φ𝑖(𝑈, 𝑉,𝑊) in equation (10)), the modeling reveal that the deflections are a 

superposition of a pure bending mode (Lamb-type mode) and a pure torsion mode (Figure 2b). 

By determining the distances between the maxima/minima along the centerline deflection profile 

and then determining the average value, we obtain the wavelength and, accordingly, the 

wavenumber for a given periodicity 𝑇 (𝑇 =
2𝜋

𝜔
, where 𝜔 is the frequency of the forcing). Thus, 
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we successively obtain a dispersion curve – the dependence of the wavenumber on the 

periodicity (or frequency) of the forcing (Figure 3).  

In Figure 3, dispersion curve 1 was obtained for the ice shelf with constant ice thickness (the 

case of 𝐴𝐻 = 0). In this case, the dispersion curve consists of sections of monotonic decrease, 

which are separated by inter-mode spaces (Figure 3) accompanying the transitions from the 

𝑛 + 1 to the 𝑛 bending Lamb-type mode. In the case of the rolling periodic geometry of the ice 

shelf (Figure 1), the models yield the dispersion curves that have sections, where the typical 

relationship with monotonic decrease and inter-mode spaces is disturbed, as in dispersion curve 

2 in Figure 3. In Figure 3, this section of curve 2 is the band gap, which occurs due to Bragg 

scattering and corresponds to the second Bragg wavenumber 𝑘𝑏
(2)
≈ 12.57 𝑘𝑚−1. Essentially, 

these sections with disturbed wavenumber values are defined by comparison with the typical 

relationship (curve 1 in Figure 3).  

Experiments with ice shelves that have “rolling” surface morphology revealed that there is the 

threshold value of the amplitude of ice thickness oscillations (𝐴𝐻 in equation (11)), at which the 

band gaps appear in the dispersion spectra (Figure 4a) (Konovalov, 2023a). Essentially, the 

amplitude of ice thickness oscillations (𝐴𝐻) determines the depth of cavities at the base of the ice 

shelf that result from the “rolling” morphology. These cavities are analogous to crevasses at the 

ice shelf base (Freed-Brown and others, 2012). 

In Model 2, as in Model 1, the threshold value also depends on the Bragg wavenumber. The first 

band gap (𝑘𝑏
(1)
≈ 6.28 𝑘𝑚−1), appears in the spectrum at 𝐴𝐻 > 14 𝑚 (Figure 4a), i.e. the first 

threshold value (𝐴𝐻)𝑡ℎ
(1)
≈ 14𝑚. The second band gap (𝑘𝑏

(2)
≈ 12.57 𝑘𝑚−1), the third band gap 

(𝑘𝑏
(3)
≈ 19.04 𝑘𝑚−1) and the fourth band gap (𝑘𝑏

(4)
≈ 25.13 𝑘𝑚−1) appear in the spectrum at 

𝐴𝐻 > 1 𝑚 (Figure 4,b and 4,c), i.e. the corresponding threshold values (𝐴𝐻)𝑡ℎ
(𝑖)
≤ 1𝑚; 𝑖 = 2,3,4.  

As in Model 1, the degradation of the amplitude spectrum (in terms of resonances abatement) is 

also observed at high 𝐴𝐻 values, exceeding the threshold values (𝐴𝐻)𝑡ℎ (Figure 5). In particular, 
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in the amplitude spectrum obtained at the value 𝐴𝐻 = 18 𝑚, which corresponds to the observed 

fluctuations in ice thickness on the Ward Hunt Ice Shelf, starting from the impact periodicity 

𝑇 ≈ 2.5 𝑠, there are no resonance peaks in the spectrum (Figure 5).  

Figure 6 shows the alignment of the zone of the expected appearance of the first band gap 

(𝑘𝑏
(1)
≈ 6.28 𝑘𝑚−1) with the resonant peak in the corresponding range of periodicities of the 

forcing.  

In particular, (a) with the amplitude of ice thickness fluctuations 𝐴𝐻 equal to 𝟓 𝒎 (Fig. 6a), the 

resonance peak is observed at the periodicity 𝑇𝑛 ≈ 32.54 𝑠 (i.e. 𝑇𝑛 ≈ 32.54 𝑠 is one of the 

eigenvalues), at which the wavenumber in the dispersion spectrum is about 5.84 𝑘𝑚−1 (i.e. 

𝑘𝑛 ≈ 5.84 𝑘𝑚
−1); (b) with the amplitude of ice thickness fluctuations 𝐴𝐻 equal to 𝟏𝟎 𝒎 (Fig. 

6b), the resonance peak is observed at the periodicity 𝑇𝑛 ≈ 44.04 𝑠, at which the wavenumber in 

the dispersion spectrum is about 6.16 𝑘𝑚−1 (i.e. 𝑘𝑛 ≈ 6.16 𝑘𝑚
−1); and (c) with the amplitude of 

ice thickness fluctuations 𝐴𝐻 equal to 𝟏𝟐 𝒎 (Fig. 6c), the resonance peak is observed at the 

periodicity 𝑇𝑛 ≈ 55.92 𝑠, at which the wavenumber in the dispersion spectrum is about 

6.39 𝑘𝑚−1 (i.e. 𝑘𝑛 ≈ 6.39 𝑘𝑚
−1). Respectively, the relative deviation of the corresponding 

wavenumber 𝑘𝑛 from the first Bragg wavenumber 𝑘𝑏
(1)

 does not exceed 7%. 

The distributions of longitudinal stresses (𝜎𝑥𝑥) (Fig. 7b; Fig. 8b) reflect the distributions of 

vertical deformations along the central line of the ice shelf (Fig. 7a; Fig. 8a). That is, the 

maxima\minima of longitudinal stresses coincide with maxima\minima of vertical deformations 

in the deformation profile (Fig. 7a and Fig. 7b; Fig. 8a and Fig. 8b). In particular, for a given 

eigenmode the distribution of longitudinal stresses has a specific periodic structure, in which the 

maxima\minima are aligned with the antinodes in the mode. Therefore, beyond the band gaps, 

the longitudinal stress distribution with a specific periodical structure (as in Fig. 7b) is the 

expected stress distribution in the ice shelf. Vice versa, inside the band gaps the distribution of 

longitudinal stresses has a quasiperiodic or non-periodic structure (as in Fig. 8b). 
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The shear stress (𝜎𝑥𝑧) is an order of magnitude less than the longitudinal stress (Fig. 7c; Fig. 8c). 

Beyond the band gaps, the maximum\minimum shear stress is usually observed at the grounding 

line, where in the models the ice shelf was considered rigidly fixed (Fig. 7c). Within the band 

gaps, the maximum\minimum shear stress is in most cases achieved in a vicinity of ice shelf 

terminus, since the incident wave does not penetrate deeply into the ice shelf (Fig. 8c). 

 

DISCUSSION AND CONCLUSIONS 

 

(1) All suggested models reveal Bragg scattering for an ice shelf with a rolling surface 

morphology. The modelled Bragg scattering is expressed in the appearance of the 

anticipated band gaps in the dispersion spectra.  

In Konovalov (2023a) it was established that there is a threshold value of crevasses 

depth, at which the first band gap (corresponding to the first Bragg wavenumber) appears 

in the spectra. For ice shelf with rolling surface morphology, the double amplitude of ice 

thickness oscillations 𝐴𝐻 is a parameter similar to the crevasse depth in a crevasse-ridden 

ice shelf (Freed-Brown et all, 2012). Accordingly, the threshold value of the amplitude 

(𝐴𝐻)𝑡ℎ
(1)

, at which the expected first band gap appears in the spectrum, also exists for the 

ice shelf with rolling surface morphology.  

Analysis of the superposition of the dispersion spectrum and the amplitude spectrum 

allowed us to establish the following. The amplitude spectra contain resonance peaks 

corresponding to wavenumbers that are close to the first Bragg value 𝑘𝑏
(1)
≈ 6.28 𝑘𝑚−1. 

The appearance of Bragg scattering in a periodic structure, which also moves periodically 

with the same frequency, implies that the Bragg wavelength (𝜆𝑏
(𝑖)

) and the amplitude of 

oscillations of the periodic structure (𝑎) satisfy the condition: 

𝑎 ≪ 𝜆𝑏
(𝑖)

.          (14) 
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In other words, equation (14) is the condition for the occurrence of the expected Bragg 

scattering in a periodically moving structure. Evidently, at resonance, condition (14) is 

not satisfied. In fact, condition (14) coincides with the condition for applying the wave 

equation (9).  

Failure to satisfy condition (14) occurs not only when 𝑇 = 𝑇𝑛, i.e. when the periodicity of 

the incident wave coincides with the eigenvalue (when 𝑎 
𝑇→𝑇𝑛
→    ∞), but also when the 

periodicity of the forcing falls within the periodicity range containing 𝑇𝑛 and which is 

defined by the width of the resonance peak. Therefore, the probability of the alignment of 

the expected band gap region with the periodicity range, in which the condition (14) is 

not satisfied, will be higher for a resonant peak with a larger width. The width of the 

resonance peaks in the amplitude spectra (𝐴 𝑣𝑠 𝑇) increases with increasing periodicity of 

the forcing (Konovalov, 2019). Thus, the probability of the alignment is higher for the 

first Bragg value 𝑘𝑏
(1)

 than for the remaining 𝑘𝑏
(𝑖)
, 𝑖 = 2,3… 

These conclusions are confirmed by the results obtained in the present study. That is, the 

threshold value (𝐴𝐻)𝑡ℎ
(1)

 for the appearance of the first band gap is higher than other 

threshold values (𝐴𝐻)𝑡ℎ
(𝑖)
, 𝑖 = 2,3… In particular, in Model 1 (with 𝛼1 = 1, 𝛼2 = 0) 

(𝐴𝐻)𝑡ℎ
(1)
≈ 15𝑚, but (𝐴𝐻)𝑡ℎ

(𝑖)
< 1, 𝑖 = 2,3,4; in Model 2 (with 𝛼1 = 1, 𝛼2 = 0) (𝐴𝐻)𝑡ℎ

(1)
≈

14𝑚 and (𝐴𝐻)𝑡ℎ
(𝑖)
< 1, 𝑖 = 2,3,4; in Model 2 (with 𝛼1 = 0, 𝛼2 = 1) (𝐴𝐻)𝑡ℎ

(1)
≈ 15𝑚 and 

(𝐴𝐻)𝑡ℎ
(𝑖)
≈ 2, 𝑖 = 2,3,4. 

An increase in the amplitude of ice thickness oscillations 𝐴𝐻 (as an analogue of half the 

depth of ice crevasses in a crevasse-ridden ice shelf) yields shift in the resonance peaks 

(Konovalov, 2021a). Thus, a band gap appears in the dispersion spectrum, if the 

amplitude of ice thickness oscillations 𝐴𝐻 becomes higher than the threshold value 

(𝐴𝐻)𝑡ℎ. 
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(2) The torsional deformation component in the modes creates additional difficulties in 

treatment of the dispersion spectra, especially in Model 3, in which this component is 

observed in any case of the ratio 𝛼1 𝛼2⁄  (see supplemental file). Essentially, the torsional 

deformation component yields additional inter-mode spaces (Konovalov, 2021a) in the 

dispersion spectra. These additional inter-mode spaces respectively provide transitions 

between torsional strain components in the modes and appear as discontinuities in the 

dispersion curves. Moreover, these discontinuities differ from the discontinuities 

accompanying the transitions between the components of the Lamb-type bending 

deformation in the modes, and can be considered, in particular, as a result of Bragg 

scattering if these discontinuities are located near the Bragg value. Thus, complementary 

investigation is required to correctly interpret the discontinuity in the dispersion curve. 

The investigation is based on the combination of dispersion and amplitude spectra (as 

shown in Figure 6). Specifically, the discontinuities in the dispersion spectra 

corresponding to transitions between the torsional strain components in the modes and 

looking like band gaps, but not corresponding to Bragg scattering of the incident wave, 

coincide with the resonance peaks in the amplitude spectra (see section 4 in the 

supplemental file). In other words, these discontinuities, corresponding to transitions 

between the torsional strain components in the modes, are accompanied by a transition 

through resonances, while the band gaps corresponding to Bragg scattering are not 

accompanied by the same transition (see section (1) of this discussion). Thus, this 

spectral difference allows us to establish the type of discontinuity in the dispersion 

spectra. 

(3) In the models considered in this study, the band gap becomes the dominant effect and 

abates the resonances in the amplitude spectra if the amplitude of ice thickness 

oscillations 𝐴𝐻 exceeds the threshold value (𝐴𝐻)𝑡ℎ. Thus, it can be said that the 

abatement of the incident wave by ice shelf with rolling surface/base morphology 
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protects the ice shelf from dangerous resonant impact. For example, the range of 

periodicities, where the first band gap is observed (Fig. 4a), intersects with the range, 

where infragravity waves were observed: the range of periodicities is 50..250 s 

(Bromirski and others, 2010). That is, the first band gap, in particular, can protect the ice 

shelf from the impact of infragravity waves. This abatement may explain how multiyear 

sea ice in the Arctic Ocean along the coast of Ellesmere Island can be sufficiently stable 

and long-lived to evolve into the ice-shelf, once contiguous along the Ellesmere Island 

coast, reported by European and American explorers in the late 19th and early 20th 

centuries. 

 

DATA AND RESOURCES 

 

Full descriptions of the three models considered in this study are available on the Zenodo 

website. 

1) Model 1: 

https://doi.org/10.5281/zenodo.4004338 

https://doi.org/10.5281/zenodo.5562017 

2) Model 2: 

https://doi.org/10.5281/zenodo.7697142 

https://doi.org/10.5281/zenodo.10252877 

3) Model 3: 

https://doi.org/10.5281/zenodo.5761719 

 

(Last accessed December 2024) 
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The supplemental file (SI) contains the range of results (figures and description) obtained from 

the experiments performed 
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List of Figure Captions 
 

Figure 1. The ice-shelf and the cavity profiles considered in the numerical experiments. 1 – ice 

shelf surface; 2 – ice shelf base; 3 – sea bottom. The amplitude of ice thickness oscillations 

𝐴𝐻 = 18 𝑚. Spatial periodicity (∆𝑙𝑟) of the “rolls” is equal to 0.5 km.  

 

Figure 2. The vertical deflections of the ice shelf resulting from the impact of the frontal 

incident wave were obtained using Model 2 with the period of forcing 𝑇 = 4 𝑠 (𝑇 =
2𝜋

𝜔
, 𝜔 is the 

frequency of the forcing) in the case of (a) 𝛼1 = 1, 𝛼2 = 0 and (b) 𝛼1 = 0, 𝛼2 = 1. 

 

Figure 3. Dispersion spectra obtained using Model 2 with 𝜶𝟏 = 𝟏, 𝜶𝟐 = 𝟎 for ice shelf 

geometries differing in the amplitude of ice thickness oscillations 𝐴𝐻 (Figure 1): 1 –𝐴𝐻 = 0 𝑚; 2 

– 𝐴𝐻 = 10 𝑚. The arrowheads on the solid color line (curve 2) indicate the approximate 

positions of the left and right limits, which approximately define the left and right boundaries of 

the band gap. The dashed-colored line (in curve 2) indicates the perturbed wavenumber in the 

band gap. Similar arrowheads were also used in Figure 4 and other figures showing dispersion 

spectra to indicate of the boundaries of the band gaps. 

 

Figure 4. Dispersion spectra obtained using Model 2 with 𝜶𝟏 = 𝟏, 𝜶𝟐 = 𝟎 for ice shelf 

geometries differing in the amplitude of ice thickness oscillations 𝐴𝐻 (Figure 1): 1 –𝐴𝐻 = 5 𝑚; 2 

– 𝐴𝐻 = 10 𝑚; 3 –𝐴𝐻 = 12 𝑚; 4 –𝐴𝐻 = 14 𝑚; 5 –𝐴𝐻 = 18 𝑚; 

(a) area of the expected first band gap; (b) area of the expected second band gap; (c) area of 

expected third and fourth band gaps. 

The arrowheads on the solid color lines indicate the approximate positions of the left and right 

boundaries of the band gap. The dashed-colored lines indicate the perturbed wavenumber in the 

band gap. 
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Figure 5. Amplitude spectra obtained using Model 2 with 𝜶𝟏 = 𝟏, 𝜶𝟐 = 𝟎 for ice shelf 

geometries differing in the amplitude of ice thickness oscillations 𝐴𝐻 (Figure 1): 1 –𝐴𝐻 = 5 𝑚; 2 

– 𝐴𝐻 = 10 𝑚; 3 –𝐴𝐻 = 12 𝑚; 4 –𝐴𝐻 = 14 𝑚; 5 –𝐴𝐻 = 18 𝑚;  

(a) area of the expected first band gap (Figure 2,a); (b) area of the expected second band gap 

(Figure 2,b) 

 

Figure 6. Dispersion spectrum and amplitude spectrum, including the area of the expected first 

band gap, obtained using Model 2 with 𝜶𝟏 = 𝟏,𝜶𝟐 = 𝟎 for ice shelf geometries differing in the 

amplitude of ice thickness fluctuations 𝐴𝐻 (Figure 1): (a) 𝐴𝐻 = 5 𝑚; (b) 𝐴𝐻 = 10 𝑚; (c) 

𝐴𝐻 = 12 𝑚.  

 

Figure 7. (a) Vertical displacement of ice 𝑊 along the centerline due to the impact of the frontal 

incident wave. (b) Distribution of longitudinal stress (𝜎𝑥𝑥) in a vertical cross-section of the ice 

shelf along the centerline. (c) Distribution of shear stress (𝜎𝑥𝑧) in a vertical cross-section of the 

ice shelf along the centerline. The amplitude of ice thickness oscillations 𝑨𝑯 = 𝟏𝟎 𝒎, the 

periodicity of forcing 𝑻 = 𝟓𝒔. These distributions were obtained using Model 1 with 𝜶𝟏 =

𝟏,𝜶𝟐 = 𝟎. 

 

Figure 8. (a) Vertical displacement of ice 𝑊 along the centerline due to the impact of the frontal 

incident wave. (b) Distribution of longitudinal stress (𝜎𝑥𝑥) in a vertical cross-section of the ice 

shelf along the centerline. (c) Distribution of shear stress (𝜎𝑥𝑧) in a vertical cross-section of the 

ice shelf along the centerline. The amplitude of ice thickness oscillations 𝑨𝑯 = 𝟏𝟖 𝒎, the 

periodicity of forcing 𝑻 = 𝟓𝒔. These distributions were obtained using Model 1 with 𝜶𝟏 =

𝟏,𝜶𝟐 = 𝟎. 
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Figure 1. The ice-shelf and the cavity profiles considered in the numerical experiments. 1 – ice 

shelf surface; 2 – ice shelf base; 3 – sea bottom. The amplitude of ice thickness oscillations 

𝐴𝐻 = 18 𝑚. Spatial periodicity (∆𝑙𝑟) of the “rolls” is equal to 0.5 km.  
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Fig. 2a 

 

 

Fig. 2b 

 

Figure 2. The vertical deflections of the ice shelf resulting from the impact of the frontal 

incident wave were obtained using Model 2 with the period of forcing 𝑇 = 4 𝑠 (𝑇 =
2𝜋

𝜔
, 𝜔 is the 

frequency of the forcing) in the case of (a) 𝛼1 = 1, 𝛼2 = 0 and (b) 𝛼1 = 0, 𝛼2 = 1. 
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Figure 3. Dispersion spectra obtained using Model 2 with 𝜶𝟏 = 𝟏, 𝜶𝟐 = 𝟎 for ice shelf 

geometries differing in the amplitude of ice thickness oscillations 𝐴𝐻 (Figure 1): 1 –𝐴𝐻 = 0 𝑚; 2 

– 𝐴𝐻 = 10 𝑚. The arrowheads on the solid color line (curve 2) indicate the approximate 

positions of the left and right limits, which approximately define the left and right boundaries of 

the band gap. The dashed-colored line (in curve 2) indicates the perturbed wavenumber in the 

band gap. Similar arrowheads were also used in Figure 4 and other figures showing dispersion 

spectra to indicate of the boundaries of the band gaps. 
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Fig. 4a 
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Fig. 4b 
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Fig. 4с 

 

Figure 4. Dispersion spectra obtained using Model 2 with 𝜶𝟏 = 𝟏, 𝜶𝟐 = 𝟎 for ice shelf 

geometries differing in the amplitude of ice thickness oscillations 𝐴𝐻 (Figure 1): 1 –𝐴𝐻 = 5 𝑚; 2 

– 𝐴𝐻 = 10 𝑚; 3 –𝐴𝐻 = 12 𝑚; 4 –𝐴𝐻 = 14 𝑚; 5 –𝐴𝐻 = 18 𝑚; 

(a) area of the expected first band gap; (b) area of the expected second band gap; (c) area of 

expected third and fourth band gaps. 

The arrowheads on the solid color lines indicate the approximate positions of the left and right 

boundaries of the band gap. The dashed-colored lines indicate the perturbed wavenumber in the 

band gap. 
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Fig. 5a 
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Fig. 5b 

Figure 5. Amplitude spectra obtained using Model 2 with 𝜶𝟏 = 𝟏, 𝜶𝟐 = 𝟎 for ice shelf 

geometries differing in the amplitude of ice thickness oscillations 𝐴𝐻 (Figure 1): 1 –𝐴𝐻 = 5 𝑚; 2 

– 𝐴𝐻 = 10 𝑚; 3 –𝐴𝐻 = 12 𝑚; 4 –𝐴𝐻 = 14 𝑚; 5 –𝐴𝐻 = 18 𝑚;  

(a) area of the expected first band gap (Figure 2,a); (b) area of the expected second band gap 

(Figure 2,b) 
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Fig. 6a 
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Figure 6. Dispersion spectrum and amplitude spectrum, including the area of the expected first 

band gap, obtained using Model 2 with 𝜶𝟏 = 𝟏,𝜶𝟐 = 𝟎 for ice shelf geometries differing in the 

amplitude of ice thickness fluctuations 𝐴𝐻: (a) 𝐴𝐻 = 5 𝑚; (b) 𝐴𝐻 = 10 𝑚; (c) 𝐴𝐻 = 12 𝑚.  
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Fig. 7a 

 

Fig. 7b 

 

Fig. 7c 

Figure 7. (a) Vertical displacement of ice 𝑊 along the centerline due to the impact of the frontal 

incident wave. (b) Distribution of longitudinal stress (𝜎𝑥𝑥) in a vertical cross-section of the ice 

shelf along the centerline. (c) Distribution of shear stress (𝜎𝑥𝑧) in a vertical cross-section of the 

ice shelf along the centerline. The amplitude of ice thickness oscillations 𝑨𝑯 = 𝟏𝟎 𝒎, the 

periodicity of forcing 𝑻 = 𝟓𝒔. These distributions were obtained using Model 1 with 𝜶𝟏 =

𝟏,𝜶𝟐 = 𝟎. 
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Fig. 8a 
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Fig. 8c 

 

 

Figure 8. (a) Vertical displacement of ice 𝑊 along the centerline due to the impact of the frontal 

incident wave. (b) Distribution of longitudinal stress (𝜎𝑥𝑥) in a vertical cross-section of the ice 

shelf along the centerline. (c) Distribution of shear stress (𝜎𝑥𝑧) in a vertical cross-section of the 

ice shelf along the centerline. The amplitude of ice thickness oscillations 𝑨𝑯 = 𝟏𝟖 𝒎, the 

periodicity of forcing 𝑻 = 𝟓𝒔. These distributions were obtained using Model 1 with 𝜶𝟏 =

𝟏,𝜶𝟐 = 𝟎. 
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