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Adjoint Reidemeister torsions of some
3-manifolds obtained by Dehn surgeries
Naoko Wakijo

Abstract. We determine the adjoint Reidemeister torsion of a 3-manifold obtained by some Dehn
surgery along K, where K is either the figure-eight knot or the 52-knot. As in a vanishing conjecture
(Benini et al. (2020, Journal of High Energy Physics 2020, 57), Gang et al. (2020, Journal of High
Energy Physics 2020, 164), and Gang et al. (2021, Advances in Theoretical and Mathematical Physics
25, 1819–1845)), we consider a similar conjecture and show that the conjecture holds for the
3-manifold.

1 Introduction

Let g be the Lie algebra of a semisimple complex Lie group G, and let M be a connected
compact oriented manifold. Let Rirr

G (M) be the (irreducible) character variety, that
is, the set of conjugacy classes of irreducible representations π1(M) → G. Given a
homomorphism φ ∶ π1(M) → G, we can define the adjoint (Reidemeister) torsion
τφ(M) under a mild assumption, which lies inC× and is determined by the conjugacy
class of φ (see [15] or Section 2 for details). When dim M = 2, the torsion plays an
interesting role as a volume form on the space Rirr

G (M) (see [11, 18]). In addition, if
M is three-dimensional and G = SL2(C), some attitudes of the torsions in Rirr

G (M)
are physically observed from the viewpoint of a 3D–3D correspondence, and some
conjectures on the torsions are mathematically proposed in [1, 4, 5].

For instance, with reference to [5], the conjecture can be roughly described
as follows. Suppose that dim M = 3 and M has a tori-boundary. For z ∈ C, intro-
duce a finite subset “tr−1

γ (z)” of Rirr
G (M) which is defined from a boundary con-

dition, and discussed the sum of the nth powers of the twice torsions, that is,
∑φ∈tr−1

γ (z)(2τφ(M))n ∈ C for n ∈ Z with n ≥ −1. Then, the studies in [1, 4, 5] suggest
that the sum lies inZ and, that if M is hyperbolic and n = −1, then the sum is zero. This
conjecture is sometimes called the vanishing identity (see [12, 14, 19] and the references
therein for supporting evidence of this conjecture).

In this paper, we focus on the adjoint torsions in the case where dim M = 3 and
M has no boundary. According to [1, 4], it is seemingly reasonable to consider the
following conjecture:
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Conjecture 1.1 [1, 4] Take n ∈ Z with n ≥ −1. Suppose that M is a closed 3-manifold,
and the set Rirr

G (M) is finite. Then, the following sum lies in the ring of integers Z:

∑
φ∈R irr

G (M)
(2τφ(M))n .(1)

Furthermore, if G = SL2(C), M is a hyperbolic 3-manifold, and n = −1, then the sum is
zero.

In [2], when G = SL2(C), the adjoint torsion of certain Seifert 3-manifolds and
torus bundles are explicitly computed; thus, we can easily check the conjecture for
the non-hyperbolic 3-manifolds.

In contrast, this paper provides supporting evidence on Conjecture 1.1 in hyper-
bolic cases. For p/q ∈ Q and a knot K in S3, let S3

p/q(K) be the closed 3-manifold
obtained by (p/q)-Dehn surgery on K.

Theorem 1.2 Let G be SL2(C), and let K = 41 be the figure-eight knot. Let n = −1.
Then, for any integers p and q ≠ 0, Conjecture 1.1 is true when M = S3

p/1(41) and
M = S3

1/q(41).

We similarly discuss whether Conjecture 1.1 is true for M = S3
1/q(K)when the knot

K is the 52-knot (see Section 4).
The outline of the proof is as follows. While some computations of the adjoint

torsions of 3-manifolds with boundary are established (see, e.g., [3, 14, 19]), this paper
employs a procedure of computing the adjoint torsions of closed 3-manifolds, which
is established in [16], and we determine all the adjoint torsion (Theorems 3.3 and 3.4).
As in the previous proof of the above supporting evidence, we apply Jacobi’s residue
theorem (see Lemma 3.7) to the sum (1) and demonstrate Theorem 1.2. Since it is
complicated to check the condition for applying the residue theorem, we need some
careful discussion (see Sections 3.2 and 3.3).1 Finally, in Section 5, we also discuss
the conjecture with n > 0, and see that some properties are needed to be addressed in
future studies. Here, we show the 22n+1-multiple of the conjecture with M = S3

2m/1(41)
(see Proposition 5.4).

2 Review: the adjoint Reidemeister torsion

After reviewing algebraic torsions in Section 2.1, we briefly recall the definition of
the adjoint Reidemeister torsion in Section 2.2. We note that our definition of the
adjoint torsion is of sign-refined type. Section 2.3 explains cellular complexes of M.
Throughout this paper, we assume that any basis of a vector space is ordered.

1As a private communication with S. Yoon, he tells us another proof of Conjecture 1.1 with M =
S3

p/q(K) in generic condition. Here, we emphasize that, while the condition does not contain the case
(p, q) = (4m, 1) for some m ∈ Z, Theorem 1.2 deals with all p.
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2.1 Algebraic torsion of a cochain complex

Let C∗ be a bounded cochain complex consisting of finite-dimensional vector spaces
over a commutative field F, that is,

C∗ = (0 → C0 δ0


→ C1 δ1


→⋯ δm−1



→ Cm → 0).

Let H i = H i(C∗) be the ith cohomology group. Choose a basis ci of C i and a basis hi

of H i . The Reidemeister torsion Tor(C∗ , c∗ , h∗) is defined as follows.
Let h̃i ⊂ C i be a representative cocycle of hi in C i . Let bi be a tuple of vectors in

C i such that δ i(bi) is a basis of B i+1 = Im δ i . Then the union of the sequences of the
vectors δ i−1(bi−1)h̃i bi gives a basis of C i . We write [δ i−1(bi−1)h̃i bi/ci] ∈ F× = F/{0}
for the determinant of the transition matrix that takes ci to δ i−1(bi−1)h̃i bi . Let ∣C∗∣ be
∑m

i=0 α i(C∗)β i(C∗), where α i(C∗) ∶= ∑i
j=0 dim C j and β i(C∗) ∶= ∑i

j=0 dim H j . Let
c∗ be (c0 , . . . , cm) for C∗ and h∗ be (h0 , . . . , hm) for H∗. Then, the torsion is defined
to be the alternating product of the form

Tor(C∗ , c∗ , h∗) ∶= (−1)∣C
∗∣

m
∏
i=0
[δ i−1(bi−1)h̃i bi/ci](−1)i+1

∈ F× .

It is known that the torsion Tor(C∗ , c∗ , h∗) does not depend on the choices of h̃i and
bi , but depends only on c∗ and h∗. We refer to [7, 15] for the details. Note that, if C∗
is acyclic (i.e., H∗(C∗) = 0), then the torsion Tor(C∗ , c∗ , h∗) is usually denoted by
Tor(C∗ , c∗).

Remark 2.1 In [7, 15], the torsion was defined from a chain complex; however, for
convenience of computation, we define the torsion from a cochain complex in this
paper.

2.2 Adjoint Reidemeister torsion of a 3-manifold

Let M be a connected oriented closed 3-manifold, and let G be a semisimple Lie
group with Lie algebra g. Let φ ∶ π1(M) → G be a representation, that is, a group
homomorphism. Suppose that G injects SLn(C) for some n ∈ N.

First, we introduce the cochain complex. Choose a finite cellular decomposition of
M and consider the universal covering space M̃. We can canonically obtain a cellular
structure of M̃ as a lift of the decomposition of M, and define the cellular complex
(C∗(M̃;Z), ∂∗). We regard the covering transformation of M as a left action of π1(M)
on M̃, and naturally regard C∗(M̃;Z) as a left Z[π1(M)]-module. Since g is a left
Z[π1(M)]-module via the composite of φ and the adjoint action G → Aut(g), we
have the cochain complex of the form

(C∗φ(M;g), δ∗) ∶= (HomZ[π1(M)](C∗(M̃;Z), g), δ∗),

where δ i is defined by δ i( f ) = f ○ ∂ i+1.
Next, we define an ordered basis of C i

φ(M;g). Let ci =(c i ,1 , c i ,2 , . . . , c i ,rankZ C i(M ;Z))
be a basis of C i(M;Z)derived from the i-cells. Then, c̃i =(c̃ i ,1 , c̃ i ,2 , . . . , c̃ i ,rankZ C i(M ;Z))
is a basis of the free Z[π1(M)]-module C i(M̃;Z). Here, c̃ i , j is a lift of c i , j to M̃.
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Since g is semisimple, the Killing form B is nondegenerate, and we can fix an
ordered basis B = (e1 , e2 , . . . , edim g) of g that is orthogonal with respect to B. Let
ck

i , j ∈ C i
φ(M;g) be a Z[π1(M)]-homomorphism defined by ck

i , j(c̃ i ,�) = δ j,�ek ∈ g for
any i ∈ {0, 1, 2, 3}, j, � ∈ {1, 2, . . . , rankZ C i(M;Z)}, and k ∈ {1, 2, . . . , dimg}. Here,
δ j,� is the Kronecker delta. Then the tuple

ci = (c1
i ,1 , c2

i ,1 , . . . , cdim g

i ,1 , c1
i ,2 , c2

i ,2 , . . . , cdim g

i ,2 , . . . , c1
i ,rankZ C i(M ;Z) ,

c2
i ,rankZ C i(M ;Z) , . . . , cdim g

i ,rankZ C i(M ;Z))

provides an ordered basis of C i
φ(M;g) as desired.

We next consider the cellular cochain complex C∗(M;R)with the real coefficient.
Let c i

j ∶ C i(M;Z) → R be a homomorphism defined by c i
j(c i ,k) = δ j,k for any

i ∈ {0, 1, 2, 3} and j, k ∈ {1, 2, . . . , rankZ C i(M;Z)}. Then, ci
R = (c i

1 , . . . , c i
rankZ C i(M ;Z))

is a basis of C i(M;R). By Poincaré duality, we can naturally fix a homology orientation
σM of H∗(M;R) = ⊕3

i=0 H i(M;R). Let h∗R be a basis of H∗(M;R) such that the
exterior product of h∗R coincides with σM . The Reidemeister torsion of C∗(M;R)
associated with c∗R and h∗R lies in R×. Therefore, we can define the sign

τM ∶= sgn(Tor(C∗(M;R), c∗R , h∗R)) ∈ {±1}.

Then, the adjoint Reidemeister torsion of M associated with φ is defined to be

τφ(M) ∶= (τM)dim g ⋅ Tor(C∗φ(M;g), c∗) ∈ C× ,

if C∗φ(M;g) is acyclic. If C∗φ(M;g) is not acyclic, then we define τφ(M) = 1. As
is known [3, 11], the definition of τφ(M) does not depend on the choices of the
orthogonal basis B, finite cellular decompositions of M, c̃i , and hi

R, but depends only
on M and the conjugacy class of φ.

Finally, we give a sufficient condition for the acyclicity, which might be known.

Lemma 2.2 As in Conjecture 1.1, assume that Rirr
G (M) is of finite order. Then, for

any irreducible representation φ ∶ π1(M) → G, the associated cohomology H∗φ(M;g) is
acyclic.

Proof Since it is classically known [17] that the first cohomology H1
φ(M;g) is

identified with the cotangent space of the variety Rirr
G (M), it vanishes by assumption;

by Poincaré duality, the second one does. Meanwhile, by definition, the zeroth coho-
mology H0

φ(M;g) equals the invariant part {a ∈ g ∣ a ⋅ φ(g) = a for any g ∈ π1(M)},
which is zero by the irreducibility. Hence, the third one also vanishes by Poincaré
duality again. ∎

2.3 Presentations of the cellular complexes of M

From now on, we assume that G = SL2(C) and M is one of S3
p/1(41) and S3

1/q(41) for
some integers p and q ≠ 0 as in Theorem 1.2. According to [8], group presentations of
π1(M) are given as follows:
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π1(S3
p/1(41)) ≅ ⟨x1 , x2 ,m ∣mx1x2m

−1x−1
1 ,mx2x1x2m

−1x−1
2 , [x1 , x2]mp⟩,

(2)

π1(S3
1/q(41)) ≅ ⟨x1 , x2 ,m,m′ ∣mx1x2m

−1x−1
1 ,mx2x1x2m

−1x−1
2 ,m[x1 , x2]q ,m′[x1 , x2]−1⟩.

Here, [x , y] is x yx−1 y−1. Let g be the number of generators of the group presentation
above. Replace m by x3, m′ by x4, and let r i denote the ith relator in (2). Under the
identifications C i

φ(M;g) = HomZ[π1(M)](C i(M̃;Z), g) = Homg(grankZ C i(M ;Z) , g),
the cochain complex (C∗φ(M;g), δ∗) is isomorphic to the dual of the following chain
complex:

0 → g
δ3


→ g
g δ2


→ g
g δ1


→ g→ 0.(3)

We now describe the differentials δ∗ in detail. Let F and P be the free groups
⟨x1 , . . . , xg ∣ ⟩ and ⟨ρ1 , . . . , ρg ∣ ⟩, respectively. We define the homomorphism
ψ ∶ P ∗ F → F by setting ψ(ρ j) = r j and ψ(x i) = x i . Let μ denote the natural
surjection from F to π1(M). According to [8, Section 3.1], we can describe δ∗ by
the words of the presentations (2) as follows: let W ∈ P ∗ F be

ρ1 ⋅ x1ρ2x−1
1 ⋅ (x1x2x−1

1 )ρ−1
1 (x1x2x−1

1 )−1 ⋅ ([x1 , x2])ρ−1
2 ([x1 , x2])−1 ⋅ ρ3 ⋅mρ−1

3 m
−1 ,

if M = S3
p/1(41). Let W ∈ P ∗ F be

ρ1 ⋅ x1 ρ2x−1
1 ⋅ (x1x2x−1

1 )ρ−1
1 (x1x2x−1

1 )−1 ⋅ ([x1 , x2])ρ−1
2 ([x1 , x2])−1 ⋅ ρ−1

4 ⋅m′ρ3m
′−1 ⋅ ρ4 ⋅ ρ−1

3 ,

if M = S3
1/q(41). Then, each δ∗ can be written as the matrices

δ1 = (1 − x j) j=1, . . . , g , δ2 = (
∂r j

∂x i
)

i , j=1, . . . , g
, δ3 = μ ○ ψ (∂W

∂ρ i
)

i=1, . . . , g
,(4)

where ∂∗
∂∗ is Fox derivative (see [15, Section 16] for the definition). Although each entry

of the matrices is described in Z[π1(M)], we regard the entry as an automorphism of
g via the adjoint action.

3 Proof of Theorem 1.2

The purpose of this section is to show the proof of Theorem 1.2. First, Section 3.1 deter-
mines the torsion with respect to every irreducible representation. Next, Section 3.2
establishes two key lemmas, and Section 3.3 completes the proof. Throughout this
section, E2 means the (2 × 2)-identity matrix, and we let G be SL2(C).

3.1 Preliminary

To state Propositions 3.1 and 3.2 and Theorems 3.3 and 3.4, let us consider a domain
D in C of the form

D ∶= {a ∈ C ∣ ∣a∣ < 1} ∪ {a ∈ C ∣ Im(a) > 0, ∣a∣ = 1} ∪ {−
√
−1},
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Figure 1: D ⊂ C.

as in Figure 1, and define the Laurent polynomial QM(x) ∈ Z[x , x−1] by setting

QM(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 − x p−4 + x p−2 + 2x p + x p+2 − x p+4 + x2p , if M = S3
p/1(41),

1 − x2q − x4q−1 − 2x4q − x4q+1 − x6q + x8q , if M = S3
1/q(41).

Let Q−1
M (0)∈ C denote the zero set of the Laurent polynomial QM .

Proposition 3.1 Let M = S3
p/1(41) for some integer p. If p ≠ 0, then there is a bijection

ΦM ∶ Rirr
G (M) → Q−1

M (0) ∩ D. Here, for [φ] ∈ Rirr
G (M), we define

ΦM([φ]) ∶= (The eigenvalue of φ(m) that lies in D/{±
√
−1}),(5)

when the eigenvalues of φ(m) are not ±
√
−1. If ε

√
−1 ∈ Q−1

M (0) for some ε ∈ {±1},
Φ−1

M(ε
√
−1) is a conjugacy class with a representation φ defined by

φ(m) = ( ε
√
−1 0

0 −ε
√
−1 ) , φ(x1) = (

1
4 (−1 + ε

√
5) 1

1
8 (−5 − ε

√
5) 1

4 (−1 + ε
√

5) ) .(6)

If p = 0, then there is a bijection ΦM ∶ Rirr
G (M) → {±

√
−1,±(1 −

√
5)/2}.

Proposition 3.2 Let M = S3
1/q(41) for some integer q ≠ 0. Then, there is a bijection

ΦM ∶ Rirr
G (M) → Q−1

M (0) ∩ D. Here, ΦM is defined by (5) as in Proposition 3.1. Note
that, since ±

√
−1 ∉ Q−1

M (0) for M = S3
1/q(41), (6) can be excluded from the definition in

this case.

Proof of Proposition 3.1 Let p ≠ 0. For an irreducible representation φ ∶ π1(M) →
SL2(C), take x , y, z, w ∈ C so that φ(x1) = ( x y

z w ) and xw − yz = 1. We first claim

that φ(m) is diagonalizable. In fact, if not so, we may suppose φ(m) = ( η b
0 η ) for

some b ∈ C× and η ∈ {±1}. Since φ(r1) = E2, we have

φ(x2) = φ(x1)−1φ(m)−1φ(x1)φ(m) = ( 1 − ηbwz −b (bwz + ηw2 − η)
ηbz2 b2 z2 + ηbwz + 1 ) .(7)
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It follows from (7) that

φ(r3) = φ(x1)φ(x2)φ(x1)−1φ(x2)−1φ(m)p

= ηp( b4 z4 + ηb3 wz3 − b2 z2(x2 + xw − 3) + ηbz(w − x) + 1 ∗
−ηb3 z4 − b2 z3(w + x) − η2bz2 ∗ ) .(8)

Then, the condition φ(r3) = E2 and b ≠ 0 leads to z = 0. In fact, if z ≠ 0, the (2,1)-
entries of φ(r3) = E2 yields x = −η2b−1z−1 −w − ηbz by (8). Thus, the (1,1)-entry of
(8) equals −1, resulting in a contradiction.

By substituting z = 0 into φ(r2), we obtain

E2 = φ(r2) = φ(m)φ(x2)φ(x1)φ(x2)φ(m)−1φ(x2)−1 = ( x y − ηb (w3 − 2w + x)
0 w ) .

Thus, x = w = 1 and y = 0; therefore, φ(x1) and φ(x2) are upper triangular matrices,
which leads to a contradiction to the irreducibility.

By the above claim, we may suppose φ(m) = ( a 0
0 a−1 ) for some a ∈ D/{0}.

Since we consider φ up to conjugacy, we may suppose y = 1. Thus, z = xw − 1. Since
φ(r1) = φ(r2) = φ(r3) = E2, with the help of a computer program of Mathematica, we
have

x = 1 + a2 − a4 + η(1 − 2a2 − a4 − 2a6 + a8)1/2

2(1 − a2) ,

z = − 1 − 3a2 + a4 + η(1 − 2a2 − a4 − 2a6 + a8)1/2

2(a2 − 1)2 ,

w = −1 + a2 + a4 + η(1 − 2a2 − a4 − 2a6 + a8)1/2

2a2(a2 − 1) ,(9)

and QM(a) = 0 when a ≠ ±
√
−1. Here, we fix a branch of the 1/2th power on C×/R,

and define the signs η ∈ {±1} by setting

η =
⎧⎪⎪⎨⎪⎪⎩

+1, if − 1 + a2 + 2a4 + a6 − a8 + 2ap+4 = (a4 − 1)(1 − 2a2 − a4 − 2a6 + a8)1/2 ,
−1, if − 1 + a2 + 2a4 + a6 − a8 + 2ap+4 = −(a4 − 1)(1 − 2a2 − a4 − 2a6 + a8)1/2 .

When a = ε
√
−1 for some ε ∈ {±1}, we have

x = −1 + ε
√

5
4

, z = −5 − ε
√

5
8

, w = −1 + ε
√

5
4

(10)

by the condition φ(r1) = φ(r2) = φ(r3) = E2. In summary, the map ΦM is well-
defined and injective. Finally, we can easily show the surjectivity of ΦM by following
the reverse process of the above calculation.

In the remaining case of p = 0, define ΦM as follows: for each ε ∈ {±1}, let
Φ−1

M(ε
√
−1) be a representation φ defined by (6). For ε′ ∈ {±1}, let Φ−1

M(ε′(1 −
√

5)/2)
has a representation φ defined by

φ(m) =
⎛
⎝

ε′ 1−
√

5
2 0

0 ε′ −1−
√

5
2

⎞
⎠

, φ(x1) = (
1 1
0 1 ) ,
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respectively. Then, by φ(r1) = φ(r2) = φ(r3) = E2, we can show the well-definedness
and injectivity of ΦM as in the case of p ≠ 0. By following the reverse process, we can
check the surjectivity of ΦM as well. ∎

Proof of Proposition 3.2 It can be proved in the same manner as Proposition 3.1.
In this case, instead of (9), we have

x =
a−2q (2a6q + 2a4q+1)
2 (a2q − 1)2 (a2q + 1)

, z = −4a2q + 2a4q − 2a6q + 2a4q+1 − 2
2y (a2q − 1)3 (a2q + 1)

,

w = −4a4q + 2a6q − 2a8q + 2a4q+1 − 2
2 (a2q − 1)2 (a2q + 1)

.(11) ∎

Theorem 3.3 Let M = S3
p/1(41) for some integer p ≠ 0. For a ∈ Q−1

M (0) ∩ D as in
Proposition 3.1, we denote the representative SL2(C)-representation of Φ−1

M(a) by φa .
Then, the adjoint Reidemeister torsion of M with respect to φa is computed as

τφa (M) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−4 − p + (−2 + p)a2 + 2pa4 + (2 + p)a6 − (4 + p)a8 + 2pa4+p

2(a2 − 1)3(1 + a2)
, if a ∉ {±

√
−1},

1
8
(10 + ap

√
−5), if a ∈ {±

√
−1}.

(12)

(13)

Theorem 3.4 Let M = S3
1/q(41) for some integer q ≠ 0. For a ∈ Q−1

M (0) ∩ D as in
Proposition 3.2, we denote the representative SL2(C)-representation of Φ−1

M(a) by φa .
Then, the adjoint Reidemeister torsion of M with respect to φa is computed as

τφa(M) = − a6q(−1 + 4q + (1 − 2q)a2q + 2(1 + a)a4q + (1 + 2q)a6q − (1 + 4q)a8q)
2(a4q − 1)3(1 − 2a2q − a4q − 2a6q + a8q) .

(14)

Proof of Theorems 3.3 and 3.4 Under the identification of g ≅ C3, we can con-
cretely describe each δ i as the matrices according to (4) and the description of ΦM in
the proofs of Propositions 3.1 and 3.2. Applying the τ-chain method in [15, Section 2.1]
to the chain complex C∗φ(M;g), with the help of a computer program of Mathematica,
we can directly obtain the resulting τφa(M). ∎

Remark 3.5 (i) While this paper deals with the adjoint torsion via adjoint action,
the classical Reidemeister torsion of M = S3

p/q(41) with respect to the SL2(C)-
representation was computed in [6].

(ii) When M = S3
p/1(41), the torsion τφ(M), up to sign, was computed in [10]. The

advantage of Theorem 3.3 is that the sign of the torsion is recovered; thus, we
can compute the sum of τφ(M)n ’s, as is seen later.

(iii) We can easily check that τφa−1 (M) = τφa(M) ∈ C× by using the relation
QM(a) = 0 when a ≠ ±

√
−1, and that QM(±

√
−1) = 0 with M = S3

p/1(41) if
and only if p is divisible by 4.
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(iv) If p = 0, that is, if M = S3
0/1(41), then we can similarly compute τφa(M) as 5/4,

5/4, 5, and 5 with respect to a =
√
−1, −

√
−1, (1 −

√
5)/2, and −(1 −

√
5)/2,

respectively.

3.2 Two key lemmas

As preliminaries of the proof of Theorem 1.2, we prepare two lemmas.

Lemma 3.6 Define a polynomial κp(x) ∈ Z[x] by setting

κp(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 + x)2 , if p = 2m + 1,
(1 + x2)2 , if p = 4m,
1, if p = 4m + 2,

for some m ∈ Z. Then, QM(x)with M = S3
p/1(41) is divisible by κp(x), and the quotient

QM(x)/κp(x) has no repeated roots. On the other hand, QM(x) with M = S3
1/q(41) is

divisible by (1 + x)2, and the quotient QM(x)/(1 + x)2 also has no repeated roots.

Proof The required statement with ∣p∣ ≤ 4 and ∣q∣ ≤ 4 can be directly shown, we
may assume ∣p∣ ≥ 5 and ∣q∣ ≥ 5. We first focus on the case M = S3

p/1(41). By a compu-
tation of dn

dx n (QM(x)) ∣x=b with b = ±1,±
√
−1, we can easily verify the multiplicity of

QM(x). To elaborate, if p = 2m + 1, then

QM(1) = 4, QM(
√
−1) = −2(−1)m√−1, QM(−

√
−1) = 2(−1)m√−1

are all nonzero, which implies that 1,±
√
−1 are not roots of QM(x). Furthermore,

QM(−1) = Q′M(−1) = 0, Q(2)M (−1) = −2(−12 − p2) ≠ 0,

indicates that −1 is a root of QM(x) with multiplicity 2. When p = 4m or 4m + 2,
we can analogously determine the multiplicity of QM(x) with b = ±1,±

√
−1. Thus,

QM(x) is divisible by κp(x), and QM(x)/κp(x) is not divisible by x ± 1 and x2 + 1.
Next, suppose QM(x) has a repeated root a ∈ C with a ≠ ±1,±

√
−1. Then,

QM(a) = 0 and Q′M(a) = 0, which are equivalent to

1 − ap(a−4 + a−2 + 2 + a2 − a4) + (ap)2 = 0,(15)

(p − 4)a−4 + (p − 2)a−2 + 2p + (p + 2)a2 − (p + 4)a4 = −2pap .(16)

Applying (16) to (15) to kill the term ap , we equivalently have

(1 + a)2(1 + a2)2(p2 − 16 + (16 − 2p2)a2 − (36 + p2)a4 + (16 − 2p2)a6 + (p2 − 16)a8) = 0.

Since a2 ≠ ±1, the last quartic term equation can be solved as

a2 =
p2 − 8 + 2ηp

√
p2 − 15 + ε

√
(40 − 3p2 + 2ηp

√
p2 − 15)(p2 − 24 + 2ηp

√
p2 − 15)

2p2 − 32
,

for some ε, η ∈ {±1}. Let F be the field extension Q(a) of degree 8. Let us regard (15)
as a quadratic equation in F of ap . Since the discriminant is not zero and ∣p∣ > 4, ap
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does not lie in F. This is a contradiction. In summary, QM(x)/κp(x) has no repeated
roots as required.

On the other hand, if M = S3
1/q(41), we can easily show that QM(x) is divisible

not by (1 + x)3 but by (1 + x)2. Similarly, suppose QM(x) has a repeated root a ∈ C
with a ≠ ±1. Then, QM(a) = Q′M(a) = 0. We can easily see QM(1/a) = Q′M(1/a) = 0
by reciprocity of QM . Thus, we obtain (x−4q QM)′(a) = (x−4q QM)′(1/a) = 0, which
are equivalent to

2(1 + a) = (2q + 1)a2q + (−2q + 1)a−2q − (4q + 1)a4q − (−4q + 1)a−4q ,(17)

2(1 + a−1) = (2q + 1)a−2q + (−2q + 1)a2q − (4q + 1)a−4q − (−4q + 1)a4q .(18)

Since a−4q QM(a) = 0 is equivalent to

2(1 + a)2(1 + a−1) = 4(a4q − a2q − a−2q + a−4q),(19)

the substitution of (17) and (18) into (19) gives the equation

(1 − b)2(1 + b)2(−1 + 2b + b2 + 2b3 − b4 + 16q2 − 16bq2 + 36b2q2 − 16b3q2 + 16b4q2) = 0,
(20)

where we replace a2q by b. If ω2q = ±1 and ω ∈ C, we can easily check QM(ω) ≠ 0 by
definition. Thus, aq is a solution of the quartic equation in (20) and does not lie in Q,
for any q ∈ Z. Let F/Q be the field extension by the quartic equation. By definition, F
does not contain a and 2 + a + a−1, which contradicts (19) since ∣q∣ > 4. In summary,
QM(x)/(1 + x)2 has no repeated roots as required. ∎

Next, we should mention a slight modification of Jacobi’s residue theorem.

Lemma 3.7 Fix ζ ∈ {0, 2} and θ ∈ {1, 2}. Suppose a polynomial k(x) ∈ Q[x] has no
repeated roots and k(0) ≠ 0. Take another polynomial g(x) ∈ Q[x] such that deg(g) ≤
deg(k) − θζ − 2. Then, the following sum is zero:

∑
a∈k−1(0)

(1 + aθ)ζ g(a)
d

dx ((1 + xθ)ζ k(x))∣x=a
= 0.(21)

Proof If ζ = 0, the statement is Jacobi’s residue theorem exactly (see, e.g., [14,
Section 6]). Thus, we may suppose ζ = 2. Note that the derivative of (1 + xθ)ζ k(x)
is ζθxθ−1(1 + xθ)ζ−1k(x) + (1 + xθ)ζ k′(x). Hence, the left-hand side of (21) is com-
puted as ∑a∈k−1(0) g(a)/k′(a), which is equal to zero by the residue theorem. ∎

3.3 Proof of Theorem 1.2 with n = −1

We suppose n = −1 and give the proof of Theorem 1.2. Recall the fact that M = S3
p/1(41)

and M = S3
1/q(41) are hyperbolic if and only if ∣p∣ ≥ 5 and ∣q∣ ≥ 2, respectively (see, e.g.,

Theorem 4.7 of [13]).
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First, we focus on the case where p ≥ 5, M = S3
p/1(41), and p is not divisible by 4.

From the definition of QM(x) and Theorem 3.3, we can easily verify

1
τφa(M) =

2(1 − a2)3(1 + a2)ap−5

Q′M(a) for any a ∈ (Q−1
M (0) ∩ D) /{±

√
−1}.(22)

If p − 2 is divisible by 4, we replace g(x) and k(x) by 2(1 − x2)3(1 + x2)x p−5 and
QM(x), respectively. Then, Lemma 3.7 with ζ = 0 deduces to the required conclusion
as

0 = ∑
a∈Q−1

M (0)

g(a)
Q′M(a) = ∑

a∈Q−1
M (0)

1
τφa(M) = 2 ∑

a∈Q−1
M (0)∩D

1
τφa(M) = ∑

φ∈R irr
G

2
τφ(M) .

(23)

Here, the second, third, and fourth equalities immediately follow from (22), Remark
3.5(iii), and Proposition 3.1, respectively. Meanwhile, when p − 1 is divisible by 2, we
replace g(x) and k(x) by 2(x − 1)(x4 − 1)x p−5 and QM(x)/(1 + x)2, respectively.
Then, we can readily show similar equalities to (23).

We further discuss the case of p/4 ∈ Z. By Lemma 3.6, QM(x)/(1 + x2) lies
in Z[x], and has no double roots. We let g(x) and k(x) be 2(1 − x2)3x p−5 and
QM(x)/(1 + x2), respectively. By Lemma 3.7 with ζ = 1 and θ = 2, we have

0 = ∑
a∈k−1(0)

g(a)
k′(a) =

g(
√
−1)

k′(
√
−1)

+ g(−
√
−1)

k′(−
√
−1)

+ ∑
a∈Q−1

M (0)∩D/{±
√
−1}

2
τφa(M)

= 32
√
−1

20 − p2 + ∑
a∈Q−1

M (0)∩D/{±
√
−1}

2
τφa(M)

= 2
τφ√−1

(M) +
2

τφ−√−1
(M) + ∑

a∈Q−1
M (0)∩D/{±

√
−1}

2
τφa(M)

= ∑
a∈Q−1

M (0)∩D

2
τφa(M) = ∑

φ∈R irr
G

2
τφ(M) ,

which is the required vanishing identity. Here, the second, fourth, and sixth equalities
follow from (22), Theorem 3.3, and Proposition 3.1, respectively.

Next, we focus on the case of q ≥ 2 and M = S3
1/q(41). Similarly to (22), we can

show

1
τφa(M) =

2(a4q − 1)3(a4q − (a2 + a + 1)a2q−1 + 1)
d

dx (x4q+1QM(x))∣x=a
for any a ∈ Q−1

M (0) ∩ D.

(24)

By a Euclidean Algorithm, we can choose a polynomial h(x) ∈ Q[x] such that

2(x4q − 1)3(x4q − (x2 + x + 1)x2q−1 + 1) ≡ x4q+1h(x) (modulo QM(x)),

and degh(x) < 8q − 2. Recall from Lemma 3.6 that QM(x) is divisible by (1 + x)2;
thus so is h(x). In summary, we can define polynomials g(x) and k(x) to be
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h(x)/(1 + x)2 and QM(x)/(1 + x)2, respectively. Then, Lemma 3.7 with ζ = 2 and
θ = 1 readily leads to the same equalities as (23).

The proof of the cases of p ≤ −5 and q ≤ −2 can be shown in the same manner; so
we here do not carry out the detailed proof.

Finally, in the remaining cases of ∣p∣ ≤ 4 for M = S3
p/1(41), we can obtain the

following by a direct calculation:

∑
φ∈R irr

G (M)

1
τφ(M) =

⎧⎪⎪⎨⎪⎪⎩

2, if p ∈ {0,±1,±2,±3},
8, if p ∈ {±4}.

For example, we now discuss the detail in the case p = 4 for M = S3
p/1(41). The roots

of QM(x) = x2 + 2x4 + x6 = 0 are x = ±
√
−1. By Theorem 3.3, we have τφ√−1

(M) =
(5 − 2

√
5)/4 and τφ−√−1

(M) = (5 + 2
√

5)/4, leading to∑φ∈R irr
G (M) τφ(M)−1 = 8. Sim-

ilarly, the computations in the other cases run well.

4 Surgeries on the 52-knot

We discuss Conjecture 1.1 in the case of M = S3
1/q(K), when K is the 52-knot and

∣q∣ ≥ 3. Since the outline of the discussion in this section is almost the same as that
in Section 3, we now roughly describe the discussion.

As in (2), according to [8], the fundamental group π1(S3
1/q(52)) is known to be

presented as

π1(M) ≅ ⟨x1 , x2 , x3 , x4 ∣ x3x2
1 x−1

2 x3
−1x−2

1 , x3x−1
2 x3

−1x−1
1 x2 , x3[x2

1 , x−1
2 ]q , x4[x2

1 , x−1
2 ]−1⟩.

Recall the free groups F, P, and the homomorphism ψ in Section 2.3. Let W ∈ P ∗ F
be

ρ1 ⋅ x2
1 ρ2x−2

1 ⋅ (x2
1 x−1

2 x−1
1 )ρ−1

1 (x2
1 x−1

2 x−1
1 )−1 ⋅ (x2

1 x−1
2 x−2

1 x2)ρ−1
2 (x2

1 x−1
2 x−2

1 x2)−1 ⋅ ρ−1
4

⋅ x4ρ3x−1
4 ⋅ ρ4 ⋅ ρ−1

3 .

Then, each δ∗ can be written as in (4) according to [8, Section 3.1]. Let QM(x) be the
polynomial of the form

QM(x) ∶= 1 − x − 2x2q − x4q−1 − 2x4q + x6q−1 + x8q − 2x 10q−1 − x 10q − 2x 12q−1 − x 14q−2 + x 14q−1 .

The same statement in Proposition 3.2 holds for M = S3
1/q(52) and q ≠ 0, namely,

Rirr
G (M) is bijective to Q−1

M (0) ∩ D. For a ∈ Q−1
M (0) ∩ D, let us denote the represen-

tative SL2(C)-representation of Φ−1
M(a) by φa as in Theorem 3.3. Then, the adjoint

torsion τφa(M) is computed as

τφa(M) = −P(a)/(2a2(a2 − 1)4)

with the help of a computer program of Mathematica. Here, P(a) ∈ Z[a] is a polyno-
mial defined by setting
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P(a) = 1 − 2q + a(28q + 2) + a2(3 − 42q) + a3(36q − 8) + a4(2 − 20q)
+ a2q ((4q − 1)a−1 + 18q − 3 + (3 − 32q)a + (4 − 54q)a2 − 2a3 + (8q − 1)a4)
+ a4q ((1 − 4q)a−1 − 10q + (−8q − 3)a + (38q − 4)a2 + (5 − 34q)a3 + (1 − 10q)a4)
+ a6q ((10q − 1)a−1 + (18q + 2)a + (7 − 56q)a + (74q − 8)a2 + 10qa3)
+ a8q ((14q − 3)a−1 + 18q + (9 − 76q)a − 3a2 + (16q − 3)a3)
+ a10q ((24q − 2)a−1 + (1 − 10q)a + (2 − 52q)a + (−18q − 1)a2)
+ a12q ((4q − 1)a−2 + 8qa−1 + 5 − 62q + (56q − 6)a + (2 − 6q)a2) .

In addition, when G = SL2(C), M = S3
1/q(52), and n = −1, we can show that Con-

jecture 1.1 is true for any integers q ≠ 0. The proof can be shown in the same fashion as
Section 3.3. However, the concrete substitutions of g(x) and k(x) into Lemma 3.7 are
slightly complicated. For this reason, we do not go into detailed proof in this paper.

Incidentally, we give comments on the case M = S3
p/1(52)with p ∈ Z. With the help

of a computer program, we can similarly obtain the polynomial QM(x) and determine
the associated torsions τφ(M). However, the resulting computation of τφ(M) is more
intricate; we do not describe the details. More generally, to show Conjecture 1.1 with
M = S3

p/q(K) for other (twist) knots K, we might need other ideas. This is a subject
for future analysis.

5 The conjecture with n > 0

We end this paper by discussing Conjecture 1.1 with n > 0. Hereafter, we assume that
G = SL2(C), M is a closed 3-manifold, and Rirr

G (M) is of finite order as above.
First, it is almost obvious that the sum (1) is a real number: precisely, the following

proposition holds.

Proposition 5.1 Let n ∈ Z. The imaginary part of the sum∑φ∈R irr
G (M) τφ(M)n is zero.

Proof For a homomorphism φ ∶ π1(M) → G, we denote by φ̄ the conjugate repre-
sentation. Then, τφ̄(M) = τφ(M) by definition. Since we can select representatives
φ1 , . . . , φm , φ1 , . . . , φm , η1 , . . . , ηn of Rirr

G (M) such that [η i] = [η i] ∈ Rirr
G (M), the

imaginary part is zero as required. ∎

Furthermore, we will discuss the rationality of the sum (1), with G = SL2(C). For
a subfield F ⊂ C, let Rirr

SL2(F)(M) be the set of the conjugacy classes of all irreducible
representations π1(M) → SL2(F).

Proposition 5.2 Let F/Q be a Galois extension with embedding F ↪ C. Suppose that
the inclusion Rirr

SL2(F)(M) ⊂ Rirr
SL2(C)(M) is bijective as a finite set, and is closed under

the Galois action of Gal(F/Q). Then, for any n ∈ Z, the sum ∑φ∈R irr
G (M) τφ(M)n is a

rational number.

Proof By definition, τφ(M) ∈ F×, and the map τ●(M) ∶ Rirr
SL2(F)(M) → F× is

Gal(F/Q)-equivariant. Thus, the sum lies in the invariant part FGal(F/Q). Hence,
by FGal(F/Q) = Q, the sum (1) lies in Q as desired. ∎
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Corollary 5.3 Suppose that p is even, and is relatively prime to q. Let K be a twist knot,
and let M be S3

p/q(K). Then, for any n ∈ Z, the sum ∑φ∈R irr
G (M) τφ(M)n is a rational

number.

Proof As is shown in [9, Section 2], there is a Galois extension F/Q satisfying the
condition in Proposition 5.2. ∎

Meanwhile, the integrality of the sum (1) with M = S3
p/q(K) remains a future

problem. When K is either 41- or 52-knot, we know the resulting computation of
τφ(M) by Theorem 3.3, Theorem 3.4, and Section 4. Accordingly, it is not so hard
to check numerically the conjecture from the computation of τφ(M) for some small
p, q.

However, we give the proof of the conjecture multiplied by 22n+1 with
M = S3

2m/1(41). Precisely, the following proposition holds.

Proposition 5.4 As in Theorem 1.2, let M = S3
2m/1(41). If n > 1, then the 8-fold sum

2∑φ∈R irr
G (M)(8τφ(M))n is an integer.

Proof Since the proof with ∣2m∣ ≤ 4 is a direct computation, we may suppose
∣2m∣ > 4.

We will discuss integrality. We can easily verify some integral polynomials
h(x), k(x) ∈ Z[x] such that

QM(x)
(1 − x2)3 = h(x) + m2 − 2m + 3

1 − x2 + 4m
(1 − x2)2 +

4
(1 − x2)3 , QM(x)

(1 + x2)2

= k(x) + 2(1 + (−1)m−1)
1 + x2 .(25)

In general, as is known as Newton’s formula, the sum ∑b∈Q−1
M (0) bn is an integer.

Thus, the sums ∑α∈Q−1
M (0)/{±

√
−1} h(α)n and ∑α∈Q−1

M (0)/{±
√
−1} k(α)n are inte-

gers; Therefore, by (25), we can easily check that ∑α∈Q−1
M (0) 4n(1 − α2)−n and

∑α∈Q−1
M (0) 4n(1 + α2)−n are integers by induction on n.

Let us complete the proof. Recall from Theorem 3.3 the resulting computation of
the torsion τφa(M) for a ∈ Q−1

M (0) ∩ D; by the Euclidean Algorithm, we can show

2τφa(M) = �(a) +
6 + 2m − 2m2 −m3

1 − a2 + −6 + 6m + 2m2

(1 − a2)2 + −4m
(1 − a2)3 +

m(−1 + (−1)m)
2(1 + a2)

(26)

for some �(a) ∈ Z[a]. Notice from by Proposition 3.1 that

2 ∑
φ∈R irr

G (M)
(8τφ(M))n = −(8τφ√−1

(M))n − (8τφ√−1
(M))n + ∑

a∈Q−1
M (0)/{±

√
−1}
(8τφa(M))n .

The first and second terms are integers by an elementary discussion. The last one
is a sum of the above sums ∑α∈Q−1

M (0) 8n(1 ± α2)s , where s ≤ 3n. Hence, the sum
2∑φ∈R irr

G (M)(8τφ(M))n is an integer as required. ∎

https://doi.org/10.4153/S0008439524000262 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000262


Adjoint Reidemeister torsions of some 3-manifolds obtained by Dehn surgeries 901

Acknowledgments The author is deeply grateful to the referee for providing insight-
ful comments and constructive feedback. She sincerely expresses her gratitude to
Takefumi Nosaka for encouragement and useful advice. She thanks Teruaki Kitano,
Yuta Nozaki, and Yoshikazu Yamaguchi for giving valuable comments. She is also
greatly indebted to Seokbeom Yoon for carefully reading the paper and his insightful
discussions.

References

[1] F. Benini, D. Gang, and L. A. Pando Zayas, Rotating black hole entropy from M5-branes. J. High
Energy Phys. 2020(2020), no. 3, 57, 39 pp.

[2] S. X. Cui, Y. Qiu, and Z. Wang, From three dimensional manifolds to modular tensor categories.
Comm. Math. Phys. 397(2023), no. 3, 1191–1235.

[3] J. Dubois, V. Huynh, and Y. Yamaguchi, Non-abelian Reidemeister torsion for twist knots. J. Knot
Theory Ramifications 18(2009), no. 3, 303–341.

[4] D. Gang, N. Kim, and L. A. Pando Zayas, Precision microstate counting for the entropy of wrapped
M5-branes. J. High Energy Phys. 2020(2020), no. 3, 164, 42 pp.

[5] D. Gang, S. Kim, and S. Yoon, Adjoint Reidemeister torsions from wrapped M5-branes. Adv. Theor.
Math. Phys. 25(2021), no. 7, 1819–1845.

[6] T. Kitano, Reidemeister torsion of a 3-manifold obtained by an integral Dehn-surgery along the
figure-eight knot. Kodai Math. J. 39(2016), no. 2, 290–296.

[7] J. Milnor, Whitehead torsion. Bull. Amer. Math. Soc. 72(1966), 358–426.
[8] T. Nosaka, Cellular chain complexes of universal covers of some 3-manifolds. J. Math. Sci. Univ.

Tokyo 29(2022), no. 1, 89–113.
[9] T. Nosaka, Reciprocity of the Chern-Simons invariants of 3-manifolds. Lett. Math. Phys. 114(2024),

no. 1, Article no. 17, 9 pp.
[10] T. Ohtsuki and T. Takata, On the quantum (2) invariant at q = exp(4π

√
−1/N) and the twisted

Reidemeister torsion for some closed 3-manifolds. Comm. Math. Phys. 370(2019), no. 1, 151–204.
[11] J. Porti, Torsion de Reidemeister pour les variétés hyperboliques. Mem. Amer. Math. Soc. 128(1997),

no. 612, 139.
[12] J. Porti and S. Yoon, The adjoint Reidemeister torsion for the connected sum of knots. Quantum

Topol. 14(2023), no. 3, 407–428.
[13] W. P. Thurston, The geometry and topology of three-manifolds: With a preface by Steven P. Kerckhoff .

Vol. 27, American Mathematical Society, Providence, RI, 2022.
[14] A. T. Tran and Y. Yamaguchi, Adjoint Reidemeister torsions of once-punctured torus bundles.

Preprint, 2021. arXiv:2109.07058
[15] V. Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser

Verlag, Basel, 2001. Notes taken by Felix Schlenk.
[16] N. Wakijo, Twisted Reidemeister torsions via Heegaard splittings. Topology Appl. 299(2021),

Article no. 107731, 22 pp.
[17] A. Weil, Remarks on the cohomology of groups. Ann. of Math. (2) 80(1964), 149–157.
[18] E. Witten, On quantum gauge theories in two dimensions. Comm. Math. Phys. 141(1991), no. 1,

153–209.
[19] S. Yoon, Adjoint Reidemeister torsions of two-bridge knots. Proc. Amer. Math. Soc. 150(2022),

no. 10, 4543–4556.

Department of Mathematics, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku,
Tokyo, Japan
e-mail: wakijo.n.aa@m.titech.ac.jp

https://doi.org/10.4153/S0008439524000262 Published online by Cambridge University Press

https://arxiv.org/abs/2109.07058
mailto:wakijo.n.aa@m.titech.ac.jp
https://doi.org/10.4153/S0008439524000262

	1 Introduction
	2 Review: the adjoint Reidemeister torsion
	2.1 Algebraic torsion of a cochain complex
	2.2 Adjoint Reidemeister torsion of a 3-manifold
	2.3 Presentations of the cellular complexes of M

	3 Proof of Theorem 1.2
	3.1 Preliminary
	3.2 Two key lemmas
	3.3 Proof of Theorem 1.2 with n=-1

	4 Surgeries on the 52-knot
	5 The conjecture with n>0

