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The breakup and coalescence of particle aggregates confined at the interface of turbulent
liquid layers are investigated experimentally and theoretically. In particular, we consider
conductive fluid layers driven by Lorentz forces and laden with millimetre-scale floating
particles. These form aggregates held together by capillary attraction and disrupted by
the turbulent motion. The process is fully characterised by imaging at high spatio-
temporal resolution. The breakup frequency Ω is proportional to the mean strain rate and
follows a power-law scaling Ω ∼ D3/2, where D is the size of the aggregate, attributed
to the juxtaposition of particle-scale strain cells. The daughter aggregate size distribution
exhibits a robust U-shape, which implies erosion of small fragments as opposed to even
splitting. The coalescence kernel Γ between pairs of aggregates of size D1 and D2 scales
as Γ ∼ (D1 + D2)

2, which is consistent with gas-kinetic dynamics. These relations, which
apply to regimes dominated both by capillary-driven aggregation and by drag-driven
breakup, are implemented into the population balance equation for the evolution of the
aggregate number density. Comparison with the experiments shows that the framework
captures the observed distribution for aggregates smaller than the forcing length scale.

Key words: waves/free-surface flows, multiphase flow

1. Introduction
The breakup and coalescence of large particle aggregates/clusters due to the hydrodynamic
stresses in turbulence are highly relevant to a wide range of natural and industrial
applications, including the sedimentation of marine snow (Burd & Jackson 2009),
wastewater treatment (Samstag et al. 2016), the fragmentation of macro-plastics in the
ocean (Van Sebille et al. 2020), the growth of rain droplets in atmospheric clouds
(Shaw 2003) and the formation of planets by dust grains around young stars (Blum &
Wurm 2008). Both processes are crucial for the formation and temporal evolution of
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the aggregates/clusters (Liu et al. 2020; Ma et al. 2023) and thus for the physical
properties of the system. In this work, we focus on particle ‘aggregates’ which indicates
groups of particles that adhere to each other and merge into larger entities, rather than
‘clusters’ which is often used to denote groups of particles in close proximity (Monchaux,
Bourgoin & Cartellier 2012).

The breakup and coalescence of aggregates in the bulk of fluid flows have been studied
extensively. Attempts have been made to estimate the hydrodynamic stresses sufficient to
break aggregates of given properties (Kobayashi, Adachi & Ooi 1999; Harshe, Lattuada &
Soos 2011). This approach, however, does not lead to an explicit expression for the breakup
frequency, which is crucial to aggregate evolution and size distribution. On the other
hand, approaches that compare the aggregate strength and the fluctuating turbulent stresses
lead to forms of the breakup frequency varying from power law (Pandya & Spielman
1982) to exponential (Kusters 1991) and multifractal (Bäbler et al. 2008, 2012). These
analytical models, and similar ones focused on coalescence, have been compared with
experiments in which the size distributions of aggregates are evaluated as a function of
particle properties and shear rate. Such comparisons, however, are indirect in that the
breakup and coalescence events are not usually observed.

In order to model coalescence in turbulence, Saffman & Turner (1956) proposed a
framework for the collision frequency of non-inertial particles. This was later adapted
to particles with finite inertia (described by a Stokes number St that compares their
response time with the time scale of the flow) to account for their inhomogeneous spatial
distribution and increased relative velocity (Sundaram & Collins 1997; Wang, Wexler &
Zhou 2000; Pumir & Wilkinson 2016; Brandt & Coletti 2022; Bec, Gustavsson & Mehlig
2024). While most studies have considered particles as non-interacting point masses,
recent numerical simulations have enabled more direct insight into the coalescence and
breakup of aggregates by modelling their cohesive forces (De Bona et al. 2014; Bäbler
et al. 2015), including their two-way coupling with the fluid and with each other (Yao &
Capecelatro 2021), and even resolving the flow at the particle scale (Vowinckel et al. 2019).

A widely adopted framework to model aggregate evolution is the population balance
equation. This has found extensive application not only in particulate systems such as gas–
particle mixtures (Marchisio & Fox 2013) and cohesive sediment (Vowinckel et al. 2019),
but also in suspensions of bubbles and droplets (Martínez-Bazán et al. 1999; Liao & Lucas
2009; Martínez-Bazán et al. 2010; Aiyer et al. 2019; Qi et al. 2022; Ruiz-Rus et al. 2022;
Ruth et al. 2022; Ni 2024; Qi et al. 2024). Considering a spatially homogeneous system
in which advection is negligible, the rate of change in time t of the number density n of
aggregates of size D is set by the balance between breakup and coalescence:

∂n(D, t)

∂t
=

∫ ∞

D
m (Di ) β (D, Di ) Ω(Di )n(Di , t)dDi − Ω(D)n(D, t)

+ 1
2

∫ D

0
Γ

(
Di ,

(
D2 − D2

i

)1/2
)

n (Di , t) n
((

D2 − D2
i

)1/2
, t

)
dDi

− n(D, t)
∫ ∞

0
Γ (D, Di ) n (Di , t) dDi , (1.1)

where D = √
A = √

Ndp is the size of an aggregate of N particles of diameter dp, A
is the area of the aggregate, m is the number of daughter aggregates generated in a
breakup event, β is the daughter aggregate size distribution, Ω is the breakup frequency
and Γ is the coalescence kernel between two aggregates. The four terms on the right-hand
side of (1.1) then represent the source term due to breakup of larger aggregates, the loss
term due to breakup of aggregates of size D, the source term due to coalescence among
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smaller aggregates and the loss term due to coalescence of aggregates of size D with other
aggregates, respectively.

Here we focus on the formation and evolution of particle aggregates at the interface of
turbulent liquids. In such systems, particles behave and interact in profoundly different
ways with respect to those in the bulk (Garbin 2019; Magnaudet & Mercier 2020;
Protière 2023). We recently examined this class of flows by studying experimentally
the interactions of millimetric, monodisperse particles at the interface of thin turbulent
liquid layers (Shin & Coletti 2024, 2025; Shin, Stricker & Coletti 2025). This revealed
distinct regimes characterised by different propensity to form aggregates of various sizes
and mobility. In the present study, we leverage the population balance framework to
gain insight into the breakup and coalescence of aggregates in such a system. Results
for breakup frequency, daughter aggregate size distribution and coalescence kernel are
presented and modelled. These are further implemented in the population balance equation
to predict the evolution of the aggregate number density.

2. Experimental method
We analyse data presented in Shin & Coletti (2024) and Shin et al. (2025), obtained
with an apparatus described in detail in Shin, Coletti & Conlin (2023); therefore, the
set-up and the methodology are only briefly summarised here. A conductive layer of
10 % CuSO4 aqueous solution by mass (with density ρf = 1.08 g cm−3 and kinematic
viscosity ν = 1.0 × 10−6 m2 s−1) is contained in a 320 mm × 320 mm tray above an
8 × 8 checkerboard array of permanent magnets with alternating polarity. A direct current
driven between copper electrodes immersed in the fluid generates horizontal Lorentz
forces driving an approximately two-dimensional turbulent flow, with a forcing scale
Lf = 35 mm given by the spacing between the magnets. We employ single-layer and
double-layer fluid configurations: the former featuring a 7 mm deep conductive layer; and
the latter with a 2 mm thick mineral oil layer over an 8 mm deep conductive layer. The
main difference between the single-layer and double-layer configurations is represented by
the lower interfacial tension γ in the latter. Moreover, in the double-layer configuration,
the presence of the oil layer over the conductive fluid causes a different friction coefficient
along the bottom wall below the conductive fluid, as reported, for example, in Shin et al.
(2023). The present range of parameters, however, warrants that the turbulence properties,
such as velocity structure functions and energy spectra, behave similarly in all considered
cases, and closely follow the expected behaviour of two-dimensional turbulence, as shown
by Shin et al. (2023, 2025).

We use two sizes of monodispersed polyethylene spherical particles of diameter dp =
1.1 and 1.8 mm (comparable to the Kolmogorov scale η) and density ρp = 0.96 and
1 g cm−3, respectively, which float at the free surface in the single-layer configuration
and reside at the liquid–liquid interface in the double-layer one. The Stokes number St
and Bond number Bo (defined in table 1 along with other important non-dimensional
parameters) are much smaller than unity, indicating that both particle inertia and interfacial
distortion due to buoyancy are negligible. The particles are imaged by a CMOS camera
recording at 100–150 frames per second, ensuring inter-frame displacements of about 1
mm. Lagrangian particle tracking with subpixel accuracy resolves individual trajectories.
Separate experiments featuring only 75−90 µm tracers characterise the root-mean-square
fluid velocity urms that sets the turbulence Reynolds number Re. We note that the
aggregates formed by the spherical particles likely alter the two-dimensional turbulent
flow underneath. This two-way coupling, which cannot be directly evaluated in this set-up,
is expected to be subdominant at the present relatively dilute concentrations: aggregates
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Configuration Ca φ dp/η St Bo Re

Single layer 0.16 27 % 1.5 4.8 × 10−2 3.2 × 10−3 969
Double layer 1.2 27 % 2.4 6.4 × 10−2 2.9 × 10−2 473
Double layer 2.7 26 % 3.5 1.5 × 10−1 2.9 × 10−2 1047

Table 1. The main parameters for the considered cases in this work. Here, St ≡ τpurms/Lf with
τp = ρpd2

p/(18ρ f ν) being the particle response time, Bo ≡ ((ρ f − ρp)gd2
p)/(4γ ) and Re ≡ urms Lf /ν.

collide but are rarely locked into large structures that would significantly backreact on the
energy-containing eddies. Thus, in this work, we neglect to a first approximation the two-
way coupling and use flow statistics based on single-phase experiments in our aggregate
dynamics model. This assumption was also used in Shin & Coletti (2024) who could
successfully build a phase diagram describing the aggregate dynamics.

In this work, for both single-layer and double-layer configurations, the particle dynamics
is dominated by the balance among three mechanisms, i.e. capillary attraction, viscous
drag and lubrication, whose magnitudes depend on the area fraction φ and the capillary
number Ca (Shin & Coletti 2024; Shin et al. 2025). Here, φ is defined as the ratio between
the footprint of all particles in the domain and the area of the same domain. Ratio Ca is
the ratio of viscous drag pulling particles apart to the capillary attraction acting at contact,
Ca = 6

√
2πd6

purms/(ΘLf ), where Θ = 12γ h2
qpd3

p/(ρf ν) and h pq is the amplitude of
the quadrupole mode of interfacial distortion (as measured in separate experiments by
Shin & Coletti (2024)). The dynamics was found to be consistent for both single-layer
and double-layer configurations. Here, we analyse three cases of nearly identical area
fraction φ and varying capillary number Ca. The three cases span the transition from a
regime of capillary-driven clustering (Ca < 1) to one of drag-driven breakup (Ca > 1)
(Shin & Coletti 2024; Shin et al. 2025). In the former, capillary attractions dominate
over viscous drag and hit-and-stick collisions form aggregates of complex shape and wide
size distribution. In the latter, the drag exerted by strong turbulent fluctuations overcomes
capillary attraction, causing particles to remain isolated or form small aggregates.

The particle aggregates are identified in this study as the particles with minimum
centre-to-centre distance smaller than a threshold. This threshold is determined by first
plotting the distance from the nearest neighbour sorted in descending order and then
identifying the elbow in such a distribution (see details in Shin et al. (2025)). This
method leads to thresholds of 1.1dp and 1.4dp for small and large particles, respectively.
The thresholds are approximately one order of magnitude larger than the pixel size
resolved by the camera. The aggregates are followed over time along with their member
particles. The addition/detachment of any member of an aggregate corresponds to a
breakup/coalescence event. Aggregates that touch the boundary of the field of view are
removed from the statistics as their sizes cannot be reliably determined. Figure 1 shows an
example of detected aggregates overlapped with the raw image, with one breakup and two
coalescence events of particle aggregates.

3. Results

3.1. Breakup frequency
In all cases included in this study, more than 85 % of the breakup events produce only
two daughter aggregates (m = 2). Thus, only binary breakups are considered in this work.
Figure 2(a) shows the normalised breakup frequency ΩLf /urms as a function of the
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t = 0 t = 0.07 s t = 0.2 s

Figure 1. Detected particle aggregates on the liquid interface overlapped with the raw image for Ca = 0.16.
The circles represent the detected particle locations and different colours represent different aggregates. From
t = 0 to 0.07 s, the red aggregate breaks into purple and orange aggregates. From 0.07 s to 0.2 s, the orange
aggregate coalesces with the small pink one above it and merges into the light blue aggregate. Simultaneously,
the blue and green aggregates merge into the yellow aggregate.

100

100 101

Ca = 0.16

Ca = 1.2

Ca = 2.7

D/dp

Ω
L f

 /
u r

m
s

∼D3/2

ds

D101

102

(a) (b)

Figure 2. (a) The breakup frequency Ω as a function of the aggregate size D for different Ca. The dashed line
denotes 3/2 power-law scaling. (b) A schematic to illustrate the breakup of an aggregate of size D due to the
strain cell. The black boxes mark the potential position of strain cells of size ds that could break the aggregate.
This picture is similar to the definition of the box-counting dimension of the aggregate.

aggregate size D. The breakup frequency increases as the aggregate size grows, consistent
with a power-law scaling of exponent 3/2. Conditioning the data for different ranges
of daughter aggregate sizes (not shown) indicates that the power-law scaling remains
consistent. In addition, as Ca increases, so does the breakup frequency.

To interpret the data, a phenomenological model for the breakup frequency is proposed.
We assume the rupture of an aggregate is due to a local strain event with a length scale
ds ∼O(dp), acting to separate two adjacent particles. In the following discussion this is
referred to as a strain cell, which will break apart adjacent particles when the associated
strain rate is sufficiently strong to overcome the capillary attraction. Because such a strain
cell might occur randomly within the aggregate, the breakup frequency is expected to
be proportional to the number of strain cells needed to fill the aggregate of size D, as
illustrated in figure 2(b). This picture is analogous to the definition of the box-counting
dimension of an object, i.e. counting the number of boxes required to cover it. As the
aggregates in this system have a well-defined box-counting dimension α (Shin et al. 2025),
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the number of strain cells to cover the aggregate area can be written as Ns(D) = Cd−α
s ,

where C is a constant depending on D.
Now consider another aggregate with a different size cD, where c is a scale factor.

Similarly, the breakup frequency of this aggregate is still proportional to the number of
strain cells (denoted as Ns(cD)) of size ds needed to cover it. In order to calculate Ns(cD),
we notice that Ns(cD) is equivalent to the number of boxes of size ds/c required to
cover a hypothetical, scaled aggregate of the same geometry but with a size D. Assuming
the fractal dimension remains scale-independent, this leads to Ns(cD) = C(ds/c)−α =
Ccαd−α

s . We note that Ns(cD) = cα Ns(D). This suggests that Ns(D) follows a power-
law scaling Ns(D) ∼ Dα , leading to the breakup frequency Ω ∼ Dα . As Shin et al. (2025)
observed α ≈ 1.5 for aggregates smaller than Lf (which account for the vast majority in
the considered range of concentration), the model is consistent with the data in figure 2(a).

A few considerations are in order. First, we have considered strain cells of similar size
ds ∼O(dp) ∼O(η). Significantly larger strain cells might also cause breakup. However,
since in two-dimensional turbulence the strain rate is O(urms/Lf ) at all scales (Davidson
2015), these are comparable in strength and fewer in number than the smaller ones.
Therefore, particle-scale strain cells are more likely to dominate breakup. Second, not all
strain cells are sufficiently strong to break inter-particle capillary bonds, especially at low
Ca: the probability of a local strain cell breaking an aggregate is a monotonically growing
function p(Ca) approaching unity for large Ca. This phenomenology implies that the
breakup frequency is also proportional to the frequency of occurrence of the strain cells,
which is expected to scale with the strain rate urms/Lf . Overall:

Ω ∼ urms/Lf p(Ca)D3/2d−3/2
p , (3.1)

which is consistent with the data in figure 2(a). Here and in the following, the aggregate
size is normalised by dp. As the considered cases have comparable Lf /dp, this cannot be
meaningfully contrasted with the alternative normalisation by the forcing scale.

3.2. Daughter aggregate size distribution
We now consider β, i.e. the probability distribution function of the normalised area of
the daughter aggregate, Ad/Am , for various Ca and mother aggregate sizes. Here A =
Nd p

2 = D2 is the area of the aggregate, with subscripts indicating daughter and mother
aggregates, respectively. As discussed, only binary breakups are considered.

Figure 3 shows the daughter aggregate size distribution, with mother aggregates with
Am/d2

p < 10 excluded from the statistics to ensure a smooth distribution. The results are
consistent with a universal U-shape independent of Ca. This means that, for all cases,
aggregate breakup happens by erosion of small fragments rather than by splitting in parts
of comparable size. By dividing the data into subgroups with Am/d2

p < 50 and Am/d2
p �

50, the daughter size distribution does not appear affected by the mother size (for the
example case Ca = 1.2, the other cases behaving analogously). These findings are similar
to those reported for bubble breakup (Hesketh, Etchells & Russell 1991; Qi et al. 2020)
in which a U-shape daughter size distribution and independence of mother size are also
observed.

We rationalise this observation by considering a simple scenario in which a mother
aggregate of area Am breaks into two daughter aggregates, the smaller having area Ad �
Am . When a strain cell initialises the fracture, the fracture grows in such a way that the
area of the smaller daughter aggregate Ad is minimised. This occurs because the smaller
daughter aggregate has smaller inertia (proportional to its area) and therefore is easier
to push away from the mother aggregate, leading to a higher probability. One can thus
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4

Ca = 0.16

Ca = 1.2

Ca = 2.7

Ca = 1.2, Am/d2
p < 50

Ca = 1.2, Am/d2
p � 50

Equation (3.2)

3

2

1

0 0.2 0.4

Ad/Am

β

0.6 0.8 1.0

Figure 3. The daughter aggregate size distribution for various Ca and mother aggregate sizes.

hypothesise β ∼ (Ad/Am)−1 for Ad � Am . As β is symmetric around Ad/Am = 0.5 due
to mass conservation, we expect

β ∼ (Ad/Am)−1 + (1 − Ad/Am)−1 . (3.2)

The data in figure 3 agree well with this model (plotted with a numerical pre-factor to
subtend a unit area).

We note that the U-shape distribution can also be interpreted using simple energy-
based arguments. Considering the breakup process is indeed separating the capillary
bonds between particles, the energy required for a breakup event is proportional to the
number of bonds to be separated. This number of bonds further scales with the size of the
smaller fragment. Therefore, the probability for breakup events producing small fragments
is higher as the corresponding energy requirement is lower (i.e. fewer bonds need to be
separated).

3.3. Coalescence kernel
Similarly to breakup, more than 90 % of coalescence events involve only two aggregates
merging into one; thus, we consider only binary coalescence. We also note that for particle
aggregates in this work, the coalescence efficiency is unity, implying all collisions lead to
coalescence. Therefore, the coalescence kernel Γ is equivalent to the collision kernel.

Figure 4(a) shows the contour of the normalised coalescence kernel Γ/(Lf urms) for
Ca = 1.2. The sizes of the two coalescing aggregates are denoted as D1 and D2. Results
for other Ca are qualitatively similar. The coalescence frequency increases as the sizes
of the coalescing aggregates grow. Moreover, the shape of the contours suggests that Γ

might simply depend on the sum of the sizes of two coalescing aggregates. Therefore,
in figure 4(b) we plot Γ/(Lf urms) versus D1 + D2. The data collapse for all Ca cases.
Moreover, beyond some experimental scatter, the trends are consistent with a power-law
scaling Γ ∼ (D1 + D2)

2.
This trend may be modelled following the classic approach of gas-kinetic theory,

extensively applied also in bubble–eddy collision and bubble coalescence problems
(Luo & Svendsen 1996; Liao & Lucas 2010). In this picture (schematically depicted in
figure 4c), the coalescence kernel Γ is estimated by the product of the collisional cross-
section Lc and the approaching velocity between both aggregates δu, i.e. Γ ∼ Lcδu.
Here, the maximum cross-section can be approximated by the sum of aggregate sizes
Lc ≈ D1 + D2. The approaching velocity is estimated via the second-order longitudinal
structure function of the aggregate velocity DL L , obtained from tracking the centroids.
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0.5

1.0

1.5

2.0

2.5

D1/dp

Γ/(Lf urms)

Γ
/
(L

f u
rm

s)

Lc

D
2
/
d p

Ca = 0.16

δu

Ca = 1.2

Ca = 2.7

∼(D1 + D2)2

(D1 + D2)/dp

D1

D2

(a) (b) (c)

Figure 4. (a) The contour of the coalescence frequency Γ for various coalescing aggregate sizes. (b) The
coalescence frequency as a function of the sum of two coalescing aggregate sizes D1 + D2 for various Ca.
(c) A schematic to illustrate the coalescence process of two aggregates using the frame of reference of the
lower aggregate for simplicity. The blue arrow illustrates the approaching velocity vector.

This is shown in the Appendix for the representative case Ca = 2.7. For separations
r < Lf , a scaling DL L ∼ r2 is observed, analogous to the power-law scaling of the fluid
velocity in the same range (Boffetta & Ecke 2012; Shin et al. 2023). This is consistent
with the finding of Shin & Coletti (2024) that the fluctuating kinetic energy of particles
in this range of the parameter space is only marginally lower compared with the fluid.
Therefore, although the aggregate inertia may not be negligible, we assume for the relative
velocity a scaling δu ∼ r . As the centroid-to-centroid separation of coalescing aggregates
is r ∼ D1 + D2, we expect δu ∼ r ∼ D1 + D2. Substituting Lc and δu into Γ leads to
Γ ∼ (D1 + D2)

2.
Moreover, we consider the order of magnitude of Γ . The aggregates considered in this

work have sizes of the order of the forcing length scale Lf (or somewhat smaller). This
leads to the cross-section Lc being of the order of Lf as well. The approaching velocity δu,
although depending on the separation distance, is of the order of urms (Shin & Coletti
2024). This finally yields Γ ∼O(Lf urms). Combining this equation with the aggregate
size scaling as derived above, a model for the coalescence kernel is obtained:

Γ ∼ Lf urms (D1 + D2)
2 d−2

p . (3.3)

Independently from the normalisation of the aggregate size by dp (which, as discussed
above, is not demonstrably more appropriate than that by Lf ), (3.3) is in remarkable
agreement with the experimental data in figure 4(b).

We emphasise that this model can only hold for aggregates smaller than Lf . For D > Lf ,
(3.3) implies that the coalescence frequency increases indefinitely as the aggregate size
grows. This scenario is not realistic as the formation of very large aggregates is likely
to be interrupted by the forcing scale and/or by the physical boundaries of the system.
Modelling the coalescence of very large aggregates thus requires further considerations
outside the scope of the present study.

3.4. Number density of aggregates
Given the model forms of the breakup and coalescence terms, the evolution of the
number density can be obtained numerically from the population balance equation. This
is demonstrated for the example case Ca = 1.2, the data of which we use to determine the
numerical pre-factors in (3.1), (3.2) and (3.3). We insert those in (1.1) and integrate in time
via a first-order explicit Euler method, starting from an initially uniform number density
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Data
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Figure 5. (a) The normalised aggregate number density obtained from the experiment (black symbols) and its
evolution by solving the population balance equation (solid lines). (b) The temporal evolution of the normalised
total number of aggregates per unit area.

n(D/dp)d2
p = 10−3. The aggregate size is discretised in bins of width 2dp and the time

step is 3.86 × 10−5Lf /urms, though the outcome is not dependent on the choice of such
parameters. The largest aggregate size allowed in the simulation is 50dp which is about
half of the size of the field of view.

Figure 5(a) shows the steady-state number density of the aggregates measured for
Ca = 1.2 as well as the evolution of the modelled number density. The number density
n(D, t) increases for small aggregates and decreases rapidly for large ones. The total
number of particles Np reduces over time as illustrated in figure 5(b). Here, Np =
d2

p

∫
n(D/dp)(D/dp)

2d(D/dp) is obtained by multiplying the number of aggregates
n(D/dp)d(D/dp) by the number of particles in each aggregate (D/dp)

2 and integrating
the product over the considered size range. This continuous loss of particles is due to
the coalescence kernel model (3.3) which increases indefinitely for large aggregates as
previously discussed, generating aggregates of sizes D > 50dp which are discarded in the
simulation. To eliminate this issue, coalescence frequency models appropriate for D > Lf
are needed, though the present experiment cannot inform such models due to the scarce
number of large aggregates in the data.

Although a steady state is not achieved, the rate of particle loss decreases rapidly. This
is shown up to turms/Lf = 0.035, for which dNp/dt = −9.1urms/Lf . This is much smaller
than the characteristic particle loss rate −41urms/Lf (the initial number of particles
divided by the time scale urms/Lf ). Indeed, by that time, the number density of aggregates
of size D � 5dp (accounting for 98 % of aggregates observed) evolves relatively slowly,
and the modelled number density is in close agreement with the experiments. Considering
the inherent limitations of the present models, the proposed scaling relations for the terms
of the population balance equation capture the important dynamics of the system.

4. Conclusion
We have examined the breakup and coalescence of particle aggregates floating at the
interface of turbulent liquid layers, exploiting the framework of the population balance
equation. While the latter has been at the basis of many studies in dispersed turbulent
flows, typically experimental observation cannot directly validate specific parametrisations
of its various terms. The two-dimensional nature of the present system allows us to detect
virtually all coalescence and breakup events of aggregates, leading to direct measurements
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Figure 6. The normalised second-order longitudinal structure function DL L for the velocity of the aggregates
at Ca = 2.7.

of the main elements: the breakup frequency, the daughter aggregate size distribution and
the coalescence kernel.

In particular, the frequency of breakup is found to scale with the aggregate size as
Ω ∼ D3/2. This follows from assuming that aggregates are broken by particle-sized
strain cells. The daughter aggregates follow a universal U-shaped distribution, which
is recovered by assuming that the probability of detachment of a fragment is inversely
proportional to its inertia. The coalescence kernel is found to depend on the sum of
two aggregate sizes, Γ ∼ (D1 + D2)

2, which is successfully predicted by adopting a gas-
kinetic model. These scaling relations apply to regimes dominated both by capillary-driven
aggregation (Ca < 1) and by drag-driven breakup (Ca > 1). They allow us to close the
population balance equation, which then is numerically integrated in time to simulate the
evolution of the size-specific number density n(D). The agreement with the experiments
confirms that the current models capture the important dynamics of the process.

We note that the framework accounts for the behaviour of aggregates smaller than the
forcing length scale. Future work that focuses on larger ones is needed to obtain a complete
picture of the dynamics of floating particle aggregates. Moreover, the current study could
also be extended to aggregates at the free surface above three-dimensional turbulence,
in which the divergence of the velocity field plays an important role in the transport of
floating particles (Cressman et al. 2004; Li et al. 2024; Qi et al. 2025a,b).
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Appendix
Figure 6 shows the normalised second-order longitudinal structure function DL L for
the velocity of the aggregates at Ca = 2.7, where r is the separation distance between
aggregates. Other Ca cases show qualitatively similar results. In the enstrophy-cascade
range (r < Lf ), DL L shows a power-law scaling with an exponent close to 2.
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