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The interaction between deformable surfaces and oscillatory driving is known to produce
complex secondary time-averaged flows due to inertial and elastic nonlinearities. Here, we
revisit the problem of oscillatory flow in a cylindrical tube with a deformable wall, and
analyse it under a long-wave theory for small deformations, but for arbitrary Womersley
numbers. We find that the oscillatory pressure does not vary linearly along the length
of a deformable channel, but instead decays exponentially with spatial oscillations. We
show that this decay occurs over an elasto-visco-inertial length scale that depends on the
material properties of the fluid and the elastic walls, the geometry of the system, and
the frequency of the oscillatory flow, but is independent of the amplitude of deformation.
Inertial and geometric nonlinearities associated with the elastic deformation of the channel
drive a time-averaged secondary flow. We quantify the flow using numerical solutions
of the perturbation theory, and gain insight by developing analytic approximations. The
theory identifies a complex non-monotonic dependence of the time-averaged flux on the
elastic compliance and inertia, including a reversal of the flow. Finally, we show that our
analytic theory is in excellent quantitative agreement with the three-dimensional direct
numerical simulations of Pande et al. (Phys. Rev. Fluids, vol. 8, no. 12, 2023, 124102).

Key words: lubrication theory, elastic waves, flow-vessel interactions

1. Introduction

The study of fluid flow in deformable geometries is important across various scientific
domains, including physiology, biomedical engineering and lab-on-a-chip technologies
(Gervais et al. 2006; Hardy et al. 2009; Das & Chakraborty 2010; Yeh et al. 2017). In
laboratory settings, it is typical to fabricate fluidic systems with elastomeric materials
(Ozsun, Yakhot & Ekinci 2013; Ushay, Jambon-Puillet & Brun 2023). The interplay
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between fluid flow and the mechanical response of soft material excites nonlinear flow
phenomena that have received renewed interest in recent years (Holmes et al. 2013;
Elbaz & Gat 2014, 2016; Christov et al. 2018; Christov 2022; Bureau, Coupier &
Salez 2023; Rallabandi 2024). Many of these soft systems involve pulsatile, or more
generally time-dependent flows (Kiran Raj, DasGupta & Chakraborty 2019; Dincau,
Dressaire & Sauret 2020), where a common feature is the rectification of time-periodic
driving into steady ‘streaming’ flows with non-zero time-average. This occurs due
to a combination of inertial and geometric nonlinearities (Lafzi, Raffiee & Dabiri
2020; Bhosale, Parthasarathy & Gazzola 2022; Cui, Bhosale & Gazzola 2024). Inertial
(advective) nonlinearities drive streaming even in rigid systems (Gaver & Grotberg 1986;
Riley 2001; Zhang & Rallabandi 2023). Conversely, geometric nonlinearities due to
oscillatory elastic deformation can elicit a secondary steady response even without inertia
(Zhang et al. 2020; Kargar-Estahbanati & Rallabandi 2021; Bureau et al. 2023).

A configuration of particular interest involves time-periodic flows in compliant channels
and conduits. Such flows occur naturally in physiological settings, e.g. in the flow of
blood through both large arteries and small capillaries (Pedley 1980; Kiran Raj et al.
2019; Bäumler et al. 2020; Mirramezani & Shadden 2022), and the flow of air in the
lungs. Oscillations may also occur spontaneously due to instabilities produced by large
elastic deformations (Heil & Jensen 2003; Grotberg & Jensen 2004; Rust, Balmforth
& Mandre 2008; Herrada et al. 2022). In engineered systems, interactions between
oscillating flows and soft structures have found applications for flow control (Leslie
et al. 2009), characterization of the dynamic properties of microchannel networks (Vedel,
Olesen & Bruus 2010), and in the design and control of valveless pumps with flexible
membranes (Biviano et al. 2022; Amselem, Clanet & Benzaquen 2023). Furthermore,
driving oscillations at high frequencies allows inertial effects to be exploited in compliant
systems to design switches (Collino et al. 2013) and pumps (Zhang et al. 2021).

The earliest quantitative model of oscillatory flows in compliant tubes was due to
Womersley (1955) in the context of blood circulation. Womersley’s work focused on
the propagation of pressure pulses in long tubes and predicted a secondary flow due
to deformation, but neglected the advective inertia of the fluid. Later work by Dragon
& Grotberg (1991) accounted for both inertial and geometric sources of streaming in
a semi-analytic treatment, again focusing on wave-like pulse solutions in long tubes.
Recently, Pande, Wang & Christov (2023b) developed a reduced-order model of pulsatile
flow in compliant conduits of finite length. Accounting for local fluid acceleration and
elastic deformations, they obtained a nonlinear partial differential equation for the pressure
distribution. The model yielded a secondary mean flow, which was found to be in
agreement with three-dimensional (3-D) direct numerical simulations (DNS) in stiff tubes,
but underpredicted the pressure in more compliant tubes, where elastic deformations were
greater.

Here, we revisit this problem, but take a different approach and develop a systematic
perturbation theory for small elastic deformations in the vein of Dragon & Grotberg
(1991). The analysis reveals an amplitude-independent elasto-viscous parameter, which
plays an important role, along with the Womersley number (a measure of fluid inertia),
in controlling the structure of the flow. By developing an approximate analytic solution
of the theory, we obtain insight into the geometric and inertial mechanisms that
drive time-averaged streaming flow over a wide range of elasto-viscous parameters and
Womersley numbers. We find that both effects are equally important in understanding the
time-averaged streaming flow, and their combination fully captures the aforementioned
DNS results.
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Elasto-inertial streaming in a compliant tube
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Figure 1. Schematic of set-up. A cylindrical tube with elastic walls is filled with a Newtonian fluid. Pressure
oscillations applied at the inlet simultaneously drive fluid flow and deform the walls of the tube. The
combination of boundary deformation and fluid inertia leads to a secondary flow with non-zero time average.

The paper is organized as follows. Section 2 sets up the physical and mathematical
problem, and identifies the important dimensionless groups that characterize the
competition between viscous forces, fluid inertia and elastic deformation. In § 3, we
develop a perturbation theory for small, but finite, deformations of the walls of the tube,
and derive solutions for both the oscillatory and steady components of the flow. Analytic
insight into the steady streaming is developed in § 4, which we compare with the results of
Pande et al. (2023b) in § 5. Finally, § 6 concludes the paper by summarizing key findings
and proposing future research directions.

2. Model set-up

We consider the flow of Newtonian fluid with dynamic viscosity μ and density ρ in a
cylindrical tube of length L and equilibrium radius R0 (figure 1). The walls of the tube have
thickness b and are made of an elastic material with Young’s modulus E and Poisson’s
ratio ν. An oscillatory pressure with amplitude Pi and angular frequency ω is applied at
the inlet of the channel (Z = 0) relative to the outlet of the channel (Z = L), which is
maintained at zero pressure. This sets up a fluid flow V (X , T) and an associated pressure
field P(X , T) in the tube, where T represents time. The stresses of the flow simultaneously
deform the walls of the tube. We denote the instantaneous radial displacement of the tube
by U(Z, T), so that the instantaneous radius of the tube is Rt(Z, T) = R0 + U(Z, T).

Of particular interest is the time-averaged flow in the tube, which occurs due to both the
elastic deformation of the tube, and the advective inertia of the flow. As we will see, both
effects are equally important in this system, and both are activated by elasticity.

2.1. Fluid flow
We assume that the fluid flow is incompressible, axisymmetric and devoid of swirl.
The flow velocity is denoted by V (R, Z, T) = {VR(R, Z, T), VZ(R, Z, T)} in cylindrical
coordinates, and satisfies the incompressible Navier–Stokes equations

ρ

(
∂V
∂T

+ V · ∇V
)

= −∇P + μ ∇2V , (2.1a)

∇ · V = 0. (2.1b)
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It is useful to cast the continuity equation in terms of the flux Q(Z, T) = 2π
∫ Rt

0 VZR dR
by writing ∂ZQ + ∂T(πR2

t ) = 0, which leads to

∂Q
∂Z

+ 2π(R0 + U)
∂U
∂T

= 0. (2.2)

The flow is instantaneously no-slip at the walls of the deforming tube (V = ∂TRteR at
R = Rt) and satisfies symmetry conditions at the centreline (∂RVZ = 0, VR = 0 at R = 0).
The pressure oscillates as Pi cos(ωT) at the inlet (Z = 0) and is zero at the outlet (Z = L).

2.2. Elastic response of the tube
To close the problem, it is necessary to relate the deformation of the tube to the stresses in
the flow. For thin-walled tubes (b � R0), resistance to deformation occurs primarily due
to elastic stresses generated by circumferential stretching of the tube (Landau & Lifshitz
1986; Audoly & Pomeau 2018). Focusing on slender channels (R0 � L), and anticipating
the analysis of the subsequent sections, we approximate the normal stress exerted by the
fluid on the tube by the fluid pressure P(Z, T). For small radial deformations U � R0 and
negligible axial deformations, these arguments lead to the pressure-displacement relation

U(Z, T) = R2
0(1 − ν2)

Eb
P(Z, T). (2.3)

This approximation has been shown (Anand & Christov 2020) to quantitatively capture
3-D DNS for the practically relevant case of nearly incompressible elastic solids (ν ≈ 1/2).
More sophisticated membrane theories accounting for tension generated by viscous shear
(Elbaz & Gat 2014, 2016; Rallabandi et al. 2021) have yielded results similar to (2.3) to
leading order in the thickness of the tube walls. Models of the kind in (2.3), that relate
local deformation to the local pressure (so-called Winkler foundation models), provide
useful insight into flow–structure interactions in a wide range of systems (Dillard et al.
2018). The bending rigidity and inertia of the thin-walled tubes are small and have been
neglected in this analysis; their magnitudes are estimated in Appendix A.

2.3. Non-dimensionalization
We rescale the equations by introducing dimensionless spatial coordinates (lowercase)
z = Z/L and r = R/R0, and a dimensionless time t = ωT . A balance between pressure
gradients and viscous stresses sets a characteristic axial velocity scale PiR2

0/(μL). By
continuity, the radial velocity scale is PiR3

0/(μL2). We define a dimensionless pressure
p, and dimensionless velocity components vz and vr, according to

p = P
Pi

, vz = Vz

PiR2
0/(μL)

and vr = Vr

PiR3
0/(μL2)

. (2.4a–c)

The problem is governed by four independent dimensionless parameters,

ε = R0

L
, W = ρR2

0ω

μ
, Λ = PiR0(1 − ν2)

Eb
and σ = μL2ω(1 − ν2)

EbR0
. (2.5a–d)

Here, ε is the aspect ratio of the tube, and is small by construction. The Womersley number
W is the ratio of a viscous diffusion time scale Td = ρR2

0/μ to the driving time scale ω−1.
The elasticity of the tube walls enters in two distinct ways. The parameter Λ characterizes
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Elasto-inertial streaming in a compliant tube

the amplitude of radial deformation relative to the radius of the tube, and scales with the
inlet pressure amplitude Pi. The linear elastic framework (2.3) implicitly assumes that Λ

is small, and we use this condition explicitly in the analysis of later sections. In addition
to the deformation amplitude, the flow–structure interaction introduces a time scale
TEV = μL2(1 − ν2)/(EbR0) over which elastic deformations relax against the viscous
resistance of the fluid (see e.g. Elbaz & Gat 2014). The ratio of this relaxation time to the
driving time defines the elasto-viscous parameter σ , which is analogous to the Deborah
number in rheology. Similar quantities arise in other oscillatory fluid–elastic systems
(Bickel 2007; Leroy & Charlaix 2011; Daddi-Moussa-Ider, Guckenberger & Gekle 2016;
Zhang et al. 2022; Rallabandi 2024).

For typical parameters in arterial models and soft microfluidic systems, the aspect ratio
ε ranges from 0.001 to 0.1. The Womersley numberW ranges from 1 to 100 at frequencies
up to a few hundred Hz (Grotberg & Jensen 2004; Vishwanathan & Juarez 2020; Zhang
& Rallabandi 2023), while the small deformation amplitude Λ falls within the range 0.01
to 0.1 (Kiran Raj et al. 2019; Pande et al. 2023b). The elasto-viscous parameter σ varies
from 0.01 to 100, depending on the geometry of the tube (σ is greater for longer tubes)
and material properties; see Pande et al. (2023b). As we show in the following sections,
the structure of the flow is governed primarily byW and σ , while Λ sets the magnitude
of the nonlinearity. We observe thatW and σ are similar in that they both represent the
ratio of relaxation times to the driving time scale ω−1. We will see later that W and σ

also control the spatial structure of the flow in similar ways.

3. Small-deformation theory for slender channels

We analyse the problem under a ‘long-wave’ theory for slender channels (ε � 1). The
rescaled form of (2.1) in this limit is (Dragon & Grotberg 1991; Zhang & Rallabandi 2023)

W
{

∂vz

∂t
+ Λ

σ
(v · ∇)vz

}
= −∂p

∂z
+ 1

r
∂

∂r

(
r

∂vz

∂r

)
+ O(ε2), (3.1a)

∂p
∂r

= 0 + O(ε2), (3.1b)

∇ · v = 1
r

∂ (rvr)

∂r
+ ∂vz

∂z
= 0, (3.1c)

where v · ∇ = vr ∂r + vz ∂z. Hereafter, we will not explicitly keep track of orders of ε.
In dimensionless variables, the wall of the tube is instantaneously at r = 1 + Λ p(z, t).
Rescaling (2.2) yields

∂q
∂z

+ 2πσ
∂p
∂t

(1 + Λp) = 0, where q(z, t) = 2π

∫ 1+Λp

0
vzr dr (3.2)

is the instantaneous flux at any section of the channel, made dimensionless by PiR4
0/(μL).

The axial flow satisfies no-slip at the walls of the tube,

vz = 0 at r = 1 + Λp, (3.3)

and the pressure field p(z, t) satisfies the boundary conditions

p|z=0 = cos t, p|z=1 = 0. (3.4)

It is interesting to note that the elasto-viscous parameter σ appears both in the continuity
equation and in the advective term.
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We develop a perturbation theory for small, but non-zero, deformation amplitude
Λ � 1, and treat W and σ as O(1) parameters. We will see later that the theory also
requires the mild restriction σ � ε−2 andW � Λ−2, which are typically satisfied for the
parameter ranges of interest. We seek a solution of the form

p(z, t) = p1(z, t) + Λ p2(z, t) + O(Λ2), (3.5a)

v(r, z, t) = v1(r, z, t) + Λ v2(r, z, t) + O(Λ2), (3.5b)

where we have used (3.1b) to eliminate the dependence of pressure on the radial
coordinate. The subscript 1 identifies the primary oscillatory flow, which scales linearly
with the pressure amplitude Pi but is independent of the amplitude of elastic deformation.
Secondary flow quantities (subscript 2) are quadratic in the pressure amplitude and
are associated with the finite amplitude of elastic deformation. Substituting the series
expansion (3.5) into (3.1) and separating orders of Λ yields the governing equations for
the primary and secondary flow, which we discuss in the following subsections.

To expand the flux in powers of Λ, we first write
∫ 1+Λp

0 f (r) dr = ∫ 1
0 f (r) dr +∫ 1+Λp

1 f (r) dr, for an arbitrary function f (r). For small Λp, the second integral can be
approximated using the ‘rectangle rule’ as Λp f (1), up to errors of O(Λ2). Applying this
approximation to the integral in (3.2), and substituting (3.5), we obtain

q(z, t) = q1(z, t) + Λ q2(z, t) + O(Λ2), where (3.6a)

q1 = 2π

∫ 1

0
v1zr dr and q2 = 2π

[∫ 1

0
v2zr dr + {(rv1z)p1}|r=1

]
. (3.6b)

A Taylor expansion of the no-slip condition (3.3) about r = 1 yields

v1z + Λ

(
v2z + p1

∂v1z

∂r

)
+ O(Λ2) = 0 at r = 1. (3.7)

We now analyse the primary and secondary contributions to the flow.

3.1. Primary oscillatory flow
At O(Λ0), advective inertia drops out of the momentum balance, yielding

W ∂v1z

∂t
= −∂p1

∂z
+ 1

r
∂

∂r

(
r

∂v1z

∂r

)
, with v1z|r=1 = ∂v1z

∂r

∣∣∣∣
r=0

= 0. (3.8)

The continuity equation (3.2) at O(Λ0) is

∂q1

∂z
+ 2πσ

∂p1

∂t
= 0. (3.9)

Motivated by boundary conditions (3.4) for pressure, we seek solutions in terms
of complex phasors oscillating as eit, whose real parts solve the physical problem.
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Elasto-inertial streaming in a compliant tube

Writing the pressure as

p1(z, t) = Re[P1(z) eit], (3.10)

the oscillating axial velocity is found to be

v1z = 1
α2

∂P1

∂z

(
I0(rα)

I0(α)
− 1

)
eit, with α =

√
iW, (3.11)

where In(·) is a modified Bessel function of the first kind of order n. It will be understood
that only the real parts of complex oscillating quantities are physically meaningful.
Equation (3.11) is the well-known velocity profile identified by Womersley (1955), which
takes on a parabolic shape for small W, and a plug-like profile with boundary layers of
dimensional thickness R0W−1/2 = R0(μ/(ρω))1/2 for largeW. From (3.6), the primary
oscillatory flux is found to be

q1 = 2π

∫ 1

0
v1zr dr = − π I2(α)

α2 I0(α)

∂P1

∂z
eit. (3.12)

Substituting (3.12) back into (3.9) leads to an equation governing the complex pressure:

∂2P1

∂z2 − k2P1 = 0, where k =
√

iσ
2α2 I0(α)

I2(α)
(3.13)

is a complex wavenumber. The above equation was also obtained by Ramachandra Rao
(1983) in analysing linearized oscillatory flow in tapered elastic tubes, and a variant of
it is given in Dragon & Grotberg (1991). The primary pressure oscillates as p1 = cos t =
Re[eit] at the inlet z = 0, and decreases to zero at the outlet (p1 = 0 at z = 1), yielding
the boundary conditions P1(0) = 1, P1(1) = 0. With these conditions, (3.13) admits the
solution

P1(z) = sinh{k(1 − z)}
sinh k

. (3.14)

Thus we see that the primary pressure in a deformable tube decays as a spatially oscillating
exponential. The limit σ → 0 recovers the rigid case, where the pressure decreases linearly
along the tube.

The complex wavenumber k scales as σ 1/2 and depends onW through α. Figure 2(a)
shows the variation of k/

√
σ with W, indicating both real and imaginary parts. In the

viscous limit (W � 1), k approaches a constant 4
√

iσ , indicating comparable rates of
spatial decay and oscillation. For W � 1, the real part of k approaches

√
σ , while the

imaginary part diverges as 2σW. Asymptotic behaviours for both small and large W
are indicated in figure 2(a). Figure 2(b) shows both real and imaginary parts of P1 for
different σ at a fixed W. For short elastic relaxation times (TEV � ω−1, or small σ )
the elastic solid responds instantaneously to the inlet pressure, and the pressure drops
linearly in the tube, similar to a rigid channel. For longer relaxation times (TEV � ω−1, or
σ � 1), local deformation of the solid lags the inlet pressure, leading to a non-monotonic
pressure distribution in the channel with comparable real (in-phase relative to the inlet) and
imaginary (out-of-phase relative to the inlet) contributions (see figure 2(b) for σ = 1). At
large σ (and smallW), the pressure distribution decays axially from the inlet over a length
scale 
EV = Lσ−1/2 ∝ (EbR0/(μω))1/2, with spatial oscillations. We observe that this is
analogous to how the Womersley velocity profile exhibits boundary layers of thickness
R0W−1/2 for large W. Thus σ controls the axial structure of the flow similarly to how
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Figure 2. (a) Complex wavenumber k as a function of W, showing real and imaginary parts. Asymptotic
expansions for large and small W are indicated by dashed curves. (b) Complex primary pressure P1(z) at
different σ values, indicating real (solid) and imaginary (dashed) parts. The pressure decays linearly along the
tube for small σ , whereas it decays exponentially for larger σ . (c) Pressure distribution at different times during
an oscillation cycle for σ =W = 1, indicating wave-like behaviour.

W controls its radial structure. At larger values,W influences both radial and axial flow
features; see (3.13), (3.14) and figure 2. Figure 2(c) depicts profiles of p1(z, t) at different
times over an oscillation cycle for the particular combination σ =W = 1. The pressure
distribution travels along the channel in a wave-like pattern, gradually diminishing further
away from the inlet of the tube. It is interesting to note that the elasticity of the tube strongly
controls the oscillatory flow through a competition between relaxation and driving time
scales, even though the amplitude of deformation has not yet entered at this order in the
analysis.

3.2. Secondary steady flow
With insight into the oscillatory flow structure, we study the flow at O(Λ), associated
with finite deformation of the channel walls. We focus specifically on the rectified
(time-averaged) part of this flow, which is associated with a net flux through the
channel. We define the time average of a function over an oscillation cycle by 〈 f 〉 =
(2π)−1 ∫ τ+2π

τ
f (t) dt. Averaging the momentum equation (3.1) and the no-slip condition

(3.7), we find at O(Λ) that

W
σ

〈v1 · ∇v1z〉 = −∂〈p2〉
∂z

+ 1
r

∂

∂r

(
r

∂〈v2z〉
∂r

)
, with (3.15a)
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Elasto-inertial streaming in a compliant tube

〈v2z〉 = vslip(z)
def.= −

〈
p1

∂v1z

∂r

〉∣∣∣∣
r=1

at r = 1, (3.15b)

∂

∂r
〈v2z〉 = 0 at r = 0. (3.15c)

Here, vslip(z) is an effective slip velocity satisfied by the secondary flow at the undeformed
location of the tube walls, which arises as a consequence of the domain perturbation
in (3.7). A useful rule for computing the time average of a product of oscillating
complex quantities is 〈Re[A eit] Re[B eit]〉 = (1/2) Re[A∗B] = (1/2) Re[AB∗], where the
asterisk denotes the complex conjugate (Longuet-Higgins 1998). We apply this rule to the
definition (3.15b) to calculate the effective slip velocity

vslip(z) = Re
[

k I1(α)

2α I0(α) |sinh k|2 cosh{k(1 − z)} sinh{k∗(1 − z)}
]

. (3.16)

Note that only the real parts of secondary (time-averaged) flow quantities written with
complex variables hold physical significance. This will be implied from this point onwards
unless otherwise indicated.

The problem (3.15) is linear in 〈v2z〉 and can be decomposed into three parts: (i) the
velocity generated from the advective ‘body force’, which we denote vadv

2z ; (ii) the velocity
associated with the geometric nonlinearity due to deformation, which manifests as the
effective slip at r = 1; and (iii) the velocity due to the secondary pressure gradient. Solving
(3.15) shows that the time-averaged axial velocity has the general structure

〈v2z〉 = 1
4

∂〈p2〉
∂z

(r2 − 1) + vslip + vadv
2z , (3.17)

where the advective contribution vadv
2z satisfies

W
σ

〈v1 · ∇v1z〉 = 1
r

∂

∂r

(
r

∂vadv
2z

∂r

)
, with vadv

2z |r=1 = 0 and
∂vadv

2z

∂r

∣∣∣∣∣
r=0

= 0.

(3.18)

The system (3.18) lacks a simple analytical solution due to the complicated radial
dependence (involving products of Bessel functions) of the advective body force, so we
solve it numerically using finite difference techniques to find vadv

2z .
To obtain the secondary pressure, we first insert (3.17) into (3.6), which yields a general

expression for the mean flux:

〈q2〉 = 2π

(
− 1

16
〈p2〉
∂z

+ 1
2

vslip +
∫ 1

0
vadv

2z (r, z) r dr

)
. (3.19)

We then average the continuity equation (3.2) and collect terms at O(Λ) to find that the
time-averaged flux satisfies ∂z〈q2〉 + 2πσ 〈∂tp2 + p1 ∂tp1〉 = 0. Observing that 〈∂tp2〉 = 0
and 〈p1 ∂tp1〉 = 〈∂t( p2

1/2)〉 = 0, we find, unsurprisingly, that 〈q2〉 is a constant. We use
this result to integrate (3.19) along z, noting that 〈p2〉 must vanish exactly at both ends of
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Figure 3. Secondary flow pressure distribution for (a) fixed Womersley number W and (b) fixed
elasto-viscous parameter σ . Symbols are results of numerical calculations, and curves represent the
approximate analytic theory. Plot (a) shows the transition from parabolic distribution in quasi-rigid channels
(σ → 0) to asymmetric patterns in flexible channels (σ increases). Plot (b) demonstrates increasing peak
pressure with risingW in flexible channels for a range ofW, though the dependence becomes non-monotonic
forW � 5.

the tube, to obtain

〈q2〉 = 2π

∫ 1

0

(
1
2

vslip(z) +
∫ 1

0
vadv

2z (r, z) r dr

)
dz. (3.20)

Rearranging (3.19), the time-averaged pressure is therefore

〈p2〉(z) = 16
∫ z

0

(
1
2

vslip(x) +
∫ 1

0
vadv

2z (r, x) r dr

)
dx − 8z

π
〈q2〉. (3.21)

Using (3.16) and the numerical solution to (3.18), we implement the integrals in (3.20) and
(3.21) numerically to obtain 〈p2〉(z).

The axial distribution of the secondary pressure is shown in figure 3 for different σ

and W. Symbols represent the numerical solutions discussed above, and solid curves
represent an analytic theory that we detail in § 4. As σ approaches zero for a fixed
W (representing a nearly rigid channel with a short elasto-viscous relaxation time),
the secondary pressure distribution becomes parabolic. However, as σ increases (slower
elasto-viscous relaxation), the secondary pressure distribution becomes asymmetric, with
the peak pressure rising and occurring closer to the channel inlet. This symmetry breaking
arises because the primary flow – which is responsible for driving the secondary flow –
now decays exponentially from the inlet over the length scale L/k (figure 2b). Figure 3(b)
shows the dependence on W at a fixed value of σ = 1 (moderately flexible channels).
As W increases, the peak of the secondary pressure increases up to W ≈ 5. For larger
W, the pressure begins to drop, deviating from the established pattern. Thus the pressure
distribution depends sensitively on both σ and W. Advective inertial effects become
noticeable forW as small as 0.5, and dominate for largerW (see figure 6 in Appendix B).
These features highlight the interplay between channel elasticity, fluid inertia and viscous
resistance to flow, emphasizing the importance of both σ andW.

As discussed previously, the flow varies axially over length scales set by L and L/k,
while radial gradients occur on scales R0 and R0W−1/2 (where the latter quantity is
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Elasto-inertial streaming in a compliant tube

the thickness of the oscillatory Stokes layer). The long-wave approximation used in the
theory requires axial velocity gradients to be much smaller than radial ones, leading to
the conditions ε � 1 and σ � ε−2. Furthermore, the theory requires small deformation
amplitudes relevant to the relevant radial length scales of the flow, which yields the
conditions Λ � 1 and W � Λ−2. This condition on W also justifies neglecting the
advective inertia of the secondary flow in (3.15) (Riley 2001).

4. Analytic approximation for the time-averaged flow

The complicated radial structure of the advective term in (3.18) precludes a simple
analytic solution to 〈p2〉. We gain analytic insight by approximating the advective term, by
first constructing approximate oscillatory velocity fields with simpler radial dependence
(Appendix B). Our approximation to the primary axial velocity ṽ1z shares the same
centreline (r = 0) velocity as the exact solution (3.11), but replaces the radial dependence
with a parabolic no-slip profile. Then we use the continuity equation to obtain an
approximate primary radial velocity, ṽ1r; see (B1). We then construct an advective term
(W/σ)〈ṽ1 · ∇ṽ1z〉, which is given explicitly in (B2). This approximation is asymptotic to
the exact result in the viscous regimeW � 1, where the oscillatory axial velocity profile
is indeed parabolic. Additionally, (B2) preserves the centreline value and the z dependence
of the exact advective term for allW, but presents a much simpler r dependence that is
now analytically tractable.

We use the result (B2) in place of the advective term in (3.18), and solve the resulting
equation to obtain an explicit analytic approximation to vadv

2z ; see (B3). Substituting this
result into (3.20), we find that the mean flux is

〈q2〉(W, σ ) = λπ
8

[(
cosh{2kr} − 1

kr

)
+ i

(
cos{2ki} − 1

ki

)]
, where (4.1a)

λ(W, σ ) ≈ k I1(α)

|sinh k|2 α I0(α)︸ ︷︷ ︸
effective slip

+ 3k∗

32σ

∣∣∣∣ k
sinh k

I0(α) − 1
α I0(α)

∣∣∣∣2︸ ︷︷ ︸
advective inertia

, (4.1b)

with kr = Re[k] and ki = Im[k]. The complex quantity λ(W, σ ) (the real part is not
implied in (4.1b)) is a scale factor comprising a contribution from the effective slip vslip
(which arises directly from the change in geometry due to deformation) and another from
the advective inertia of the primary flow. We recall that α and k depend onW and σ ; see
§ 3.1. Using (3.21), the approximate secondary pressure is

〈p2〉(z;W, σ ) = λ(W, σ )

[(
z + (1 − z) cosh{2kr} − cosh{2kr(1 − z)}

kr

)

+ i
(

z + (1 − z) cos{2ki} − cos{2ki(1 − z)}
ki

)]
. (4.2)

We note that the only source of approximation is in the advective term of λ; (4.1) and (4.2)
are otherwise faithful reproductions of the exact solution to (3.15).

Figure 3 shows the theoretical pressure (4.2) (solid curves) alongside ‘exact’ (numerical)
solutions (symbols). The theory is in excellent quantitative agreement with numerical
calculations, up to W close to 10; for instance, with σ = 1, the error in the pressure is
approximately 5 % atW = 10.
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Figure 4. (a) Secondary flux for different σ andW. In the case of small σ , the flux decreases asW increases,
reaching negative values at largeW. As σ increases, there is a general trend of increased secondary flux, which
saturates at approximately 1 for largeW. (b) Example secondary flow visualization for σ = 0.01 andW. In
a quasi-rigid channel, small W = 1 (top) induces a secondary flow from inlet (the source of the oscillatory
pressure) to outlet (held at zero pressure), while largerW leads to net flow from outlet to inlet. Colour bars
indicate dimensionless flow speed.

As expressed in (4.1), a non-zero time-averaged flux occurs due to the combined effect
of geometric nonlinearities (quantified by the effective slip) and the inertial body force.
The geometric mechanism is a generic feature of an oscillating flow in a conduit with
an oscillating area of cross-section (Zhang et al. 2021; Pande, Boyko & Christov 2023a),
while inertial pumping occurs due to Reynolds stresses generated at the walls of the tube.
The secondary flux is generally positive, associated with net pumping of fluid towards
z = L, but varies for different values of σ andW, as shown in figure 4. The flux becomes
independent of bothW and σ at smallW, converging to the value π/8. When σ is small
(a relatively rigid channel), the flux decreases asW increases. It is striking that the flux
eventually becomes negative – fluid is pumped towards the source of pressure oscillations –
at sufficiently large W for small σ . However, for more flexible channels (larger σ ), the
secondary flux generally increases withW, albeit non-monotonically. The flux saturates
at larger values ofW, and stays below unity. The dependence on σ at fixedW is similarly
complicated, displaying a non-monotonic behaviour until saturating at large σ . The theory
(4.1) (solid curves in figure 4) is in excellent agreement with numerical results (symbols)
across all parameter values, and reproduces the generation of negative fluxes at small σ

and largeW, as well as the non-monotonic dependence on σ andW. The appearance of
ki in the argument of a cosine in (4.1) suggests that this non-monotonicity is due to the
spatial oscillations of the primary pressure.

We first analyse the limit σ � 1, where the elasto-viscous relaxation time is much
smaller than the period of oscillation. The walls of the tube respond quasi-statically to
the oscillating flow, and the pressure decays linearly along the tube. In this limit, (4.1)
becomes

〈q2〉 ∼ π

8

(
2 I1(α)

α I0(α)
− 3 I0(α)

8 I2(α)

∣∣∣∣ I0(α) − 1
I0(α)

∣∣∣∣2
)

as σ → 0. (4.3)

The first term is due to the slip velocity, while the second term is the contribution of
inertia. It is interesting to note that advective inertia survives even in the quasi-rigid limit
σ → 0 (even as v · ∇v becomes vanishingly small) due to the appearance of σ−1 in front
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Elasto-inertial streaming in a compliant tube

of the advective term in (3.15). Plotting each term separately shows that the contribution
of slip is always positive, whereas the contribution of inertia is always negative for σ → 0.
The inertial term is small for smallW, leading to a positive, slip-dominated mean flow.
At largerW, the contribution of inertia to the flux outweighs that of the slip, leading to a
negative mean flow. From (4.3), we find that the transition from positive to negative flux
occurs at W ≈ 6.9, consistent with the σ = 0.01 curve in figure 4. Streamlines of the
steady flow across this transition are plotted in figure 4, showing that the flow near the
wall r = 1 (due to the effective slip) is always to the right even as the net flow changes
sign withW. A similar analysis of (4.2) shows that the secondary pressure has the form

〈p2〉 ∼ 8〈q2〉
π

z(1 − z) for σ → 0. (4.4)

The reversal in flux is thus accompanied by a reversal in the pressure. For small W (in
addition to small σ ), we find

〈q2〉 ∼ π

8

(
1 − 5W2

96
+ O(W3)

)
for σ → 0. (4.5)

The leading term is consistent with past work (see (38) of Pande et al. 2023b), while the
second term differs due to the inclusion of advective inertia here.

These behaviours change sensitively as σ increases even slightly from zero. Both the
slip and advective contributions become more positive with growing σ . At σ ≈ 0.1, the
reversal of flux with W no longer occurs (figure 4a). For σ � 0.2, the advective term
becomes positive at allW, thus aiding the slip velocity. As a result, the flux grows with
W when σ � 0.2, in contrast to the σ � 1 case (figure 4). The flux eventually saturates
for large σ , once again becoming independent of it. In the limit, and for smallW, (4.1)
yields

〈q2〉 ∼ π

8

(
1 + 5W

16
+ O(W2)

)
as σ → ∞. (4.6)

We observe that the flux increases linearly withW at large σ , in contrast to the quadratic
decrease at small σ in (4.5). The contribution of inertia to the secondary flux becomes
noticeable forW � 0.5, and may dominate for largerW; see figure 6.

5. Comparison with the simulations of Pande et al. (2023b)

Pande et al. (2023b) conducted 3-D DNS of the problem, utilizing the svFSI finite-element
solver of the open-source cardiovascular modelling software SimVascular (Updegrove
et al. 2017; Lan et al. 2018). These simulations model the solid as a Kirchhoff–Saint
Venant hyperelastic material, and fully resolve the two-way coupled time-dependent
fluid–structure interaction (Zhu et al. 2022).

Figure 5(a) shows the pressure distribution p(z, t) at different times over an oscillation
cycle, comparing DNS (square symbols) and our analytic theory (curves), which use the
approximation p(z, t) ≈ p1(z, t) + Λ〈p2〉. We note that in the theory, we do not resolve
the time-dependent part of p2, though the error from this omission to the instantaneous
pressure (which is dominated by p1) is small. The agreement is excellent for σ = 0.6 and
W = 1, with no adjustable parameters. There is no discernible difference between our
approximate analytical solutions and our numerical solutions for these parameters.

Figure 5(b) shows the time-averaged part of the pressure 〈p〉/Λ = 〈p2〉, comparing again
the DNS (symbols) and our theoretical result (4.2) (curves). For different combinations of
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Figure 5. Comparison between the present analytic theory (curves) with the 3-D DNS of Pande et al. (2023b)
(symbols), with ε = 0.0667 and Λ = 0.05. (a) Instantaneous pressure distribution over an oscillation cycle for
σ = 0.6 andW = 1. (b) Time-averaged pressure for different σ andW.

W and σ , the analytic theory captures the DNS remarkably well, again with no adjustable
parameters. The deviations near z = 0 are likely due to the boundary conditions in the
DNS being enforced only approximately. Our numerical calculations and analytic theory
(cf. § 3.2) are identical to within the thickness of the curves in figure 5.

In addition to performing DNS, Pande et al. (2023b) developed a reduced-order model
that accounted for the local acceleration of the fluid but neglected its advective inertia. That
model, when solved numerically, recovered the DNS results for W � 1 with σ = 0.06,
but deviated for larger W and σ (Λ, W and σ here are equivalent to the quantities β,
α2 and 2π Stf β, respectively, in Pande et al. 2023b). The agreement of our theory with
the DNS shows that these deviations can be almost entirely understood by accounting
for the advective inertia of the oscillatory flow. While additional geometric or material
nonlinearities associated with the response of the elastic solid may indeed be important for
larger deformations, they do not appear to play a significant role for Λ = 0.05. It remains
to be seen how far the present theory can be pushed before departures from DNS become
appreciable.

6. Conclusions

We have shown how the combination of fluid inertia and elastic deformations rectifies
oscillatory driving in compliant channels into steady secondary flows. We have quantified
these features by developing a long-wave perturbation theory for slender channels and
small elastic deformations. The amplitude of deformation governs the magnitude of
nonlinearities driving steady flow. The structure of the flow, however, is independent
of this amplitude, and depends instead on two frequency-dependent parameters: the
Womersley number ρR2

0ω/μ, which measures a momentum diffusion time scale against
the time scale of driving, and an elasto-viscous parameter μωL2(1 − ν2)/(EbR0), which
is the ratio of an elasto-viscous relaxation time to the driving time scale. The precise
combination of these parameters controls the spatial structure of the oscillatory flow,
which in turn determines the relative importance of geometric nonlinearities (due to
deformation) and advective nonlinearities (due to fluid inertia) in driving time-averaged
flow. Using judicious approximations for the advective inertia, we obtained closed-form
analytic approximations that quantitatively recover 3-D DNS across the entire parameter
space.
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Elasto-inertial streaming in a compliant tube

The insights derived from the present work enable systematic understanding and
efficient quantification of time-dependent fluid–structure interactions in practically
relevant settings. Future work may account for the effect of a finite bending rigidity
and the inertia of the elastic material. It would be equally interesting to quantify the
effects of internal dissipation in the solid, which would be relevant in practical systems,
particularly at large frequencies (see e.g. Anand & Christov 2020). We expect that the
small-deformation framework developed here could be expanded to accommodate these
features in order to gain substantial efficiencies over DNS. The ideas developed here
thus hold the potential to influence advancements in engineered and naturally occurring
systems such as cardiovascular physiology, biomedical engineering and microfluidic
device design.
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Appendix A. Bending rigidity and solid inertia

We discuss two potential sources of deviation from the local elastic model (2.3).

A.1. Finite bending rigidity
Accounting for a finite bending rigidity B ∝ Eb3 adds a term ∝ R2

0B/(Eb) ∂4
ZU ∝

b2R2
0 ∂4

ZU (in addition to subdominant contributions) to (2.3) (Landau & Lifshitz 1986).
Following the arguments of § 3.1, the ratio of bending to stretching stresses is then
b2R2

0L−4|k|4, with k given by (3.13). We find that for small W, bending becomes
important when σ � L2/(R0b), which is very large by definition. For large W, the
present theory identifies spatial oscillations at a wavenumber

√
σW (figure 2). Bending

rigidity of the tube suppresses these oscillations when σ � L2/(R0bW4). For smallW,
bending becomes important only at very large σ . However, for modestly large inertial
effects, particularly whenW is comparable with (L2/(R0b))1/4, these effects may become
noticeable for moderate σ . For example, with L0 ≈ 1 cm, R0 ≈ 1 mm and b ≈ 0.1 mm,
bending effects may start to play a role for σ ≈ 1 and W ≈ 6. However, the favourable
agreement of the present theory with DNS for a similar combination of parameters
(figure 5) seems to indicate that the hoop-stress-only model may be more robust than
is suggested by this scaling estimate.

A.2. Solid inertia
The inertia of the walls of the tube becomes more important at largeW, and scales (per
area) as ρsb ∂2

TU, where ρs is the density of the elastic solid. It becomes comparable to
the elastic hoop stress EbU/R2

0 when ω � (E/(ρsR2
0))

1/2, i.e.W � (ρ2ER2
0/(ρsμ

2))1/2.
For a tube of radius 1 mm and a typical soft material (E ≈ 1 MPa) carrying water, this
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Figure 6. Contribution of advective inertia to (a) the secondary pressure and (b) the secondary flux. Solid

curves represent the full theory, while the dashed curves depict the theory in the absence of advective inertia.

occurs forW � 1000. This is much greater than theW considered here, so solid inertia
is expected to play a negligible role in the present study.

Appendix B. The role of advective inertia

B.1. Analytic approximation of inertial effects
To approximate the advective inertia of the primary flow, we start by constructing
approximations to the primary velocity. The approximate axial velocity is constructed to
share the same centreline value as its exact counterpart (3.11). Continuity determines the
corresponding (approximate) radial velocity. This results in

ṽ1 = {ṽ1r, ṽ1z} = 1
α2

(
I0(α) − 1

I0(α)

){
∂2P1

∂z2

(
r
2

− r3

4

)
eit, −∂P1

∂z
(1 − r2) eit

}
. (B1)

The approximate advective body force due to the primary flow is (writingW = −iα2)

W
σ

〈v1 · ∇v1z〉 ≈ W
σ

〈ṽ1 · ∇ṽ1z〉 = − k∗

4σ

∣∣∣∣ k
sinh k

I0(α) − 1
α I0(α)

∣∣∣∣2 (r4 − 2r2 + 2)

× cosh{k(1 − z)} sinh{k∗(1 − z)}. (B2)

Substituting (B2) into (3.18) and solving leads to

vadv
2z ≈ − k∗

288σ

∣∣∣∣ k
sinh k

I0(α) − 1
α I0(α)

∣∣∣∣2 (2r6 − 9r4 + 36r2 − 29)

× cosh{k(1 − z)} sinh{k∗(1 − z)}. (B3)

B.2. Relative magnitude of inertial and geometric nonlinearities
To assess the contributions of advective inertia to the secondary flow, we solve a version of
(3.15) that neglects the advective term. This results in secondary pressures and fluxes that
depend on the geometric nonlinearity only, which enters through the effective slip vslip.
Figure 6 shows secondary pressures and fluxes computed in this way, both with inertia
(solid curves), and without inertia (dashed curves). As expected from scaling arguments,
the contributions of advective inertia are important forW � O(1).
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