
The Journal of Symbolic Logic, Page 1 of 16

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND
n-RANDOMNESS

RODNEY DOWNEY , LU LIU , KENG MENG NG, AND DANIEL TURETSKY

Abstract. Let K denote prefix-free Kolmogorov complexity, and letKA denote it relative to an oracle A.
We show that for any n, K∅(n)

is definable purely in terms of the unrelativized notion K. It was already
known that 2-randomness is definable in terms of K (and plain complexity C) as those reals which infinitely
often have maximal complexity. We can use our characterization to show that n-randomness is definable
purely in terms of K. To do this we extend a certain “limsup” formula from the literature, and apply
Symmetry of Information. This extension entails a novel use of semilow sets, and a more precise analysis
of the complexity of Δ0

2 sets of minimal descriptions.

§1. Introduction. A cornerstone of algorithmic randomness is Schnorr’s Theo-
rem1 that X is Martin-Löf (ML) random iff K(X�n) ≥+ n for all n (Chaitin [3]).
Thus X being ML-random is equivalent to having all initial segments weakly
K-random. Now this result relativizes and hence X is A-random iffKA(X�n) ≥+ n,
so that, for example, X is 2-random, meaning X is ML-random relative to ∅′, iff
K∅′(X�n) ≥+ n, for all n.

It is slightly surprising that 2-randomness can also be characterized using K
(and C) without relativization.

Theorem 1.1.

• (Miller [10], Nies, Stephan, and Terwijn [14]) X is 2-random iff C (X�n) ≥+ n
for infinitely many n.

• (Miller [11]) X is 2-random iff K(X�n) ≥+ n +K(n) for infinitely many n.

Theorem 1.1 suggests the following motivating question:

Question 1.2. Is it possible to define (k + 1)-randomness using unrelativized initial
segment complexity K, not the relativized notionK (k) =def K

∅(k)
? Indeed, is it possible

to define K (k) using K?

On the face of it, why should there be a characterization of X being ∅(900)-
random, have a definition purely involving the behaviour K(X�n) for n ∈ �?

Received April 3, 2023.
2020 Mathematics Subject Classification. Primary 03D32, 68Q30.
Key words and phrases. Kolmogorov complexity, limit complexity, minimal description.
1We assume that the reader is familiar with the rudiments of algorithmic randomness and Kolmogorov

complexity, such as initial segments of [5] or [13]. We will use C to denote plain complexity and K for
prefix-free complexity.

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/00/0000-0000
DOI:10.1017/jsl.2024.41

1

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use,

https://orcid.org/0000-0003-4381-2845
https://orcid.org/0000-0001-6670-8325
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2024.41
https://crossmark.crossref.org/dialog?doi=10.1017/jsl.2024.41&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

2 RODNEY DOWNEY ET AL.

Indeed Solovay [18] (see [5, Section 10.2.3]) showed thatK∅′ and K have apparently
complex relationships such asK∅′(n) ≤ K(n) – α(n) +O(logα(n)), where α(n) =
min{K(m) | m ≥ n}, a fact we use in Section 6.

Nevertheless, we’ll show that Question 1.2 has a positive answer. To prove this,
we will give a new analysis of the behaviour of sets of minimal descriptions, where
� is a minimal description of � if U (�) = � and |�| = K(�). Such �’s must be
incompressible, let there be a shorter description of �. For example, we will show
that although every Δ0

2 set of minimal descriptions computes ∅′, there are, for our
purposes, sufficiently tame sets of minimal descriptions called “semilow” sets, a
notion which grew from Soare’s automorphism machinery [16].

1.1. k ≥ 2. To prove that we can define (k + 1)-randomness using only K, our
starting point is the following attractive result.

Theorem 1.3. (Bienvenu, Muchnik, Shen, and Vereshchagin [2])

K∅′(�) =+ lim sup
n
K(� | n).

The same result holds for C in place of K.
Here K(� | n) is the conditional complexity of � given n. The reader might think

that Theorem 1.3 does the job: We could relativize the result to get K∅′′(�) =
lim supn K

∅′(� | n) and then replace K∅′(� | n) by a lim supm K((� | n) | m).
The problem is that K(� | n) is not really an unrelativized notion, even though

no oracles appear in a standard definition such as that in Li–Vitanyi [9]

K(� | n) = min{|y| : U (〈y, n〉) = �}.

However, since n is fixed, this definition hard-codes n as an oracle. More precisely,
the definition in [9] is easily seen to be equivalent to the definition of conditional
complexity used in [5]

K(� | n) = Kn(�),

where n, a self-delimited version of n, is provided as an oracle.
Perhaps we might be able to get rid of the finite oracles. You might imagine that

finite oracles have little effect, but this is not true in general. Indeed, in Section 6, we
will see that finite strings can have very strong compression power. There we prove
the following:

Theorem 1.4. For all e there is a string � such that for almost all �, K(� | �) <
K(�) – e. That is, for � = �, K�(�) < K(�) – e.

So we need a new plan.

1.2. The plan. Our plan is to leverage K(� | n), and we will do this using
Symmetry of Information (Levin and Gács [8], Chaitin [3]) which says that

K(�, n) =+ K(n) +K(� | n∗).

Here the reader should recall that K(�, �) is the complexity of the pair 〈�, �〉, and
that for any string �, �∗ is the first minimal description to occur of lengthK(�) with
U (�∗) = �. (In the case of C we will write �∗C .)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 3

While �∗ is a particular minimal code for � (the first to appear in a fixed effective
search), it may not be the only code for � of length K(�). We will also be interested
in all minimal codes, and so we adopt the following notation.

Notation 1.5. For a universal machine U (prefix-free or otherwise), letNU = {n∗ :
n ∈ �}, where n∗ is defined based on U. LetMU = {� : U (�)↓ ∧|�| = K(U (�))}.

When U is clear from context, we will omit the subscript.

Thus NU contains only the first minimal description for any given string, while
MU contains every minimal description. Observe that NU ⊆MU .

Remark 1.6. Note that �∗ is interchangeable with (�,K(�)), in that there are
computable functions to uniformly pass from one to the other: in one direction,
�∗ �→ (U (�∗), |�∗|); in the other direction, given (�,K(�)), we search for the first
string � of length K(�) with U (�) = �. We will use �∗, but the reader who prefers
may substitute (�,K(�)) anywhere this occurs in the paper.

Similarly, any minimal code from MU may be replaced with the corresponding
(�,K(�)). Again, given � ∈MU , it maps to (U (�), |�|). In the other direction the
map is not uniform, but there is a constant bound on the number of minimal codes a
string may have. Thus if � is a minimal code for �, � can be obtained from (�,K(�))
with only a constant amount of extra information: we begin enumerating all strings
of length K(�) which code �, and we must know �’s position in this enumeration.

In Section 5 we will prove the following.

Theorem 1.7. For any universal prefix-free machine U,

lim sup
n
K(� | n∗) =+ lim sup

�∈MU
K(� | �) =+ K∅′(�).

Notice that by rearranging Symmetry of Information, we obtain K(� | n∗) =+

K(�, n) – K(n). Hence K∅′(�) =+ lim supn[K(�, n) – K(n)], giving a definition of
K∅′ purely in terms of K without relativization.

By relativizing Theorem 1.3, we obtain

KA
′
(�) =+ lim sup

n
KA(� | n),

for all A.2 By appropriately iterating and relativizing Theorem 1.7, we obtain a

definition of K∅(k)
for all k ∈ �, e.g.,

K∅(2)
(�) =+ lim sup

n
[K∅′(�, n) – K∅′(n)]

=+ lim sup
n

(
lim sup
m

[K(�, n,m) – K(m)] – lim sup
m

[K(n,m) – K(m)]
)
.

From this follows a definition of k-randomness purely in terms of unrelativized K.

1.3. The complexity of the setsMU and NU . The question arises how should we
prove the lim supn K(� | n∗) theorem? The answer really comes from understanding

2Indeed =+ lim supn K(� | A�n).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

4 RODNEY DOWNEY ET AL.

the behaviour of the set of minimal descriptions. One hint came from the unpublished
work of Hirschfeldt.

Theorem 1.8 (Hirschfeldt, unpublished). C ∅′(�) =+ lim supn C (� | n∗C).

We will prove this result in Section 2. The method is to construct an infinite low
subset of NV , for V the machine generating C, and use some relativization tricks.

We had hoped to use this method for K, but unfortunately we were able to prove
a result saying that this is impossible.

Theorem 1.9. Let U be a universal prefix-free machine, and let S be an infinite Δ0
2

subset ofMU . Then ∅′ ≤T S.

Note thatMU andNU are of degree 0′ (e.g., [5]). For example,NU ≥wtt Ω by the
Coding Theorem (see [5, Section 3.9]), and Ω is wtt-complete. In view of Theorem
1.9, it would seem reasonable to suggest that they are introreducible, which in this
context would mean that every infinite subset computes ∅′. However, Joseph Miller
proved that this is not the case. We include this also in Section 3.

We remark that the proof can also be adapted to show that an infinite Δ0
2 hitting

set for a Solovay function3 must also be Turing complete. We prove these results,
which are of independent interest, in Section 3.

In the end we found a way around these problems using an idea from studies in
the automorphism group of the lattice of computably enumerable sets (Soare [16])
A set S is called semi-low iff

{e | S ∩We �= ∅} ≤T ∅′,
i.e., a pointwise version of being low. This notion was introduced as a method
towards characterizing when the lattice of supersets of a c.e. set was isomorphic to
the lattice of all c.e. sets. In Section 5, we will show that, although there cannot be
an infinite low subset ofMU or NU , there can be a semi-low one (which we believe
to be of independent interest, especially contrasted with the previous theorem). In
Section 4 we will prove that this is enough for our main result. There have been
other uses of semi-lowness outside of the lattice of c.e. sets, such as Downey and
Melnikov [7] in the study of abelian groups, but these seem sporadic at best.

1.4. The machine existence theorem. As we will be using it several times, we state
the machine existence theorem and fix our notation surrounding it.

Definition 1.10. For a set A ⊆ 2<� × �, wt(A) =
∑

(�,s)∈A 2–s .

Theorem 1.11 (KC Theorem, Coding Theorem, or Machine Existence Theorem;
see Downey and Hirschfeldt [5, Section 3.6]). If A ⊆ 2<� × � is c.e. and has
wt(A) ≤ 1, then there is a prefix-free machine V such that for every (�, s) ∈ A, there
is a � with |�| = s and V (�) = �. Further, an index for V can be effectively obtained
from a c.e. index for A.

Corollary 1.12. If A ⊆ 2<� × � is c.e. with wt(A) <∞, then for all (�, s) ∈ A,
K(�) ≤+ s .

3That is, a computable F such that F (�) ≥+ K(�) for all �, and F (�) =+ K(�) for infinitely many �.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 5

Sets A of this form are sometimes called request sets.
The following is more of a proof technique, but we will state it as a corollary.

Corollary 1.13. As part of a uniform construction, we may effectively obtain an
	 > 0 such that if we enumerate A ⊆ 2<� × � with wt(A) ≤ 	, then K(�) ≤ s for
every (�, s) ∈ A (observe the lack of additive constant).

Proof. Fix U the universal prefix-free machine used to define K. We will generate
an auxiliary c.e. set B with wt(B) ≤ 1. By the Recursion Theorem, we know a c.e.
index for the set B we will enumerate. By the Machine Existence Theorem, this
effectively gives us an index for a prefix-free machine V. From this we effectively
obtain a string � with U (��) = V (�) for all �, and so K(�) ≤ t + |�| for all
(�, t) ∈ B .

Set 	 = 2–|�|, and define B by enumerating (�, s – |�|) whenever A enumerates
(�, s), provided this enumeration does not put wt(B) over 1. If wt(A) ≤ 	, then (�, s –
|�|) is enumerated into B for every pair (�, s) ∈ A, and soK(�) ≤ (s – |�|) + |�| = s ,
as desired. �

§2. Hirschfeldt’s Theorem. We prove Theorem 1.8. We will prove that

C ∅′(�) = lim sup
n
C (� | n∗C).

Consider the Π0
1 class of sequences

P = {(m0, m1, ...) | ∀n [2n ≤ m < 2n+1 ∧ C (mn) ≥ n]}.

A simple counting argument shows that there is an appropriate mn for every n,
and so P is nonempty. Since there are only 2n options for mn, P ⊆ 2� under an
appropriate effective identification. So there is a low infinite path L = (m0, m1, ...)
by the Low Basis Theorem.

Recall that for 2n ≤ m < 2n+1, C (m) ≤+ n, so fix the least d such that
∃∞n C (mn) = n + d , and fix an N such that C (mn) ≥ n + d for all n ≥ N . Then

X = {(mn)∗C : n ≥ N ∧ C (mn) = n + d}

is L-c.e. and an infinite subset of NV , where V is the universal machine defining C.
Fix (�i)i∈� an L-computable enumeration of X.

Then by relativizing Theorem 1.3, we have

C ∅′(�) =+ CL
′
(�) =+ lim sup

i
C L(� | i).

Note that we can L-effectively pass between i and �i , so CL(� | i) =+ CL(� | �i),
giving

C ∅′(�) =+ lim sup
�∈X

CL(� | �).

We also have

lim sup
�∈X

CL(� | �) ≤+ lim sup
�∈X

C (� | �),

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

6 RODNEY DOWNEY ET AL.

since oracles can only help;

lim sup
�∈X

C (� | �) ≤ lim sup
n∗C

C (� | n∗C) ≤ lim sup
�∈MV

C (� | �) ≤ lim sup
�∈2<�

C (� | �),

since X ⊆ NV ⊆MV ⊆ 2<� , and limit supremums over larger sets are larger; and
finally

lim sup
�∈2<�

C (� | �) =+ C ∅′(�),

by the unrelativized version of Theorem 1.3, after an effective identification of 2<�

with �. Picking out the relevant bits, we see that

C ∅′(�) =+ lim sup
n
C (� | n∗C) =+ lim sup

�∈MV
C (� | �).

§3. No low hitting sets. We prove Theorem 1.9. Fix a universal prefix-free machine
U, and suppose thatX = lims Xs is an infinite Δ0

2 subset ofMU . Fix 	 as in Corollary
1.13; we will enumerate an appropriate set A ⊆ 2<� × �.

We describe how we code whether n ∈ ∅′. Fix k ∈ � with

1
k
< 2–(n+2)	.

To do this coding, we will define a k-colouring
 on dom(U). This colouring will
be unique to n; the colourings for other values of n will have no interaction.

We declare that colour i is small if∑

(�)=i

2–|�| ≤ 1
k
.

This has natural approximations: at a stage s, based on the finitely many strings we
have so far coloured, a colour may still be small or may have already proven itself to
be large. Note that since colours are disjoint, and we have k colours, there is always
at least one small colour.

Suppose that � enters dom(U) at stage s. Let

ri = min{|�| |
(�) = i ∧ � ∈ Xs}.

We regard this as infinite if there is no such �. We fix a j maximizing rj and colour

(�) = j.

Suppose that n enters ∅′ at some stage s + 1. Fix a single colour j which was small
at stage s; we invalidate all the strings which had colour j at stage s. That is, for
every � ∈ dom(U)[s] with
(�) = j, we enumerate (U (�), |�| – 1) into A. Provided
wt(A) ≤ 	, this will ensure that � �∈MU for each such �.

As j was small at stage s, the weight of these pairs is at most 2
k < 2–(n+1)	. Thus,

summing over the strategies for every n, wt(A) ≤
∑
n 2–(n+1)	 = 	, as required.

Claim 3.1. X has members of every colour.

Proof. Fix A the set of colours which occur in X, and suppose this is not all the
colours.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 7

Fix a length n such that every colour in A occurs on a string � ∈ X with |�| ≤ n,
and fix t sufficiently large such that X has converged on strings of length at most n
by stage t, i.e., if |�| ≤ n, then for all s ≥ t, Xs(�) = X (�).

Since X is infinite, it contains some � which enters dom(U) at some stage s > t.
At stage s, ri ≤ n for every i ∈ A, whereas ri > n for every colour i �∈ A. So
(�)
will be a colour not in A, contrary to choice of A. �

We can now state our procedure for computing ∅′(n) from X : in the colouring for
n, search for a stage t such that for every colour i, some element of X has been given
colour i by stage t; then output ∅′t(n).

As just argued, there is eventually some stage at which X intersects every colour,
so this algorithm is total. Suppose first that n �∈ ∅′. Then certainly ∅′t(n) = 0, as
desired.

Suppose instead that n ∈ ∅′, and fix the stage s + 1 at which it enters. Fix the
chosen colour j. Then no � which received colour j at or before stage s belongs to
MU , and so cannot belong to X. Thus colour j witnesses t �≤ s , giving ∅′t(n) = 1, as
desired.

This concludes the proof of Theorem 1.9.
The same method can be used to prove the following:

Corollary 3.2. Suppose that X is an infinite Δ0
2 set of hitting points for a Solovay

function F. That is, a set S of points n where F (n) =+ K(n). Then ∅′ ≤T S.

We remark that Corollary 3.2 improves a result of Bienvenu, Downey, Merkle,
and Nies [1] who showed that the collection of all hitting points is Turing complete.

The reader should note that if � = m∗, then � must be weakly K-random in that
K(�) ≥+ |�|. The reason is that ifK(�) << |�| then using the KC Theorem, we can
use �∗ to describe m, in a machine M we build. This would show that K(m) <<
|�| = |m∗|, a contradiction. This brings in to focus the question of precisely which
weakly K-random strings are minimal descriptions. By the Low Basis Theorem,
there are infinite low collections of weakly K-random strings. At most finitely many
can be minimal descriptions. Another consequence of Theorem 1.9 is the following4.

Corollary 3.3. If X is a Δ0
2 collection of weakly K-random strings (that is,

K(�) ≥+ |�|), and |X ∩NU | = ∞, then X computes ∅′.
Proof. Fix d such that for every � ∈ X , K(�) > |�| – d . For every n, let n∗s be

the natural stage s approximation to n∗. This may be undefined for small s, but it will
eventually converge to the true n∗. Further, if n∗s ↓ and n∗s+1 �= n∗s , then |n∗s+1| < |n∗s |.

Again fix 	 as in Corollary 1.13. Fix k with 2–k < 	. For every n and s with
|n∗s | > |n∗| + k + d (a c.e. event), we enumerate (n, |n∗s | – d) into A. Since for a
fixed n there is at most one n∗s of any given length, the weight of our requests is
bounded by ∑

n

∑
i>|n∗|+k+d

2–(i–d) = 2–k
∑
n

2–|n∗| < 2–k.

Thus wt(A) ≤ 	, and so K(n∗s) ≤ |n∗s | – d for every such n∗s .

4More or less the same proof will also give this for intersections of Δ0
2 sets of hitting points for Solovay

functions, and Δ0
2 subsets of M∗, this last one by the Coding Theorem, there are at most O(1) many

elements ofM∗ of length n∗ for a fixed n.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

8 RODNEY DOWNEY ET AL.

It follows that if n∗s ∈ X , then since K(n∗s) > |n∗s | – d by assumption, |n∗s | ≤
|n∗| + k + d , or |n∗| ≥ |n∗s | – k – d . As in the proof of Theorem 1.8, this allows X
to enumerate an infinite sequence from NU . Since every infinite c.e. set contains
an infinite computable set, and this relativizes, we get that X computes an infinite
Y ⊆ NU . As X is Δ0

2, Y is as well, so Y ≥T ∅′, and thus X ≥T ∅′. �
As we mentioned in the Introduction, Theorem 1.9 cannot be improved to show

that all infinite subsets of NU compute ∅′.
Theorem 3.4 (Joseph Miller, unpublished). There is an infinite X ⊂ NU which

does not compute ∅′.
Proof. Let P be a bounded Π0

1 class of K-compression functions5. Since we
have an a priori upper bound of K(n) ≤+ 2 log(n), we may take P ⊆ 2� . Let F
be a “weakly-low for K” path. That is, there are infinitely many n with F (n) =+

K(n). This can be shown to exist using the “low for Ω”-Basis Theorem6 (Downey,
Hirschfeldt, Miller, and Nies [6], Reimann and Slaman [15]) and the fact that low
for Ω is equivalent to “weakly low for K” (see Downey and Hirschfeldt [5]).

Now fix the least c withK(n) = F (n) + c for infinitely many n, and fix an m with
K(n) ≥ F (n) + c for all n ≥ m. F can enumerate an infinite subset ofNU : {n∗s : n ≥
m ∧ |n∗s | = F (n) + c}. Thus F computes an infinite X ⊆ NU (again relativizing the
fact that every infinite c.e. set has an infinite computable subset), Since F does not
compute ∅′ (since it is weakly low for K), X also does not compute ∅′. �

§4. Conditional complexity along semi-low sets. Semi-lowness has previously been
studied for co-c.e. sets. We are interested in it for Δ0

2 sets, in which case it is not entirely
clear that the following is the correct definition7, but it is the definition relevant to
our current interest.

Definition 4.1. Let (We)e∈� be a standard listing of c.e. sets. A set X is semi-low
if the set {e : X ∩We �= ∅} is Δ0

2 (i.e., ≤T ∅′).

Recall Theorem 1.3:

K∅′(�) =+ lim sup
n∈�

K(� | n).

As we have seen, it can be helpful to consider lim supn∈X K(� | n) for X infinite.
It is immediate that this is ≤+ K∅′(�), as we are taking a limit supremum over a
smaller set. It turns out that for semi-low sets, we have equality.

Proposition 4.2. If X is semi-low and infinite, then K∅′(�) =+ lim supn∈X K(� |
n).

5A K-compression function is an injective function G : � → � such that for all n, G(n) ≤ K(n).
These were introduced by Nies, Stephan, and Terwijn [14] in their proof that 2-randomness is the same
as infinitely often C-random.

6Every Π0
1 class on 2� contains a ∅′-left c.e. real A relative to which ΩA = Ω.

7An alternative definition would additionally require that {e :We ⊆ X} is Δ0
2; note that when X is

co-c.e., this set is Π0
1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 9

Proof. As one direction is immediate, it remains to show that

K∅′(�) ≤+ lim sup
n∈X

K(� | n).

We will work with request sets.
For each n ∈ �, define An = {(�, s) : s ≥ K(� | n)}. We may think of An as the

request set generating K(·|n). Observe that wt(An) < 2 for all n.
Note that for any finite setD ⊂ 2<� × � and anym ∈ �, the set {n ≥ m : wt(D ∪

An) > 2} is c.e. (it is even primitive recursive with appropriate assumptions on
K(·|n), but this is not necessary). Indeed this is uniform, so we may fix a total
computable function e such thatWe(D,m) = {n ≥ m : wt(D ∪ An) > 2}, where D is
given by a canonical index.

We will build a ∅′-enumerable request set B with wt(B) ≤ 2 and such that for all
�, if s = lim supn∈X K(� | n), then (�, s) ∈ B . By Corollary 1.12 relativized to ∅′,
this will suffice to prove the result.

Fix an effective listing (�m, sm)m∈� of 2<� × � such that every pair is repeated
infinitely many times on the list. We define B as follows:

• B0 = ∅.
• Given Bm, fix D = Bm ∪ {(�m, sm)}. If X ∩We(D,m) = ∅, we let Bm+1 = D;

otherwise, we let Bm+1 = Bm.

As X is semi-low, ∅′ can run this construction, and so B is ∅′-enumerable.

Claim 4.3. For all n ≥ m with n ∈ X , wt(Bm ∪ An) ≤ 2, and thus wt(B) ≤ 2.

Proof. Suppose not. Then as this clearly holds for B0, we may fix m + 1
the least value where the claim is violated. So there is some n ≥ m + 1 with
n ∈ X , wt(Bm ∪ An) ≤ 2 and wt(Bm+1 ∪ An) > 2. AsBm+1 �= Bm, we must be in the
case X ∩We(D,m) = ∅, with Bm+1 = Bm ∪ {(�m, sm)} = D. But n ∈ X ∩We(D,m), a
contradiction.

That wt(B) ≤ 2 then follows from X being infinite. �

Claim 4.4. For any �, if s = lim supn∈X K(� | n), then (�, s) ∈ B .

Proof. Fix an n0 such that for all n ≥ n0 with n ∈ X ,K(� | n) ≤ s . Then for all
n ≥ n0 with n ∈ X , (�, s) ∈ An. Fix anm ≥ n0 such that (�, s) = (�m, sm). LetD =
Bm ∪ {�m, sm}. Then for all n ≥ m with n ∈ X , D ∪ An = Bm ∪ An, and wt(Bm ∪
An) ≤ 2. So X ∩We(D,m) = ∅, and (�, s) ∈ Bm+1 by construction. �

This completes the proof. �

§5. Conditional complexity along minimal codes. Fix a universal prefix-free
machine U. We are interested in lim sup�∈MU K(� | �) and lim�∈NU K(� | �). First
we verify that these values are machine independent.

Lemma 5.1. If U and V are universal prefix-free machines, and K(·|·) is defined
from a third (unnamed) universal prefix-free machine, then

lim sup
�∈MU

K(� | �) =+ lim sup
�∈MV

K(� | �) =+ lim sup
�∈NV

K(� | �).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

10 RODNEY DOWNEY ET AL.

Proof. By symmetry, and the fact that NV ⊆MV , it suffices to show

lim sup
�∈MU

K(� | �) ≤+ lim sup
�∈NV

K(� | �).

By standard arguments, there is a constant c such that if � ∈MU , � ∈MV , and
U (�) = V (�), then ||�| – |�|| ≤ c.

For each � ∈ 2<� and i ∈ Z with |i | ≤ c, let �(�, i) be the first � located with
|�| = |�| + i and U (�)↓= V (�)↓, if such � exists. We define

B� = {(�, s) : ∃i �(�, i)↓ ∧s ≥ K(� | �(�, i))}.

Then wt(B�) ≤
∑

|i|≤c
∑
� 2 · 2–K(�|�(�,i)) ≤ (2c + 1) · 2, and thus these are uni-

formly given request sets.
It follows that K(� | �) ≤+ K(� | �(�, i)) for all i with �(�, i)↓. Note that if � ∈

MU , then there is an i with �(�, i)↓∈ NV . The claim follows. �
Proposition 5.2. There is a universal prefix-free machine U and an infinite, semi-

low set X ⊆ NU .

Proof. Fix some universal prefix-free machine V. We define U (03̂�) = V (�)
for all �, which makes U universal while giving us the freedom to do as we like on
other neighborhoods.

Let (Ns)s∈� be the natural approximation to NU . We will have semi-lowness
requirementsRe and infiniteness requirementsPn. The strategy for each requirement
will claim various strings inNs , and each strategy will have a directive at every stage:
meet or avoid. A string may only be claimed by a single strategy at a time, and a
strategy will retain its claim on a string until either the string leaves Ns , or a higher
priority strategy claims the string. In either case, the strategy will immediately
relinquish its claim.

We will build a c.e. set A ⊆ 2<� × �. As we will argue, the sum
∑

2–|�| over all
strings � which are ever claimed in the construction will be bounded by 1/2. The first
time a string � is claimed by a strategy (i.e., it was unclaimed at all previous stages),
we will immediately enumerate (k, |�| – 1) into A, where k is larger than any value
yet seen in the construction. As the previous sum is bounded by 1/2, wt(A) ≤ 1. By
the Machine Existence Theorem, we uniformly obtain the index of a corresponding
prefix-free machine Q such that for every such pair (k, |�| – 1) ∈ A, there is a � with
|�| = |�| – 1 and Q(�) = k.

We define U (1̂�) = Q(�) for all �. Suppose � is first claimed at stage s, and
so we enumerate (k, |�| – 1) into A for some large k. Then for the appropriate �,
|1̂�| = |�| and U (1̂�) = k. By the largeness of k, Ns contains no codes for k,
so � will belong to NU unless V enumerates a sufficiently shorter code at some
subsequent stage. The idea is that whenever a potential element of NU is claimed,
we ensure it is replaced with a new element of the same length or shorter.

This completes the description of U, apart from describing how strategies claim
strings. We order our requirements R0, P0, R1, P1, At stage s, we consider the
first s requirements in order, implementing the following strategies.

Strategy forPn:
Pn will always have the meet directive, and will claim at most one string at a time.

At stage s, if it retains a claimed string from the previous stage (i.e., s > 0, Pn had

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 11

a claimed string at stage s – 1, that string remains in Ns , and that string has not
been claimed by a higher priority strategy earlier in stage s), then we take no further
action. Otherwise, if there is a string in Ns of length at least 2n + 4 and unclaimed
by any higher priority strategy, Pn claims the least one (in some effective ordering).
If Pn did not retain a claimed string, and there is no appropriate string to claim, we
simply do nothing.

Strategy forRe : The behaviour of Re is a yo–yo: it continues to claim strings until
the weight of the claimed strings surpasses 2–(2e+4), at which point it stops and lets
those strings bleed away. Once it has lost all of its claims, the strategy begins claiming
new strings again. The details follow.

At stage s, let C be the set of strings which Re retains the claim on from the
previous stage: those strings which it claimed at stage s – 1, which remain in Ns ,
and which were not claimed by a higher priority strategy earlier in stage s. IfRe was
not considered at stage s – 1 (possibly because s = 0), then C = ∅.

Let w =
∑
�∈C 2–|�|. Our directive for Re at stage s will depend on w and on Re ’s

directive at stage s – 1:

• If w = 0 (i.e., C = ∅), then Re has the directive avoid at stage s.
• If 0 < w ≤ 2–(2e+4), thenRe retains the same directive as it had at the previous

stage (w > 0 entails that Re was considered at the previous stage).
• If w > 2–(2e+4), then Re has the directive meet at stage s.

If our directive for Re at stage s is meet, we take no further action at this stage.
If our directive for Re at stage s is avoid, and there is a string in Ns ∩We,s of

length at least 2e + 4 and unclaimed by any higher priority strategy, then Re claims
the least such string (in some effective ordering). Our action for Re at this stage is
then complete. Note that we claim no more than one string for Re at each stage.

This completes the construction.

Definition of X :
Let Xs be the set of strings � claimed by a strategy with the meet directive at

stage s.
Observe that if � ∈ NU is claimed by a strategy, then there are only two

possibilities: that strategy may retain its claim on � forever, or the claim on �
may pass to a higher priority strategy. As we will argue, each Re strategy changes
its directive only finitely many times. It follows that X = lims Xs is defined.

Verification:
First we must keep our promises.

Claim 5.3. At any stage s, for the strategy Re , the value w = w(e, s) is at most
2–(2e+3).

Proof. At each stage, Re claims at most one string, and that string will always
have length at least 2e + 4. So w(e, s + 1) – w(e, s) ≤ 2–(2e+4). Further, Re only
claims a string if w(e, s) ≤ 2–(2e+4), so w(e, s + 1) is at most 2–(2e+4) + 2–(2e+4) =
2–(2e+3). �

Claim 5.4. The sum
∑

2–|�| over all strings � which are ever claimed in the course
of the construction is at most 1/2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

12 RODNEY DOWNEY ET AL.

Proof. If a string � is claimed during the construction, there are three possible
fates for �: 1) there is some n such that Pn claims � at almost every stage; 2) there
is some e such that Re claims � at almost every stage; 3) � leaves NU . We consider
each case in turn.

Fix n. By construction, there is at most one string which is ultimately claimed by
Pn, and such a string has length at least 2n + 4. So the sum

∑
2–|�| over all strings

� ultimately claimed by Pn is bounded by 2–(2n+4).
Fix e. Let Ĉ be the set of strings� such thatRe claims� at almost every stage. Then

each � ∈ Ĉ contributes to almost every w(e, s), so
∑
�∈Ĉ 2–|�| ≤ sups w(e, s) ≤

2–(2e+3).
Finally, consider strings which leaveNU . We will split this case into two subcases,

based on whether the given string extends 000, and so was introduced by our copying
of V, or it extends 1, and so was introduced by our other actions. Since the extensions
of 000 in the domain of U form an antichain, the sum

∑
2–|�| over all strings in the

first subcase is bounded by 1/8.
Consider now the second subcase. Note that strings never leaveNU because of our

action; instead, if � leaves NU , then there must be some � ∈ NV with V (�) = U (�)
and |�| < |�| – 3. As we always choose our values large, if �0 and �1 are distinct
strings from this subcase, U (�0) �= U (�1), so the corresponding �s are distinct. So
summing over the � of this subcase, we have

∑
2–|�| < 1

8

∑
�∈NV 2–|�| < 1

8 . Putting
these all together, our desired sum is bounded by

6
∑
n∈�

2–(2n+4) +
∑
e∈�

2–(2e+3) +
1
8

+
1
8
≤ 1

2
,

as desired. �

Claim 5.5. Each Re changes its directive only finitely many times.

Proof. Suppose not. Then there is a sequence of stages s0 < s1 < ... such that
Re has directive avoid at stage si , and has directive meet at stage si + 1, for every i.
In order to switch from meet at stage si + 1 back to avoid at stage si+1, every string
claimed by Re at stage si + 1 must either be stolen by a higher priority strategy
or leave NU , both of which are irreversible. Thus the strings which contribute to
w(e, si + 1) must be entirely different from those which contribute to w(e, sj + 1)
for j �= i . But w(e, si + 1) > 2–(2e+4) for every i, and the strings which contribute to
w(e, si + 1) all belong to dom(U), a contradiction. �

Thus we may speak of an Rj strategy’s ultimate directive.
Our promises being met, the construction of X is as described. Now we verify

that X has the desired properties.

Claim 5.6. For each n, the strategy Pn ultimately claims a string which it never
renounces its claim upon, and thus X is infinite.

Proof. Fix n. It suffices to argue that there is some string inNU of length at least
2n + 4 which is never claimed by any strategy.

Fix s0 such that Ns0 has converged on all strings of length less than 2n + 4. We
build a sequence �0, �1, ... ∈ NU :

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 13

• Fix some �0 ∈ NU \ dom(Us0). Such a �0 must exist, as U is universal (and in
particular, surjective).

• If �i is eventually claimed by some strategy, then the construction responds
by enumerating a � into dom(U) with |�| = |�i | and U (�) not any previously
seen value. It may be that � is not a minimal code, but there is some �i+1 ∈ NU
with U (�i+1) = U (�), and �i+1 enters dom(U) after the stage at which �i is
claimed (by the largeness of U (�)).

Inductively, we see thatU (�i) �= U (�j) for any j < i , and so the sequence �0, �1, ...
is injective. Further, |�i+1| ≤ |�i |. As

∑
�∈NU 2–|�| < 1, this sequence must be finite,

so there is some �i which is never claimed by any strategy. Since �i enters dom(U)
after stage s0, |�i | ≥ 2n + 4 by choice of s0. �

Claim 5.7. X is semi-low.

Proof. We give an algorithm for determining whetherX ∩We = ∅, using oracle
∅′. First, ∅′ can determine a stage s0 such that every Rj strategy with j ≤ e has
settled on its ultimate directive, and such that each Pn strategy with n < e has made
its ultimate claim.

We may ignore those Rj with j ≤ e which have avoid as their ultimate directive.
For the remaining, they have claimed some finitely many strings by stage s0, and
none will ever claim another string. With oracle ∅′, we can examine the entire finite
collection to determine if there is a string � among them which remains claimed by
its current strategy forever, and with � ∈We .

We claim that there is such a � if and only if X ∩We �= ∅. In the one direction, if
there is such a �, then � ∈ X by construction, so � ∈ X ∩We .

In the other direction, if there is no such �, note that this implies thatRe ’s ultimate
directive is avoid—if it were meet, then Re ’s strings are amongst those examined,
so it must eventually renounce its claim to all of them, resulting in Re changing
directive to avoid, contrary to choice of s0. Now for any � ∈We ∩NU , we consider
two cases: |�| < 2e + 4 and |�| ≥ 2e + 4.

If |�| < 2e + 4, then � is too short to be claimed by any strategy of lower priority
thanRe , and by assumption � cannot be ultimately claimed by any strategy of higher
priority with ultimate directive meet. So � �∈ X .

If |�| ≥ 2e + 4, then � will eventually be claimed by Re , by construction, and so
� �∈ X . �

This completes the proof. �

Corollary 5.8. For some, and hence any, universal prefix-free machine U,

lim sup
�∈NU

K(� | �) = lim sup
�∈MU

K(� | �) =+ K∅′(�).

Proof. As this is independent of choice of machine, let U and X be as in
Proposition 5.2. Then

K∅′ (�) =+ lim sup
�∈X

K(� | �) ≤ lim sup
�∈NU

K(� | �) ≤ lim sup
�∈MU

K(� | �) ≤ lim sup
�∈2<�

K(� | �) =+ K∅′ (�),

where the first equality is by Proposition 4.2, the last is by Theorem 1.3, and the
inequalities are by subset. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

14 RODNEY DOWNEY ET AL.

§6. Where the limsup’s live, and finite strings as oracles. Here we collect some
miscellaneous results about finite strings as oracles. The first is motivated by our
(numerous!) failed attempts to prove Theorem 1.7 before we finally discovered the
method of Sections 4 and 5.

One avenue we pursued was attempting to determine for which m does K(� | m)
achieve lim supn K(� | n). A natural candidate is the nondeficiency stages: fix a
computable enumeration (am)m∈� of ∅′, and define

E = {m : (∀n > m) [am < an]}.

This is the basis for the method of true stages (see Montalbán [12] for a modern
interpretation for higher level priority arguments, but the idea going back to Dekker
[4], as per Soare [17, Chapter V 2.5]), where the elements of E are employed because
they make correct guesses about ∅′ (as we shall see in a moment).

However, this turns out to be approaching from the wrong direction. Since
K∅′(�) = lim supn K(� | n), to find places where the limit supremum is achieved, we
are not concerned with doing as well as ∅′—we are concerned with doing no better
than ∅′. Thus we are looking not for n which are powerful, but for those which are
weak.

The following result says that for m ∈ E, K(� | m) does much better than
lim supn K(� | n).

Proposition 6.1.

lim sup
m∈E

K(� | m) =+ K∅(2)
(�).

Proof. For any m, define �m ∈ 2<� to be the string of length am such that
�m(x) = 1 iff x = an for some n < m. Note that m �→ �m is effective, so K(� |
m) ≤+ K(� | �m). Also, �m ≺ ∅′ iff m ∈ E, so

lim sup
m∈E

K(� | m) ≤+ lim sup
m∈E

K(� | ∅′�am)

≤ lim sup
n
K(� | ∅′�n)

=+ lim sup
n
K∅′(� | n).

Conversely, ∅′ can compute the increasing enumeration of E, E = {b0 < b1 < ... },
so K∅′(� | n) ≤+ K(� | bn), giving

lim sup
m∈E

K(� | m) =+ lim sup
n
K∅′(� | n).

By Theorem 1.3 relativized to ∅′, this is (up to an additive constant) K∅(2)
(�). �

The reader might note the following somewhat paradoxical situation. The natural
proof to show that K∅′(�) ≤+ lim supn K(� | n) is to fully approximate K∅′(�)[n]
at each stage n, where both the computations and oracles are approximated for n
stages. We would do this as part of the computation of Kn(�) for some machine
Mn(�) via the Machine Existence Theorem as mentioned above. Therefore, for all
stages t > n it can only be that K(� | n)[t] ≤+ K(� | n)[n] ≤+ K∅′(�)[n]. The true

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

LIMIT COMPLEXITIES, MINIMAL DESCRIPTIONS, AND n-RANDOMNESS 15

value of K∅′(�) must have been achieved at a true stage, but we see above, it does
not happen at almost all true stages. Thus it must be achieved at infinitely many
non-true stages s, but where K∅′ [s] =+ K∅′(�). We don’t really understand the
characteristics of such “almost true” stages s. We also point out that the limsups
appear to be achieved for different s’s for different �’s.

Theorem 1.3 says that for almost any string �, almost any finite oracle can aid
in the compression of �. A priori, however, there is no reason to expect there
to be a single finite oracle which aids in the compression of almost every string.
Nevertheless, this is the case.

Theorem 6.2. For all e there is a string � such that for almost all �, K(� | �) <
K(�) – e. That is for � = �, K�(�) < K(�) – e.

Our proof is based on the conditional complexity variant of the Machine Existence
Theorem, which we first state.

Proposition 6.3. Suppose A ⊆ 2<� × � × 2<� is a c.e. set such that for every
� ∈ 2<� ,

∑
(�,s,�)∈A 2–s ≤ 1. Then for all (�, s, �) ∈ A, K(� | �) ≤+ s .

Proof of Theorem 6.2. We will enumerate a c.e. set A. Fix an effective bijection
� = 〈D, k〉 between � ∈ 2<� and pairs 〈D, k〉 with D ⊂ 2<� finite and k ∈ �. For
� = 〈D, k〉, for every � ∈ 2<� \D, we enumerate (�, t – k, �) into A for every t ≥
K(�), provided doing so does not cause

∑
(�,s,�)∈A 2–s to exceed 1.

Fix the constant c such that K(� | �) ≤ s + c for every (�, s, �) ∈ A. As∑
� 2–K(�) < 1, there is some finite D such that

∑
� �∈D 2–K(�) < 2–(e+c+1). Fix

� = 〈D, e + c〉. Then
∑
� �∈D

∑
t≥K(� 2–(t–e–c) < 1, so (�, t – e – c, �) is successfully

enumerated into A for all such � and t. ThusK(� | �) ≤ K(�) – e – c + c = K(�) –
e for all � �∈ D. �

Define � to be e-compressing if for almost all �, K(� | �) < K(�) – e.

Question 6.4. What can be said about the set Ce = {� | � is e-compressing}?

Question 6.5. Is there a definition of k-randomness purely involving C?

Acknowledgements. We thank Denis Hirschfeldt, Joseph Miller, and André Nies
for helpful discussions.

Funding. All authors were supported by the Marsden Fund of New Zealand, with
Lu on a Postdoctoral Fellowship.

REFERENCES

[1] L. Bienvenu, R. Downey, W. Merkle, and A. Nies, Solovay functions and their applications to
algorithmic randomness. Journal of Computing and System Sciences, vol. 81 (2015), pp. 1575–1591.

[2] L. Bienvenu, A. Muchnik, A. Shen, and N. Vereschagin, Limit complexities revisited. Theory
of Computing Systems, vol. 47 (2010), no. 3, pp. 720–736.

[3] G. Chaitin, A theory program size formally identical to information theory. Journal of the ACM,
vol. 22 (1975), pp. 329–340.

[4] J. Dekker, A theorem on hypersimple sets. Proceedings of the American Mathematical Society,
vol. 5 (1954), pp. 791–796.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

16 RODNEY DOWNEY ET AL.

[5] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, New York,
2010.

[6] R. Downey, D. Hirschfeldt, J. Miller, and A. Nies, Relativizing Chaitin’s halting probability.
Journal of Mathematical Logic, vol. 5 (2005), pp. 167–192.

[7] R. Downey and A. Melnikov, Effective categoricity of abelian groups. Journal of Algebra,
vol. 373 (2013), pp. 223–248.

[8] P. Gács, On the symmetry of algorithmic information. Soviet Maths Doklady, vol. 15 (1974),
pp. 1477–1480.

[9] M. Li and P. Vitanyi, Kolmogorov Complexity and its Applications, third ed., Springer, New York,
2008.

[10] J. S. Miller, Kolmogorov random reals are 2-random. Journal of Symbolic Logic, vol. 69 (2004),
pp. 907–913.

[11] ———, The K-degrees, low for K-degrees, and weakly low for K sets. Notre Dame Journal of
Formal Logic, vol. 50 (2010), pp. 381–391.

[12] A. Montalbán, Priority arguments via true stages. Journal of Symbolic Logic, vol. 79 (2014),
pp. 1315–1335.

[13] A. Nies, Computability and Randomness, Oxford Science Publications, Oxford, 2009.
[14] A. Nies, F. Stephan, and S. A. Terwijn, Randomness, relativization, and Turing degrees. Journal

of Symbolic Logic, vol. 70 (2005), pp. 515–535.
[15] J. Reimann and T. A. Slaman, Measures and their random reals. Transactions of the American

Mathematical Society, vol. 367 (2015), pp. 5081–5097.
[16] R. I. Soare, Automorphisms of the lattice of recursively enumerable sets, part II: Low sets. Annals

of Mathematical Logic, vol. 22 (1982), pp. 69–107.
[17] ———, Recursively Enumerable Sets and Degrees, Springer, Berlin, 1987.
[18] R. Solovay, Draft of paper (or series of papers) based on Chaitin’s work, unpublished notes, 1975.

SCHOOL OF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITY

PO BOX 600, WELLINGTON 6140, NEW ZEALAND
E-mail: rod.downey@vuw.ac.nz
E-mail: dan.turetsky@vuw.ac.nz

SCHOOL OF MATHEMATICS AND STATISTICS
HNP-LAMA, CENTRAL SOUTH UNIVERSITY

CHANGSHA, HUNAN 410083, CHINA
E-mail: g.jiayi.liu@gmail.com

DIVISION OF MATHEMATICAL SCIENCES
SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

NANYANG TECHNOLOGICAL UNIVERSITY
21 NANYANG LINK, SINGAPORE 637371, SINGAPORE

E-mail: kmng@ntu.edu.sg

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.41
Downloaded from https://www.cambridge.org/core. IP address: 18.226.165.118, on 13 Nov 2024 at 06:37:33, subject to the Cambridge Core terms of use, available at

mailto:rod.downey@vuw.ac.nz
mailto:dan.turetsky@vuw.ac.nz
mailto:g.jiayi.liu@gmail.com
mailto:kmng@ntu.edu.sg
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.41
https://www.cambridge.org/core

	1 Introduction
	1.1 k≥2
	1.2 The plan
	1.3 The complexity of the sets MU and NU
	1.4 The machine existence theorem

	2 Hirschfeldt's Theorem
	3 No low hitting sets
	4 Conditional complexity along semi-low sets
	5 Conditional complexity along minimal codes
	6 Where the limsup's live, and finite strings as oracles

