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Abstract

Let X = GC be a group, where C is a cyclic group and G is either a generalized quaternion group
or a dihedral group such that C ∩ G = 1. In this paper, X is characterized and, moreover, a complete
classification for X is given, provided that G is a generalized quaternion group and C is core-free.
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1. Introduction

A group G is said to be properly factorizable if G = AB for two proper subgroups A
and B of G, while the expression G = AB is called a factorization of G. Furthermore,
if A ∩ B = 1, then we say that G has an exact factorization.

Factorizations of groups naturally arise from the well-known Frattini’s argument,
including its version in permutation groups. One of the most famous results about
factorized groups might be one of the theorems of Itô, saying that any group is
metabelian whenever it is the product of two abelian subgroups (see [11]). Later,
Wielandt and Kegel showed that the product of two nilpotent subgroups must be
soluble (see [13, 19]). Douglas showed that the product of two cyclic groups must
be super-solvable (see [3]). The factorizations of almost simple groups with a solvable
factor were determined in [15]. There are many other papers related to factorizations,
for instance, finite products of soluble groups, factorizations with one nilpotent factor
and so on. Here we are not able to list all references and readers may refer to a survey
paper [2].
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2 H. Yu, W. Luo and S. Du [2]

In this paper, we shall focus on the product group X = GC for a finite group
G and a cyclic group C such that G ∩ C = 1. Suppose that C is core-free. Then,
X is also called a skew product group of G. Recall that the skew morphism of a
group G and a skew product group X of G were introduced by Jajcay and Širáň in
[12], which is related to studies of regular Cayley maps of G. For the reason of the
length of the paper, we are not able to explain them in detail. Recently, there have
been many results on skew product groups X of some particular groups G that are
cyclic groups, elementary abelian p-groups, finite nonabelian characteristically simple
groups, dihedral groups, generalized quaternion groups and so on. In particular, so far,
there exists no classification of skew product groups of cyclic groups, and based on
big efforts of several authors working on regular Cayley maps, the final classification
of skew product groups of dihedral groups was given in [8]. For partial results about
generalized quaternion groups, see [9].

Throughout this paper, set C = 〈c〉 and

Q = 〈a, b | a2n = 1, b2 = an, ab = a−1〉 � Q4n, n ≥ 2,

D = 〈a, b | an = b2 = 1, ab = a−1〉 � D2n, n ≥ 2. (1-1)

Let X(G) = GC be a group, where G ∈ {Q, D} and G ∩ C = 1. In this paper, we give
a characterization for X(Q) and a complete classification of X(Q) provided that C is
core-free. In the above paper dealing with skew product groups of dihedral groups, the
authors adopt some computational techniques on skew morphisms. Alternatively, in
this paper, we realize our goals by using classical group theoretical tools and methods
(solvable groups, p-groups, permutation groups, group extension theory and so on). In
our approach, we pay attention to the global structures of the group X(G). Since X(Q)
is closely related to X(D), some properties of X(D) have to be considered too.

Note that X = X(G) = GC = 〈a, b〉〈c〉 for G ∈ {Q, D}. Thus, 〈a〉〈c〉 is unnecessarily
a subgroup of X. Clearly, X contains a subgroup M of the largest order such that 〈c〉 ≤
M � 〈a〉〈c〉. This subgroup M plays an important role in this paper. From now on, by
SX , we denote the core ∩x∈XSx of X in a subgroup S of X.

There are four main theorems in this manuscript. In Theorem 1.1, the global
structure of our group X ∈ {X(Q), X(D)} is characterized.

THEOREM 1.1. Let G ∈ {Q, D} and X = X(G) = GC, where G ∩ C = 1. Let M be the
subgroup of the largest order in X such that 〈c〉 ≤ M � 〈a〉〈c〉. Then the group M is
characterized in Table 1.

Clearly, M is a product of two cyclic subgroups, which has not been determined in
general so far, as mentioned before. However, further properties of our group X are
given in Theorem 1.2.

THEOREM 1.2. Let G ∈ {Q, D} and X = X(G), and let M be defined as above. Then
we have 〈a2, c〉 ≤ CX(〈c〉X) and |X : CX(〈c〉X)| ≤ 4. Moreover, if 〈c〉X = 1, then MX ∩
〈a2〉 �MX. In particular, if 〈c〉X = 1 and M = 〈a〉〈c〉, then 〈a2〉 � X.
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[3] The product of a generalized quaternion group and a cyclic group 3

TABLE 1. The forms of M, MX and X/MX .

Case M MX X/MX

1 〈a〉〈c〉 〈a〉〈c〉 Z2
2 〈a2〉〈c〉 〈a2〉〈c2〉 D8
3 〈a2〉〈c〉 〈a2〉〈c3〉 A4
4 〈a4〉〈c〉 〈a4〉〈c3〉 S4
5 〈a3〉〈c〉 〈a3〉〈c4〉 S4

Using Theorem 1.2, we classify skew product groups of generalized quaternion
groups; see the following theorem.

THEOREM 1.3. Let G = Q and X = X(G) = G〈c〉, where m = o(c) ≥ 2, G ∩ 〈c〉 = 1
and 〈c〉X = 1. Set R := {a2n = cm = 1, b2 = an, ab = a−1}. Then, one of the following
holds:

(1) X = 〈a, b, c | R, (a2)c = a2r, ca = a2sct, cb = aucv〉;
(2) X = 〈a, b, c | R, (a2)c2

= a2r, (c2)a = a2sc2t, (c2)b = a2uc2, ac = bc2w〉;
(3) X = 〈a, b, c | R, (a2)c = a2r, (c3)a = a2sc3, (c3)b = a2uc3, ac = bcim/2, bc = axb〉;
(4) X = 〈a, b, c | R, (a4)c = a4r, (c3)a2

= a4sc3, (c2)b = a4uc3, (a2)c = bcim/2,
bc = a2xb, ca = a2+4zc1+(jm/3)〉;

(5) X = 〈a, b, c | R, ac4
= ar, bc4

= a1−rb, (a3)cm/4
= a−3, acm/4

= bc3m/4〉,

where the parameters are given in Lemmas 5.1, 5.2, 5.3, 5.5 and 5.6, respectively.

The relationship between X(Q) and X(D) is characterized in the following theorem.

THEOREM 1.4. For the group X(Q), we have 〈an〉 � X(Q) for all cases in items (2)–(5)
and some cases in item (1). Moreover, corresponding to D � Q/〈an〉, we have X(D) =
X(Q)/〈an, c1〉, where 〈an〉 � X(Q) and 〈an, c1〉 = 〈an, c〉X(Q).

REMARK 1.5. One may determine regular Cayley maps of dihedral groups (which was
done in [14] via skew-morphism computations) and of generalized quaternion groups
by Theorem 1.3.

After this introductory section, some preliminary results are given in Section 2; and
Theorems 1.1, 1.2, 1.3 and 1.4 are proved in Sections 3, 4, 5 and 6, respectively.

2. Preliminaries

In this section, some elementary facts used in this paper are collected.

PROPOSITION 2.1 [17, Theorem 1]. The finite group G = AB is solvable, where both
A and B are subgroups with cyclic subgroups of index no more than 2.
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4 H. Yu, W. Luo and S. Du [4]

PROPOSITION 2.2 [10, Theorem 4.5]. Let H be a subgroup of G. Then NG(H)/CG(H)
is isomorphic to a subgroup of Aut (H).

PROPOSITION 2.3 [16, Theorem]. If G is a transitive permutation group of degree n
with a cyclic point-stabilizer, then |G| ≤ n(n − 1).

PROPOSITION 2.4 [11, Satz 1 and Satz 2]. Let G = AB be a group, where both A and
B are abelian subgroups of G. Then:

(1) G is meta-abelian, that is, G′ is abelian; and
(2) A or B contains a normal subgroup N � 1 of G if G � 1.

PROPOSITION 2.5 [10, Theorem 11.5]. Let G = 〈a〉〈b〉 be a group and p be an odd
prime. If |〈a〉| ≤ |〈b〉|, then 〈b〉G � 1. If both 〈a〉 and 〈b〉 are p-groups, then G is
metacyclic.

PROPOSITION 2.6 [1, Corollary 1.3.3]. Let G = G1G2 be a group. Then for any prime
p, there exists Pi ∈ Sylp(Gi) such that P = P1P2 ∈ Sylp(G) for i = 1 or 2.

PROPOSITION 2.7 [7, Satz 1]. Let N ≤ M ≤ G such that (|N |, |G : M|) = 1 and N is an
abelian normal subgroup of G. If N has a complement in M, then N has a complement
in G too.

The Schur multiplier M(G) of a group G is defined as the second integral homology
group H2(G; Z), where Z is a trivial G-module. It plays an important role in the central
expansion of groups. The following result is well known.

PROPOSITION 2.8 [18, (2.21) on page 301]. The Schur multiplier M(Sn) of Sn is a
cyclic group of order 2 if n ≥ 4 and of order 1 for n ≤ 3.

Recall that a group H is said to be a Burnside group if every permutation group
containing a regular subgroup isomorphic to H is either 2-transitive or imprimitive.

PROPOSITION 2.9 [20, Theorems 25.3 and 25.6]. Every cyclic group of composite
order is a Burnside group. Every dihedral group is a Burnside group.

PROPOSITION 2.10 [5, Lemma 4.1]. Let n ≥ 2 be an integer and p a prime.
Then, AGL(n, p) contains an element of order pn if and only if (n, p) = (2, 2) and
AGL(2, 2) � S4.

Recall that our group X(D) = DC, where D is a dihedral group of order 2n and C
is a cyclic group of order m such that D ∩ C = 1, where n, m ≥ 2. Then, we have the
following results.

PROPOSITION 2.11 [6, Lemma 4.1]. Suppose that X(D) = 〈a, b〉〈c〉, 〈a〉〈c〉 ≤ X(D) and
〈c〉X(D) = 1. Then, 〈a2〉 � X(D).

REMARK 2.12. An independent proof of Proposition 2.11 was also given in [4].
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LEMMA 2.13. Suppose that X is a solvable group and has a faithfully 2-transitive
permutation representation relative to a subgroup M, whose index is of composite
order. Then, X ≤ AGL(k, p), where k is a positive integer and p is a prime. Moreover:

(i) if X contains an element of order pk, then X = S4; and
(ii) if the hypotheses hold for X = X(D) and M = C, then X(D) = A4.

PROOF. Set Ω = [X : M]. Let N be a minimal normal subgroup of X. Since X is
solvable, N � Zk

p for some prime p and integer k. Since X is 2-transitive, it is primitive,
which implies that N is transitive onΩ and so is regular onΩ. Therefore, X = N � Xα ≤
AGL(k, p) for some α ∈ Ω. Since X is 2-transitive and |Ω| = pk, we know |Xα| ≥ pk − 1
for any α ∈ Ω.

(i) Suppose that X contains an element of order pk. By Proposition 2.10, we get
(k, p) = (2, 2) so that X = S4, reminding us that |Ω| is not a prime.

(ii) Let X = X(D) and M = C = 〈c〉 with the order of m. Then, |X(D)| = 2nm = pkm.
By Proposition 2.3, we get pkm ≤ pk(pk − 1). Therefore, m = pk − 1 as m =
|M| = |Xα| ≥ pk − 1, which implies that 〈c〉 is a Singer subgroup of GL(k, p) and
X(D) = N � 〈c〉. Then, both D and N are regular subgroups, that is, |D| = 2n =
|Ω| = pk, which implies p = 2. Now, we have |X(D)| = 2k(2k − 1). Since both N
and D are Sylow 2-subgroups of X(D) and N � X(D), we get D = N, so that
D � Z2

2 and X(D) = A4. �

3. Proof of Theorem 1.1

To prove Theorem 1.1, let G ∈ {D, Q}, as defined in (1-1). Let X = G〈c〉 be either
X(D) or X(Q). Let M be the subgroup of the largest order in X such that 〈c〉 ≤ M �
〈a〉〈c〉, and set MX = ∩x∈XMx. By Proposition 2.1, X is solvable. Then, Theorem 1.1 is
proved in Lemmas 3.1 and 3.3, which deal with G = D and Q, respectively.

LEMMA 3.1. Theorem 1.1 holds, provided G = D and X = X(D).

PROOF. Let G = D and X = X(D). If m = 1, then X = D and M = 〈a〉, as desired. So
in what follows, we assume m ≥ 2. Recall that m, n ≥ 2, |X| is even and more than 7.
The lemma is proved by induction on the order of X. Up to isomorphism, all cases of
|X| ≤ 24 are listed in Table 2, showing the conclusion.

Assume |X| � 24. Then we carry out the proof by the following three steps.

Step 1: Case of MX � 1. Suppose that MX � 1. Set M = 〈ai〉〈c〉 for some i. Since

ai ∈ ∩l2,l3 Mal2 bl3
= ∩l1,l2,l3 Mcl1 al2 bl3

= MX ,

we get that MX = MX ∩ (〈ai〉〈c〉) = 〈ai〉〈cr〉 for some r. Set X := X/MX = G〈c〉. Then
we claim that G ∩ 〈c〉 = 1. In fact, for any g = c′ ∈ G ∩ 〈c〉, for some g ∈ G and
c′ ∈ 〈c〉, we have gc′−1 ∈ MX , that is, g ∈ 〈ai〉 and c′ ∈ 〈cr〉, which implies g = c′ = 1.
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TABLE 2. All cases of |X| ≤ 24 up to isomorphism.

X M X/MX

〈a, b, c | a2 = b2 = cm = 1, [a, b] = 1, ac = b, bc = a, m ∈ {2, 4, 6}〉 〈a2〉〈c〉 D8
〈a, b, c | a2 = b2 = cm = 1, [a, b] = 1, ac = b, bc = ab, m ∈ {3, 6}〉 〈a2〉〈c〉 A4
〈a, b, c | a4 = b2 = c3 = 1, ab = a−1, ca = a2c2, bc = a2b〉 〈a4〉〈c〉 S4
〈a, b, c | a3 = b2 = c4 = 1, ab = a−1, ac = bc−1〉 〈a3〉〈c〉 S4
else 〈a〉〈c〉 Z2

Therefore, G ∩ 〈c〉 = 1. Let M0/MX = 〈aj〉〈c〉 be the largest subgroup of X containing
〈c〉 and contained in the subset 〈a〉〈c〉. Then, 〈aj〉〈c〉 = 〈c〉〈aj〉. Since

〈aj〉〈c〉MX = 〈aj〉MX〈c〉 = 〈aj〉〈ai〉〈c〉 and 〈c〉〈aj〉MX = 〈c〉MX〈aj〉 = 〈c〉〈ai〉〈aj〉,

we get 〈ai, aj〉〈c〉 ≤ X. By the maximality of M, we have 〈ai, aj〉 = 〈ai〉 so that M0 = M.
Using the induction hypothesis on X = G〈c〉, noting that M0/MX = M/MX is

core-free in X, we get that X is isomorphic to Z2, D8, A4 or S4, and correspondingly,
o(a) = k, where k ∈ {1, 2, 3, 4}, and so ak ∈ MX . Since M = 〈ai〉〈c〉 and MX = 〈ai〉〈cr〉,
we know that 〈ai〉 = 〈ak〉, which implies that i ∈ {1, 2, 3, 4}. Clearly, if X = Z2, then
MX = M; if X = D8 and o(c) = 2, then MX = 〈a2〉〈c2〉; if X = A4 and o(c) = 3, then
MX = 〈a2〉〈c3〉; if X = S4 and o(c) = 4, then MX = 〈a3〉〈c4〉; and if X = S4 and o(c) = 3,
then MX = 〈a4〉〈c3〉.

Step 2: Show that if MX = 1, then G ∈ {D2kp|k = 2, 3, 4 and p is a prime}. Suppose
that MX = 1. Since both 〈a〉X and 〈c〉X are contained in MX , we get 〈a〉X = 〈c〉X = 1.
Arguing by contradiction, assume that GX � 1. If |GX | � 4, then by G = 〈a, b〉 � D2n,
we get 〈a〉X � 1, which is a contradiction. So |GX | ≤ 4. Since GX � G � D2n, we know
that |G : GX | ≤ 2, which implies |G| ≤ 8, that is, G � D4 or D8. A direct check shows
that X is D8, A4 or S4, which contradicts |X| � 24. Therefore, GX = 1.

Next, we consider the faithful (right multiplication) action of X on the set of right
cosets Ω := [X : 〈c〉]. By Proposition 2.9, every dihedral group is a Burnside group,
which implies that X is either 2-transitive or imprimitive. If X is primitive, then noting
that X has a cyclic point-stabilizer 〈c〉, by Lemma 2.13(2), we get G = D4 and X =
A4, which contradicts |X| � 24. So in what follows, we assume that X is imprimitive.
Pick a maximal subgroup H of X that contains 〈c〉 properly. Then, H = H ∩ X = (H ∩
G)〈c〉 = 〈as, b1〉〈c〉 < X for some b1 ∈ G \ 〈a〉 and some s. Using the same argument
as that in Step 1, one has as ∈ HX . Reset X := X/HX . Consider the faithful primitive
action of X on Ω1 := [X : H], with a cyclic regular subgroup of 〈a〉, where |Ω1| = s.
By Proposition 2.9, we know that either s is a prime p such that X ≤ AGL(1, p) or s is
a composite such that X is 2-transitive on Ω1. In what follows, we consider these two
cases when as = 1 or as � 1, separately.

Case (1): as = 1. In this case, H = 〈c〉 � 〈b〉 and X = 〈c, b〉.〈a〉. Then two cases when
s is composite or prime are considered, separately.
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[7] The product of a generalized quaternion group and a cyclic group 7

Suppose that s is a composite such that X is 2-transitive on Ω1. By Lemma 2.13,
we get X ≤ AGL(l, q) for some prime q, which contains a cyclic regular subgroup 〈a〉
of order ql. By Lemma 2.13(1), X � S4 and o(a) = 4 so that o(a) = 4 (as HX ≤ 〈b, c〉),
which in turn implies G = D8. In this case, checking by Magma, we have that either
o(c) = 2, 3 and |X| ≤ 24; or o(c) = 4, |X| = 32 but GX � 1, which is a contradiction.

Suppose that s is a prime p such that X ≤ AGL(1, p). Then, o(a) = p such that
G � D2p, where p ≥ 5, as |X| � 24. Clearly, 〈a〉 � X. Consider the action of X on the
set of blocks of length 2 on Ω = [X : 〈c〉], that is, the orbital of Ω under H, with the
kernel K := HX . If K = 1, then we get X = X and 〈a〉 � X, which is a contradiction.
Therefore, K � 1. Then, K � 〈c〉 (as 〈c〉X = 1) so that K interchanges two points 〈c〉 and
〈c〉b, which implies |K/K ∩ 〈c〉| = 2. Since K ∩ 〈c〉 is cyclic and K ∩ 〈c〉 fixes setwise
each block of length 2, we get |K ∩ 〈c〉| ≤ 2. Therefore, |K| ≤ 4. Since K � 〈a〉 � X
and p ≥ 5, we have K � 〈a〉 = K × 〈a〉 so that 〈a〉 char (K × 〈a〉) � X, which contradicts
GX = 1.

Case (2): as � 1. First, show s = p, a prime. Arguing by a contradiction, assume that
s is composite. To do that, recall X = X/HX = 〈a〉H and Ω1 := [X : H]. Then, X is
2-transitive on Ω1, with a cyclic regular subgroup of 〈a〉. Since as ∈ HX , we get HX �
1 and of course HX � 〈c〉. Suppose that 〈aj〉〈c〉 ≤ H. Then aj ∈ M. Using the same
arguments as in the first line of Step 1 again, we get aj ∈ MX = 1. Therefore, there
exists an l such that bcl ∈ HX , which implies H = 〈c〉. Then, X = 〈a〉〈c〉, a product of
two cyclic subgroups, cannot be isomorphic to S4, which contradicts Lemma 2.13(1).
Therefore, s = p, a prime, and X/HX ≤ AGL(1, p).

Second, consider the quotient group H := H/〈c〉H = 〈ap, b〉〈c〉, taking into account
s = p, a prime. Clearly, we have 〈c〉H = 1 and o(ap) = o(ap). Let H0/〈c〉H = 〈apj〉〈c〉
be the subgroup of H with the largest order such that 〈c〉 ≤ H0/〈c〉H � 〈ap〉〈c〉. Since
|H| < |X|, by the induction hypothesis on H, we know that H0/〈c〉H = 〈apk〉〈c〉 for k ∈
{1, 2, 3, 4}, which implies 〈apk〉〈c〉〈c〉H = 〈c〉〈apk〉〈c〉H = 〈c〉〈apk〉, giving 〈apk〉〈c〉 ≤
H ≤ X. Therefore, we get apk ∈ MX . Since MX = 1 and ap = as � 1, we get that the
order of a is kp, where k ∈ {2, 3, 4}. Therefore, only the following three groups remain:
G = D2kp, where k ∈ {2, 3, 4} and p is a prime.

Step 3: Show that G cannot be D2kp, where k ∈ {2, 3, 4}and p is a prime, provided
MX = 1. Suppose that G � D2kp, k ∈ {2, 3, 4}, recalling that H = 〈ap, b〉〈c〉, MX = 1,
Ω = [X : 〈c〉] and X has blocks of length 2k acting on Ω. Moreover, 〈ap〉X = 1 and
there exists no nontrivial element aj ∈ H such that 〈aj〉〈c〉 ≤ H. Here, we only give the
proof for the case k = 4, that is, G � D8p. The proof for other cases is similar but easier.

Let G = D8p. If p = 2 or 3, then G � D16 or D24, which can be directly excluded
by Magma. So assume p ≥ 5. Set a1 = ap and a2 = a4 so that H = 〈a1, b〉〈c〉, where
o(a1) = 4. Set C0 = 〈c〉H and K = HX . Then, H contains an element a1 of order 4
having two orbits of length 4 on each block of length 8, where a1 ≤ K. Consider the
action of H := H/C0 = 〈a1, b〉〈c〉 on the block containing the point 〈c〉, noting that
〈c〉 is core-free. Recall that 〈a1〉X = 1. So 〈a1, b〉 � D8 and H � S4. Moreover, we have
NH(〈c〉) = 〈c〉 � 〈b〉 � D6, by rechoosing b in 〈a1, b〉. Therefore, L := 〈c〉〈b〉 ≤ X.
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Now we turn to considering the imprimitive action of X on Ω2 := [X : L], which
is of degree 4p. Let K ∩ 〈c〉 = 〈c1〉. Then every orbit of 〈c1〉 on Ω2 is of length no
more than 4. Observing the cycle decomposition of c1LX ∈ X/LX on Ω2, we know that
k1 := |〈c1〉LX/LX ||12. Therefore, ck1

1 fixes all points in Ω2, which implies c2k1
1 fixes all

points in Ω. Therefore, c2k1
1 = 1 (as 〈c〉X = 1), that is, |K ∩ 〈c〉||2k1 and, in particular,

|K ∩ C0||2k1. Moreover, since 〈a2K〉 � X/K � Zp � Zr for some r|(p − 1), we know that
K � 〈a2〉 � X. Then, |K ∩ C0||24, as k1|12. Also, K/(K ∩ C0) � KC0/C0 � H/C0 � S4.
Since a1 ∈ KC0/C0, where o(a1) = 4, and every normal subgroup of S4 containing an
element of order 4 must contain A4, we know that K/(K ∩ C0) contains a characteristic
subgroup K1/(K ∩ C0) � A4.

We claim that CK1 (K ∩ C0) = K1. Arguing by contradiction, assume that
K ∩ C0 � Z(K1). Then, as a quotient of A4, we have 3||K1/CK1 (K ∩ C0)|. However,
since K1/CK1 (K ∩ C0) ≤ Aut (K ∩ C0), K ∩ C0 ≤ Z3 × Z8 and using the cycle
decomposition of the generator of K ∩ C0, we get that K1/CK1 (K ∩ C0) contains
no element of order 3, which implies a contradiction. Therefore, CK1 (K ∩ C0) = K1,
that is, (K ∩ C0) ≤ Z(K1).

Since K1/(K ∩ C0) � A4 and Z(A4) = 1, we get that K ∩ C0 = Z(K1) char K1 � X.
Therefore, K ∩ C0 ≤ 1 (as 〈c〉X = 1) so that K � A4 or S4, which implies

〈a2〉 char (K × 〈a2〉) � X,

which contradicts GX = 1 again. �

To handle X(Q), we need the following result.

LEMMA 3.2. Let X = X(Q) = 〈a, b〉〈c〉. If 〈c〉X = 1, then 〈a〉X � 1.

PROOF. Since 〈c〉X = 1, by Proposition 2.3, we have m < |G|. So S := G ∩ Gc � 1,
otherwise |X| ≥ |G|2 > |X|. Take a subgroup T of order a prime p of S. Since o(ajb) = 4
for any integer j, we know T ≤ 〈a〉. Since S has a unique subgroup of order p, we get
Tc = T , giving T � X and so 〈a〉X � 1, as desired. �

LEMMA 3.3. Theorem 1.1 holds, provided G = Q and X = X(Q).

PROOF. Let X be a minimal counter-example. First, we claim that 〈c〉 is core-free.
Arguing by contradiction, assume that 〈c〉X � 1. Consider X = X/〈c〉X . The subgroup
M1 of X is chosen to have the largest order such that 〈c〉 ≤ M1 � 〈a〉〈c〉. Since |X| <
|X| and G is a generalized quaternion group, by the minimality of X, we get M1 =

〈ai〉〈c〉, where i ∈ {1, 2, 3, 4}. This gives M = 〈ak〉〈c〉, where k ∈ {1, 2, 3, 4}, which is a
contradiction. Therefore, 〈c〉 is core-free, that is, 〈c〉X = 1.

By Lemma 3.2, 〈a〉X � 1. If 〈a〉X = 〈a〉, then X = (〈a〉 � 〈c〉).〈b〉, which implies
M = 〈a〉〈c〉, and that is a contradiction. So 〈a〉X < 〈a〉. Set X := X/〈a〉X = G〈c〉 and
let the subgroup M2/〈a〉X of X be of the largest order such that 〈c〉 ≤ M2 � 〈a〉〈c〉. If
an � 〈a〉X , then G is a generalized quaternion group; if an ∈ 〈a〉X , then G is a dihedral
group. For the first case, by the minimality of X, and for the second case, by Lemma
3.1, we get M2 = 〈ai〉〈c〉, where i ∈ {1, 2, 3, 4}. Then, 〈ai〉〈c〉〈a〉X = 〈c〉〈ai〉〈a〉X . This
gives (〈ai〉〈a〉X)〈c〉 ≤ X, which implies M = 〈ak〉〈c〉, where k ∈ {1, 2, 3, 4}, which is a
contradiction. �
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4. Proof of Theorem 1.2

The proof of Theorem 1.2 consists of the following three lemmas.

LEMMA 4.1. Suppose that G = Q, X = X(G), M = 〈a〉〈c〉 and 〈c〉X = 1. If G is a
2-group, then 〈a2〉 � X.

PROOF. Suppose that X is a minimal counter-example. Let a0 be the involution
of 〈a〉. Since 〈c〉X = 1, by Lemma 3.2, we get 〈a〉X � 1, which implies 〈a0〉 � X,
as G is a 2-group. Consider X = X/〈a0〉 = G〈c〉. Note that G is a dihedral group.
Set 〈c〉X = (〈a0〉 × 〈c0〉)/〈a0〉. Then, 〈c2

0〉 � X, which implies c2
0 = 1. If c0 = 1, by

Proposition 2.11, we get 〈a2〉 � X. Then, 〈a2〉 � X is a contradiction, noting X is
a minimal counter-example. Therefore, o(c0) = 2. By using Proposition 2.11 on
X/〈a0, c0〉, we get (〈a2〉(〈a0〉〈c0〉))/〈a0, c0〉 � X/〈a0, c0〉, that is, H := 〈a2〉 � 〈c0〉 � X.
Then we continue the proof by the following two steps.

Step 1: Show that X is a 2-group. In fact, noting that 〈a4〉 = �1(H) char H � X, relabel
X = X/〈a4〉, where we write 〈c〉X = 〈c

i〉. Then, 〈a4〉 � 〈ci〉 � X. Let Q be the 2′-Hall
subgroup of 〈ci〉. Since Aut (〈a4〉) is a 2-group, we know that [Q, a4] = 1 and so Q � X,
which contradicts 〈c〉X = 1. Therefore, 〈ci〉 is also a 2-group. Reset X = X/〈a4〉〈ci〉 =
G〈c〉. Now, |G| = 8 and so G � D8 (clearly, G cannot be Q8). Since 〈c〉X = 1, we have
o(c)|4. Therefore, X is a 2-group and so is X.

Step 2: Get a contradiction. Set K := 〈a0〉 × 〈c0〉 � Z2
2. Consider the conjugacy of G

on K. Since 〈c0〉 � X, we get CX(K) ∩ G < G. Since G may be generated by some
elements of the form ajb, there exists an element aib ∈ G \ CG(K), exchanging c0 and
c0a0 (as (aib)2 = a0). To make it easier to write, we write b instead of aib. Since X =
GC = (〈a〉〈c〉).〈b〉, first we write cb = asct, where t � 0. Note that

c = cb2
= (asct)b = a−s(asct)t = ct(asct)t−1,

which implies
(asct)t−1 = c1−t.

Then we have
(ct−1)b = (cb)t−1 = (asct)t−1 = c1−t.

If t � 1, then cb
1 ∈ 〈c

t−1〉b = 〈ct−1〉, which contradicts cb
1 = a1c1. So t = 1, that is, cb =

asc. Second, we write cb = ct1 as1 . With the same arguments as the above, we can get
t1 = 1 and cb = cas1 . Therefore, we have asc = cb = cas1 , that is, (as)c = as1 . Clearly,
〈as〉 = 〈as1〉, which implies that c normalizes 〈as, b〉. Note that

〈as, b〉 ≤ ∩ci∈〈c〉G
ci
= ∩x∈XGx = GX ,

which implies ba = ba−2 ∈ GX . Thus, a2 ∈ GX , which implies 〈a2〉 � X. This contra-
dicts the minimality of X. �

LEMMA 4.2. Suppose that G = Q, X = X(Q), M = 〈a〉〈c〉 and 〈c〉X = 1. Then,
〈a2〉 � X.
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PROOF. Take a minimal counter-example X and set o(c) = m, o(a) = 2n and a1 := an.
By Lemma 4.1, we know that G is not a 2-group. We carry out the proof by the
following three steps.

Step 1: Show that the possible groups for G are Q4pk , where p is an odd prime. By
Lemma 3.2, let p be the maximal prime divisor of |〈a〉X | and set a0 = a2n/p. Clearly,
a0 ∈ 〈a2〉 if p is odd. Consider X = X/〈a0〉 = G〈c〉 and set 〈c〉X = 〈c0〉. Then depending
on whether p is 2, G is either a dihedral group or a generalized quaternion group. We
claim that 1 � 〈c〉X = 〈c0〉 	 〈c〉. Arguing by contradiction, assume that 〈c〉X is either
1 or 〈c〉. Suppose that 〈c〉X = 1. Then by the minimality of X or Proposition 2.11, we
get 〈a2〉 � X, which implies 〈a2〉〈a0〉 � X. Since 〈a2〉〈a0〉 is either 〈a2〉 or 〈a〉, we get
〈a2〉 � X, which is a contradiction. Suppose that 〈c〉 � X. Then, X/CX(〈c〉) ≤ Aut (〈c〉)
which is abelian and so X

′ ≤ CX(〈c〉). Then, a2 ∈ G
′ ≤ X

′ ≤ CX(〈c〉), that is, [a2, c] ∈
〈a0〉, which implies 〈a2, a0〉 � X, and again we get 〈a2〉 � X, which is a contradiction.
Therefore, we have 1 � 〈c〉X = 〈c0〉 	 〈c〉.

Consider X1 = G〈c0〉 < X. By the minimality of X, we get 〈a2〉 � X1, which implies
that 〈c0〉 normalizes 〈a2〉. Reset

K = 〈a0〉 � 〈c0〉, X = X/K = G〈c〉 and H = 〈a2〉 � 〈c0〉.

If o(a0) < o(c0), then 1 � 〈cj
0〉 = Z(K) � X is, for some j, a contradiction. Therefore,

1 < o(c0) ≤ o(a0). Note that K is either a Frobenius group or Z2
p. Thus, we have the

following two cases.

Case (1): K = 〈a0〉 � 〈c0〉 � Zp � Zr, a Frobenius group, where r ≥ 2 and r | (p − 1).
In this case, p is odd, which implies a0 ∈ 〈a2〉. Set X = X/K. By the minimality of
X, we have H/K = 〈a2〉 � X, that is, H := 〈a2〉 � 〈c0〉 � X. Since K � X, we know that
〈a2〉/〈a0〉 and 〈c0〉〈a0〉/〈a0〉 are normal in H/〈a0〉. Then, [a2, c0] ≤ 〈a0〉. So

H = 〈a2, c0 | an = cr
0 = 1, (a2)c0 = a2aj

0〉.

Let P ∈ Sylp(H). Actually, P ≤ 〈a2〉. Then, P char H � X so that P ≤ 〈a〉X . Clearly,
Z(H) = 〈a2p〉. Then, 〈a2p〉 ≤ 〈a〉X . Noting that 〈a2p, P〉 = 〈a2p, an/pk〉 = 〈a2〉, where
pk ||n, we get a2 ∈ 〈a〉X , which is a contradiction.

Case (2): K = 〈a0〉 × 〈c0〉 � Z2
p. In this case, we claim that a0 ∈ 〈a2〉. Arguing by

contradiction, assume that a0 � 〈a2〉. Then, p = 2 and n is odd. In X, we know
that H � X, which implies 〈a0〉H � X. Noting 〈a2〉 is a 2′-Hall subgroup of 〈a0〉H,
we have 〈a2〉 char 〈a0〉H � X, which implies a2 ∈ 〈a〉X , and that is a contradiction.
Therefore, a0 ∈ 〈a2〉, which implies that p is an odd prime. With the same reason
as that in Case (1), we have H � X. Let H1 be the p′−Hall subgroup of H. We
get that H1 is also the p′-Hall subgroup of 〈a2〉 as o(c0) = p. Then, H1 char H � X,
which implies H1 ≤ 〈a〉X . We claim that H1 = 1. Arguing by contradiction, assume that
H1 � 1. Then there exists an element a1 of prime order q in H1, where q < p, as p is
maximal. Consider X := X/〈a1〉 = G〈c〉. Similarly, we have 1 � 〈c〉X := 〈c1〉 	 C and
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H0 := 〈a2〉 � 〈c1〉 � X. Let P ∈ Sylp(H0). Then, P char H and so P � X, which implies
P ≤ 〈a〉X . Noting 〈H1, P〉 = 〈a2〉, we therefore get a2 ∈ 〈a〉X , which is a contradiction.
So H1 = 1, which means that G is Q4pk where p is an odd prime as G is not a 2-group.

Step 2: Show that the possible values of m are pqe for a prime q (may be equal to p)
and an integer e. Arguing by contradiction, assume that m = pqem1, where m1 � 1 and
q 
 m1. Reset a1 = an, the involution of 〈a〉. Suppose that a1 ∈ 〈a〉X . Let 〈a1〉 � 〈c1〉 be
the core of 〈a1, c〉 in X, noting 〈a1〉 � X. Since 〈c2

1〉 � X and 〈c〉X = 1, we get c2
1 = 1.

Consider X = X/〈a1〉〈c1〉. Since G � D2pk is a dihedral group, by Proposition 2.11, we
get 〈a2〉 = 〈a〉 � X, which implies 〈a〉 � 〈c1〉 � X. Then, 〈a2〉 � X is a contradiction. So
in what follows (including Step 3), we assume that a1 � 〈a〉X , which implies that 〈a〉X
is a p-group.

Recall H = 〈a2〉 � 〈c0〉. Since H � X and b2 = a1, we get X = X/H = 〈b〉〈c〉 and
〈b〉 � Z4. By considering the permutation representation of X on the cosets [X : 〈c〉] of
size 4, we know that 〈c2〉 � X. So 〈b, c2, H〉 ≤ X, that is, X1 := 〈b, c2, H〉 = 〈a, b〉〈c2〉 =
G〈c2〉 ≤ X.

First, suppose that m (=o(c)) is even. Then, [X : X1] = 2. Let 〈c2〉 be the Sylow
2-subgroup of 〈c〉. By induction on X1, 〈a2〉 � X1 and, in particular, 〈c2〉 normalizes
〈a2〉. By Proposition 2.6, we know that 〈aib〉〈c2〉 is a Sylow 2-subgroup of X for some i.
Then we get X2 := H(〈aib〉〈c2〉) = 〈a, b〉〈c0, c2〉 < X. By the minimality of X again,
〈a2〉 � X2, which implies 〈c2〉 normalizes 〈a2〉. Since both 〈c2〉 and 〈c2〉 normalize 〈a2〉
and 〈c2, c2〉 = 〈c〉, we get 〈a2〉 � X, which is a contradiction.

Second, suppose that m is odd. Then both q and m1 are odd, so that X = X1 =

((〈a2〉 � 〈c0〉).〈c〉) � 〈b〉. By induction on X3 := 〈H, cm/m1〉 = 〈a, b〉〈c0, cm/m1〉 < X and
X4 := 〈H, cm/pqe〉 = 〈a, b〉〈cm/pqe〉 < X, we respectively get both 〈cm/m1〉 and 〈cm/pqe〉
normalize 〈a2〉. Noting 〈cm/m1 , cm/pqe〉 = 〈c〉, we get 〈a2〉 � X, which is a contradiction
again.

Step 3: Exclude the case m = pqe for a prime q and an integer e. Recall that
a1 = an is the unique involution in G; 〈a0〉 is a normal subgroup of order p in X;
K = 〈a0〉 × 〈c0〉 = (〈a0〉〈c〉)X � Z2

p; H = 〈a2〉 � 〈c0〉 � X (by the induction hypothesis)
and X = ((H.〈c〉).〈a1〉).〈b〉. Suppose that e = 0. Then, consider S := G ∩ Gc. Since
a1 � 〈a〉X ≤ S, we get that S is also a p-group, S ≤ 〈a〉X and |S| ≤ pk−1. However,
noting 16pk+1 ≤ |G||Gc|/|S| < |X| = 4pk+1, we get a contradiction. Suppose that q = 2
and e = 1, 2. Then using the same argument as above, we get a contradiction again. So
in what follows, we assume that either q is odd and e ≥ 1; or q = 2 and e ≥ 3.

Since H is a p-group and 〈a2p〉 = �1(H) char H � X, we get 〈a2p〉 � X. Set X5 :=
(H.〈cq〉) � 〈b〉 = 〈a, b〉〈cq〉 < X. By the induction hypothesis on X5, we get 〈a2〉 � X5,
that is, X5 = (〈a2〉 � 〈cq〉) � 〈b〉. Clearly, 〈a2〉 = G′ ≤ X′5 ≤ 〈a

2, cq〉. So set X′5 = 〈a
2, c3〉

for some c3 ∈ 〈cq〉. By Proposition 2.2, both X/CX(〈a2p〉) and X5/CX5 (〈a2〉) are abelian,
which implies that X′ ≤ CX(〈a2p〉) and X′5 ≤ CX5 (〈a2〉). Then, X′5 is abelian as 〈a2〉 ≤
X′5 = 〈a

2, c3〉. The p′-Hall subgroup of X′5 is normal, which contradicts 〈cq〉X5 = 1,
meaning that X′5 is an abelian p-group. Set L := H � 〈a1〉 = 〈a〉〈c0〉 < X5.
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We claim that L � X. Arguing by contradiction, assume that L � X. If H is abelian,
then we get that either 〈a2〉 = Z(L) char L � X, which is a contradiction; or L is abelian,
forcing 〈a1〉 char L � X, which is a contradiction again. Therefore, H is nonabelian.
Note that X′5 = 〈a

2, c3〉 for c3 ∈ 〈cq〉. If c3 � 1, then c0 ∈ 〈c3〉 ≤ X′5 as o(c0) = p, which
implies that H = 〈a2, c0〉 is abelian, which is a contradiction. Therefore, X′5 = 〈a

2〉,
which implies L = 〈a〉 � 〈c0〉. Note that 〈a1〉 char L � X. Thus, we get 〈a1〉 � X, which
contradicts a1 � 〈a〉X . Therefore, L � X, which implies that 〈c〉 does not normalize 〈a1〉
in X = X/H.

In X = X/H = (〈c〉 � 〈a1〉).〈b〉, we get that either ca1 = c−1 if q is odd; or ca1 is either
c−1 or c±1+2e−1

if q = 2. Then we divide the proof into the following two cases.

Case (1): q is an odd prime. In this case, q is odd. Since ca1 = c−1 in X = X/H, we
get 〈a2, cqp〉 ≤ X′5 ≤ 〈a

2〉〈cq〉. Note that X′5 is the abelian p-group. Thus, either q � p
and e = 1; or q = p. Suppose that q � p and e = 1, that is, o(c) = pq. Consider M =
〈a〉〈c〉 � X. Then, by Proportion 2.4, M′ is abelian. Note that 〈c〉X = 1 and GX is the
p-group. Thus, M′ is an abelian p-group with the same argument as the case of X′5.
Noting that 〈a1〉〈cp〉 is the p′-Hall subgroup of M, we get [a1, cp] ∈ 〈a1〉〈cp〉 ∩M′ = 1,
which implies ca1 = c in X = X/H, which is a contradiction. So in what follows, we
assume that q = p, that is, o(c) = pe+1. Note that ca1 = c−1 in X = X/H and 〈a2〉 ≤ X′5.
Thus, X′5 is either 〈a2〉〈cp〉 or 〈a2〉, noting X′5 = 〈a

2〉 only happens when e = 1.
Suppose that X′5 = 〈a

2〉〈cp〉. Since H = 〈a2〉 � 〈c0〉 ≤ X′5 ≤ CX5 (〈a2〉), we get that
H = 〈a2〉 × 〈c0〉 is abelian. Note that both 〈a2〉 and 〈c〉 are p-groups and X = (H.〈c〉) �
〈b〉. Set (a2)c = a2sct

0 and cb = a2ucv, where s ≡ 1(mod p) and p 
 v. Then for an
integer w, we get (a2)cw

= a2x1 cwt
0 and cb

0 = ax2 cv
0 for some integers x1 and x2. Since

((a2)c)b = (a2sct
0)b, there exist some integers x and y such that

((a2)c)b = (a−2)cv
= axc−vt

0 and ((a2)sct
0)b = aycvt

0 ,

which gives t ≡ 0 (mod p). Then, 〈a2〉 � X, which is a contradiction.
Suppose that X′5 = 〈a

2〉. Then, o(c) = p2, c0 = cp and X5 = 〈a, b〉〈c0〉. Since X′5 ≤
G ≤ X5, we get that 〈a1〉 char G � X, which implies that 〈a1〉 ≤ Z(X5) as a1 is an
involution. Thus, [c0, a1] = 1. Set ca1 = axc−1+yp as ca1 = c−1 in X = X/H. Then,

c = ca2
1 = (axc−1cy

0)a1 = ax(axc−1cy
0)−1cy

0 = axc−y
0 ca−xcy

0 = axc1−ypa−xcyp,

which implies (ax)c1−yp
= ax. Then, [ax, c] = 1. Note that c0 = cp and c0 = ca1

0 =

(ca1 )p = axc−p for some x. Thus, we get c2
0 = 1, which contradicts o(c0) = p.

Case (2): q = 2. In this case, we know that o(c) ≥ 8p, X5 = (〈a2〉〈c2〉) � 〈b〉 � X and
ca1 is either c−1 or c±1+2e−1

in X/H.
We show ca1 = c1+2e−1

in X/H. Since 〈a2〉 ≤ X′5 char X5 � X and X′5 is the abelian
p-group, we get X′5 = H, which implies that H is abelian. By Proposition 2.6, we get
that both 〈ai1 b〉〈cp〉 and 〈ai2 b〉〈c2p〉 are Sylow 2-subgroups of X and X5 for some
i1 and i2, respectively. Then, [c2p, ai2 b] ∈ X′5 ∩ 〈c

2p〉〈ai2 b〉 = 1, which implies that
〈c2p〉〈ai2 b〉 is abelian. So, [c2p, a1] = 1. Since ca1 is either c−1 or c±1+2e−1

in X/H, we get
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ca1 = c1+2e−1
in X/H. Since 〈ai1 b〉〈cp〉 = (〈cp〉 � 〈a1〉).〈ai1 b〉, we know (cp)a1 = cp+2e−1 p,

which implies c2e−1 p ∈ M′.
Noting that 〈cp〉 � 〈a1〉 = 〈a1, cp|a2

1 = c2e p = 1, (cp)a1 = c(1+2e−1)p〉, there are only
three involutions in 〈cp〉 � 〈a1〉: a1, c2e−1 p and a1c2e−1 p. By Proposition 2.5, we know
that 〈c2p〉 � 〈ai1 b〉〈cq〉. Recall that M = 〈a〉〈c〉. By Proposition 2.4, M′ is abelian. Let
M2 be the Sylow 2-subgroup of M′. Note that M2 char M′ char M � X, c2e−1 p ∈ M′,
〈c〉X = 1 and a1 is an involution. Thus, we get M2 � Z2

2, that is, M2 = 〈c2e−1 p〉 × 〈a1〉.
Consider HM2 ≤ X. Since M2 � X, H � X, H ∩M2 = 1 and p is odd prime, we
get HM2 = H ×M2 � X, which implies that a normalizes 〈c2e−1 p〉. Recall that
〈c2p〉〈ai2 b〉 is abelian. Then, we get [c2p, ai2 b] = 1. Since 〈c2e−1 p〉 ≤ 〈c2p〉, we get
that b also normalizes 〈c2e−1 p〉. Since X = 〈a, b, c〉, we get 〈c2e−1 p〉 � X, which is a
contradiction. �

LEMMA 4.3. Theorem 1.2 holds.

PROOF. (1) Suppose that 〈c〉X = 1. For the five cases of Theorem 1.1, we know that
MX is M, 〈a2〉〈c2〉, 〈a2〉〈c3〉, 〈a3〉〈c4〉 or 〈a4〉〈c3〉. Set MX = 〈ai〉〈cj〉, which is one of
the above five cases, and X1 = GMX = 〈a, b〉〈cj〉, where G ∈ {Q, D}. Then, 〈cj〉X1 = 1.
By Proposition 2.11 and Lemma 4.2, we get 〈a2〉 � X1, that is, cj normalizes 〈a2〉, and
so MX ∩ 〈a2〉 �MX .

(2) Suppose 〈c1〉 := 〈c〉X � 1. Then, by Proposition 2.2, we get 〈c〉 ≤ CX(〈c1〉) � X
and X = X/CX(〈c1〉) = 〈a, b〉 is abelian. This implies 〈a, b〉 � Z2 × Z2 or Z4. Therefore,
〈a2, c〉 ≤ CX(〈c1〉). Therefore, |X : CX(〈c1〉)| ≤ 4. �

To classify skew product groups of generalized quaternion groups, the following
lemma is useful.

LEMMA 4.4. Let G ∈ {Q, D} and X = X(G). If 〈c〉X = 1 and 〈a〉 � X, then G � X.

PROOF. X = (〈a〉 � 〈c〉).〈b〉, and so we may write ac = ai and cb = akcj. If j = 1, then
G � X. So assume j � 1. Since b2 = an (o(an) = 1 or 2 if G = D or G = Q, respectively)
and 〈an〉 � X, we get an ∈ Z(X), which implies c = cb2

. Then,

c = (cb)b = (akcj)b = a−k(akcj)j = cj(akcj)j−1,

that is, c1−j = (akcj)j−1 = (cj−1)b, so that b normalizes 〈c1−j〉. Since X = X/CX(〈a〉) ≤
Aut (〈a〉), which is abelian, we get c = cb = cj, that is, c1−j ≤ CX(〈a〉) so that
[c1−j, a] = 1. Thus, we get 〈c1−j〉 � X. It follows from 〈c〉X = 1 that j = 1, which is a
contradiction. �

5. Proof of Theorem 1.3

To prove Theorem 1.3, set R := {a2n = cm = 1, b2 = an, ab = a−1}. Recall that M is
the subgroup of the largest order in X(Q) such that 〈c〉 ≤ M � 〈a〉〈c〉. By Theorems 1.1
and 1.2, we get that X(Q), where 〈c〉X(Q) = 1 has the forms listed in Table 3. Then, we
deal with these five cases in the following five subsections, separately.
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TABLE 3. The forms of 〈c〉X(Q) = 1.

Case M MX(Q) X(Q)/MX(Q)

1 〈a〉〈c〉 (〈a2〉 � 〈c〉).〈a〉 Z2
2 〈a2〉〈c〉 〈a2〉 � 〈c2〉 D8
3 〈a2〉〈c〉 〈a2〉 � 〈c3〉 A4
4 〈a4〉〈c〉 〈a4〉 � 〈c3〉 S4
5 〈a3〉〈c〉 (〈a6〉 � 〈c4〉).〈a3〉 S4

Let A = G.〈t〉, where G � A, be a group and tl = g ∈ G. Then, t induces an
automorphism τ of G by conjugacy. Recall that by the cyclic extension theory of
groups, this extension is valid if and only if

τl = Inn(g) and τ(g) = g.

5.1. M = 〈a〉〈c〉.

LEMMA 5.1. Suppose that X = X(Q), M = 〈a〉〈c〉 and 〈c〉X = 1. Then,

X = 〈a, b, c | R, (a2)c = a2r, ca = a2sct, cb = aucv〉, (5-1)

where

rm ≡ rt−1 ≡ rv−1 ≡ 1 (mod n), t2 ≡ 1 (mod m),

2s
t∑

l=1

rl + 2sr ≡ 2sr + 2s
v∑

l=1

rl − u
t∑

l=1

rl + ur ≡ 2(1 − r) (mod 2n),

2s
w∑

l=1

rl ≡ u
w∑

l=1

(
1 − s
( t∑

l=1

rl + r
))l
≡ 0 (mod 2n)

only when w ≡ 0 (mod m), and moreover, if 2 | n, then u(
∑v−1

l=0 rl − 1) ≡ 0 (mod 2n)
and v2 ≡ 1 (mod m); if 2 
 n, then u

∑v
l=1 rl − ur ≡ 2sr + (n − 1)(1 − r) (mod 2n) and

v2 ≡ t (mod m); and if t � 1, then u is even.

PROOF. Noting 〈a2〉 � X and M = 〈a〉〈c〉 ≤ X, the group X may be obtained by three
cyclic extensions of groups in order:

〈a2〉 � 〈c〉, (〈a2〉 � 〈c〉).〈a〉 and ((〈a2〉 � 〈c〉).〈a〉).〈b〉.

So X has presentation as in (5-1). Then, we should determine the parameters r, s, t, u
and v by analysing three extensions.

(1) 〈a2〉 � 〈c〉, where (a2)c = a2r. Set π1 ∈ Aut (〈a2〉) such that π1(a2) = a2r. Since
π1(〈a2〉) = 〈a2r〉, we get (r, n) = 1. As mentioned before, this extension is valid if
and only if o(π1(a2)) = o(a2) and πm

1 = 1, that is,

rm − 1 ≡ 0 (mod n). (5-2)
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(2) (〈a2〉 � 〈c〉).〈a〉, where ca = a2sct. Set π2 ∈ Aut (〈a2〉 � 〈c〉): a2 → a2 and c→
a2sct. Since π2(〈a2, c〉) = 〈a2, a2sct〉, we get (t, m) = 1. This extension is valid if
and only if the following three equalities hold:

(i) π2 preserves (a2)c = a2r:

rt−1 − 1 ≡ 0 (mod n); (5-3)

(ii) o(π2(c)) = m: for any integer i,

(a2sct)i = cit(a2s)cit · · · (a2s)ct
= cita2s

∑i
l=1 rtl
= ctia2s

∑i
l=1 rl

.

Note that cit � 1 for any 0 < i < m. Thus, we only show (a2sct)m = 1,
that is,

s
m∑

l=1

rl ≡ 0 (mod n); (5-4)

(iii) π2
2 = Inn(a2):

ca2−2r = Inn(a2)(c) = π2
2(c) = (a2sct)a = a2s(a2sct)t = ct2

a2sr+2s
∑t

l=1 rl
,

that is,

t2 − 1 ≡ 0 (mod m) and s
t∑

l=1

rl + rs + r − 1 ≡ 0 (mod n). (5-5)

(3) ((〈a2〉 � 〈c〉).〈a〉).〈b〉, where cb = aucv. Set π3 ∈ Aut ((〈a2〉 � 〈c〉).〈a〉) : a→ a−1

and c→ aucv, where (v, m) = 1. We divide the proof into two cases according to
the parity of u, separately.

Case 1: u is even.

(i) π3 preserves (a2)c = a2r:

rv−1 − 1 ≡ 0 (mod n). (5-6)

(ii) o(π3(c)) = m:

1 = (aucv)m = cvmau
∑m

l=1 rl
,

that is,

u
m∑

l=1

rl ≡ 0 (mod 2n). (5-7)

(iii) π3 preserves ca = a2sct: we get (ca)b = (a2sct)b, which implies aucv = ((a2sct)b)a.

aucv = (a−2s(aucv)t)a = a−2s(au(a2sct)v)t = a−2sct2va(ru+2s
∑v

l=1 rl)
∑t−1

l=0 rl
,
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that is,

r(u + 2s) ≡
(
ru + 2s

v∑
l=1

rl
) t−1∑

l=0

rl (mod 2n). (5-8)

By (5-5), (5-8) is equivalent to

u
t∑

l=1

rl − ur − 2s
v∑

l=1

rl − 2sr + 2(1 − r) ≡ 0 (mod 2n). (5-9)

(iv) π2
3 = Inn(an): Suppose that n is even. Then, an ∈ 〈a2〉, which implies (an)c = an.

Then, π2
3 = Inn(an) = 1.

c = Inn(an)(c) = π2
3(c) = cb2

= a−u(aucv)v = cv2
au
∑v

l=1 rl−ur,

that is,

u
v∑

l=1

rl − ur ≡ 0 (mod 2n) and v2 − 1 ≡ 0 (mod m). (5-10)

Suppose that n is odd. Then, can
= cta(n−1)(1−r)+2sr, so

cta(n−1)(1−r)+2sr = Inn(an)(c) = π2
3(c) = cb2

= a−u(aucv)v = cv2
au
∑v

l=1 rl−ur,

that is,

u
v∑

l=1

rl − ur ≡ (n − 1)(1 − r) + 2sr (mod 2n) and v2 − t ≡ 0 (mod m).

(5-11)

Case 2: u is odd. If t = 1, then c normalizes 〈a〉, which implies 〈a〉 � X. By Lemma 4.4,
we get G � X. Then, v = 1. With the same argument as Case 1,

u
m∑

l=1

(1 − 2sr)l ≡ 0 (mod 2n). (5-12)

So assuming t � 1, we shall get a contradiction.
Let S = 〈a2, c〉. Since u is odd again, we know that 〈a2〉 ≤ SX < S. Since |X : S| = 4,

we have X = X/SX = 〈c, a〉.〈b〉 � S4. The only possibility is o(c) = 2 and X � D8 so
that m is even and v is odd. Then, t is odd, as t2 ≡ 1 (mod m). Moreover, we have
〈a2, c2〉 = SX � X.

Consider X = X/〈a2〉 = 〈a, c〉.〈b〉, where ab = a, b
2
= an, ca = ct and cb = acv. Let

π3 be defined as above. Since the induced action of π3 preserves ca = ct, we have
(acv)a = (acv)t, that is actv = acv((acv)2)(t−1)/2 = acv(ctv+v)(t−1)/2 = acv+(v(t+1)(t−1))/2,
which implies tv ≡ v + v(t + 1)(t − 1)/2 (mod m). Noting that t2 ≡ 1(mod m), t � 1
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and (v, m) = 1,

t ≡ 1 +
m
2

(mod m). (5-13)

Let X1 = GSX = 〈a, b〉〈c2〉. By (5-13), we have (c2)a = (a2sct)2 = a2s(1+r−1)c2, which
implies that c2 normalizes 〈a〉. By Lemma 4.4, we get G � X1.

If n is odd, then X1 = 〈a, b〉 � 〈c2〉 � X, which implies 〈an〉 � X1. Note that an

is an involution and 〈c2〉X1 = 1, then an is the unique involution in Z(X1). Then
〈an〉 char X1 � X, which implies an ∈ GX , that is, 〈a〉 � X. By Lemma 4.4 again, we
get G � X, which implies t = v = 1, which is a contradiction. So in what follows, we
assume that n is even.

By G � X1, we get bc2 ∈ G. Since bc2
= cv(t+1)−2axb for some x, we get v(t + 1) − 2 ≡

0 (mod m). By combining this with (5-13),

v ≡ 1 ± m
4

(
mod

m
2

)
, 4|m. (5-14)

Since c = cb
2

= a(acv)v = cv(acvacv)(v−1)/2 = cv+(tv+v)(v−1)/2,

(v − 1)
(v(t + 1)

2
+ 1
)
≡ 0 (mod m). (5-15)

Then (5-14) and (5-15) may give m/2 ≡ 0 (mod m), which is a contradiction.

(4) Ensure 〈c〉X = 1: If t = 1, then v = 1 and 1 − 2sr ≡ r (mod n) by (5-5). For any
integer w,

(cw)a = (a2sc)w = cwa2s
∑w

l=1 rl
and (cw)b = (auc)w = cwau

∑w
l=1(1−2sr)l

.

Since 〈c〉X = 1, we know that 2s
∑w

l=1 rl ≡ 0 ≡ u
∑w

l=1(1 − 2sr)l (mod 2n) only
when w ≡ 0 (mod m).

If t � 1, then u is even, for any integer w,

(cw)a = (a2sct)w = ctwa2s
∑w

l=1 rl
and (cw)b = (aucv)w = cvwau

∑w
l=1 rl

.

Since 〈c〉X = 1, we know that 2s
∑w

l=1 rl ≡ 0 ≡ u
∑w

l=1 rl (mod 2n) if and only if
w ≡ 0 (mod m).

Summarizing (5-2)–(5-12), we get the parameters (m, n, r, s, t, u, v) as shown in the
lemma. Moreover, since all the above conditions are sufficient and necessary, our
group X = X(Q) really does exist for any given parameters satisfying the equations. �

5.2. M = 〈a2〉〈c〉 and X/MX � D8.

LEMMA 5.2. Suppose that X = X(Q), M = 〈a2〉〈c〉, X/MX � D8 and 〈c〉X = 1. Then,

X = 〈a, b, c | R, (a2)c2
= a2r, (c2)a = a2sc2t, (c2)b = a2uc2, ac = bc2w〉,
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where either w = 0 and r = s = t = u = 1; or

w � 0, s = u2
w−1∑
l=0

rl + (un/2), t = 2wu + 1,

r2w − 1 ≡
(
u

w∑
l=1

rl + n/2
)2
− r ≡ 0 (mod n),

s
t∑

l=1

rl + sr ≡ 2sr − u
t∑

l=1

rl + ur ≡ 1 − r (mod n),

2w(1 + uw) ≡ nw ≡ 2w(r − 1) ≡ 0 (mod m/2)

and 21+(−1)u/2∑i
l=1 rl ≡ 0 (mod n) only when i ≡ 0 (mod m/2).

PROOF. Under the hypothesis, MX = 〈a2〉 � 〈c2〉. Set 2n = o(a) and m = o(c). If n is
odd, then 〈a, b〉 � Z4, which is a contradiction. So both n and m are even. Since
X/MX = 〈a, b〉〈c〉 � D8, we can choose b in X/MX such that ac = b and b

c
= a.

Set c1 := c2 and X1 = GMX = 〈a, b〉〈c1〉. Noting that 〈a〉〈c1〉 ≤ X1 and 〈c1〉X1 = 1, by
Lemma 5.1, we get X1 = 〈a, b, c1|R, (a2)c1 = a2r, ca

1 = a2sct
1, cb

1 = a2ucv
1〉, where

rm/2 − 1 ≡ rt−1 − 1 ≡ rv−1 − 1 ≡ u
( v−1∑

l=0

rl − 1
)
≡ 0 (mod n),

s
t∑

l=1

rl + sr ≡ sr + s
v∑

l=1

rl − u
t∑

l=1

rl + ur ≡ 1 − r (mod n),

t2 ≡ v2 ≡ 1
(
mod

m
2

)
,

s
i∑

l=1

rl ≡ u
i∑

l=1

rl ≡ 0 (mod n) if and only if i ≡ 0
(
mod

m
2

)
. (5-16)

Moreover, since n is even and 〈c1〉X1 = 1, we get that b2 = an is the unique involution
of Z(X1). Then, an ∈ Z(X), that is, [b2, c] = [an, c] = 1. Now X = X1.〈c〉. Set ac = bcw

1 .
Then, X may be defined by R and

(a2)c1 = a2r, ca
1 = a2sc2t, cb

1 = a2uc2v, ac = bcw
1 . (5-17)

Then, ac1 = a1−2src1−t
1 and b = acc−w

1 .
If w ≡ 0 (mod m/2), then o(a) = o(ac) = o(b) = 4, which implies

X = 〈a, b, c | a4 = c4 = 1, b2 = a2, ab = a−1, ac = b, bc = a−1〉,

that is, the former part of Lemma 5.2. So in what follows, we assume that w �
0 (mod m/2).
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Recalling c1 = c2,

bc = (acc−w
1 )c = ac1 c−w

1 = a1−2src1−t−w
1 .

Since b2 = an ∈ Z(X), we also get bc = (b−1an)c = (bc)−1an = cw+t−1
1 a2sr−1+n. Set π ∈

Aut (X1) : a→ bcw
1 , b→ a1−2src1−t−w

1 and c1 → c1. We need to carry out the following
seven steps.

(i) o(π(b)) = 4 : Since b2 ∈ Z(X), we only need to show (bc)2 = an:

an = (bc)2 = (cw+t−1
1 a2sr−1+n)2 = cw+t−1

1 a2sr−1cw+t−1
1 a2sr−1

= cw+t−1
1 (cw+t−1

1 )aa−1(a2sr)cw+t−1
1 a2sr−1 = cw+t−1

1 (a2sct
1)w+t−1a2srw+1+2sr−2

= c(t+1)(w+t−1)
1 a2srw+1+2s

∑t+w−1
l=1 rl+2sr−2

= cw(t+1)
1 a2srw+1+2s

∑w+t−1
l=1 rl+2sr−2,

that is,

w(t + 1) ≡ 0
(
mod

m
2

)
and srw+1 + s

w+t−1∑
l=1

rl + sr − 1 ≡ n
2

(mod n), (5-18)

which implies r2w ≡ rw(t+1) ≡ 1 (mod n). Hence, [cw(v+1)
1 , a2] = [cw

1 , a2] = 1.
(ii) o(π(a)) = 2n:

1 = (bcw
1 )2n = (an(cw

1 )bcw
1 )n = (bcw

1 bcw
1 )n = ((a2ucv

1)wcw
1 an)n

= (cw(v+1)
1 a2urw∑w

l=1 rl+n)n

= cnw(v+1)
1 a2nurw∑w

l=1 rl+n2
= cnw(v+1)

1 ,

that is,

nw(v + 1) ≡ 0
(
mod

m
2

)
. (5-19)

(iii) π preserves (a2)c1 = a2r:

((a2)c1 )c= ((a2)c)c1 = (bcw
1 bcw

1 )c1 = (cw(v+1)
1 a2urw∑w

l=1 rl+n)c1 = c2w(v+1)a2urw+1∑w
l=1 rl+n

and

(a2r)c = ((a2)c)r = (cw(v+1)
1 a2urw∑w

l=1 rl+n)r = c2wr(v+1)a2urw+1∑w
l=1 rl+n,

that is,

w(v + 1)(r − 1) ≡ 0
(
mod

m
2

)
. (5-20)

(iv) π preserves ca
1 = a2sct

1:

(ca
1)c = c−1a−1cc1c−1ac = c1

(ac) = c
bcw

1
1 = (cv

1a2ur)cw
1 = cv

1a2urw+1
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and

(a2sct
1)c = (cw(v+1)

1 a2urw∑w
l=1 rl+n)sct

1 = cws(v+1)+t
1 a2surw+1∑w

l=1 rl+ns,

that is,

v ≡ ws(v + 1) + t
(
mod

m
2

)
and u ≡ su

w∑
l=1

rl +
ns
2

(mod n). (5-21)

(v) π preserves cb
1 = a2ucv

1:

(cb
1)c = c1

(bc) = c
cw+t−1

1 a2sr−1+n

1 = ct
1a2sr2−w

and

(a2ucv
1)c = (cw(v+1)

1 a2urw∑w
l=1 rl+n)ucv

1 = cwu(v+1)+v
1 a2u2rw+1∑w

l=1 rl+un,

that is,

t ≡ wu(v + 1) + v
(
mod

m
2

)
and s ≡ u2

w−1∑
l=0

rl +
un
2

(mod n). (5-22)

(vi) π2 = Inn(c1): Recall Inn(c1)(a) = a1−2src1−t
1 , Inn(c1)(a2) = a2r and Inn(c1)(b) =

cv−1
1 a2urb.

a1−2src2−2t = Inn(c1)(a) = π2(a) = a1−2src2−2t−2w+2w,

as desired;

a2r = Inn(c1)(a2) = π2(a2) = ((a2)c)c

= (cw(v+1)
1 a2urw∑w

l=1 rl+n)c = cw(v+1)
1 (cw(v+1)

1 a2urw∑w
l=1 rl+n)urw∑w

l=1 rl+ n
2

= cw(v+1)(1+uw+n/2)
1 a2(u

∑w
l=1 rl+n/2)2

,

that is,

w(v + 1)
(
1 + uw +

n
2

)
≡ 0
(
mod

m
2

)
and r ≡

(
u

w∑
l=1

rl + n/2
)2

(mod n);

(5-23)

and noting (5-20) and (5-21), we get w(v + 1)(r − 1) ≡ ws(v + 1) + t − v ≡
0 (mod m/2) and u ≡ su

∑w
l=1 rl + (ns/2) (mod n). Then,

c2(v−1)a2urb = Inn(c1)(b) = π2(b) = (cw+t−1
1 a2sr−1+n)c

= cw+t−1
1 (cw(v+1)

1 a2urw∑w
l=1 rl+n)sr(bcw

1 )−1an

= ct−1+wsr(v+1)
1 a2usr

∑w
l=1 rl+srnb,

as desired.
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(vii) Ensure 〈c〉X = 1: Since 〈c〉X ≤ M, we get 〈c〉X ≤ MX = 〈a2〉〈c2〉. Then, 〈c〉X =
∩x∈X〈c〉x = ∩x∈G〈c〉x = ∩x∈G〈c2〉x = 〈c2〉X1 = 1. Recall s

∑i
l=1 rl ≡ u

∑i
l=1 rl ≡

0 (mod n) if and only if i ≡ 0 (mod (m/2)).

Now we are ready to determine the parameters by summarizing (5-16)–(5-23).
If v = 1, then inserting v = 1 in (5-16)–(5-23), we get that s = u2∑w−1

l=0 rl + (n/2)
and t = 2wu + 1 by (5-22); nw ≡ 0 (mod m/2) by (5-18), (5-19) and (5-23); and
2w(r − 1) ≡ 2w(1 + uw) ≡ 0 (mod m/2) by (5-20) and (5-23). All these are summa-
rized in the lemma. So in what follows, we show v = 1, that is, v ≡ 1 (mod m/2).

Suppose that u is odd. Then by (5-23), we get (u, n) = (
∑w

l=1 rl, n/2) = 1 as (r, n) =
1. Moreover, if n/2 is odd, then

∑w
l=1 rl is even as r is odd. Then by (5-22), we

get s ≡ u2∑w−1
l=0 rl + (n/2) (mod n), which implies (s, n) = 1. Then, we have

∑i
l=1 rl ≡

0 (mod n) if and only if i ≡ 0 (mod m/2) by item (vii) and
∑v−1

l=0 rl ≡ 1 (mod n) from
(5-16). Then, v ≡ 1 (mod m/2).

Suppose that u is even. Then, by (5-23), we get (u, n/2) = (
∑w

l=1 rl, n/2) = 1.
Then by (5-22), we get s ≡ u2∑w−1

l=0 rl (mod n), which implies s is even. Then, by
(5-21), we get u ≡ su

∑w
l=1 rl (mod n). Then, we have

∑i
l=1 rl ≡ 0 (mod n/2) if and

only if i ≡ 0 (mod m/2) by item (vii) and
∑v−1

l=0 rl ≡ 1 (mod n/2) from (5-16). Then,
v ≡ 1 (mod m/2). �

5.3. M = 〈a2〉〈c〉 and X/MX � A4.

LEMMA 5.3. Suppose that X = X(Q), M = 〈a2〉〈c〉, X/MX � A4 and 〈c〉X = 1. Then,

X = 〈a, b, c | R, (a2)c = a2r, (c3)a = a2sc3, (c3)b = a2uc3, ac = bcim/2, bc = axb〉,

where n ≡ 2 (mod 4) and either:

(1) i = s = u = 0, r = x = 1; or
(2) i = 1, 6|m, rm/2 ≡ −1 (mod n) with o(r) = m, s ≡ (r−3 − 1)/2 + n/2 (mod n), u ≡

(r3 − 1)/2r2 + n/2 (mod n), x ≡ −r + r2 + n/2 (mod n).

PROOF. Under the hypothesis, MX = 〈a2〉 � 〈c3〉. Set o(a) = 2n and o(c) = m. If n is
odd, then we get 〈a, b〉 � Z4, which is a contradiction. So n is even and 3|m. Since
X/MX = 〈a, b〉〈c〉 � A4, we can choose b such that ac = b and b

c
= ab in X/MX . Set

c1 := c3 and X1 = GMX = 〈a, b〉〈c1〉. By Lemma 5.1, we get

X1 = 〈a, b, c1 |R, (a2)c1 = a2r, (c1)a = a2sct
1, (c1)b = a2ucv

1〉,

where

rm/3 − 1 ≡ rt−1 − 1 ≡ rv−1 − 1 ≡ u
( v−1∑

l=0

rl − 1
)
≡ 0 (mod n),

s
t∑

l=1

rl + sr ≡ sr + s
v∑

l=1

rl − u
t∑

l=1

rl + ur ≡ 1 − r (mod n),
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t2 − 1 ≡ v2 − 1 ≡ 0
(
mod

m
3

)
,

s
i∑

l=1

rl ≡ u
i∑

l=1

rl ≡ 0 (mod n) if and only if i ≡ 0
(
mod

m
3

)
. (5-24)

Moreover, since n is even and 〈c1〉X1 = 1, we get that b2 = an is the unique involution
of Z(X1). Then, an ∈ Z(X). Now X = X1.〈c〉. Set ac = bcw

1 . Then, X may be defined by
R and

(a2)c1 = a2r, (c1)a = a2sct
1, (c1)b = a2ucv

1, ac = bcw
1 , bc = a1+2xbcy

1. (5-25)

If w ≡ 0 (mod m/3), then o(a) = o(ac) = o(b) = 4, which implies

X = 〈a, b, c | a4 = c3 = 1, b2 = a2, ab = a−1, ac = b, bc = ab〉,

that is, the former part of Lemma 5.3. So in what follows, we assume w � 0 (mod m/3).
What we should do is to determine the parameters r, s, t, u, v, w, x and y by analysing

the last extension X1.〈c〉, where ac = bcw
1 and bc = a1+2xbcy

1. Set π ∈ Aut (X1) : a→
bcw

1 , b→ a1+2xbcy
1, c1 → c1. We need to carry out the following eight steps.

(i) o(π(b)) = 4: Since b2 ∈ Z(X), we only need to show (bc)2 = an:

an = (bc)2 = (a1+2xbcy
1)2 = a2x+n(cy

1)aba−2xcy
1

= a2x+n(cvt
1 a2u

∑t
l=1 rl−2sr)ya−2xcy

1 = a2x+ncvty
1 a2u

∑ty
l=1 rl−2s

∑y
l=1 rl−2xcy

1

= cvty+y
1 ary(2u

∑ty
l=1 rl+2x(ry−1)−2s

∑y
l=1 rl)+n,

that is,

y(tv + 1) ≡ 0
(
mod

m
3

)
and u

ty∑
l=1

rl + xry − x − s
y∑

l=1

rl ≡ 0 (mod n),

(5-26)

which implies r2y ≡ ry(tv+1) ≡ 1 (mod n).
(ii) o(π(ab)) = 4: Since (ab)2 = an ∈ Z(X), we only show ((ab)c)2 = an:

an = (bcw
1 a1+2xbcy

1)2 = (an−1(cw
1 )aba−2xcy

1)2 = (an−1cwvt+y
1 ary(2u

∑tw
l=1 rl−2s

∑w
l=1 rl−2x))2

= (cwvt+y
1 )aa−2+ry(2u

∑tw
l=1 rl−2s

∑w
l=1 rl−2x)cwvt+y

1 ary(2u
∑tw

l=1 rl−2s
∑w

l=1 rl−2x)

= cvw+yt+tvw+y
1 a2((rw+y+1)(ury∑w

l=1 rl−ryx+s
∑y

l=1 rl)+s
∑vw+yt

l=1 rl−1),

that is,

vw + yt + tvw + y ≡ 0
(
mod

m
3

)
,

(rw+y + 1)
(
ury

w∑
l=1

rl − ryx + s
y∑

l=1

rl
)
+ s

vw+yt∑
l=1

rl − 1 ≡ n
2

(mod n), (5-27)

which implies r2w ≡ rvw+yt+tvw+y ≡ 1 (mod n). Hence, [cw(v+1)
1 , a2]= [c2w

1 , a2]= 1.
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(iii) o(π(a)) = 2n:

1 = ((a2)c)n = (bcw
1 bcw

1 )n = (cw(v+1)
1 a2urw∑w

l=1 rl+n)n

= cnw(v+1)
1 a2nurw∑w

l=1 rl+n2
= cnw(v+1)

1 ,

that is,

nw(v + 1) ≡ 0
(
mod

m
3

)
. (5-28)

(iv) π preserves (a2)c1 = a2r:

((a2)c1 )c = ((a2)c)c1 = (cw(v+1)
1 a2urw∑w

l=1 rl+n)c1 = cw(v+1)
1 a2urw+1∑w

l=1 rl+n

and

(a2r)c = ((a2)c)r = (cw(v+1)
1 a2urw∑w

l=1 rl+n)r = cwr(v+1)
1 a2urw+1∑w

l=1 rl+n,

that is,

w(v + 1)(r − 1) ≡ 0
(
mod

m
3

)
. (5-29)

(v) π preserves ca
1 = a2sct

1:

(ca
1)c = c1

(ac) = c
bcw

1
1 = (a2ucv

1)cw
1 = cv

1a2urw+1

and

(a2sct
1)c = (cw(v+1)

1 a2urw∑w
l=1 rl+n)sct

1 = cws(v+1)+t
1 a2surw+1∑w

l=1 rl+sn,

that is,

v ≡ ws(v + 1) + t
(
mod

m
3

)
and u ≡ su

w∑
l=1

rl +
sn
2

(mod n). (5-30)

(vi) π preserves cb
1 = a2ucv

1: Since bc = (anb−1)c = c−y
1 a1+2xb,

(cb
1)c = c1

(bc) = c
c−y

1 a1+2xb
1 = ca1+2xb

1 = ctv
1 a2(u

∑t
l=1 rl−sr+x(r−1))

and

(a2ucv
1)c = (cw(v+1)

1 a2urw∑w
l=1 rl+n)ucv

1 = cwu(v+1)+v
1 a2u2rw+1∑w

l=1 rl+un,

that is,

tv ≡ wu(v + 1) + v
(
mod

m
3

)
,

u
t∑

l=1

rl − sr + x(r − 1) ≡ u2rw+1
w∑

l=1

rl +
un
2

(mod n). (5-31)
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(vii) π3 = Inn(c1): Recall Inn(c1)(a) = a1−2src1−t
1 = a−1c1−t

1 a2−2sr, Inn(c1)(a2) = a2r

and Inn(c1)(b) = c3(v−1)a2urb.

a−1c1−t
1 a2−2sr = Inn(c1)(a) = π3(a) = (a1+2xbcw+y

1 )c = ((a2)c)x(ab)ccw+y
1

= (cw(v+1)
1 a2urw∑w

l=1 rl+n)xan−1cwvt+y
1 ary(2u

∑tw
l=1 rl−2s

∑w
l=1 rl−2x)cw+y

1

= a−1cvtw(1+x(v+1))+w+2y
1 an+2urw∑tw(1+x(v+1))

l=1 rl−rw(2s
∑w(1+x(v+1))

l=1 rl+2ux
∑2w

l=w+1 rl+xn+2x),

that is,

1 − t ≡ t(wv + wxv + wx) + w + 2y
(
mod

m
3

)
,

rw
(
u

tw(1+x(v+1))∑
l=1

rl − s
w(1+x(v+1))∑

l=1

rl − ux
2w∑

l=w+1

rl − (x + 1)n
2

− x
)

≡ 1 − sr (mod n); (5-32)

a2r = Inn(c1)(a2) = π3(a2) = (cw(v+1)
1 a2urw∑w

l=1 rl+n)c2

= cw(v+1)
1 ((cw(v+1)

1 a2urw∑w
l=1 rl+n)urw∑w

l=1 rl
)can

= cw(v+1)+uw2(v+1)
1 ((cw(v+1)

1 a2urw∑w
l=1 rl+n)(u

∑w
l=1 rl)2

auwn+n

= cw(v+1)+uw2(v+1)(1+uw)
1 a2rw(u

∑w
l=1 rl)3+n,

that is,

w(v + 1) + uw2(v + 1)(uw + 1) ≡ 0
(
mod

m
3

)
,

r ≡ rw
(
u

w∑
l=1

rl
)3
+

n
2

(mod n),
(5-33)

which implies (u, n/2) = (
∑w

l=1 rl, n/2) = 1 as (r, n) = 1. Moreover, if u is even,
then n/2 is odd. Noting (5-30), that is, u ≡ su

∑w
l=1 rl + sn/2 (mod n), and

ac1 = bc2
cw

1 , we get that (s, n/2) = 1 and

cv−1
1 a2urb = Inn(c1)(b) = π3(b) = an((b−1)c2

)c = an((ac1 c−w
1 )−1)c

= cw
1 (ct−1

1 a2sr−1)can = cw+t−1
1 (cw(v+1)

1 a2urw∑w
l=1 rl+n)sr(bcw

1 )−1an

= ct−1+ws(v+1)
1 a2usr

∑w
l=1 rl+snb,

that is,

v ≡ t + ws(v + 1)
(
mod

m
3

)
. (5-34)

(viii) Ensure 〈c〉X = 1: Since 〈c〉X ≤ M, we get 〈c〉X ≤ MX = 〈a2〉〈c3〉. Noting that
〈c〉X = ∩x∈X 〈c〉x = ∩x∈G 〈c〉x = ∩x∈G 〈c3〉x = 〈c3〉X1 = 1, s

∑i
l=1 rl ≡ u

∑i
l=1 rl ≡

0 (mod n) if and only if i ≡ 0 (mod m/3), (s, n/2) = (u, n/2) = 1, and
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both u and s are even only if n/2 is odd, we have 2(1+(−1)u)/2∑i
l=1 rl ≡ 0 (mod n)

if and only if i ≡ 0 (mod m/3).

Now we are ready to determine the parameters by summarizing (5-24)–(5-34) by
the following three steps.

Step 1: Show t = v = 1, w = m/6, rw ≡ −1 (mod n) and s ≡ (1 − r)/2r (mod n/2).
Since (r, n) = (u, n/2) = 1 (after (5-33)), we get from (5-24) that 2(1+(−1)u)/2∑v−1

l=1 rl ≡
0 (mod n). By item (viii), 2(1+(−1)u)/2∑i

l=1 rl ≡ 0 (mod n) if and only if i ≡ 0 (mod m/3),
which means v ≡ 1 (mod m/3).

Inserting v = 1 in (5-24)–(5-34), we get that 2w(wu + 1) ≡ 0 (mod m/3) and t ≡
1 + 2wu ≡ 1 − 2ws (mod m/3) by (5-27), (5-30) and (5-31). Then, 2w ≡ 0 (mod m/3)
by (5-33), which implies w = m/6 as w � 0 (mod m/3). Inserting w = m/6 in
(5-24)–(5-34) again, we get t ≡ 1 (mod m/3) by (5-31), s ≡ (1 − r)/2r (mod n/2)
by (5-24), and rw ≡ −1 (mod n) by (5-24) and (5-33).

Step 2: Show y = 0. Since 2y ≡ 0 (mod m/3) by (5-26), we know that y is either 0 or
m/6. Arguing by contradiction, assume that y = m/6 = w. Then by (5-27), we get that
n/2 is odd, and with 5-26) and (5-27), we get 2x ≡ (u − s)

∑w
l=1 rl ≡ (n/2) − 1 (mod n).

By (5-30) and (u, n/2) = 1, we get s
∑w

l=1 rl ≡ 1 + (sn)/2 (mod n), then u
∑w

l=1 rl ≡
0 (mod n/2), which contradicts (u, n/2) = (

∑w
l=1 rl, n/2) = 1. So y = 0.

Step 3: Determine u and x. By (5-27), we get s
∑w

l=1 rl ≡ 1 + n/2 (mod n). Then,
(s + u)n/2 ≡ 0 (mod n) in (5-30), which implies u ≡ s (mod 2). By (5-31), we get
x(r − 1) ≡ (s − u)r − u2r

∑w
l=1 rl + (un/2) (mod n). If n/2 is even, then u

∑w
l=1 rl is

even. However, in (5-33), we get r ≡ −(u
∑w

l=1 rl)3 + n/2 (mod n) which implies that
u
∑w

l=1 rl is odd as 2 
 r and 2|n/2, which is a contradiction. So n/2 is odd. Then we
get u

∑w
l=1 rl is even in (5-33) and u is even in (5-31). Then,

∑i
l=1 rl ≡ 0 (mod n/2)

if and only if i ≡ 0 (mod m/3). Recall s ≡ (r−1 − 1)/2 (mod n/2) in (5-24) and
s
∑w

l=1 rl ≡ 1 + n/2 (mod n) in (5-27). Since (
∑w

l=1 rl, n/2) = 1 and x(r − 1) ≡ (s − u)r −
u2r
∑w

l=1 rl (mod n), we get 2x ≡ u
∑w

l=1 rl + (u
∑w

l=1 rl)2 − 1 + n/2 (mod n). Addition-
ally, by (5-33), we get −r ≡ (u

∑w
l=1 rl)3 + n/2 (mod n). Take l = −u

∑w
l=1 rl + n/2, then

r ≡ l3 (mod n), u ≡ (l3 − 1)/2l2 + n/2 (mod n) and 1 + 2x ≡ −l + l2 + n/2 (mod n). Let
us rewrite l as r and 1 + 2x as x for the sake of formatting. Then, s ≡ ((r−3 − 1)/2) +
n/2 (mod n), u ≡ ((r3 − 1)/2r2) + n/2 (mod n) and x ≡ −r + r2 + n/2 (mod n). �

In fact, if we add the conditions t = 1 and w � 0 and delete 〈c〉X = 1 in the above
calculation, then we can get the following.

LEMMA 5.4. With the above notation, suppose that t = 1 and w � 0. Then,

X = 〈a, b, c | R, (a2)c = a2r, (c3)a = a2sc3, (c3)b = a2uc3, ac = bcm/2, bc = axb〉,

where n ≡ 2 (mod 4), m≡0 (mod 6), rm/2 ≡ −1 (mod n), s ≡ ((r−3 − 1)/2) +
n/2 (mod n), u ≡ ((r3 − 1)/2r2) + n/2 (mod n) and x ≡ −r + r2 + n/2 (mod n).
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5.4. M = 〈a4〉〈c〉 and X/MX � S4.

LEMMA 5.5. Suppose that X = X(Q), M = 〈a4〉〈c〉, X/MX � S4 and 〈c〉X = 1. Then,
X = 〈a, b, c | R, (a4)c = a4r, (c3)a2

= a4sc3, (c3)b = a4uc3, (a2)c = bcim/2, bc = a2xb, ca =

a2(1+2z)c1+(jm/3)〉, where either:

(1) i = 0, r = j = 1, x = 3, s = u = z = 0; or
(2) i = 1, n ≡ 4 (mod 8), 6|m, rm/2 ≡ −1 (mod n/2), o(r) = m, s ≡ (r−3 − 1)/2 +

n/4 (mod n/2), u ≡ (r3 − 1)/2r2 + n/4 (mod n/2), x ≡ −r + r2 + n/4 (mod n/2),
1 + 2z ≡ (1 − r)/2r (mod n/2), j ∈ {1, 2}.

PROOF. Under the hypothesis, MX = 〈a4〉 � 〈c3〉. Set 2n = o(a) and m = o(c). Then,
n is even and 3|m. If n/2 is odd, then 〈a, b〉 � Q8, a contradiction. So n/2 is even.
Since X/MX = 〈a, b〉〈c〉 � S4, we can choose b such that the form of X/MX is the
following: (a2)c = b, b

c
= a2b and (c)a = a2c2. Take a1 = a2 and c1 = c3. Then, we

set ac
1 = bcw

1 , bc = ax
1bcy

1 and ca = a1+2z
1 c2+3d, where x is odd.

Suppose w ≡ 0 (mod m/3). Note that o(a1) = o(ac
1) = o(b) = 4, which implies G �

Q16. Thus, X can only have the following form:

X = 〈a, b, c | a8 = c3 = 1, b2 = a4, ab = a−1, bc = a3
1b, ca = a1c2〉.

So in what follows, we assume that w � 0 (mod m/3).
Then consider X1 = GMX = 〈a, b〉〈c1〉. Noting 〈a〉〈c1〉 ≤ X1 and 〈c1〉X1 = 1, by

Theorem 1.2, we know 〈a1〉 � X1, which implies that c1 normalizes 〈a1〉. Take X2 =

〈a1, b〉〈c〉. Then we get X2 = (〈a1, b〉〈c1〉).〈c〉. Note that c1 normalizes 〈a1〉 in X2. Thus,
by Lemma 5.4, we get

X2 = 〈a1, b, c | R, (a2
1)c = a2r

1 , ca1
1 = a2s

1 c1, cb
1 = a2u

1 c1, ac
1 = bcm/2, bc = axb〉,

where

n ≡ 4 (mod 8), m ≡ 0 (mod 6), rm/2 ≡ −1
(
mod

n
2

)
,

s ≡ r−3 − 1
2

+
n
4

(
mod

n
2

)
, u ≡ r3 − 1

2r2 +
n
4

(
mod

n
2

)
, x ≡ −r + r2 +

n
4

(
mod

n
2

)
.

Note X = X2.〈a〉. Thus, X may be defined by R and

(a2
1)c = a2r

1 , ca1
1 = a2s

1 c1, cb
1 = a2u

1 c1, ac
1 = bcm/2, bc = ax

1b, ca = a1+2z
1 c2+3d.

What we should do is to determine the parameters r, z and d by analysing the last
one extension X2.〈a〉, where ca = a1+2z

1 c2+3d. Set π ∈ Aut (X1) : a1 → a1, b→ a−1
1 b and

c→ a1+2z
1 c2+3d, where d is odd. We need to carry out the following eight steps.

(i) π preserves (a2
1)c = a2r

1 :

a2r
1 = ((a2

1)c)a = ((a2
1)a)(ca) = (a2

1)(ca) = (a2
1)a1+2z

1 c2+3d
= a2r2+3d

1 ,
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that is,

r1+3d − 1 ≡ 0
(
mod

n
2

)
.

Since rm/2 ≡ −1 (mod n/2), we get r(1+3d)/2 − 1 ≡ −1 (mod n/2) and so∑1+3d
l=1 r3l ≡ 0 (mod n/2).

(ii) π preserves ca1
1 = a2s

1 c1, that is, ac1
1 = a1−2sr3

1 : Since

ca
1 = (ca)3 = a1+2z

1 c2+3da1+2z
1 c2+3da1+2z

1 c2+3d

= a1+2z
1 c1+d

1 (c−1a1+2z
1 c)c1+d

1 (c−2a1+2z
1 c2)cd

1

= a1+2z
1 c1+d

1 a2zrbc1+d+m/6
1 ax

1bcm/6
1 a2zr2

1 cd
1

= a1+2z
1 c1+d

1 a2zr+n2(a2u
1 c1)1+d+m/6a−x

1 cd+m/6
1 a2zr

1

= c2+3d
1 a2z(r+r2+r3)+2−2sr3+r2−x(1−2sr3)d+m/6+nm/12,

we get

(ac1
1 )a = a

ca
1

1 = a(1−2sr3)2+3d

1 = a1−2sr3

1 ,

that is,

(1 − 2sr3)1+3d − 1 ≡ 0 (mod n).

Set f = 2z(r + r2 + r3) + 2 − 2sr3 + r2 − x(1 − 2sr3)d+(m/6) + nm/12. Then, f is
even and ca

1 = c2+3d
1 a f

1 . Recalling s ≡ (r−3 − 1)/2 + n/4 (mod n/2) and x ≡
−r + r2 + n/4 (mod n/2), we get 2 f ≡ 2(1 + 2z)(r + r2 + r3) + n/2 (mod n).

(iii) π preserves cb
1 = a2u

1 c1, that is, bc1 = a2ur3

1 b:

(bc1 )a = (ba)(ca
1) = (a−1

1 b)(ca
1) = a2ur3−r3+n/2−2 f

1 b = a2ur3−r3−2(1+2z)(r+r2+r3)
1 b

and

(a2ur3

1 b)a = a2ur3−1
1 b,

that is,

2(1 + 2z)(r + r2 + r3) ≡ 1 − r3 (mod n).

(iv) π preserves ac
1 = bcm/2:

(ac
1)a = (aa

1)(ca) = a(ca)
1 = aa1+2z

1 c2+3d
= ax(1−2sr3)d+2u

∑d
l=1 r3l

1 bcm/2

and

(bcm/2)a = a−1
1 b(ca

1)m/6 = a
(2z(r+r2+r3)−2sr3+r2−x(1−2sr3)d+m/6+2)

∑m/6−1
l=0 r3l−1

1 bcm/2,
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that is,

Δ ·
m/6−1∑

l=0

r3l ≡ x(1 − 2sr3)d + 2u
d∑

l=1

r3l + 1 (mod n),

where Δ = r2 − 2sr3 − x(1 − 2sr3)d+m/6 + 2z(r + r2 + r3) + 2.
(v) π preserves bc = ax

1b:

(bc)a = (ba1)(ca) = (a−2(1+2z)
1 ba1)c2+3d

= a−2(1+2z)r
1 (ba1)c2+3d

= a−2(1+2z)r
1 (a(x−1+n/2)r

1 b)cd
1

= ax−1−2(1+2z)r+n/2+2u
∑d

l=1 r3l

1 b

and
(ax

1b)a = ax−1
1 b,

that is,

−2(1 + 2z)r +
n
2
+ 2u

d∑
l=1

r3l ≡ 0 (mod n). (5-35)

(vi) o(π(c)) = m: By rm/2 ≡ −1 (mod n/2) again,

m/3−1∑
l=0

r3l = (1 + rm/2)
m/6−1∑

l=0

r3l ≡ 0
(
mod

n
2

)
,

which implies f
∑m/(3−1)

l=0 r3l ≡ 0 (mod n) as f is even. Then,

(ca)m = (ca
1)m/3 = (c2+3d

1 a f
1)m/3 = c(2+3d)m/3

1 a
f
∑m/3−1

l=0 r3l

1 = a
f
∑m/3−1

l=0 r3l

1 = 1,

as desired.
(vii) π2 = Inn(a1): Recall Inn(a1)(c) = c1+(m/2)an/(2−1)

1 b.

c1+m/2a−1+n/2
1 b

= Inn(a1)(c) = π2(c) = (a1+2zc2+3d)a = a1+2z(ca)2(c2+3d
1 a f

1)d

= a2+4zc2+3da1+2zc2+3d(3+3d)a f
∑d−1

l=0 r3l

= c(3d+2)2+m/2a−3r−1−2z−4zr+(n(2+
∑d−1

l=0 r3l+(1−2sr3)d))/4+(2sr3−(2zr+1)(1+r+r2))
∑d−1

l=0 r3l

1 b,

that is,

(1 + d)(1 + 3d) ≡ 0 (mod m/3),

− 3r − 2z − 4zr + α ·
d−1∑
l=0

r3l ≡ 2 +
n(
∑d−1

l=0 r3l + (1 − 2sr3)d)

4
(mod n),

where α = 2sr3 − (2zr + 1)(1 + r + r2).

https://doi.org/10.1017/S1446788724000181 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000181


[29] The product of a generalized quaternion group and a cyclic group 29

(viii) Ensure 〈c〉X = 1: Since 〈c〉X ≤ M, we get 〈c〉X ≤ MX = 〈a2
1〉〈c1〉, which implies

〈c〉X = ∩x∈X〈c〉x = ∩x∈G〈c〉x = ∩x∈G〈c1〉x = 〈c1〉X1 . Then, it is sufficient to
ensure 〈c3〉X1 = 1.

Recall

X1 = 〈a, b, c1|R, (a1)c1 = ar3

1 , cb
1 = a2u

1 c1, (c1)a = c2+3d
1 ai

1〉,

where rm/2 ≡ −1 (mod n/2), 2u ≡ (r3 − 1)/r2 (mod n/2) and i ≡ (3(1 − r3)/2) +
n/4 (mod n/2). By (5-35), we get that u is even. Noting 〈c1〉X1 = 1 and
(u, n/4) = 1, by Lemma 5.1,

j∑
l=1

r3l ≡ 0
(
mod

n
4

)
if and only if j ≡ 0

(
mod

m
3

)
.

Note that
∑1+3d

i=1 r3i ≡ 0 (mod n/2). Thus, 1 + 3d ≡ 0 (mod m/3). Since 1 +
3d � 0, we get 1 + 3d is either m/3 or 2m/3. By (5-35), we get 1 + 2z ≡
(1 − r)/2r (mod n/2). �

5.5. M = 〈a3〉〈c〉 and X/MX � S4.

LEMMA 5.6. Suppose that X = X(Q), M = 〈a3〉〈c〉, X/MX � S4 and 〈c〉X = 1. Then,

X = 〈a, b, c | R, ac4
= ar, bc4

= a1−rb, (a3)cm/4
= a−3, acm/4

= bc3m/4〉, (5-36)

where m ≡ 4 (mod 8) and r is of order m/4 in Z∗2n.

In this subsection, MX = 〈a3〉〈c4〉. Set a3 = a1 and c4 = c1 so that MX = 〈a1〉〈c1〉.
Set o(a) = 2n and o(c) = m, where 3|n and 4|m. Then, we show 〈a1〉 � X in Lemma 5.7
and get the classification of X in Lemma 5.8.

LEMMA 5.7. 〈a1〉 � X.

PROOF. Let X1 = MXG. Since 〈a〉〈c1〉 ≤ X1 and 〈c1〉X1 = 1, the subgroup X1 has been
given in Lemma 5.1:

X1 = 〈a, b, c1 | R, (a2)c1 = a2r, (c1)a = a2s
1 ct

1, (c1)b = au
1cv

1〉, (5-37)

r
m
4 ≡ rt−1 ≡ rv−1 ≡ 1 (mod n), t2 ≡ 1 (mod m/4),

6s
t∑

l=1

rl + 6sr ≡ 6sr + 6s
v∑

l=1

rl − 3u
t∑

l=1

rl + 3ur ≡ 2(1 − r) (mod 2n),

6s
w∑

l=1

rl ≡ 3u
w∑

l=1

(
1 − 3s

( t∑
l=1

rl + r
))l
≡ 0 (mod 2n)

only when w ≡ 0 (mod m/4), and moreover, if 2 | n, then 3u(
∑v−1

l=0 rl − 1) ≡ 0
(mod 2n) and v2 ≡ 1 (mod m/4); if 2 
 n, then 3u

∑v
l=1 rl − 3ur ≡ 6sr + (n − 1)(1 − r)

(mod 2n) and v2 ≡ t (mod m/4); and if t � 1, then u is even.
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Now X = 〈X1, c〉. Since X/MX = 〈a, b〉〈c〉 � S4, the only possibility under our
conditions is

a3 = c4 = b
2
= 1, ab = a−1, ac = aibc3, (5-38)

where i ∈ Z3. Observing (5-37) and (5-38), we may relabel ai+3xb by b for some x ∈ Z.
Then, in the perimage X, (5-38) corresponds to

a3 = a1, b2 = an, c4 = c1, ac = bc3+4w. (5-39)

Set

(a1)c = az
1cd

1, (5-40)

necessarily, z is odd, as o(a1) is even. Then, X is uniquely determined by (5-37), (5-39)
and (5-40). To show 〈a1〉 � X, for the contrary, we assume d � 0. Then we need to deal
with two cases according to the parameter t of X1, separately.

Case 1: t = 1. In this case, we get v = 1 and 1 − 6sr − r ≡ 0 (mod n) by X1. Set
r1 = 1 − 6sr. Then, r1 ≡ 1 (mod 6), ac1 = ar1 and bc1 = aur1

1 b. By (5-37), (5-39) and
(5-40), we get bc = a2+3xbc4y for some x and y.

Since c preserves ac1
1 = ar1

1 ,

((a1)c1 )c = (ac
1)c1 = (az

1cd
1)c1 = cd

1a
zr1+d

1
1

and

(ar1
1 )c = (az

1cd
1)r1 = cdr1

1 a
z
∑r1

l=1 rdl
1

1 ,

which gives d ≡ dr1 (mod m/4). Since c preserves bc1 = aur1
1 b, there exists some x

such that (bc1 )c = a(2+3x+3u)r1 bc4y and (aur1
1 b)c = cdur1

1 a
z
∑ur1

l=1 rdl
1

1 a2+3xbc4y, which gives

du ≡ 0 (mod m/4). Since ac1
1 = ac4

1 = ax1
1 cd(z3+z2+z+1)

1 for some x1,

d(z3 + z2 + z + 1) ≡ 0
(
mod

m
4

)
. (5-41)

By (5-39), we get ac = cbc3+4w. Then, aac
1 = az

1cd
1 and acbc3+4w

1 = ax1
1 cd−dz(z2+z+1)

1 , which
gives

dz(z2 + z + 1) ≡ 0
(
mod

m
4

)
.

With (5-41), we know d ≡ 0 (mod m/4), which contradicts d = 0.

Case 2: t � 1. In this case, we have t � 1. If 〈a2
1〉 � X, then by considering X = X/〈a2

1〉
and 〈c1〉 � X, one may get t = 1, which is a contradiction, as 〈c〉 ≤ CX(〈c1〉) = X.
In what follows, we show 〈a2

1〉 � X.
By (5-37), u is even and r ≡ 1 (mod 3). By using (5-37), (5-39) and (5-40), we get

bc = a2+6xbcy
1 for some x and y, omitting the details.
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Since c preserves (a2
1)c1 = a2r

1 , there exists some x1 such that ((a2
1)c1 )c = ax1

1 cd(t+1)
1

and (a2r
1 )c = ax1

1 cd(t+1)r
1 , which gives d(t + 1)(r − 1) ≡ 0 (mod m/4). Since c preserves

(c1)b = au
1cv

1, there exists some x1 such that (cb
1)c = ax1

1 cv
1 and (au

1cv
1)c = ax1

1 c(du(t+1)/2)+v
1 ,

which gives du(t + 1)/2 ≡ 0 (mod m/4). Since c preserves ca
1 = a2s

1 ct
1, we get cbc2+4w

1 =

a2s
1 ct

1. Then, there exists some x1 such that cbc2+4w

1 = (au
1cv

1)c2+4w
= ((az

1cd
1)zcd

1)urw
cv

1 =

ax1
1 cv

1, which gives v ≡ t (mod m/4). By (5-39) again, we get ac2 = cbc4(w+1). Then
there exists some x1 such that (a2

1)ac2
= ax1

1 cd(t+1)(z+1)
1 and (a2

1)cbcw+1
1 = ax1

1 cd(t+1)
1 , which

gives

dz(t + 1) ≡ 0
(
mod

m
4

)
. (5-42)

Since o(ac
1) = 2n/3, we get dn(t + 1)/3 ≡ 0 (mod m/4). With (n/3, z) = 1 and (5-42),

we get d(t + 1) ≡ 0 (mod m/4). Then, (a2
1)c = (az

1cd
1)2 = ax1

1 cd(t+1)
1 = ax1

1 for some x1,
which implies 〈a2

1〉 � X, as desired. �

LEMMA 5.8. The group X is given by (5-36).

PROOF. By the lemma, 〈a1〉 � X, that is, (a1)c = az
1 by (5-40). Since 〈a2〉 � X1, we get

〈a〉 � X1 and so G � X1, that is, t = v = 1 in (5-37). Then, by (5-37), (5-39) and (5-40),
we can set X = 〈a, b, c | R, ac1 = ar1 , bc1 = aur1

1 b, (a1)c = az
1, ac = bc3+4w〉, where r1 =

1 − 6sr, rm/4
1 − 1 ≡ 2(r1 − r) ≡ 0 (mod 2n) and 2s

∑j
l=1 rl ≡ 0 ≡ u

∑j
l=1 rl

1 (mod 2n/3)

if and only if j ≡ 0 (mod m/4). Note that 2s
∑j

l=1 rl ≡ 0 (mod 2n/3) if and only if rj
1 −

1 ≡ 0 (mod 2n).
In what follows, we divide the proof into two steps.

Step 1: Show m ≡ 4 (mod 8). Set 〈c〉 = 〈c2〉 × 〈c3〉, where 〈c2〉 is a 2-group and 〈c3〉 is
the 2′−Hall subgroup of 〈c〉. Then, 〈c1〉 = 〈c4

2〉 × 〈c3〉. To show m ≡ 4 (mod 8), we only
need to show c4

2 = 1.
Consider X = X/〈a1〉 = 〈a, b〉〈c〉. Then, CX(〈c1〉) = X, which implies 〈c1〉 ≤ Z(X)

and X/〈c1〉� S4. Note that 〈c3〉 ≤ 〈c3〉(〈c4
2〉〈a〉)≤X, where (|X : 〈c3〉(〈c4

2〉〈a〉)|, |〈c3〉|)= 1.
Thus, by Proposition 2.7, we get that 〈c3〉 has a complement in X, which implies
X = (〈a, b〉〈c2〉) � 〈c3〉.

Consider X2 = 〈a, b〉〈c2〉, where 〈c2〉X2 = 1 and 〈a1〉 � X2, and X2 = X2/〈a1〉 =
〈a, b〉〈c2〉. Note that 〈c2

4〉 � X2. Then, CX2
(〈c2

4〉) = X2, which implies that X2 is the
central expansion of S4. By Lemma 2.8, we get the Schur multiplier of S4 is Z2, and
then o(c2) is either 4 or 8. Arguing by contradiction, assume that o(c2) = 8. Then, c4

2
normalizes G, and we set ac4

2 = ai, where i ≡ 1 (mod 3). Note that 〈a〉 ≤ CX2 (〈a1〉) � X2.
Then, 〈a, bc2, c2

2〉 ≤ CX2 (〈a1〉), which implies 〈a1〉 × 〈c4
2〉 � X2. Since i ≡ 1 (mod 2n/3)

and i2 ≡ 1 (mod 2n), we get i = 1, which implies [a, c4
2] = 1. Then we have

〈a, c2
2〉 ≤ CX2 (〈a1〉 × 〈c4

2〉) � X2, which implies bc2 ∈ CX2 (〈a1〉 × 〈c4
2〉). So (c4

2)b = c4
2.
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Then, c4
2 � X2 is a contradiction. So o(c2) = 4, which implies 〈c1〉 = 〈c3〉. Then,

X = (〈a, b〉〈c2〉) � 〈c1〉.

Step 2: Determine the parameters r1, u, w and z. In X2 = 〈a, b〉〈c2〉, we know ac2 = bc3
2

by (5-39). Consider 〈a〉 ≤ CX2 (〈a1〉) � X2. Then, CX2 (〈a1〉) is either 〈a, bc2, c2
2〉 or X2.

Suppose that CX2 (〈a1〉) = X. Then we know a1 = b2 as [a1, b] = 1, that is, n = 3 and
a1 = a−1

1 . Then, m = 4 and z, r = 1, as desired.
Suppose that CX2 (〈a1〉) = 〈a, bc2, c2

2〉. Then, a1 = abc2
1 = (a−1

1 )c2 , which implies
z = −1. In X1 = 〈a, b〉 � 〈c1〉, we know X1 = 〈a, b, c1 | R, ac1 = ar1 , bc1 = aur1

1 b〉.
Since c2 preserves ac1 = ar1 , we get

(bc3
2)c1 = aur1

1 bc3
2 and (ar1 )c2 = (a(r1−1)/3

1 )c2 ac2 = a(1−r1)/3
1 bc3

2,

which gives

ur1 ≡
1 − r1

3

(
mod

2n
3

)
.

Recall that rj
1 − 1 ≡ 0 ≡ 3u

∑j
l=1 rl

1 (mod 2n) if and only if j ≡ 0 (mod m/4). Then, we
get that rj

1 − 1 ≡ 0 (mod 2n) if and only if j ≡ 0 (mod m/4), which implies o(r1) = m/4.
For the purpose of formatting uniformity, replacing r1 by r, then we get (5-36), as
desired. �

6. Proof of Theorem 1.4

As mentioned before, the group X(D) where 〈c〉X(D) = 1 has been classified in [8,
Theorem 1.2] by using computational methods in skew morphisms. Actually, with
almost the same methods as those that we used in X(Q), we may get a classification
of X(D), which has a different representation from [8, Theorem 1.2]. Here is our
classification. One may see [4] for its computation in detail.

LEMMA 6.1. Let G = D and X = X(D) = G〈c〉, where m = o(c) ≥ 2, G ∩ 〈c〉 = 1 and
〈c〉X = 1. Set R := {an = b2 = cm = 1, ab = a−1}. Then one of the following holds.

(1) X = 〈a, b, c | R, (a2)c = a2r, ca = a2sct, cb = aucv〉, where

2(rt−1 − 1) ≡ 2(rv−1 − 1) ≡ u
( v−1∑

l=0

rl − 1
)
≡ 0 (mod n),

t2 ≡ v2 ≡ 1 (mod m),

2s
t∑

l=1

rl + 2sr ≡ 2sr + 2s
v∑

l=1

rl − u
t∑

l=1

rl + ur ≡ 2(1 − r) (mod n),

2s
w∑

l=1

rl ≡ u
w∑

l=1

(
1 − s
( t∑

l=1

rl + r
))l
≡ 0 (mod n)

if and only if w ≡ 0 (mod m), and if t � 1, then u ≡ 0 (mod 2).
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(2) X = 〈a, b, c | R, (a2)c2
= a2r, (c2)b = a2sc2, (c2)a = a2uc2v, ac = bc2w〉, where either

w= s= u= 0 and r = t = 1; or w� 0, s= u2∑w−1
l=0 rl, t = 1+2wu, nw≡ 2w(r−1)≡

2w(1 + uw) ≡ 0 (mod m/2), r2w − 1 ≡ (u
∑w

l=1 rl)2 − r ≡ (rw + 1)(1 + s
∑w−1

l=0 rl) ≡
0 (mod n/2) and

∑i
l=1 rl ≡ 0 (mod n/2) if and only if i ≡ 0 (mod m/2).

(3) X = 〈a, b, c | R, ac3
= ar, (c3)b = a2uc3, ac = bcim/2, bc = axb〉, where n≡ 2 (mod 4)

and either i = u = 0 and r = x = 1; or i = 1, 6|m, lm/2 ≡ −1 (mod n/2) with o(l) =
m, r = l3, u = (l3 − 1)/2l2 and x ≡ −l + l2 + n/2 (mod n).

(4) X = 〈a, b, c | R, (a2)c3
= a2r, (c3)b = a(2(l3−1))/l2 c3, (a2)c = bcim/2, bc = a2(−l+l2+n/4)

b, ca = a2+4zc2+3d〉, where either i = z = d = 0 and l = 1; or i = 1, n ≡
4 (mod 8), m ≡ 0 (mod 6), lm/2 ≡ −1 (mod n/4) with o(l) = m, r = l3, z =
(1 − 3l)/4l, 1 + 3d ≡ 0 (mod m/3) and

∑j
i=1 ri ≡ 0 (mod n/2) if and only if

j ≡ 0 (mod m/3).
(5) X = 〈a, b, c | R, ac4

= ar, bc4
= a1−rb, (a3)cm/4

= a−3, acm/4
= bc3m/4〉, where m ≡

4 (mod 8) and r is of order m/4 in Z∗n.

Moreover, in the families of groups (1)–(5), for any given parameters satisfying the
relevant equations, there exists X = X(D).

PROOF. Comparing Theorem 1.3 and Lemma 6.1, we get that 〈an〉 � X(Q) for all cases
in groups (2), (3) and some cases in group (1) under the hypothesis 〈c〉X = 1. Moreover,
corresponding to D � Q/〈an〉, we have X(D) = X(Q)/〈an, c1〉, where 〈an〉 � X(Q) and
〈an, c1〉 = 〈an, c〉X(Q). Thus, Theorem 1.4 is proved. �
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