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A generalisation of a theorem of al-K hiu

SADI ABU-SAYMEH, MOWAFFAQ HAJJA

1. Introduction
Several problems that were composed and/or solved by the tenth

century Islamic mathematician Abu Sahl al-Kuhi reached us via the writings
of Abd al-Jalil al-Sijzi, another tenth century Islamic mathematician who,
according to [1], was presumably a student of al-Kuhi's. Twelve of these
(sets of) problems and theorems are discussed in [1] and are referred to as
The Fragments. The theorem of al-Kuhi alluded to in the title is Fragment
#9, which is presented below, together with Fragment #5 and their proofs, in
Section 2. Section 3 is devoted to the generalisation referred to in the title.
Section 4 describes a relation to angle trisection and Sections 5 and 7 a
relation too a configuration of Serenus. Section 6 contains a speculation on
what motivated Fragment #9.

Al-Kuhi's theorem (Fragment #9) and his proof are presented in
Theorem 1. Our generalisation is presented, with two proofs, in Theorem 2.
Since al-Kuhi lived more that ten centuries ago, and since our generalisation
is fairly substantial, one would expect that our two proofs of the
generalisation use much more advanced tools than al-Kuhi's proof. This is
true of our first proof which uses calculus. However, when we compare al-
Kuhi's proof of his theorem and the second proof of our generalisation, we
see that the exact opposite happens here: our proof does not use anything
beyond Euclid's Elements, while al-Kuhi's proof depends heavily on the
advanced properties of hyperbolas that appeared in Apollonius's Conic
Sections, decades after the death of Euclid.

In all that follows,  will be a given circular arc. The minor arc joining
two points  and  on  will be denoted by , and its length by . The
area of a triangle  will be denoted by .
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2. Al-Kuhi's Fragments #5 and #9 and their proofs
Al-Kuhi's Fragment #9 refers to the configuration in Figure 1, where

is a semicircle with diameter  and where  is an arbitrary point on  with
orthogonal projection  on . It asks for a proof that the area   of
triangle  is maximal when  is a third of the way from  to , i.e. when
the length  of the arc  is one third of that of . For ease of reference,
we shall state this again below as Theorem 1, and we shall give al-Kuhi's
own proof.
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Fragment #9 is closely related, and possibly motivated by, Fragment #5,
which together with its solution [1, pp. 634-635] treats the construction of
the point  as shown in Figure 1 such that triangle   has a prescribed
area . Naturally, the least upper bound for feasible values of  is the
maximal area of , and hence Fragment #9.
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For the solution of Fragment #5, we form the quadrant  enclosed
between the perpendicular lines  and , as in Figure 2. Denoting by
the orthogonal projection of any point  in  on , we use the fact that the
locus of points  in  for which the rectangle with diagonal  (or
equivalently ) is fixed is a hyperbola. This is a special case of [3,
Proposition 34, p. 59 (Conics II 12)]. Now we take any point  in  for
which  is equal to the required value  of , and we pass a
hyperbola  through . Obviously, any point  at which  intersects  is a
solution to the problem.
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FIGURE 1: (Al-Kuhi's Fragment #9) The area of  is maximal when XBX′ |XC
∧| = |Ω|/3
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FIGURE 2: (Al-Kuhi's Fragment #5)  Construction of  with given X [XBX′]
We now state Fragment #9, and we give al-Kuhi's own proof.

Theorem 1: (Al-Kuhi's Fragment #9) Referring to Figure 1, let  be a
semicircle with diameter . For any  on , let  denote the orthogonal
projection of  on . Then, among all points  on , the area  of

 attains its maximum at the point  for which

Ω
BC X Ω X′

X BC X Ω [XBX′]
XBX P

|CP
∧| =

|Ω|
3

. (1)

Proof: Referring to Figure 3, it is obvious that the point  for which
is maximal is the point where the hyperbola  that is tangent to  touches

. For if such an  is moved up, it would not have any point in common
with , and if it is moved down, it would intersect  at points Y with

. Let the tangent at  to both  and  meet the lines
and  at  and , respectively. Then it follows from [3, Proposition 30, p.
56 (Conics II 3)] that  is the midpoint of . Therefore  is the midpoint
of , because . It also follows from [3, Proposition 64, p. 106
(Conics III 37–40)] that the points  and  form a harmonic set, i.e.
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. Letting  and , this reduces to
, i.e. .

(BX′) (CU ) = (X′C) (BU ) BX′ = z X′C = t
(z) (z − t) = (t) (2z) z = 3t

The proof in [1] stops here, i.e. on line 3 of page 620. One can complete
it by letting  be the centre of  and , and use  to obtainO Ω OX′ = u z = 3t

R + u = 3 (R − u) ,
and hence  and thus . Hence  is the midpoint of , and
thus , and  is equilateral. Therefore . Hence

. Hence , and therefore , and
hence (1), as desired.

R = 2u t = u X′ OC
XO = XC XOC ∠XCB = 60°

∠XBC = 30° ∠XCB = 2∠XBC |BX
∧| = 2 |CX

∧|

J

X

B O X′ C U

W

,  BX′ = z X′C = t, OX′ = u.

FIGURE 3: Illustrating al-Kuhi's proof of Fragment #9

The solutions above are essentially the ones given on pages 634–635
(for Fragment #5) and on pages 619–620 (for Fragment #9) of [1]. Notice
that these proofs depend on properties of hyperbolas and on notions such as
harmonic sets, and were thus inaccessible to Euclid and his contemporaries.
Hence these solutions are not exactly Euclidean, but rather Apollonian. For
more on conics, one may consult [2].

Note: The condition (1) given by al-Kuhi in Theorem 1 is obviously
equivalent to the condition

∠PBC = 30°. (2)
Since (2) is simpler and possibly more elegant than (1), one wonders why
al-Kuhi chose to use (1) and not (2). In view of our generalisation in
Theorem 2 and the condition (3) therein, one observes that al-Kuhi's choice
of (1) is more suitable for that generalisation than (2). Since one may safely
assume that al-Kuhi was not aware of the condition (3) in our generalisation,
his choice of (1) and not (2) may sound even more puzzling.

Finally, an apparent relation of (1) and (3) to angle trisection was
pointed out by a referee and is discussed in Section 4.
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3. A generalisation of al-Kuhi's Fragment #9
In this section, we generalise al-Kuhi's theorem in two ways. Instead of

the semicircle, we take a minor arc  joining points  and  of some circle,
as shown in Figure 4, and instead of finding the point  for which the area
of  is maximal, we study the subarcs of  for which the area of
decreases and increases. Interestingly, the area of  is maximal again
when  is a third of the way from  to . The theorem below describes
these results.

Ω B C
X

XBX′ Ω XBX′
XBX′

X C B

Theorem 2: (A generalisation of al-Kuhi's theorem) Referring to Figure 4,
let  be a circular arc with endpoints  and  and midpoint , and assume
that  is a minor arc, i.e. . Let  and  be the points that
trisect , i.e. the points defined by

Ω B C M
Ω ∠BMC ≥ 90° P Q

Ω

|CP
∧| = |PQ

∧| = |QB
∧| =

|Ω|
3

. (3)

For any  on , let  denote the orthogonal projection of  on .X Ω X′ X BC
Then as  moves on  from  to ,  increases, and as  moves

from  to ,  decreases. In particular, as  moves on ,
attains its maximum when , and  attains its maximum when

.
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FIGURE 4: FIGURE 5:

Trisectors ,  of  defined by (3)P Q Ω The angle ∠XY
∧

Proofs: We give two proofs. In both proofs, we let  denote the radius of .
We also use the obvious fact that as  moves from  to , both  and
decrease, and hence  decreases. So we restrict  to move from  to

.

R Ω
X M B XX′ BX′

[XBX′] X M
C

If  is any point on  that does not lie on , then the angle  will
be called the angle of  and will be denoted by ; see Figure 5. It is
clear that  is proportional to , namely

Z Ω XY
∧

∠XZY
XY
∧

∠XY
∧

|XY
∧| ∠XY

∧

|XY
∧| = 2R∠XY

∧
.

First proof (using calculus): As shown in Figure 6, we let

∠MCB = ∠MBC = α, ∠MBX = x.
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Then as  moves from  to ,  increases from 0 to . Also ,
since .

X M C x α 0 ≤ α ≤ 45°
∠BMC ≥ 90°

By the sine rule, we have

XB = 2R sin∠BCX = 2R sin (α + ∠MCX) = 2R sin (α + ∠MBX)
= 2R sin (α + x).

Therefore

[BXX′] =
(BX′) (XX′)

2
=

1
2

((XB) cos (α − x)) ((XB) sin (α − x))

= 2R2 sin2 (α + x) cos (α − x) sin (α − x)

= 2R2 (sin (α + x) cos (α − x)) (sin (α + x) sin (α − x))

=
R2

2
(sin 2α + sin 2x) (cos 2x − cos 2α)

=
R2

4
(sin 4x − sin 4α + 2 sin 2 (α − x))

d
dx

([BXX′]) = R2 (cos 4x − cos 2 (α − x)) .

Hence

[BXX′] increases with  x ⇔ cos 4x > cos 2 (α − x)

⇔ 4x < 2(α − x), because  0 < 4x, 2α − 2x < 180°

⇔ α − x >
2α
3

.

Therefore as  moves from  to ,  decreases from  to , and
 increases. As  moves from  to ,  decreases from  to 0, and
 decreases. The last statement follows from this and from symmetry.

X C P x α α / 3
[BXX′] X P M x α / 3
[BXX′]

B

M

x
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X

X′ C
x−α

B

M

E
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D

C

FIGURE 6: FIGURE 7:
Illustrating the calculus proof Comparing areas of triangles , DBD′ EBE′

Second proof (using elementary geometry): Referring to Figure 6, and
letting  be as in Figure 4, we are to prove that as a point  moves from  to

,  increases, and as it moves from  to ,  decreases. Thus, as
shown in Figure 7, we take two points  and  on  and we compare the

P X C
P [XBX′] P B [XBX′]

D E CM
∧
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areas  and  of triangles  and . We assume that  lies
between  and . As shown in Figure 8, we draw from  a line parallel to

, and we let  and  be the points where this line meets the extension of
 and , respectively. We join  and we let  be the point where it

crosses . We also join  and .

[DBD′] [EBE′] DBD′ EBE′ D
C E E

BC F K
D′D Ω FB G

EE′ FE′ GD′

B

K

M

E F

G

D

E′ D′ C

FIGURE 8: Illustrating the proof that [EBE′] = [GBD′]
Then we have

[EBE′] = [FBE′]  EF // BCbecause

= [FGE′] + [GBE′]
= [D′GE′] + [GBE′]  FD′ // GE′because

= [GBD′] .
Joining  and , as shown in Figure 9, we see thatED KB

[EBE′] > [DBD′] ⇔ [GBD′] > [DBD′]
⇔ GE′ > DD′  GBD′  DBD′because triangles and

  BD′have the same base

⇔ GE′ > LE′

⇔ ∠GFE < ∠LFE

⇔ ∠BFE < ∠DEF

⇔ ∠FBC < ∠DEF  EF // BCbecause

⇔ ∠FBC < ∠KBD  EKBD because is cyclic.

Therefore

[EBE′] > [DBD′] ⇔ ∠FBC < ∠KBD. (4)
Using the fact that , it follows from (4) that∠DBC < ∠FBC < ∠EBC

∠EBC < ∠KBD ⇒ [EBE′] > [DBD′] , ∠DBC > ∠KBD ⇒ [EBE′] < [DBD′] .
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In terms of lengths of arcs, this says that

|EC
∧| < |KD

∧| ⇒ [EBE′] > [DBD′] , (5)

|DC
∧| > |KD

∧| ⇒ [EBE′] < [DBD′] . (6)

B

K

M

E F

G

L D

E′ D′ C

FIGURE 9: Illustrating the proof of Theorem 2

If  and  are both on , as in Figure 10, thenD E CP
∧

|EC
∧| < |PC

∧| =
|Ω|
3

, |DK
∧| > |PQ

∧| =
|Ω|
3

,

and hence . By (5), it follows that .|EC
∧| < |DK

∧| [EBE′] > [DBD′]
If  and  are both on , as in Figure 11, thenD E PQ

∧

|DC
∧| > |PC

∧| =
|Ω|
3

, |DK
∧| < |PQ

∧| =
|Ω|
3

,

and hence . By (6), it follows that .|DC
∧| > |DK

∧| [EBE′] < [DBD′]
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FIGURE 10 FIGURE 11

Thus as a point  moves from  to  along , the area
increases, and as  moves from  to , the area  decreases. As
mentioned earlier, as  moves from  to , each of the sides   and
decreases and hence the area  decreases. The last statement follows
from this and from symmetry.

X C P Ω [XBX′]
X P M [XBX′]

X M B XX′ X′B
[XBX′]

4. Relation, albeit only apparent, to angle trisection
Let  be an acute angle that is to be trisected. We may assume that  is

placed in the plane so that its vertex  is the centre of a circle  and that its
θ θ

O A
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arms are the radii  and . Referring to Figure 13, it is clear that the
points  and  that trisect the arc  trisect . Again letting , for
any  on , be the orthogonal projection of  on the chord , it follows
from Theorem 2, that  is the point on  for which  is maximal
among all areas , where  is on . This characterises the angle
trisector  by being the point that maximises the area in a family of
triangles. Needless to say, locating such a maximiser  is not in any way
easier than trisecting .

OB OC
P Q BC

∧
∠BOC X′

X BC
∧

X BC
P BC

∧ [PBP′]
[XBX′] X BC

∧

P
P

∠BOC
Characterising the point that trisects a given angle in terms of another

property (such as maximising a certain quantity) is not new. For example,
Exercise 31 (p. 124) of [4] attributes to Pappus a characterisation of the
angle trisector . Referring to Figure 12, Pappus characterises  as the point
for which

P P

PC = 2 (P′M′) , (7)

where  is the midpoint of arc . It may be interesting to survey the
literature on angle trisection for similar characterisations.

M BC
∧

5. Relation to a configuration of Serenus
The generalisation of al-Kuhi's theorem given in Theorem 2 is

illustrated in the configuration shown in Figure 4. This is quite closely
related to a configuration of Serenus that illustrates Proposition 53 (pp. 142–
145) of his book [5]. Referring to Figure 12 showing a circular arc  (not
necessarily minor) with midpoint , Serenus' proposition states that as a
point  moves on this arc from  to ,  (or equivalently, the
perimeter  of ) increases. Apparently unaware of this
proposition, R. Honsberger included a weaker variant as Problem 9 (pp. 16–
17) in his book [6] and gave a proof. He included it later with two more
proofs (on pp. 21–24) in his book [7]. Three more proofs are given in [8]
and one more proof can be found in the last paragraph of [9]. Needless to
say, Serenus' result obviously holds if the perimeter is replaced by the area.
It is this obvious area version that will be used in the section below.

BC
∧

M
X B M XB + XC

per (XBC) XBC

    

B

Q
M

P

CP′M′

O
B

X
M

C

FIGURE 12
FIGURE 13: Illustrating Proposition 53 

of Serenus saying that as  moves 
from  to ,  increases

X
B M XB + XC
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6. Using al-Kuhi's Fragment #9 to prove that the equilateral triangles are
the largest among all triangles that can be inscribed in a given circle

Let  be a given circle. We shall prove that among the triangles that are
inscribed in , the ones that have maximal area are the equilateral ones
(which clearly are all congruent).

Ω
Ω

We observe first that if  is any triangle inscribed in , then the
isosceles triangle , where  is the midpoint of the arc  has a
larger or equal area; see triangles  and  in Figure 13. Thus we may
restrict ourselves to the family of isosceles triangles that are inscribed in .

UVW Ω
UNW N UVW

∧

BCX BCM
Ω

If we fix a diameter, say , in , then we can restrict our attention to
those isosceles triangles  having  as an apex and  as an axis of
symmetry; see Figure 14. This is because every isosceles triangle inscribed
in  can be rotated about the centre of  to occupy a position like . It
is clear that maximising  is equivalent to maximising , where

 is the point of intersection of  with . Triangles  are precisely
the triangles considered in al-Kuhi's Fragment #9; see Figure 1. Thus
finding the inscribed triangles of maximal area is reduced to al-Kuhi's
Fragment #9, which states that  is maximal when . It
follows that  is maximal when  is equilateral, as desired.

BC Ω
ABA∗ B BC

Ω Ω ABA∗

[ABA∗] [ABA′]
A′ AA∗ BC ABA′

[ABA′] ∠A′AB = 60°
[A∗AB] A∗AB

A∗

B

A

A′
C

FIGURE 14: All isosceles triangles can be moved to become symmetric about BC

The proof above raises the question whether al-Kuhi's Fragment #9 was
motivated by the problem of maximising the area of the triangle inscribed in
a given circle.

7. The perimeter version of Section 5
Using Serenus' theorem, as stated in Section 5, one can argue as in

Section 6 to prove that among the triangles that are inscribed in a given
circle those with maximal perimeter are isosceles. To complete the proof
that among all triangles inscribed in a given circle the equilateral triangles
are the ones with maximal perimeter, one needs to prove that the sum

, in Figure 1, is maximal when . This is not very
difficult to prove.
BA + AA′ ∠A′AB = 60°
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