Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T21:17:16.513Z Has data issue: false hasContentIssue false

A large pelagic lobopodian from the Cambrian Pioche Shale of Nevada

Published online by Cambridge University Press:  13 December 2023

Christian R.A. McCall*
Affiliation:
Otterville, Ontario N0J 1R0, Canada
*
*Corresponding author.

Abstract

Lobopodians are an iconic and diverse group of animals from the Cambrian, which alongside radiodonts, present an important window into the evolution of arthropods and the development of Paleozoic ecosystems. Of these, a rare few species outside of Radiodonta possess lateral swimming flaps. The recent discovery of Utahnax provided much-needed insight into the evolution of swimming flaps, suggesting that the ventrolateral flaps of Kerygmachela evolved independently from other flap-bearing lobopodians and radiodonts. Here a new pelagic lobopodian species is described, Mobulavermis adustus new genus new species, the first lobopodian to be reported from the Cambrian-age Pioche Shale of Nevada. Mobulavermis adustus was large and possessed more ventrolateral flap pairs than any other known lobopodian or radiodont. It is found to be a close relative of both Kerygmachela and Utahnax, allowing the establishment of the new lobopodian family Kerygmachelidae new family. In addition, an indeterminate euarthropod fossil from the Pioche Formation is described in brief, and the recently described Chengjiang species Parvibellus avatus Liu et al., 2022, thought to have been related to the “gilled lobopodians,” is reinterpreted as a juvenile siberiid lobopodian.

UUID: http://zoobank.org/759c4eb9-ec60-4d5a-8b20-4f115ab79575

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Budd, G., 1993, A Cambrian gilled lobopod from Greenland: Nature, v. 364, p. 709711.CrossRefGoogle Scholar
Budd, G.E., 1997, Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland, in Fortey, R.A. and Thomas, R.H., eds., Arthropod Relationships: Dordrecht, Springer Netherlands, p. 125138.Google Scholar
Budd, G.E., 1999, The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland): Earth and Environmental Science Transactions of The Royal Society of Edinburgh, v. 89, p. 249290.CrossRefGoogle Scholar
Budd, G.E., and Daley, A.C., 2012, The lobes and lobopods of Opabinia regalis from the middle Cambrian Burgess Shale: Lethaia, v. 45, p. 8395.CrossRefGoogle Scholar
Caron, J., and Aria, C., 2020, The Collins’ monster, a spinous suspension-feeding lobopodian from the Cambrian Burgess Shale of British Columbia: Palaeontology, v. 63, p. 979994.CrossRefGoogle Scholar
Caron, J.-B., Morris, S.C., and Shu, D., 2010, Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes: PLoS ONE, v. 5, n. e9586, https://doi.org/10.1371/journal.pone.0009586.CrossRefGoogle ScholarPubMed
Cong, P., Ma, X., Hou, X., Edgecombe, G.D., and Strausfeld, N.J., 2014, Brain structure resolves the segmental affinity of anomalocaridid appendages: Nature, v. 513, p. 538542.CrossRefGoogle ScholarPubMed
Cong, P.-Y., Edgecombe, G.D., Daley, A.C., Guo, J., Pates, S., and Hou, X.-G., 2018, New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta: Papers in Palaeontology, v. 4, p. 605621.CrossRefGoogle Scholar
Conway Morris, S, 1977, A new metazoan from the Cambrian Burgess Shale of British Columbia: Palaeontology, v. 20, p. 623640.Google Scholar
Conway Morris, S.C., and Robison, R.A., 1982, The enigmatic medusoid Peytoia and a comparison of some Cambrian biotas: Journal of Paleontology, v. 56, p. 116122.Google Scholar
Daley, A.C., and Budd, G.E., 2010, New anomalocaridid appendages from the Burgess Shale, Canada: Palaeontology, v. 53, p. 721738.CrossRefGoogle Scholar
Daley, A.C., and Edgecombe, G.D., 2014, Morphology of Anomalocaris canadensis from the Burgess Shale: Journal of Paleontology, v. 88, p. 6891.CrossRefGoogle Scholar
Daley, A.C., Paterson, J.R., Edgecombe, G.D., García-Bellido, D.C., and Jago, J.B., 2013, New anatomical information on Anomalocaris from the Cambrian Emu Bay Shale of South Australia and a reassessment of its inferred predatory habits: Palaeontology, v. 56, p. 971990.CrossRefGoogle Scholar
Du, K., Ortega-Hernández, J., Yang, J., Yang, X., Guo, Q., et al., 2020, A new early Cambrian Konservat-Lagerstätte expands the occurrence of Burgess Shale-type deposits on the Yangtze Platform: Earth-Science Reviews, v. 211, n. 103409, https://doi.org/10.1016/j.earscirev.2020.103409.CrossRefGoogle Scholar
Dzik, J., 2011, The xenusion-to-anomalocaridid transition within the lobopodians: Bollettino della Società Paleontologica Italiana, v. 50, p. 6574.Google Scholar
Fleming, J.F., Kristensen, R.M., Sørensen, M.V., Park, T.-Y.S., Arakawa, K., et al., 2018, Molecular palaeontology illuminates the evolution of ecdysozoan vision: Proceedings of the Royal Society B: Biological Sciences, v. 285, n. 20182180, https://doi.org/10.1098/rspb.2018.2180.Google ScholarPubMed
Foster, J., 2014, Cambrian Ocean World: Ancient Sea Life of North America: Bloomington, Indiana, Indiana University Press.Google Scholar
Fu, D., Legg, D.A., Daley, A.C., Budd, G.E., Wu, Y., and Zhang, X., 2022, The evolution of biramous appendages revealed by a carapace-bearing Cambrian arthropod: Philosophical Transactions of the Royal Society B: Biological Sciences, v. 377, n. 20210034, https://doi.org/10.1098/rstb.2021.0034.CrossRefGoogle ScholarPubMed
Goloboff, P.A., and Catalano, S.A., 2016, TNT version 1.5, including a full implementation of phylogenetic morphometrics: Cladistics, v. 32, p. 221238.CrossRefGoogle ScholarPubMed
Gould, S.J., 1989, Wonderful Life: The Burgess Shale and the Nature of History (first edition): New York, W.W. Norton, 347 p.Google Scholar
Greenfield, T., 2023, “Hurdiidae” versus Peytoiidae: Incertae Sedis, https://incertaesedisblog.wordpress.com/2023/01/ (accessed Mar 2023).Google Scholar
Guo, J., Pates, S., Cong, P., Daley, A.C., Edgecombe, G.D., Chen, T., and Hou, X., 2019, A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota: Papers in Palaeontology, v. 5, p. 99110.CrossRefGoogle Scholar
Hou, X.G., Bergström, J., and Ahlberg, P., 1995, Anomalocaris and other large animals in the lower Cambrian Chengjiang fauna of southwest China: GFF, v. 117, p. 163183.Google Scholar
Hou, X.G., Bergström, J., and Jie, Y., 2006, Distinguishing anomalocaridids from arthropods and priapulids: Geological Journal, v. 41, p. 259269.Google Scholar
Howard, R.J., Hou, X., Edgecombe, G.D., Salge, T., Shi, X., and Ma, X., 2020, A tube-dwelling early Cambrian Lobopodian: Current Biology, v. 30, p. 15291536.e2.CrossRefGoogle ScholarPubMed
Howard, R.J., Giacomelli, M., Lozano-Fernandez, J., Edgecombe, G.D., Fleming, J.F., et al., 2022, The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data: Journal of the Geological Society, v. 179, n. jgs2021-107, https://doi.org/10.1144/jgs2021-107.CrossRefGoogle Scholar
Izquierdo-López, A., and Caron, J.-B., 2022, The problematic Cambrian arthropod Tuzoia and the origin of mandibulates revisited: Royal Society Open Science, v. 9, n. 220933, https://doi.org/10.1098/rsos.220933.CrossRefGoogle ScholarPubMed
Kimmig, J., Meyer, R.C., and Lieberman, B.S., 2019, Herpetogaster from the early Cambrian of Nevada (Series 2, Stage 4) and its implications for the evolution of deuterostomes: Geological Magazine, v. 156, p. 172178.CrossRefGoogle Scholar
Kühl, G., Briggs, D.E.G., and Rust, J., 2009, A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany: Science, v. 323, p. 771773.CrossRefGoogle ScholarPubMed
Lankester, E.R., 1904, Memoirs: the structure and classification of the Arthropoda: Quarterly Journal of Microscopical Science, v. 47, p. 523582.Google Scholar
Lerosey-Aubril, R., and Ortega-Hernández, J., 2022, A new lobopodian from the middle Cambrian of Utah: did swimming body flaps convergently evolve in stem-group arthropods? Papers in Palaeontology, v. 8, n. e1450, https://doi.org/10.1002/spp2.1450.CrossRefGoogle Scholar
Lerosey-Aubril, R., and Pates, S., 2018, New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton: Nature Communications, v. 9, n. 3774, https://doi.org/10.1038/s41467-018-06229-7.CrossRefGoogle ScholarPubMed
Lieberman, B.S., 2003, A new soft-bodied fauna: the Pioche Formation of Nevada: Journal of Paleontology, v. 77, p. 674690.2.0.CO;2>CrossRefGoogle Scholar
Liu, J., Shu, D., Han, J., Zhang, Z., and Zhang, X., 2006, A large xenusiid lobopod with complex appendages from the lower Cambrian Chengjiang Lagerstätte: Acta Palaeontologica Polonica, v. 51, p. 215222.Google Scholar
Liu, J., Shu, D., Han, J., Zhang, Z., and Zhang, X., 2007, Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the early Cambrian Chengjiang Lagerstätte, South China: Acta Zoologica, v. 88, p. 279288.CrossRefGoogle Scholar
Liu, J., Lerosey-Aubril, R., Steiner, M., Dunlop, J.A., Shu, D., and Paterson, J.R., 2018, Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan: National Science Review, v. 5, p. 863869.CrossRefGoogle Scholar
Liu, J., Dunlop, J.A., Steiner, M., and Shu, D., 2022, A Cambrian fossil from the Chengjiang fauna sharing characteristics with gilled lobopodians, opabiniids and radiodonts: Frontiers in Earth Science, v. 10, https://doi.org/10.3389/feart.2022.861934.Google Scholar
Liu, Q., 2013, The first discovery of anomalocaridid appendages from the Balang Formation (Cambrian Series 2) in Hunan, China: Alcheringa: An Australasian Journal of Palaeontology, v. 37, p. 338343.CrossRefGoogle Scholar
Luo, H.L., Hu, S.X., Chen, L.Z., Zhang, S.S., and Tao, Y.H., 1999, [Early Cambrian Chengjiang Fauna from Kunming region, China]: Kunming, China, Yunnan Science and Technology Press, 129 p. [In Chinese with English summary]Google Scholar
Maddison, W.P., and Maddison, D.R., 2021, Mesquite: a modular system for evolutionary analysis, v. 3.70: http://www.mesquiteproject.org (accessed Mar 2023).Google Scholar
Moore, R.A., and Lieberman, B.S., 2009, Preservation of early and middle Cambrian soft-bodied arthropods from the Pioche Shale, Nevada, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 277, p. 5762.CrossRefGoogle Scholar
Moysiuk, J., and Caron, J.-B., 2019, A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources: Proceedings of the Royal Society B: Biological Sciences, v. 286, n. 20191079, https://doi.org/10.1098/rspb.2019.1079.Google ScholarPubMed
Moysiuk, J., and Caron, J.-B., 2021, Exceptional multifunctionality in the feeding apparatus of a mid-Cambrian radiodont: Paleobiology, v. 47, p. 704724.CrossRefGoogle Scholar
Moysiuk, J., and Caron, J.-B., 2022, A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation: Current Biology, v. 32, p. 33023316.e2.CrossRefGoogle ScholarPubMed
Moysiuk, J., and Caron, J.-B., 2023, A quantitative assessment of ontogeny and molting in a Cambrian radiodont and the evolution of arthropod development: Paleobiology, https://doi.org/10.1017/pab.2023.18.CrossRefGoogle Scholar
Murdock, D.J.E., Gabbott, S.E., and Purnell, M.A., 2016, The impact of taphonomic data on phylogenetic resolution: Helenodora inopinata (Carboniferous, Mazon Creek Lagerstätte) and the onychophoran stem lineage: BMC Evolutionary Biology, v. 16, n. 19, https://doi.org/10.1186/s12862-016-0582-7.CrossRefGoogle ScholarPubMed
Nielsen, C., 1995, Animal Evolution: Interrelationships of the Living Phyla: Oxford, Oxford University Press, 402 p.Google Scholar
Ortega-Hernández, J., Lerosey-Aubril, R., and Pates, S., 2019, Proclivity of nervous system preservation in Cambrian Burgess Shale-type deposits: Proceedings of the Royal Society B: Biological Sciences, v. 286, n. 20192370, https://doi.org/10.1098/rspb.2019.2370.Google ScholarPubMed
Park, T.-Y.S., Kihm, J.-H., Woo, J., Park, C., Lee, W.Y., Smith, M.P., Harper, D.A.T., Young, F., Nielsen, A.T., and Vinther, J., 2018, Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head: Nature Communications, v. 9, n. 1019, https://doi.org/10.1038/s41467-018-03464-w.CrossRefGoogle ScholarPubMed
Pates, S., Daley, A.C., and Ortega-Hernandez, J., 2018, Reply to comment on “Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris” with the formal description of Stanleycaris: Acta Palaeontologica Polonica, v. 63, p. 105110.CrossRefGoogle Scholar
Pates, S., Lerosey-Aubril, R., Daley, A.C., Kier, C., Bonino, E., and Ortega-Hernández, J., 2021a, The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian): PeerJ, v. 9, n. e10509, https://doi.org/10.7717/peerj.10509.CrossRefGoogle ScholarPubMed
Pates, S., Daley, A.C., Edgecombe, G.D., Cong, P., and Lieberman, B.S., 2021b, Systematics, preservation and biogeography of radiodonts from the southern Great Basin, USA, during the upper Dyeran (Cambrian Series 2, Stage 4): Papers in Palaeontology, v. 7, p. 235262.CrossRefGoogle Scholar
Pates, S., Botting, J.P., Muir, L.A., and Wolfe, J.M., 2022a, Ordovician opabiniid-like animals and the role of the proboscis in euarthropod head evolution: Nature Communications, v. 13, n. 6969, https://doi.org/10.1038/s41467-022-34204-w.CrossRefGoogle ScholarPubMed
Pates, S., Wolfe, J.M., Lerosey-Aubril, R., Daley, A.C., and Ortega-Hernández, J., 2022b, New opabiniid diversifies the weirdest wonders of the euarthropod stem group: Proceedings of the Royal Society B: Biological Sciences, v. 289, n. 20212093, https://doi.org/10.1098/rspb.2021.2093.Google ScholarPubMed
Potin, G.J.-M., and Daley, A.C., 2023, The significance of Anomalocaris and other Radiodonta for understanding paleoecology and evolution during the Cambrian explosion: Frontiers in Earth Science, v. 11, https://doi.org/10.3389/feart.2023.1160285.CrossRefGoogle Scholar
Robison, R.A., and Richards, B.C., 1981, Larger bivalve arthropods from the middle Cambrian of Utah: The University of Kansas Paleontological Contributions Paper 106, http://hdl.handle.net/1808/3757.Google Scholar
Simonetta, A.M., 2004, Are the traditional classes of arthropods natural ones? Recent advances in palaeontology and some considerations on morphology: Italian Journal of Zoology, v. 71, p. 247264.CrossRefGoogle Scholar
Smith, M.R., and Ortega-Hernández, J., 2014, Hallucigenia's onychophoran-like claws and the case for Tactopoda: Nature, v. 514, p. 363366.CrossRefGoogle ScholarPubMed
Stöver, B.C., and Müller, K.F., 2010, TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses: BMC Bioinformatics, v. 11, n. 7, https://doi.org/10.1186/1471-2105-11-7.CrossRefGoogle ScholarPubMed
Vannier, J., Liu, J., Lerosey-Aubril, R., Vinther, J., and Daley, A.C., 2014, Sophisticated digestive systems in early arthropods: Nature Communications, v. 5, n. 3641, https://doi.org/10.1038/ncomms4641.CrossRefGoogle ScholarPubMed
Van Roy, P., Daley, A.C., and Briggs, D.E.G., 2015, Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps: Nature, v. 522, p. 7780.CrossRefGoogle ScholarPubMed
Vinther, J., Porras, L., Young, F.J., Budd, G.E., and Edgecombe, G.D., 2016, The mouth apparatus of the Cambrian gilled lobopodian Pambdelurion whittingtoni: Palaeontology, v. 59, p. 841849.CrossRefGoogle Scholar
Walcott, C.D., 1911a, Middle Cambrian holothurians and medusae: Smithsonian Miscellaneous Collections, v. 57, p. 4168.Google Scholar
Walcott, C.D., 1911b, Middle Cambrian annelids; Smithsonian Miscellaneous Collection, v. 57, p. 109144.Google Scholar
Walcott, C.D., 1912, Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata: Smithsonian Miscellaneous Collections, v. 57, p. 145228.Google Scholar
Wang, Y., Huang, D., and Hu, S., 2013, New anomalocardid frontal appendages from the Guanshan biota, eastern Yunnan: Chinese Science Bulletin, v. 58, p. 39373942.CrossRefGoogle Scholar
Whittington, H.B., 1975, The enigmatic animal Opabinia regalis, middle Cambrian, Burgess Shale, British Columbia: Philosophical Transactions of the Royal Society of London B, Biological Sciences, v. 271, p. 143.Google Scholar
Whittington, H.B., 1978, The lobopod animal Aysheaia pedunculata Walcott, middle Cambrian, Burgess Shale, British Columbia: Philosophical Transactions of the Royal Society of London B, Biological Sciences, v. 284, p. 165197.Google Scholar
Wotte, T., and Sundberg, F.A., 2017, Small shelly fossils from the Montezuman–Delamaran of the Great Basin in Nevada and California: Journal of Paleontology, v. 91, p. 883901.CrossRefGoogle Scholar
Wu, Y., Fu, D., Ma, J., Lin, W., Sun, A., and Zhang, X., 2021a, Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta): PalZ, v. 95, p. 209221.CrossRefGoogle Scholar
Wu, Y., Ma, J., Lin, W., Sun, A., Zhang, X., and Fu, D., 2021b, New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: biostratigraphic and paleobiogeographic implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 569, n. 110333, https://doi.org/10.1016/j.palaeo.2021.110333.CrossRefGoogle Scholar
Wu, Y., Pates, S., Ma, J., Lin, W., Wu, Y., Zhang, X., and Fu, D., 2022, Addressing the Chengjiang conundrum: a palaeoecological view on the rarity of hurdiid radiodonts in this most diverse early Cambrian Lagerstätte: Geoscience Frontiers, v. 13, n. 101430, https://doi.org/10.1016/j.gsf.2022.101430.Google Scholar
Young, F.J., and Vinther, J., 2017, Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni: Palaeontology, v. 60, p. 2754.CrossRefGoogle Scholar
Zeng, H., Zhao, F., Niu, K., Zhu, M., and Huang, D., 2020, An early Cambrian euarthropod with radiodont-like raptorial appendages: Nature, v. 588, p. 101105.CrossRefGoogle ScholarPubMed
Zeng, H., Zhao, F., and Zhu, M., 2023, Innovatiocaris, a complete radiodont from the early Cambrian Chengjiang Lagerstätte and its implications for the phylogeny of Radiodonta: Journal of the Geological Society, v. 180, n. jgs2021-164, https://doi.org/10.1144/jgs2021-164.CrossRefGoogle Scholar
Zhu, X., Lerosey-Aubril, R., and Ortega-Hernández, J., 2021, Furongian (Jiangshanian) occurrences of radiodonts in Poland and South China and the fossil record of the Hurdiidae: PeerJ, v. 9, n. e11800, https://doi.org/10.7717/peerj.11800.CrossRefGoogle ScholarPubMed