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Abstract
We study linearizability of actions of finite groups on singular cubic threefolds, using cohomological tools,
intermediate Jacobians, Burnside invariants, and the equivariant Minimal Model Program.

1. Introduction

In this paper, we continue our investigations of actions of finite groups on rational threefolds over an
algebraically closed field k of characteristic zero, up to equivariant birationality. The main problem is
to decide linearizability (i.e., birationality of the given action to a linear action on projective space);
see, for example, [22] for background and references. The linearizability problem is essentially settled
in dimension 2 [36, 50] but remains largely open in dimension 3. Here, we focus on the following:

Problem 1. Let 𝑋 ⊂ P4 be a singular rational cubic threefold and let G be a finite subgroup of its
automorphisms. When is the G-action on X linearizable?

Note that linearizability of a G-action for a cubic threefold X is equivalent to projective linearizability
since the action lifts to GL5 (see Section 2 for a proof, and [42] for a general discussion of these notions).

Smooth cubic threefolds are not rational, and their automorphisms have been classified in [57,
Theorem 1.1]: there are six maximal groups

𝐶4
3 �𝔖5, ((𝐶2

3 � 𝐶3) � 𝐶4) ×𝔖3, 𝐶24, 𝐶16,PSL2(F11), 𝐶3 ×𝔖5.

However, all singular ones, except cones over smooth cubic curves, are rational. Cubic threefolds with
isolated singularities have been classified in [55], but it is not immediately clear how to identify possible
symmetries from that analysis.

Here, we restrict our attention to nodal cubics (i.e., those with ordinary double points), as this is the
most interesting and difficult class of singular cubics from the perspective of equivariant geometry. In
all these cases, the automorphism group Aut(𝑋) is finite, by, for example, [2, Theorem 1.1].

Note that the existence of a G-fixed node yields a straightforward linearization construction: projection
from this node gives an equivariant birational map to P3 with linear action. Thus, we will be primarily
interested in actions not fixing a singular point of X. Another such construction comes from a G-stable
plane and a disjoint G-stable line:

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2024.148 Published online by Cambridge University Press

doi:10.1017/fms.2024.148
https://orcid.org/0000-0002-6820-8073
https://orcid.org/0000-0002-8310-7107
https://orcid.org/0009-0006-3826-5006
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/fms.2024.148


2 I. Cheltsov, Y. Tschinkel and Z. Zhang

Lemma 1.1. Let X be a nodal cubic threefold. Let 𝐺 ⊆ Aut(𝑋) be such that it preserves a plane Π ⊂ 𝑋
and a line 𝑙 ⊂ 𝑋 , disjoint from Π. Then the G-action on X is linearizable.

Proof. Let 𝜙 : 𝑋 � 𝑋2,2 be the unprojection from Π; 𝑋2,2 ⊂ P5 is a (nodal) complete intersection of
two quadrics. Then 𝜙 is G-equivariant, and 𝜙(𝑙) is a G-invariant line. Taking a projection from this line,
we obtain a G-equivariant birational map 𝑋 � P3; see [29, Proposition 2.2] for an application of this
construction over nonclosed fields. �

Let 𝑠 = 𝑠(𝑋) be the cardinality of the set Sing(𝑋) of nodes of X. It is well known that 𝑠 ≤ 10.
Moreover, there is a unique cubic threefold X with 𝑠 = 10, the Segre cubic, treated in [5, 24]. In [5], it is
shown that the subgroup𝔄5 ⊂ 𝔖6 = Aut(𝑋) that leaves invariant a hyperplane section is not linearizable.
In [24], we have completed this analysis by proving that the action of𝐺 ⊆ 𝔖6 is linearizable if and only if

◦ G fixes a singular point of X, or
◦ G is contained in the subgroup 𝔖5 ⊂ 𝔖6 that does not leave invariant a hyperplane section of X, or
◦ 𝐺 � 𝐶2

2 , X contains three G-invariant planes, and Sing(𝑋) is a union of five G-orbits of length 2.

Using this description, one can list all subgroups of𝔖6 giving rise to linearizable actions – there are 37
such subgroups up to conjugation (among 56 conjugacy classes of subgroups of 𝔖6).

In this paper, we study the cases where

2 ≤ 𝑠(𝑋) ≤ 9.

To address the linearizability problem for these outstanding cases, we use explicit geometric construc-
tions, as well as the following techniques:

◦ cohomological tools [14, 45],
◦ intermediate Jacobians, in the equivariant context [10],
◦ Burnside invariants and their specialization [46],
◦ G-birational rigidity and G-solidity; see, for example, [20].

To describe our results, we distinguish cases based on linear position properties of nodes, following
[37]. According to [37], there are 15 configurations, labeled (J1), ..., (J15), with (J1), ..., (J5) correspond-
ing to 1, ..., 5 nodes in general linear position, and (J15) corresponding to the Segre cubic threefold.
The relevant invariants are

◦ s, the number of nodes of X,
◦ 𝑑 = rk Cl(𝑋) − 1, the defect of X, which equals the number of dependent linear conditions imposed

on H0 (𝑋,O𝑋 (1)) by the nodes, and
◦ p – the number of planes Π ⊂ 𝑋 .

We list all possibilities for the triples (𝑠, 𝑑, 𝑝) and describe our results in each of the cases:

◦ 𝑠 = 2, 𝑑 = 0, 𝑝 = 0: We prove that the G-action is linearizable if and only if G fixes each of the two
nodes, and classify actions of cyclic groups not fixing any node; see Section 3.

◦ 𝑠 = 3, 𝑑 = 0, 𝑝 = 0: We conjecture that the G-action is linearizable if and only if it fixes a node,
and classify all automorphism groups not fixing any node. We provide examples of nonlinearizable
actions of 𝐺 = 𝐶2

3 ; see Section 4.
◦ 𝑠 = 4:

– 𝑑 = 0, 𝑝 = 0: There is an equivariant birational map to a smooth divisor of degree (1, 1, 1, 1) in
(P1)4. Following considerations over nonclosed fields in [48, Conjecture 1.3], we conjecture that the
G-action is not linearizable if it is transitive on the nodes. We provide examples of nonlinearizable
actions of 𝐺 = 𝐶2

2 confirming this conjecture. We classify all automorphism groups not fixing any
node.

– 𝑑 = 1, 𝑝 = 1: An action is nonlinearizable if and only if it does not fix a node and X does not
contain G-stable lines disjoint from the unique plane in X; see Section 5.
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◦ 𝑠 = 5:
– 𝑑 = 0, 𝑝 = 0: All actions are linearizable, except for actions of 𝔄5 and 𝔖5, which are birational

to standard actions on a smooth quadric threefold. The 𝔖5-action is not linearizable [21]; we
conjecture that the 𝔄5-action is also not linearizable; see Section 6.

– 𝑑 = 1, 𝑝 = 1: All actions are linearizable, as there is a unique node outside the plane and fixed by
the action [37].

◦ 𝑠 = 6:
– 𝑑 = 1, 𝑝 = 0: We classify all automorphism groups not fixing any node, establish a sufficient

condition for nonlinearizability, and apply it to provide examples of nonlinearizable actions of
𝐺 = 𝐶2.

– 𝑑 = 1, 𝑝 = 1: All actions are linearizable by Lemma 1.1.
– 𝑑 = 2, 𝑝 = 3: We classify all actions and solve the linearizability problem for most of them; see

Section 7.
◦ 𝑠 = 7:

– 𝑑 = 2, 𝑝 = 2: All actions are linearizable, since each of the two planes contains four nodes, and
exactly one of the nodes is on both planes, thus preserved by the action [37].

– 𝑑 = 2, 𝑝 = 3: All actions are linearizable, since there is a unique node not contained in any plane
in X, thus fixed by the action [37].

◦ 𝑠 = 8, 𝑑 = 3, 𝑝 = 5: We classify automorphism groups not fixing any node and solve the linearizability
problem in Section 8.

◦ 𝑠 = 9, 𝑑 = 4, 𝑝 = 9: Linearizability problem is solved, except for specific actions of𝔖3 and 𝔇6, which
are birational to actions on a smooth quadric; see Section 9.
We conclude the introduction by summarizing the cases for which the linearizability problem remains

open.
◦ 𝑠 = 3, 𝑑 = 0, 𝑝 = 0: Actions in Proposition 4.1 not containing the 𝐶2

3 in Example 4.2 and not fixing
any node.

◦ 𝑠 = 4, 𝑑 = 0, 𝑝 = 0: Actions in Theorem 5.1 not containing the 𝐶2
2 in Example 5.2 and not fixing any

node.
◦ 𝑠 = 5, 𝑑 = 0, 𝑝 = 0: A unique 𝔄5-action described in Section 6, which is equivariantly birational to

the 𝔄5-action on a smooth quadric (14).
◦ 𝑠 = 6, 𝑑 = 1, 𝑝 = 0: Actions in Proposition 7.3 not fixing any node and not containing an involution

not fixing any nodes.
◦ 𝑠 = 6, 𝑑 = 2, 𝑝 = 3: Actions in Proposition 7.11 not containing the 𝐶2

2 in Lemma 7.14, not containing
the 𝐶2

2 or 𝔖3 in Remark 7.15, not contained in the 𝐶2
2 in Lemma 7.13, and not fixing any node.

◦ 𝑠 = 9, 𝑑 = 4, 𝑝 = 9: The actions of 𝔇6, 𝔖3 and 𝔖′
3 specified in (26); these are also equivariantly

birational to actions on a smooth quadric (27).
In many of these cases, equivariant specialization of [46], applied here in the geometric context for
the first time, shows nonlinearizability of the actions for a very general member of the family; see
Propositions 4.3, 5.3, 5.4, Lemmas 7.17, 7.18 and Remark 7.19.

2. Obstructions to linearizability

Among available obstruction theories to linearizability are
◦ Existence of fixed points upon restriction to abelian subgroups,
◦ Group cohomology,
◦ Intermediate Jacobians, and their equivariant versions,
◦ Burnside invariants,
◦ Specialization of birational types,
◦ Birational rigidity.
We briefly review relevant results and constructions.
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Fixed points by abelian subgroups

Recall that existence of fixed points for actions of abelian groups is an equivariant birational invariant;
see [51]. Precisely, let G be a finite abelian group acting generically freely on a smooth projective variety
V. Assume that there exists a G-equivariant birational map 𝑊 � 𝑉 from a smooth G-variety W. Then

𝑊𝐺 ≠ ∅ ⇐⇒ 𝑉𝐺 ≠ ∅.

Linear actions of abelian groups on projective spaces always have fixed points, and thus, we have the
following.

Lemma 2.1. Let V be a smooth projective variety with generically free and linearizable action by a
finite group G. Then 𝑉𝐻 ≠ ∅ for all abelian subgroups 𝐻 ⊆ 𝐺.

In particular, let X be a nodal cubic threefold and 𝐺 ⊆ Aut(𝑋). The G-action on X is linearizable if
and only if it is projectively linearizable. To see this, one can apply the argument in [38]. Alternatively,
we provide a direct proof below.

First, we show that the G-action is induced from an action of the ambient P4 (i.e.,𝐺 ⊂ PGL5). Indeed,
by Lefschetz hyperplane theorem, the Picard group Pic(𝑋) = Z is generated by a general hyperplane
section of X. The induced G-action on Pic(𝑋) is trivial, sending a hyperplane to another hyperplane in
P4. This implies that the G-action on X lifts to P4.

It follows that the G-action naturally lifts toO𝑋 (−5), the restriction of the canonical bundle of P4 to 𝑋.
Similarly, the G-action lifts to O𝑋 (−2), the canonical bundle of X. Since O𝑋 (−5) and O𝑋 (−2) generate
O𝑋 (1), we know that the G-action lifts to O𝑋 (1), and thus to H0 (𝑋,O𝑋 (1)) and H0(P4,OP4 (1)).
Therefore, the G-action lifts to GL5.

This also shows that the Amitsur group Am(𝑋, 𝐺) (see [13, Section 6]) is trivial. If the G-action is
projectively linearizable (i.e., equivariantly birational to a G-action on P3), then Am(P3, 𝐺) = 0 since
the Amitsur group is an equivariant birational invariant. This implies that the G-action on P3 is linear;
namely, it lifts to GL4. So the notions of linearizable and projectively linearizable actions on X are
equivalent.

Thus, if an abelian subgroup 𝐻 ⊆ 𝐺 does not fix a point in the standard desingularization 𝑋 of X
(the blowup of the nodes), then there exists no G-equivariant birational map 𝑋 � P3. We found two
applications of this obstruction; see Example 4.2 and Section 9.

Cohomology

Let X be a nodal cubic threefold, �̃� → 𝑋 its standard desingularization, and 𝐺 ⊆ Aut(𝑋). Here, we
consider the induced G-actions on the Picard group Pic( �̃�) and the class group Cl(𝑋); we often identify
divisors and their classes.

A well-studied obstruction to (stable) linearizability is the failure of Pic( �̃�) to be a stably permutation
module; we call this the (SP)-obstruction. In turn, this is implied by the nonvanishing of

H1(𝐺 ′, Pic( �̃�)), or H1 (𝐺 ′, Pic( �̃�)∨), for some 𝐺 ′ ⊆ 𝐺.

We call this the (H1)-obstruction; see [24, Section 2].

Proposition 2.2. When 𝑠(𝑋) ≤ 7 and 𝑠(𝑋) ≠ 6, or when 𝑠 = 6 and the nodes are not in general linear
position, Pic( �̃�) is a permutation module.

Proof. We use labels for configurations of nodes and planes from [37].

◦ 𝑠 = 1, . . . , 5, 𝑝 = 0; (J1–J5):
Cl(𝑋) = Z is freely generated by the hyperplane section, with trivial G-action, and Pic( �̃�) is freely
generated by the exceptional divisors of the blowup �̃� → 𝑋 and the pullback to �̃� of the basis of
Cl(𝑋). The G-action permutes the exceptional divisors. So Pic( �̃�) is a permutation module.
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◦ 𝑠 = 4, 5, 6, 𝑝 = 1; (J6–J8):
Cl(𝑋) = Z2 is freely generated by the hyperplane section and the unique, necessarily G-stable, plane
in X, with trivial G-action on their classes. Thus, Pic( �̃�) is a permutation module.

◦ 𝑠 = 7, 𝑝 = 2; (J10):
Cl(𝑋) = Z3 is freely generated by the hyperplane section and the classes of the two planes in X, with
G possibly permuting these two classes. Thus, Pic( �̃�) is a permutation module.

◦ 𝑠 = 6, 7, 𝑝 = 3; (J11–J12):
Cl(𝑋) = Z3 is freely generated by the classes of the three planes in X which form a tetrahedron (with
one face missing), with G possibly permuting these classes. So Pic( �̃�) is a permutation module. �

The remaining cases are more involved; we handle these in subsequent sections.

Intermediate Jacobians

Applications of intermediate Jacobians to rationality problems (over 𝑘 = C) go back to the seminal work
of Clemens-Griffiths [27]: if a smooth threefold X is rational, then its intermediate Jacobian IJ(𝑋) is a
product of Jacobians of curves. Refinements of this, taking into account group actions, have appeared
in, for example, [8]; an arithmetic analog of these arguments has been developed in [10]. In particular,
intermediate Jacobians exist over arbitrary fields; see [1, 11].

The key point is that, geometrically, IJ(𝑋) could be a product of Jacobians of curves, but this does
not necessarily hold equivariantly, respectively, over a nonclosed base field. This idea is implemented
in, for example, [10, Theorem 1.1]. Pursuing the analogy, we have the following:

Theorem 2.3. Let X be a smooth projective rationally connected threefold over an algebraically closed
field such that its intermediate Jacobian IJ(𝑋) is isomorphic to the Jacobian of a smooth nonhyperelliptic
curve C of genus 𝑔 ≥ 3, as a principally polarized abelian variety. Suppose that Aut(𝑋) contains an
involution 𝜏 acting on IJ(𝑋) by multiplication by (−1). Then X is not 〈𝜏〉-equivariantly birational to
any smooth projective variety with trivial intermediate Jacobian.

Proof. Suppose first that there exists a 〈𝜏〉-equivariant blowup 𝜋 : 𝑋 → 𝑌 of a nonhyperelliptic curve
𝐶 ⊂ 𝑌 , where Y is a smooth threefold with trivial intermediate Jacobian. Since C is not hyperelliptic, it
follows from Theorem 3 in [49, Appendix] that

Aut
(
IJ(𝑋)

)
� Aut(𝐶) × 𝐶2, (1)

where the second factor corresponds to the action of multiplication by (−1). If C is pointwise fixed by
𝜏, then 𝜏 acts trivially on IJ(𝑋). If 𝜏 acts faithfully on C, then its action on IJ(𝑋) = J(𝐶) is induced by
the action on C; thus, 𝜏 cannot project nontrivially to the second factor in (1).

The general case is treated similarly, using equivariant weak factorization. �

Example 2.4. Consider the conic bundle

𝑥1𝑥2 = 𝑓 (𝑦1, 𝑦2, 𝑦3) ⊂ A2 × P2,

where f is a form of degree � 4 defining a smooth curve in P2, and 𝐶2-action via permutation on 𝑥1, 𝑥2.
Then this action is not linearizable by Theorem 2.3; see the proof of Theorem 3.3.

Remark 2.5. In the assumptions and notation of Theorem 2.3, suppose that there exists a G-equivariant
birational map 𝑋 � P3, for some subgroup 𝐺 ⊆ Aut(𝑋). From the isomorphism (1), we deduce that
the G-action on IJ(𝑋) gives rise to a homomorphism

𝜈 : 𝐺 → Aut(IJ(𝑋)) = Aut(𝐶) × 𝐶2.

The projection of 𝜈(𝐺) to the 𝐶2-factor must be trivial; cf. the proof of [10, Proposition 3.2].
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Burnside obstructions

It is well known that the classification of involutions 𝜏 ∈ Cr2, the plane Cremona group, is based on the
geometry of 𝜏-fixed loci 𝐹 (𝜏); see, for example, [7]. The different cases are characterized by geometric
properties of a (necessarily unique) curve C of genus ≥ 1 in 𝐹 (𝜏), primarily by whether or not this
curve is hyperelliptic. A more refined birational invariant of actions of general cyclic groups on rational
surfaces, the normalized fixed curve with action, appeared in [34] and [12]; the invariant takes into
account the stabilizer of the fixed curve, as well as the residual action on it.

These invariants are special cases of the Burnside formalism of [46], which applies to actions of
arbitrary finite groups and takes into account all strata with nontrivial generic stabilizers. We will use
a simplified version, explained in [24, Section 4]. It is based on the notion of incompressible divisorial
symbols, which should be viewed as analogs of higher-genus curves in the classification of involutions
on rational surfaces. A sample result in our context is the following:
Proposition 2.6. Let X be a nodal cubic threefold, with a regular action of G, and assume that there is
an element 𝜏 ∈ 𝐺 such that
(1) the 𝜏-fixed locus contains a cubic surface 𝑆 ⊂ 𝑋 ,
(2) the subgroup 𝑌 ⊆ 𝐺 preserving S acts generically nontrivially on S and contains an element fixing

a curve of genus ≥ 1.
Then the G-action on X is not linearizable.
Proof. Let 𝐻 = 〈𝜏〉; the action produces the symbol

(𝐻,𝑌/𝐻 � 𝑘 (𝑆), (𝑏)).

By [14], H1 (𝑌/𝐻, Pic(𝑆)) ≠ 0, which implies that the symbol is incompressible; see [24, Section 4].
Such symbols cannot appear for linear actions; see [53, Corollary 6.1]. �

Example 2.7. Let 𝑋 ⊂ P4 be a 2-nodal cubic given by

𝑥1𝑥2𝑥3 + 𝑥1 (𝑥2
4 + 𝑥

2
5) + 𝑥2 (𝑥2

4 − 𝑥
2
5) + 𝑥

3
3 = 0,

with 𝐺 � 𝐶4-action generated by

𝜄 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥1, 𝑥3, 𝑥4, 𝜁4𝑥5).

The model satisfies the conditions in Proposition 2.6. In particular, the subgroup 〈𝜄2〉 fixes the cubic
surface 𝑆 = 𝑋 ∩ {𝑥5 = 0}. The residual 𝐶2-action fixes a genus 1 curve 𝑆 ∩ {𝑥1 = 𝑥2}. By Proposition
2.6, the G-action on X is not linearizable.

Specialization of birational types

We will use the specialization homomorphism for Burnside groups

𝜌𝐺𝜋 : Burn𝑛,𝐾 (𝐺) → Burn𝑛,𝑘 (𝐺)

from [46, Definition 6.4], and in particular, [46, Corollary 6.8]. Here, K is the fraction field of a
DVR, and k its residue field. In applications, one considers the local geometry of fibrations, seeking to
specialize the birational type of the generic fiber X to a special fiber 𝑋0. In practice, the special fiber 𝑋0
is an irreducible variety, with mild singularities; the relevant notion of 𝐵𝐺-rational singularities on the
special fiber 𝑋0 is in [46, Definition 6.9].
Example 2.8. Let X → B be a G-equivariant flat and projective morphism onto a smooth curve B, with
smooth generic fiber X and a special fiber 𝑋0 with ordinary double points. Then the singularities of 𝑋0
are 𝐵𝐺-rational singularities in the following situations:
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◦ G-orbits of isolated ordinary double points, with trivial stabilizers [46, Example 6.10];
◦ 𝐺 = 𝐶2, fixing a singular point; one verifies directly that the required condition for 𝐵𝐺-rational

singularities holds – namely,

𝜌𝐺𝜋 ([𝑋 � 𝐺]) = [𝑋0 � 𝐺] .

A Hilbert scheme argument, used in [56], [28] and [40, Theorem 9] in the context of specialization
of rationality properties, implies the following:

Proposition 2.9. Let k be an uncountable algebraically closed field of characteristic zero and G a finite
group. Let

𝜋 : X → 𝐵

be a G-equivariant flat and projective morphism onto a smooth curve over k with smooth generic fiber,
such that

◦ G acts trivially on B and generically freely on the fibers of 𝜋,
◦ for some 𝑏0 ∈ 𝐵, the special fiber X𝑏0 is irreducible and has 𝐵𝐺-rational singularities, and the

G-action on X𝑏0 is not linearizable.

Then, for very general 𝑏 ∈ 𝐵, the G-action on the special fiber X𝑏 is not linearizable.

Specialization allows to exhibit nonlinearizable actions which are ‘invisible’ to classical obstructions
(i.e., cannot be distinguished from linearizable actions with other available tools). However, the very
general condition makes it difficult to determine linearizability for any specific variety in the family. A
central problem is to give criteria for linearization.

In our applications, we work with models with nodes in the generic fiber. We reduce to the situation
of Proposition 2.9 by equivariantly resolving the nodes in the generic fiber.

Example 2.10. Let X → A1
𝑘 be a family of cubic threefolds with fibers X𝑎 over 𝑎 ∈ 𝑘 given in P4 by

𝑎(𝑥1𝑥
2
2 − 4𝑥2

3𝑥4 + 𝑥3𝑥
2
4 − 3𝑥2

3𝑥5 − 𝑥2
4𝑥5)

+ (𝑎 + 1) (𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥2𝑥5 − 𝑥1𝑥4𝑥5 − 𝑥2𝑥4𝑥5)
+ 𝑥1𝑥3𝑥4 − 3𝑥2𝑥3𝑥4 − 3𝑥1𝑥3𝑥5 + 𝑥2𝑥3𝑥5 + (5𝑎 + 3)𝑥3𝑥4𝑥5 = 0.

One can check that the family carries a 𝐺 = 〈𝜄〉 � 𝐶2-action, with 𝜄 acting on P4 via

(𝑥1, . . . , 𝑥5) ↦→ (−𝑥3 + 𝑥5,−𝑥3 + 𝑥4,−𝑥3,−𝑥3 + 𝑥2,−𝑥3 + 𝑥1).

For a very general 𝑎 ∈ 𝑘 , X𝑎 is a 2-nodal cubic threefold with nodes at

𝑝1 = [1 : 0 : 0 : 0 : 0] and 𝑝2 = [0 : 0 : 0 : 0 : 1] .

But the special fiber over 𝑎 = 0 is 6-nodal; the nodes are in general linear position, and 𝜄 does not fix
any of the nodes. By Proposition 7.5, the G-action on the special fiber X0 is not stably linearizable. The
four additional nodes form two G-orbits with trivial stabilizer, so they are 𝐵𝐺-rational singularities, by
Example 2.8. Blowing up the singularities in the generic fiber, we are in the situation of Proposition 2.9.
This allows us to conclude that the G-action on a very general member of the family X is not stably
linearizable.

Birational rigidity

Let 𝑋 ⊂ P4 be a nodal cubic threefold and let 𝐺 ⊆ Aut(𝑋). If rk Cl𝐺 (𝑋) = 1, then X is a G-Mori fiber
space [23, Definition 1.1.5], and every G-birational map from X to another G-Mori fiber space can be
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decomposed into a sequence of elementary links, known as G-Sarkisov links [31, 39]. If there are no G-
Sarkisov links that start at X, we say that X is G-birationally super-rigid. Similarly, if every G-Sarkisov
link that starts at X also ends at X, we say that X is G-birationally rigid. Finally, if X is not G-birational
to any G-Mori fiber space with a positive dimensional base (a conic bundle or a Del Pezzo fibration),
we say that X is G-solid. We have the following implications:

G-birationally super-rigid ⇒ 𝐺-birationally rigid ⇒ 𝐺-solid.

Note that all of these conditions assume that rk Cl𝐺 (𝑋) = 1.
Recall that the G-action on X lifts to P4. Using the G-action on P4, we can state an obstruction for a

cubic threefold X to be G-solid:

Lemma 2.11 [5, Lemma 2.6]. If G leaves invariant a line or a plane in P4, then X is not G-solid.

Proof. Note that G leaves invariant a plane in P4 if and only if it leaves invariant a line. Thus, we may
assume that there exists a G-stable plane in P4. Linear projection P4 � P1 from this plane induces
a rational dominant map 𝑋 � P1 whose general fiber is a (possibly singular) cubic surface. Taking
a G-equivariant resolution of indeterminacies of this map, a G-invariant resolution of singularities (if
necessarily), and applying the G-equivariant Minimal Model program over P1, we obtain a G-birational
map from X to a G-Mori fiber space with a positive-dimensional base. �

This yields the following result:

Theorem 2.12 (Avilov). Let 𝑋 ⊂ P4 be a nodal cubic threefold and 𝐺 ⊆ Aut(𝑋) a finite subgroup such
that rk Cl𝐺 (𝑋) = 1. If X is G-solid, then one of the following holds:

(1) |Sing(𝑋) | = 10, X is the Segre cubic, Aut(𝑋) � 𝔖6, and G contains a subgroup isomorphic to 𝔄5
that leaves invariant a hyperplane section of X,

(2) |Sing(𝑋) | = 9, X is given in P5 by

𝑥1𝑥2𝑥3 − 𝑥4𝑥5𝑥6 =
6∑

𝑖=1
𝑥𝑖 = 0,

Aut(𝑋) �𝔖2
3 � 𝐶2, G acts transitively on Sing(𝑋) and is isomorphic to 𝔖2

3 � 𝐶2, 𝔖2
3 or 𝐶2

3 � 𝐶4,
(3) |Sing(𝑋) | = 5, 𝑋 ⊂ P4 is given by

𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥2𝑥5 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 + 𝑥1𝑥4𝑥5 + 𝑥2𝑥3𝑥4 + 𝑥2𝑥3𝑥5 + 𝑥2𝑥4𝑥5 + 𝑥3𝑥4𝑥5 = 0,

Aut(𝑋) �𝔖5, and either 𝐺 �𝔖5 or 𝐺 � 𝔄5.

Proof. Suppose that X is G-solid. If there exists a G-equivariant birational map 𝑋 � P3, then P3 is
G-solid, which contradicts [20]. Thus, the G-action on X is not linearizable. It follows from [6, 4, 5] and
the proofs of the main results in these papers that either X and G are as in (1), (2), (3), or X is the cubic
threefold in (3) and 𝐺 � 𝐶4 � 𝐶5. Let us show that X is not G-solid in the latter case, contradicting the
assumption.

Namely, suppose X is the threefold from (3), and 𝐺 � 𝐶4 �𝐶5. By [5, 21], there exists the following
𝔖5-Sarkisov link:

𝑋
𝛽 ��������

𝛼

����
��
��
��

𝑋

𝛾

���
��

��
��

�

𝑋
𝜒 ��������������� 𝑄
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where Q is the smooth quadric threefold

{𝑥1𝑥2 + 𝑥2𝑥3 + · · · + 𝑥4𝑥5 = 0} ⊂ P4,

𝔖5 acts on Q by permuting the coordinates, 𝜒 is the birational map induced by the standard Cremona
involution of P4, 𝛼 is the standard resolution of singularities, 𝛽 is a composition of 10 Atiyah flops, and
𝛾 is a blowup of an 𝔖5-orbit of length 5. Let 𝜂 : 𝑄 → P3 be the double cover induced by the projection
from the𝔖5-fixed point in P4. Then 𝜂 is𝔖5-equivariant, and P3 contains two skew lines 𝐿1 and 𝐿2 such
that the curve 𝐿1 + 𝐿2 is G-invariant. Let 𝐶1 and 𝐶2 be the preimages of these lines on Q. Then 𝐶1 and
𝐶2 are disjoint conics, and the curve 𝐶1 + 𝐶2 is G-invariant. Blowing up these two conics, we obtain
a G-equivariant birational map from Q to a conic bundle over P1 × P1; in particular, X is not G-solid,
which contradicts our assumption. In fact, the G-action on Q is linearizable; see Section 6. �

Moreover, in Case (1) in Theorem 2.12, X is G-birationally super-rigid [6]. Similarly, if follows from
[21] that X is G-solid in Case (3) when 𝐺 � 𝔖5. In Section 9, we show that X is G-birationally super-
rigid in Case (2) when 𝐺 �𝔖2

3 � 𝐶2. We believe that X is G-solid for the remaining groups G in Cases
(2) and (3).

3. Two nodes

Standard form

We may assume that Sing(𝑋) consists of the points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0],

and that 𝐺 = Aut(𝑋) swaps these points. Then X can be given by

𝑥1𝑥2𝑥3 + 𝑥1𝑞1 + 𝑥2𝑞2 + 𝑓3 = 0, (2)

for forms 𝑞1, 𝑞2 ∈ 𝑘 [𝑥4, 𝑥5], and 𝑓3 ∈ 𝑘 [𝑥3, 𝑥4, 𝑥5], of degree 2, 2, 3, respectively.

Conic bundle

Introducing new coordinates 𝑦1 = 𝑥1𝑥3 and 𝑦2 = 𝑥2𝑥3 (of weight two), and multiplying (2) by 𝑥3, we
rewrite (2) as

𝑦1𝑦2 + 𝑦1𝑞1 + 𝑦2𝑞2 + 𝑥3 𝑓3 = 0,

which defines a quartic hypersurface𝑉4 ⊂ P(1, 1, 1, 2, 2); the coordinate change defines a G-equivariant
birational map

𝜒 : 𝑋 � 𝑉4.

We can G-equivariantly simplify the equation of 𝑉4 further as

𝑧1𝑧2 = 𝑞1𝑞2 − 𝑥3 𝑓3,

where 𝑧1 = 𝑦1 + 𝑞2 and 𝑧2 = 𝑦2 + 𝑞1. Observe that 𝑉4 has two singular points of type 1
2 (1, 1, 1) – these

are the points

[0 : 0 : 0 : 1 : 0], and [0 : 0 : 0 : 0 : 1],
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in coordinates (𝑥3, 𝑥4, 𝑥5, 𝑧1, 𝑧2). This yields the following Aut(𝑋)-equivariant commutative diagram:

𝑋

𝛼

����
��
��
�� 𝛽

���
��

��
��

�

𝑋 𝜒
��������� 𝑉4

where 𝛼 is an extremal divisorial contraction of a surface to the line {𝑥3 = 𝑥4 = 𝑥5 = 0} ⊂ 𝑋 , and 𝛽 is
an extremal divisorial contraction of the strict transform of the non-normal cubic surface {𝑥3 = 0} ∩ 𝑋 .
The description of the morphism 𝛼 can be found in the proof of [18, Proposition 6.1]; see also [54].
Note that 𝑋 has two singular points of type 1

2 (1, 1, 1), which are mapped to the nodes of X.
Let D be the quartic curve {𝑞1𝑞2 − 𝑥3 𝑓3 = 0} ⊂ P2

𝑥3 ,𝑥4 ,𝑥5
. Then D is smooth, and we have the

following G-equivariant commutative diagram

𝑌

𝛾

����
��
��
��

𝜋

���
��

��
��

��

𝑉4 ��������� P2
𝑥3 ,𝑥4 ,𝑥5

(3)

where 𝛾 is the blowup of the singular points of 𝑉4, 𝜋 is a conic bundle with discriminant curve D, and
the dashed arrow is the projection

(𝑥3, 𝑥4, 𝑥5, 𝑧1, 𝑧2) ↦→ (𝑥3, 𝑥4, 𝑥5).

This gives a natural homomorphism

𝛾 : Aut(𝑋) → Aut(𝐷).

Automorphisms

The full classification of automorphisms of 2-nodal cubics can be addressed via the conic bundle
presentation, combined with the (classically known) classification of automorphisms of smooth quartic
plane curves (see, for example, [36, Lemma 6.16 and Table 6], [47]); and using Torelli for nodal cubics,
as in [15, Section 7]. Starting with equation (2) and passing to the conic bundle, we see that the G-action
on X gives rise to

◦ a linear representation on P2, preserving a line, corresponding to 𝑥3 = 0, and thus a fixed point in P2,
◦ an automorphism of the discriminant curve D.

Combining these two conditions with the list of automorphisms of plane quartic curves, we find that the
possible images of the G-actions on the base P2

𝑥3 ,𝑥4 ,𝑥5
of the conic bundle are

𝐶2, 𝐶3, 𝐶4, 𝐶
2
2 , 𝔖3, 𝐶6, 𝐶7, 𝐶2 × 𝐶4, 𝐶8, 𝑄8, 𝐶9, 𝐶

2
4 ,

𝐶12, 𝐷4 � 𝐶2, SL2(F3), 𝑂𝐷16, 𝔇4, 𝐶4𝑤𝑟𝐶2, SL2(F3) � 𝐶2.

Here are examples with interesting groups Aut(𝑋):

Example 3.1. We keep the notation of (2), with 𝑋 ⊂ P4 and the discriminant curve 𝐷 ⊂ P2
𝑥3 ,𝑥4 ,𝑥5

, with
𝐺 = Aut(𝑋) and 𝐺 ′ = Aut(𝐷).
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(1) Let 𝐷 = 𝑥4
3 + 𝑥

4
4 + 𝑥

4
5 + (4𝜌 + 2)𝑥2

3𝑥
2
4, and X be given by

𝑓3 = 𝑥3
3, 𝑞1 = 𝑥2

4 + (2𝜌 + 1 + 2𝑖)𝑥2
5, 𝑞2 = 𝑥2

4 + (2𝜌 + 1 − 2𝑖)𝑥2
5 .

Then 𝐺 = 𝔇4 � 𝐶2 and 𝐺 ′ = SL2(F3) � 𝐶2.
(2) Let 𝐷 = 𝑥4

3 + 𝑥
4
4 + 𝑥

4
5, and X be given by

𝑓3 = −𝑥3
3, 𝑞1 = 𝑥2

4 + 𝑖𝑥
2
5, 𝑞2 = 𝑥2

4 − 𝑖𝑥
2
5 .

Then 𝐺 = 𝐶4𝑤𝑟𝐶2 and 𝐺 ′ = 𝐶2
4 �𝔖3.

Proposition 3.2. Let 𝑋 ⊂ P4 be a 2-nodal cubic threefold with an action of a cyclic group 𝐺 = 〈𝜄〉 ⊆
Aut(𝑋) not fixing any node. Then, up to a change of coordinates, X is given by

𝑥1𝑥2𝑥3 + 𝑥1𝑞1 + 𝑥2𝑞2 + 𝑓3 = 0,

for 𝑞1, 𝑞2 ∈ 𝑘 [𝑥4, 𝑥5] and 𝑓3 ∈ 𝑘 [𝑥3, 𝑥4, 𝑥5] that can be described together with 𝜄 as follows.

(C2) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥2, 𝑥1, 𝑥3, 𝑥4, 𝑥5),

𝑞1 = 𝑞2 = 𝑥4𝑥5,

𝑓3 ∈ 𝑘 [𝑥3, 𝑥4, 𝑥5];

(C2
′) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (−𝑥2,−𝑥1, 𝑥3, 𝑥4,−𝑥5),

𝑞1 = 𝑎1𝑥
2
4 + 𝑥4𝑥5 + 𝑎3𝑥

2
5,

𝑞2 = −𝑎1𝑥
2
4 + 𝑥4𝑥5 − 𝑎3𝑥

2
5,

𝑓3 = 𝑐1𝑥
3
3 + 𝑑1𝑥

2
3𝑥4 + 𝑥3 (𝑒1𝑥

2
4 + 𝑒3𝑥

2
5) + 𝑟1𝑥

3
4 + 𝑟3𝑥4𝑥

2
5,

for some 𝑎1, 𝑎3, 𝑐1, 𝑑1, 𝑒1, 𝑒3, 𝑟1, 𝑟3 ∈ 𝑘;
(C2

′′) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥2, 𝑥1, 𝑥3, 𝑥4,−𝑥5),

𝑞1 = 𝑞2 = 𝑥2
4 + 𝑥

2
5

𝑓3 = 𝑐1𝑥
3
3 + 𝑑1𝑥

2
3𝑥4 + 𝑥3 (𝑒1𝑥

2
4 + 𝑒3𝑥

2
5) + 𝑟1𝑥

3
4 + 𝑟3𝑥4𝑥

2
5,

for some 𝑐1, 𝑑1, 𝑒1, 𝑒3, 𝑟1, 𝑟3 ∈ 𝑘;
(C4) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥2, 𝑥1, 𝑥3, 𝜁4𝑥4,−𝜁4𝑥5), 𝜁4 = 𝑒

2𝜋𝑖
4 ,

𝑞1 = 𝑎1𝑥
2
4 + 𝑥4𝑥5 + 𝑎3𝑥

2
5,

𝑞2 = −𝑎1𝑥
2
4 + 𝑥4𝑥5 − 𝑎3𝑥

2
5,

𝑓3 = 𝑥3
3 + 𝑒2𝑥3𝑥4𝑥5,

for some 𝑎1, 𝑎2, 𝑒2 ∈ 𝑘;
(C4

′) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥2, 𝑥1, 𝑥3, 𝑥4, 𝜁4𝑥5),

𝑞1 = 𝑥2
4 − 𝑥

2
5,

𝑞2 = 𝑥2
4 + 𝑥

2
5,

𝑓3 ∈ 𝑘 [𝑥3, 𝑥4];
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(C4
′′) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥2, 𝑥1, 𝑥3,−𝑥4, 𝜁4𝑥5),

𝑞1 = 𝑥2
4 − 𝑥

2
5,

𝑞2 = 𝑥2
4 + 𝑥

2
5,

𝑓3 = 𝑥3
3 + 𝑒1𝑥3𝑥

2
4 + 𝑟3𝑥4𝑥

2
5,

for some 𝑒1, 𝑟3 ∈ 𝑘;
(C6) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥2, 𝑥1, 𝑥3, 𝜁3𝑥4, 𝜁

2
3𝑥5) for 𝜁3 = 𝑒

2𝜋𝑖
3 ,

𝑞1 = 𝑞2 = 𝑥4𝑥5,

𝑓3 = 𝑥3
3 + 𝑒2𝑥3𝑥4𝑥5 + 𝑟1(𝑥3

4 + 𝑥
3
5),

for some 𝑒2, 𝑟1 ∈ 𝑘;
(C6

′) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝜁6𝑥2, 𝜁6𝑥1, 𝑥3, 𝜁
5
6𝑥4, 𝜁

2
6𝑥5) for 𝜁6 = 𝑒

2𝜋𝑖
6 ,

𝑞1 = 𝑎1𝑥
2
4 + 𝑥4𝑥5 + 𝑎3𝑥

2
5,

𝑞2 = −𝑎1𝑥
2
4 + 𝑥4𝑥5 − 𝑎3𝑥

2
5,

𝑓3 = 𝑥2
3𝑥5,

for some 𝑎1, 𝑎3 ∈ 𝑘;
(C12) 𝜄(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝜁8

12𝑥2, 𝜁
8
12𝑥1, 𝑥3, 𝜁

4
12𝑥4, 𝜁12𝑥5) for 𝜁12 = 𝑒

2𝜋𝑖
12 ,

𝑞1 = (𝑥2
4 − 𝑥

2
5),

𝑞2 = (𝑥2
4 + 𝑥

2
5),

𝑓3 = 𝑥2
3𝑥4.

Proof. We can choose the coordinates so that

𝜄 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑠𝑥2, 𝑡𝑥1, 𝑥3, 𝑢𝑥4, 𝑣𝑥5),

for some 𝑠, 𝑡, 𝑢, 𝑣 ∈ 𝑘×, and X is given by

𝑥1𝑥2𝑥3 + 𝑥1𝑞1 + 𝑥2𝑞2 + 𝑓3 = 0,

for

𝑞1 = 𝑎1𝑥
2
4 + 𝑎2𝑥4𝑥5 + 𝑎3𝑥

2
5 + 𝑎4𝑥

2
3 + 𝑎5𝑥3𝑥4 + 𝑎6𝑥3𝑥5,

𝑞2 = 𝑏1𝑥
2
4 + 𝑏2𝑥4𝑥5 + 𝑏3𝑥

2
5 + 𝑏4𝑥

2
3 + 𝑏5𝑥3𝑥4 + 𝑏6𝑥3𝑥5,

𝑓3 = 𝑐1𝑥
3
3 + 𝑥

2
3𝑑 (𝑥4, 𝑥5) + 𝑥3𝑒(𝑥4, 𝑥5) + 𝑟 (𝑥4, 𝑥5),

where

𝑑 = 𝑑1𝑥4 + 𝑑2𝑥5,

𝑒 = 𝑒1𝑥
2
4 + 𝑒2𝑥4𝑥5 + 𝑒3𝑥

2
5,

𝑟 = 𝑟1𝑥
3
4 + 𝑟2𝑥

2
4𝑥5 + 𝑟3𝑥4𝑥

2
5 + 𝑟4𝑥

3
5 .
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Since X is 〈𝜄〉-invariant, one has 𝜄∗( 𝑓 ) = 𝑠𝑡 𝑓 , and thus, the zero loci of 𝑞1𝑞2 and 𝑓3 are preserved; and
these polynomials cannot identically vanish, under our assumptions on singularities of X. Concretely,

𝜄∗( 𝑓 ) = 𝑠𝑡𝑥1𝑥2𝑥3 + 𝑠𝑥2𝜄
∗(𝑞2) + 𝑡𝑥1𝜄

∗(𝑞2) + 𝜄∗( 𝑓3) = 𝑠𝑡 𝑓 ,

which implies that

𝜄∗(𝑞2) = 𝑡𝑞1, 𝜄∗(𝑞1) = 𝑠𝑞2, (4)

and

𝜄∗( 𝑓3) = 𝑠𝑡 𝑓3. (5)

Expanding and substituting into (4), we obtain 12 equations:

𝑢2𝑎1 − 𝑡𝑏1 = 𝑢𝑣𝑎2 − 𝑡𝑏2 = 𝑣2𝑎3 − 𝑡𝑏3 = 0,
𝑠𝑎 : 1 − 𝑢2𝑏1 = 𝑠𝑎 : 2 − 𝑢𝑣𝑏2 = 𝑠𝑎 : 3 − 𝑣2𝑏3 = 0,
𝑎4 − 𝑡𝑏4 = 𝑢𝑎5 − 𝑡𝑏5 = 𝑣𝑎6 − 𝑡𝑏6 = 0,
𝑠𝑎 : 4 − 𝑏4 = 𝑠𝑎 : 5 − 𝑢𝑏5 = 𝑠𝑎 : 6 − 𝑣𝑏6 = 0,

and, writing down the (5) constraints on 𝑓3, additional equations

𝑐1 (1 − 𝑠𝑡) = 0,
𝑑1(𝑢 − 𝑠𝑡) = 𝑑2(𝑣 − 𝑠𝑡) = 0,
𝑒1(𝑢2 − 𝑠𝑡) = 𝑒2 (𝑢𝑣 − 𝑠𝑡) = 𝑒3(𝑣2 − 𝑠𝑡) = 0,
𝑟1 (𝑢3 − 𝑠𝑡) = 𝑟2(𝑢𝑣 − 𝑠𝑡) = 𝑟3 (𝑢𝑣2 − 𝑠𝑡) = 𝑟4 (𝑣3 − 𝑠𝑡) = 0,

in the variables

𝑎1, . . . , 𝑎6, 𝑏1, . . . , 𝑏6, 𝑐1, 𝑑1, 𝑑2, 𝑒1, 𝑒2, 𝑟1, . . . , 𝑟4 ∈ 𝑘.

Since X has nodes at [1 : 0 : 0 : 0 : 0] and [0 : 1 : 0 : 0 : 0], we have

𝑎2
2 − 4𝑎1𝑎3 ≠ 0, 𝑏2

2 − 4𝑏1𝑏3 ≠ 0.

Thus, up to scaling 𝑥4, 𝑥5 and swapping them, we may further assume that one of the following holds:

◦ 𝑎2 = 𝑏2 = 1, or
◦ 𝑎2 = 𝑏1 = 𝑏3 = 1, 𝑏2 = 0, or
◦ 𝑎1 = 𝑏1 = 𝑏3 = 1, 𝑎2 = 𝑏2 = 0.

The second option is impossible since 𝑏2 = 0 forces 𝑎2 = 0. Solving the system of equations for the
remaining two options using Magma, we obtain a complete set of solutions:
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(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) (𝑑1, 𝑑2) 𝑐1 𝑠 𝑢
(𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6) (𝑒1, 𝑒2, 𝑒3) (𝑟1, 𝑟2, 𝑟3, 𝑟4) 𝑡 𝑣

(1) (𝑎1, 1, 𝑎3, 𝑎4, 𝑎5, 𝑎6) 1 1
(𝑎1, 1, 𝑎3, 𝑎4, 𝑎5, 𝑎6) 1 1

(2) (𝑎1, 1, 𝑎3, 𝑎4, 𝑎5, 𝑎6) (𝑑1, 0) −1 1
(−𝑎1, 1,−𝑎3,−𝑎4,−𝑎5, 𝑎6) (𝑒1, 0, 𝑒3) (𝑟1, 0, 𝑟3, 0) −1 −1

(3) (0, 1, 0, 𝑎4, 0, 0) (0, 0) 1 𝜁3
(0, 1, 0, 𝑎4, 0, 0) (0, 𝑒2, 0) (𝑟1, 0, 0, 𝑟4) 1 𝜁2

3
(4) (𝑎1, 1, 𝑎3, 𝑎4, 0, 0) (0, 0) 1 𝜁4

(−𝑎1, 1,−𝑎3, 𝑎4, 0, 0) (0, 𝑒2, 0) (0, 0, 0, 0) 1 −𝜁4

(5) (𝑎1, 1, 𝑎3, 0, 0, 0) (0, 𝑑2) 0 𝜁6 𝜁5
6

(−𝑎1, 1,−𝑎3, 0, 0, 0) (0, 0, 0) (0, 0, 0, 0) 𝜁6 𝜁2
6

(6) (1, 0, 1, 𝑎4, 𝑎5, 𝑎6) 1 1
(1, 0, 1, 𝑎4, 𝑎5, 𝑎6) 1 1

(7) (1, 0, 1, 𝑎4, 𝑎5, 𝑎6) (𝑑1, 0) 1 1
(1, 0, 1, 𝑎4, 𝑎5,−𝑎6) (𝑒1, 0, 𝑒3) (𝑟1, 0, 𝑟3, 0) 1 −1

(8) (1, 0,−1, 𝑎4, 𝑎5, 0) (𝑑1, 0) 1 1
(1, 0, 1, 𝑎4, 𝑎5, 0) (𝑒1, 0, 0) (𝑟1, 0, 0, 0) 1 𝜁4

(9) (1, 0,−1, 𝑎4, 𝑎5, 0) (0, 0) 1 −1
(1, 0, 1, 𝑎4,−𝑎5, 0) (𝑒1, 0, 0) (0, 0, 𝑟3, 0) 1 𝜁4

(10) (1, 0,−1, 0, 0, 0) (𝑑1, 0) 0 𝜁8
12 𝜁4

12
(1, 0, 1, 0, 0, 0) (0, 0, 0) (0, 0, 0, 0) 𝜁8

12 𝜁12

Here, we omitted solutions obtained by swapping coordinates 𝑥4 and 𝑥5 and scaling coordinates 𝑥1
and 𝑥2. After an additional equivariant change of coordinates, we obtain the required assertion. �

Intermediate Jacobian

Using arguments as in Section 2, we settle the linearizability problem for 2-nodal cubic threefolds.
Theorem 3.3. Let 𝑋 ⊂ P4 be a 2-nodal cubic, and 𝐺 ⊆ Aut(𝑋) a subgroup not fixing any node of X.
Then the G-action on X is not linearizable.
Proof. By the assumptions, G contains an element 𝜄 switching the nodes of X. It suffices to prove the
required assertion for 𝐺 = 〈𝜄〉. With the notation as above, we may assume that X is given by (2); that is,

𝑓 = 𝑥1𝑥2𝑥3 + 𝑥1𝑞2 + 𝑥2𝑞2 + 𝑓3 = 0,

and 𝜄 acts on the coordinates via

𝜄 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑠𝑥2, 𝑡𝑥1, 𝑥3, 𝑢𝑥4, 𝑣𝑥5),

for roots of unity 𝑠, 𝑡, 𝑢, 𝑣. Introducing new coordinates

𝑤1 =
√
𝑡𝑥1 +

√
𝑠𝑥2, 𝑤2 =

√
𝑡𝑥1 −

√
𝑠𝑥2,

we diagonalize 𝜄, so that it acts via

𝜄 : (𝑤1, 𝑤2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝜆𝑤1,−𝜆𝑤2, 𝑥3, 𝑢𝑥4, 𝑣𝑥5), (6)

where 𝜆 =
√
𝑠𝑡. The equation of X in the new coordinates becomes

𝑓 ′ = (𝑤2
1 − 𝑤2

2)𝑥3 + (𝑤1 + 𝑤2)2
√
𝑠𝑞1 + (𝑤1 − 𝑤2)2

√
𝑡𝑞2 + 4

√
𝑠𝑡 𝑓3 = 0.

Note that 𝜄∗( 𝑓 ′) = 𝜆2 𝑓 ′.
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Recall that X is G-birational to the conic bundle (3). The conic bundle is not standard. In particular,
the intermediate Jacobian of 𝑋 and the Jacobian of the curve D are isomorphic, as principally polarized
abelian varieties:

IJ(𝑋) � IJ(𝑌 ) � J(𝐷),

where 𝑋 is the standard desingularization of X, Y is the conic bundle in (3) and D is its discriminant
curve in P2

𝑥3 ,𝑥4 ,𝑥5
given by the quartic form ℎ = 𝑞1𝑞2 − 𝑥3 𝑓3. Note that 𝜄∗(ℎ) = 𝜆2ℎ.

Arguing as in the proof of [9, Lemma 1], we see that 𝜄 acts faithfully on IJ(𝑋) and preserves the
principal polarization. However, the 𝜄-action on coordinates 𝑥3, 𝑥4, 𝑥5 induces an action on D and its
Jacobian J(𝐷). We claim that the 𝜄-actions on IJ(𝑋) and J(𝐷) differ by multiplication by −1. Since D
is not hyperelliptic, this would imply that the G-action on X is not linearizable, by Remark 2.5.

To compute the action of 𝜄 on IJ(𝑋), recall that its tangent space at zero T0 IJ(𝑋) is isomorphic to
H2 (𝑋,Ω1

𝑋
). We show that H2 (𝑋,Ω1

𝑋
)∨ is canonically isomorphic to the linear subspace in

H0 (P4,Ω4
P4 ⊗ OP4 (2𝑋)

)
� H0 (P4,OP4 (𝐾P4 + 2𝑋)

)
� H0 (P4,OP4 (1)

)
consisting of all sections that vanish at the nodes of X. The proof is essentially contained in [33]. We
follow the proof of [9, Lemma 1]. Let 𝜋 : P̃4 → P4 be the blowup of P4 centered at two nodes 𝑝1 and
𝑝2 of X, and identify 𝑋 with the strict transform of X in P̃4. The exact sequence

0 → (N
𝑋/P̃4)∨ → Ω1

P̃4 |𝑋
→ Ω1

𝑋
→ 0

gives rise to a 〈𝜄〉–equivariant exact sequence

0 → H2 (𝑋,Ω1
𝑋
) → H3 (𝑋, (N

𝑋/P̃4)∨) → H3 (𝑋,Ω1
P̃4 |𝑋

) → 0.

By [33], the dimension of H3 (𝑋,Ω1
P̃4 |𝑋

) equals the defect of X, which is 0 in our case. It follows that

H2(𝑋,Ω1
𝑋
) � H3(𝑋, (N

𝑋/P̃4)∨).

Similarly, the 〈𝜄〉–equivariant exact sequence

0 → O
P̃4 (−2𝑋) → O

P̃4 (−𝑋) → (N
𝑋/P̃4)∨ → 0

and the vanishing of H𝑖 (P̃4,O
P̃4 (−𝑋)) ([33, Corollary 2]) provide an 𝐶2-isomorphism

H3 (𝑋, (N
𝑋/P̃4 )∨) � H4(P̃4,O

P̃4 (−2𝑋)).

By Serre duality, we have canonical isomorphisms between

H4(P̃4,O
P̃4 (−2𝑋))∨ � H0 (P̃4, 𝐾

P̃4 ⊗ O
P̃4 (2𝑋)) � H0(P̃4,Ω4

P̃4
⊗ O

P̃4 (2𝑋)).

So we have a 〈𝜄〉–equivariant isomorphism

H2(𝑋,Ω1
𝑋
)∨ � H0(P̃4, 𝐾

P̃4 ⊗ O
P̃4 (2𝑋)).

Let 𝐸1 and 𝐸2 be the exceptional divisors of 𝜋 over 𝑝1 and 𝑝2, respectively. By adjunction,

𝐾
P̃4 = 𝜋∗(OP4 (−5)) ⊗ O

P̃4 (3𝐸1 + 3𝐸2),
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and

O
P̃4 (2𝑋) = 𝜋∗(OP4 (6)) ⊗ O

P̃4 (−4𝐸1 − 4𝐸2).

Then we know

𝐾
P̃4 ⊗ O

P̃4 (2𝑋) = 𝜋∗(OP4 (1)) ⊗ O
P̃4 (−𝐸1 − 𝐸2).

It follows that we can canonically identify H2 (𝑋,Ω1
𝑋
)∨ with linear subspace in H0(P4,Ω4

P4 ⊗OP4 (2𝑋)),
(or equivalently, in H0 (P4,OP4 (1))), which consists of all sections that vanish at 𝑝1 and 𝑝2. Now we
can compute the induced G-action on T0IJ(𝑋)∨ explicitly. Set

𝑧2 =
𝑤2
𝑤1

, 𝑧3 =
𝑥3
𝑤1

, 𝑧4 =
𝑥4
𝑤1

, 𝑧5 =
𝑥5
𝑤1

,

and consider the rational 4-forms

𝑧3𝜔, 𝑧4𝜔, 𝑧5𝜔, where 𝜔 =
𝑑𝑧2 ∧ 𝑑𝑧3 ∧ 𝑑𝑧4 ∧ 𝑑𝑧5

( 𝑓 ′(1, 𝑧2, 𝑧3, 𝑧4, 𝑧5))2 .

These give sections of H0 (P4,Ω4
P4 ⊗ OP4 (2𝑋)), forming a basis of the subspace consisting of sections

that vanish at the nodes of X. One computes

𝜄∗(𝑧2) = −𝑧2, 𝜄∗(𝑧3) =
1
𝜆
𝑧3, 𝜄∗(𝑧4) =

𝑢

𝜆
𝑧4, 𝜄∗(𝑧5) =

𝑣

𝜆
𝑧5

and

𝜄∗( 𝑓 ′(1, 𝑧2, . . . , 𝑧5)2) = 𝜄∗

(
𝑓 ′(𝑤1, 𝑤2, 𝑥3, 𝑥4, 𝑥5)2

𝑤6
1

)
=
𝑓 ′(1, 𝑧2, . . . , 𝑧5)2

𝜆2 .

Using these, we see that 𝜄 acts on T0 IJ(𝑋)∨ with eigenvalues

−𝑢𝑣
𝜆2 , −𝑢

2𝑣

𝜆2 , −𝑢𝑣
2

𝜆2 .

Similarly, to compute the action of 𝜄 on J(𝐷), we note that T0 J(𝐷)∨ is canonically isomorphic to

H0 (P2,Ω2
P2 ⊗ OP2 (𝐷)

)
.

Set 𝑦4 = 𝑥4
𝑥3

and 𝑦5 = 𝑥5
𝑥3

. The rational 2-forms

𝑑𝑦4 ∧ 𝑑𝑦5
ℎ(1, 𝑦4, 𝑦5)

, 𝑦4
𝑑𝑦4 ∧ 𝑑𝑦5
ℎ(1, 𝑦4, 𝑦5)

, 𝑦5
𝑑𝑦4 ∧ 𝑑𝑦5
ℎ(1, 𝑦4, 𝑦5)

define sections of H0(P2,Ω2
P2 ⊗ OP2 (𝐷)), forming its basis. One has

𝜄∗(𝑦4) = 𝑢𝑦4, 𝜄∗(𝑦5) = 𝑣𝑦5, 𝜄∗(ℎ(1, 𝑦4, 𝑦5)) = 𝜆2ℎ(1, 𝑦4, 𝑦5),

and 𝜄 acts on T0 J(𝐷)∨ with eigenvalues

𝑢𝑣

𝜆2 ,
𝑢2𝑣

𝜆2 ,
𝑢𝑣2

𝜆2 .
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This shows that the 𝜄-action on IJ(𝑋) � J(𝐷) differs from the action on J(𝐷) induced by the action on
D by multiplication by −1, as claimed. Therefore, the G-action on X is not linearizable. �

4. Three nodes

Standard form

The three nodes are necessarily in general linear position; they span a distinguished G-stable plane,
which is not contained in X. This case is labeled (J3), in [37]. Assume the nodes are

𝑝1 = [1 : 0 : 0 : 0 : 0], 𝑝2 = [0 : 1 : 0 : 0 : 0], 𝑝3 = [0 : 0 : 1 : 0 : 0] .

The standard form is given by

𝑥1𝑥2𝑥3 + 𝑥1𝑞1 + 𝑥2𝑞2 + 𝑥3𝑞3 + 𝑓3 = 0, (7)

with quadratic 𝑞1, 𝑞2, 𝑞3 ∈ 𝑘 [𝑥4, 𝑥5], and cubic 𝑓3 ∈ 𝑘 [𝑥4, 𝑥5]. Note that 𝑞1, 𝑞2, 𝑞3 must have rank 2,
and 𝑞1, 𝑞2, 𝑞3, 𝑓3 do not share common factors.

Automorphisms

We proceed to classify automorphism groups of 3-nodal cubics acting transitively on nodes.

Proposition 4.1. Let 𝑋 ⊂ P4 be a 3-nodal cubic threefold. Assume that Aut(𝑋) contains an element
acting transitively on the nodes. Then, up to a change of coordinates, X is given by

𝑥1𝑥2𝑥3 + 𝑥1𝑞1 + 𝑥2𝑞2 + 𝑥3𝑞3 + 𝑓3 = 0,

for 𝑞1, 𝑞2, 𝑞3, 𝑓3 ∈ 𝑘 [𝑥4, 𝑥5] that can be described together with Aut(𝑋) as follows.

1. Aut(𝑋) = 𝐶3, generated by

𝜎1 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝜁
2
6𝑥5), 𝜁6 = 𝑒

2𝜋𝑖
6 ,

◦ with 𝑓3 = 𝑎𝑥3
4 + 𝑏𝑥

3
5, for 𝑏 ≠ 0, (𝑎, 𝑏) ≠ (0, 1) and

𝑞1 = 𝑥4 (𝑥4 + 𝑥5),
𝑞2 = 𝑥4 (𝑥4 + 𝜁2

6𝑥5),
𝑞3 = 𝑥4 (𝑥4 + 𝜁4

6𝑥5), or

◦ with 𝑓3 = 𝑑𝑥3
4 + 𝑒𝑥

3
5,

𝑞1 = 𝑥2
4 + 𝑏𝑥4𝑥5 + 𝑥2

5,

𝑞2 = 𝑥2
4 + 𝜁

2
6 𝑏𝑥4𝑥5 + 𝜁4

6𝑥
2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6 𝑏𝑥4𝑥5 + 𝜁2

6𝑥
2
5, 𝑑 ≠ ±𝑒, and 𝑏 ≠ ±2.

2. Aut(𝑋) = 𝐶6 generated by

𝜎2 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝜁6𝑥5),
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𝑓3 = 𝑑𝑥3
4 for some 𝑑 ≠ 0, and

𝑞1 = 𝑥2
4 + 𝑥

2
5,

𝑞2 = 𝑥2
4 + 𝜁

2
6𝑥

2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6𝑥

2
5 .

3. Aut(𝑋) �𝔖3 generated by 𝜎1 and

𝜎3 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝜁2
6𝑥2, 𝜁

4
6𝑥1, 𝑥3, 𝜁

4
6𝑥5, 𝜁

2
6𝑥4),

𝑓3 = 𝑑 (𝑥3
4 + 𝑥

3
5),

𝑞1 = 𝑥2
4 + 𝑏𝑥4𝑥5 + 𝑥2

5,

𝑞2 = 𝑥2
4 + 𝜁

2
6 𝑏𝑥4𝑥5 + 𝜁4

6𝑥
2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6 𝑏𝑥4𝑥5 + 𝜁2

6𝑥
2
5, 𝑑 ≠ 0, 𝑏 ≠ ±2.

4. Aut(𝑋) � 𝐶2 ×𝔖3 generated by 𝜎1, 𝜎3 and

𝜄 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥3,−𝑥4,−𝑥5),

with 𝑓3 = 0 for 𝑏 ≠ ±2 and 𝑏2 ≠ −2, and

𝑞1 = 𝑥2
4 + 𝑏𝑥4𝑥5 + 𝑥2

5,

𝑞2 = 𝑥2
4 + 𝜁

2
6 𝑏𝑥4𝑥5 + 𝜁4

6𝑥
2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6 𝑏𝑥4𝑥5 + 𝜁2

6𝑥
2
5 .

5. Aut(𝑋) � 𝐶2 ×𝔖3 generated by

𝜎4 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝑥5),

𝜎5 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥1, 𝑥3, 𝑥4, 𝑥5),

𝜎6 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥4),

with

𝑓3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑 (𝑥4 + 𝑥5)3 𝑑 ≠ 0, or
𝑑 (𝑥4 + 𝑥5) (𝑥4 − 𝑥5)2 𝑑 ≠ 0, or
(𝑥4 + 𝑥5) (𝑎𝑥4 + 𝑏𝑥5) (𝑏𝑥4 + 𝑎𝑥5) for 𝑎, 𝑏 ≠ 0,

𝑞1 = 𝑞2 = 𝑞3 = 𝑥4𝑥5.

6. Aut(𝑋) � 𝐶3 �𝔇4 generated by 𝜎2 and

𝜎7 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝜁4
6𝑥2, 𝜁

2
6𝑥1, 𝑥3, 𝜁

2
6𝑥5, 𝜁6𝑥4),
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with 𝑓3 = 0 and

𝑞1 = 𝑥2
4 + 𝑥

2
5,

𝑞2 = 𝑥2
4 + 𝜁

2
6𝑥

2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6𝑥

2
5 .

7. Aut(𝑋) �𝔖3 ×𝔖3 generated by 𝜎4, 𝜎5, 𝜎6 and

𝜎8 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝜁
2
6𝑥4, 𝜁

4
6𝑥5),

with 𝑓3 = 𝑑 (𝑥3
4 + 𝑥

3
5) for some 𝑑 ≠ 0 and

𝑞1 = 𝑞2 = 𝑞3 = 𝑥4𝑥5.

8. Aut(𝑋) � GL2 (F3) generated by 𝜄, 𝜎1, 𝜎3 and

𝜎9 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→
(
𝑥2, 𝜁

5
6𝑥1, 𝜁6𝑥3,

𝜁6𝑏𝑥4 + 𝑥5

1 − 𝜁2
6

,
𝜁6𝑥4 + 𝑏𝑥5

1 − 𝜁2
6

)
,

with 𝑓3 = 0, 𝑏2 = −2, and

𝑞1 = 𝑥2
4 + 𝑏𝑥4𝑥5 + 𝑥2

5,

𝑞2 = 𝑥2
4 + 𝜁

2
6 𝑏𝑥4𝑥5 + 𝜁4

6𝑥
2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6 𝑏𝑥4𝑥5 + 𝜁2

6𝑥
2
5 .

9. Aut(𝑋) = 𝔖3 = 〈𝜎4, 𝜎5〉, 𝑞1 = 𝑞2 = 𝑞3 = 𝑥4𝑥5 and 𝑓3 such that X is not isomorphic to any cubic in
cases (5) and (7).

Proof. Let 𝑋 ⊂ P4 be a 3-nodal cubic threefold given by (7), with Aut(𝑋) not fixing any node. There
exists an exact sequence

0 → 𝐻 → Aut(𝑋)
𝜌
→𝔖3 → 0 (8)

and a𝜎123 ∈ Aut(𝑋) acting transitively on the nodes, so that 𝜌(𝜎123) = (1, 2, 3). The zeroes of 𝑞1, 𝑞2, 𝑞3
define at most six points on P1

𝑥4 ,𝑥5
; thus,

𝜎123 =

�������
0 0 𝑠3 0 0
𝑠1 0 0 0 0
0 𝑠2 0 0 0
0 0 0 1 0
0 0 0 0 𝜁𝑟6

�������
(9)

for some 𝑠1, 𝑠2, 𝑠3 ∈ 𝑘×, where 𝜁6 = 𝑒
2𝜋𝑖

6 . We have the following cases:

(a) gcd(𝑞1, 𝑞2, 𝑞3) = 1. We may assume that

𝑞1 = 𝑥2
4 + 𝑏𝑥4𝑥5 + 𝑥2

5, 𝑏 ∈ 𝑘, 𝑏 ≠ ±2.
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The cyclic action on 𝑥1, 𝑥2 and 𝑥3 implies that 𝑞2 and 𝑞3 are multiples of 𝜎∗
123(𝑞1) and 𝜎∗

123(𝑞2),
respectively, and 𝜎∗

123( 𝑓3) = 𝑠1𝑠2𝑠3 𝑓3. The torus action on the coordinates 𝑥1, 𝑥2 and 𝑥3 allows us
to assume that

𝑞2 = 𝜎∗
123(𝑞1),

𝑞3 = 𝜎∗
123(𝑞2).

Since 𝑞1, 𝑞2, 𝑞3 are coprime, we have 𝑟 ≠ 0, 3. Thus, 𝑟 = 1 or 𝑟 = 2.

◦ If 𝑟 = 1, then 𝑏 = 0; the entries in (9) are 𝑠1 = 𝑠2 = 𝑠3 = ±1, and

𝑞1 = 𝑥2
4 + 𝑥

2
5,

𝑞2 = 𝑥2
4 + 𝜁

2
6𝑥

2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6𝑥

2
5,

There are subcases:
– 𝑓3 (𝑥4, 𝑥5) � 0. Then𝜎123 fixes the points defined by 𝑓3 in P1. And up to isomorphism, 𝑓3 = 𝑑𝑥3

4
or 𝑑𝑥4𝑥

2
5, for some 𝑑 ≠ 0. Since 𝜎∗

123( 𝑓3) = 𝑠1𝑠2𝑠3 𝑓3, the latter is impossible. So 𝑓3 = 𝑑𝑥3
4 and

𝑠1 = 1. This gives 𝜌(Aut(𝑋)) = 𝐶3. However, any 𝛾 ∈ 𝐻 takes the form

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑡1𝑥1, 𝑡2𝑥2, 𝑡3𝑥3, 𝑡4𝑥4 + 𝑡5𝑥5, 𝑡6𝑥4 + 𝑡7𝑥5),

for some 𝑡 𝑗 ∈ 𝑘×. Since 𝛾 leaves (7) invariant, one finds 𝐻 = 𝐶2 = 〈𝜎3
2 〉 and Aut(𝑋) � 𝐶6 =

〈𝜎2〉, where

𝜎2 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝜁6𝑥5).

– 𝑓3 (𝑥4, 𝑥5) ≡ 0. Then

𝐻 � 𝐶2
2 = 〈𝜄, 𝜎3

2 〉, Aut(𝑋) � 𝐶3 �𝔇4 = 〈𝜎2, 𝜎7〉,

where

𝜄 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥3,−𝑥4,−𝑥5), (10)

𝜎7 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝜁4
6𝑥2, 𝜁

2
6𝑥1, 𝑥3, 𝜁

2
6𝑥5, 𝜁6𝑥4). (11)

◦ If 𝑟 = 2, then

𝑞1 = 𝑥2
4 + 𝑏𝑥4𝑥5 + 𝑥2

5,

𝑞2 = 𝑥2
4 + 𝜁

2
6 𝑏𝑥4𝑥5 + 𝜁4

6𝑥
2
5,

𝑞3 = 𝑥2
4 + 𝜁

4
6 𝑏𝑥4𝑥5 + 𝜁2

6𝑥
2
5,

𝑏 ≠ 0 and 𝑠1 = 𝑠2 = 𝑠3 = ±1. When 𝑏 ≠ 1, 𝑞1, 𝑞2, 𝑞3 define six points in P1, but when 𝑏 = 1, they
define three points. There are subcases:

– 𝑓3 (𝑥4, 𝑥5) = 𝑒𝑙1𝑙2𝑙3, 𝑒 ∈ 𝑘×. Then 𝜎123 permutes the points defined by 𝑓3 in P1; that is,

𝑙1 = 𝑥4 + 𝑑𝑥5, 𝑙2 = 𝑥4 + 𝜁2
6 𝑑𝑥5, 𝑙3 = 𝑥4 + 𝜁4

6 𝑑𝑥5, 𝑑 ∈ 𝑘×.

In this case, 𝜎123 takes the form

𝜎1 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝜁
2
6𝑥5).
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One finds that 𝐻 = 0 and

Aut(𝑋) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶3 = 〈𝜎1〉 𝑑6 ≠ 1,
𝔖3 = 〈𝜎1, 𝜎3〉, 𝑑3 = 1,
𝔖3 = 〈𝜎1, 𝜎

′
3〉, 𝑑3 = −1.

𝜎3 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝜁2
6𝑥2, 𝜁

4
6𝑥1, 𝑥3, 𝜁

4
6𝑥5, 𝜁

2
6𝑥4),

𝜎′
3 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝜁2

6𝑥2, 𝜁
4
6𝑥1, 𝑥3, 𝜁6𝑥5, 𝜁

5
6𝑥4).

– 𝑓3 = 𝑙1𝑙
2
2. Then 𝜎123 fixes two points defined by 𝑓3 in P1, and 𝑓3 = 𝑑𝑥2

4𝑥5 or 𝑑𝑥4𝑥
2
5, for some

𝑑 ∈ 𝑘×. But then (7) cannot be 𝜎123-invariant. So this case does not exist.
– 𝑓3 = 𝑙3. Then 𝑓3 = 𝑑𝑥3

4 or 𝑑𝑥3
5, for some 𝑑 ≠ 0. One finds

𝐻 � 0, Aut(𝑋) � 𝐶3 = 〈𝜎1〉.

– 𝑓3 ≡ 0. Then Aut(𝑋) contains the involution 𝜄 from (10). Up to a twist by 𝜄, we may assume
𝜎123 = 𝜎1. Note that Aut(𝑋) also contains 𝜎3. Using the same argument to find H as above,
one gets that when 𝑏2 ≠ −2,

𝐻 � 𝐶2 = 〈𝜄〉, Aut(𝑋) � 𝐶2 ×𝔖3 = 〈𝜄, 𝜎1, 𝜎3〉;

when 𝑏2 = −2,

𝐻 � 𝑄8, Aut(𝑋) � GL2(F3) = 〈𝜄, 𝜎1, 𝜎3, 𝜎9〉,

𝜎9 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→
(
𝑥2, 𝜁

5
6𝑥1, 𝜁6𝑥3,

𝜁6𝑏𝑥4 + 𝑥5

1 − 𝜁2
6

,
𝜁6𝑥4 + 𝑏𝑥5

1 − 𝜁2
6

)
.

(b) When 𝑞1 = 𝑙1𝑙, 𝑞2 = 𝑙2𝑙 and 𝑞3 = 𝑙3𝑙 and 𝑙1, 𝑙2, 𝑙3 are coprime. Then Aut(𝑋) fixes the point in P1
𝑥4 ,𝑥5

defined by l and acts as 𝐶3 on the three points defined by 𝑙1, 𝑙2 and 𝑙3. This implies that 𝑟 = 2 in (9),
and that

𝑙 = 𝑥4, 𝑙1 = 𝑥4 + 𝑥5, 𝑙2 = 𝑥4 + 𝜁3𝑥5, 𝑙3 = 𝑥4 + 𝜁2
3𝑥5.

Then either 𝑓3 = 𝑙 ′3 defines one point and 𝜎123 fixes the point, or 𝑓3 = 𝑙 ′1𝑙
′
2𝑙

′
3, defining three

distinct points, with 𝜎123 permuting them (i.e., 𝑓3 = 𝑎𝑥3
4 + 𝑏𝑥3

5 for some 𝑎, 𝑏 ∈ 𝑘). Since X is 3-
nodal, one has 𝑏 ≠ 0 and (𝑎, 𝑏) ≠ (0, 1). From the form of 𝑓3, one sees 𝜎123 = 𝜎1. Here, 𝐻 = 0
since any element in H fixes four points on P1, defined by 𝑙, 𝑙1, 𝑙2, 𝑙3, and acts trivially on 𝑥4, 𝑥5.
Moreover, one can show that no action on P1 fixes two points defined by l and 𝑙1 and swaps those
defined by 𝑙2 and 𝑙3 at the same time. Therefore, 𝜌(Aut(𝑋)) = 𝐶3 and

𝐻 � 0, Aut(𝑋) � 𝐶3 = 〈𝜎1〉.

(c) 𝑞1 = 𝑞2 = 𝑞3 = 𝑞: We may assume that 𝑞 = 𝑥4𝑥5. In this case, the exact sequence (8) splits and

Aut(𝑋) � 𝐻 ×𝔖3,

with the factor 𝔖3 acting via permutations of 𝑥1, 𝑥2 and 𝑥3 and trivially on 𝑥4, 𝑥5. Moreover, it is
easy to see that H must act faithfully on P1

𝑥4 ,𝑥5
. Since H preserves the pair of points defined by q in

P1
𝑥4 ,𝑥5

, it is either cyclic or dihedral. Assume that 𝐻 ≠ 1. Then the structure of Aut(𝑋) depends on
𝑓3 as follows:
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◦ 𝑓3 = 𝑑𝑙3, for some 𝑑 ≠ 0 and linear form l in 𝑥4 and 𝑥5. Then H has a fixed point (i.e., H is a cyclic
group). Moreover, H swaps two points, and thus, 𝐻 � 𝐶2 with 𝑙 = 𝑥4 + 𝑥5 and H is generated by
swapping coordinates 𝑥4 and 𝑥5.

◦ 𝑓3 = 𝑑𝑙21 𝑙2, for some 𝑑 ≠ 0 and linear forms 𝑙1 and 𝑙2 defining two distinct points in P1. Then H fixes
two points defined by 𝑙1 and 𝑙2, and swaps two points defined by q. Similarly, we have 𝐻 � 𝐶2 with

𝑙1 = 𝑥4 − 𝑥5, 𝑙2 = 𝑥4 + 𝑥5,

where H is generated by swapping 𝑥4 and 𝑥5.
◦ 𝑓3 = 𝑑𝑙1𝑙2𝑙3, defining three distinct points. There are subcases:

– H permutes three points defined by 𝑓3 and swaps two points defined by q. Then 𝐻 � 𝔖3,
generated by

𝜎8 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝜁3𝑥4, 𝜁
2
3𝑥5)

𝜎6 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥4),

and

𝑙1 = 𝑥4 + 𝑥5, 𝑙2 = 𝜁3𝑥4 + 𝜁2
3𝑥5, 𝑙3 = 𝜁2

3𝑥4 + 𝜁3𝑥5. (12)

– H permutes three points defined by 𝑓3 and fixes two points defined by q; thus, 𝐻 � 𝐶3, and
𝑙1, 𝑙2, 𝑙3 are as in (12). However, we know that X admits an additional symmetry swapping two
points in q as in the case above.

– H fixes the point defined by 𝑙1. Then H swaps two points defined by q and two points defined
by 𝑙2 and 𝑙3 because otherwise, H is trivial. In this case 𝐻 � 𝐶2, with

𝑙1 = 𝑥4 + 𝑥5, 𝑙2 = 𝑎𝑥4 + 𝑏𝑥5, 𝑙3 = 𝑏𝑥5 + 𝑎𝑥4,

for some 𝑎, 𝑏 ≠ 0, and
(
𝑎
𝑏

)3 ≠ 1; H is generated by the involution swapping 𝑥4 and 𝑥5.

�

Del Pezzo fibration

We have an Aut(𝑋)-equivariant commutative diagram:

𝑋

𝜋

��

𝜚 �������� 𝑌

𝜙
��

𝑋 𝜌
�������� P1

where 𝜋 is a blowup of the nodes of X, 𝜚 is a composition of flops in the strict transforms of the lines

{𝑥1 = 𝑥4 = 𝑥5 = 0}, {𝑥2 = 𝑥4 = 𝑥5 = 0}, {𝑥3 = 𝑥4 = 𝑥5 = 0},

𝜙 is a fibration into Del Pezzo surfaces of degree 6, and 𝜌 is the projection given by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥4, 𝑥5).

The anticanonical model of 𝑋 is a singular Fano threefold of degree 18 that has three nodes, which can
be smoothed to a smooth Fano threefold of the same degree with Picard rank 1.
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Fixed point obstruction

Among actions in Proposition 4.1, we find one example where the linearizability is obstructed by the
absence of fixed points upon restriction to abelian subgroups.

Example 4.2. Consider the 3-nodal X in Case (7), Proposition 4.1, and the 𝐺 = 𝐶2
3 = 〈𝜎4, 𝜎8〉 action

on it. The G-action does not have a fixed point on X and 𝑋𝐺 = ∅. By Lemma 2.1, the G-action on X is
not linearizable.

Specialization

Here, we exhibit specialization to the 9-nodal cubic with 𝐶3-action giving an (H1)-obstruction to stable
linearizability.

Proposition 4.3. Let X → A1
𝑘 be a family of cubic threefolds 𝑋𝑏 := X𝑏 given by

𝑓𝑏 := 𝑥1𝑥2𝑥3 + (𝑥1 + 𝑥2 + 𝑥3)𝑥4𝑥5 + (𝑥4 + 𝑥5) (𝑥4 + 𝑏𝑥5) (𝑏𝑥4 + 𝑥5) = 0

for 𝑏 ∈ 𝑘 . Consider the 𝐺 = 𝐶3 action on 𝑋𝑏 generated by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝑥5).

Then a very general element in X is not G-stably linearizable.

Proof. Arguing as in Example 2.10, let X → A1
𝑘 be the family given by 𝑓𝑏 . For a very general b, X𝑏

is a 3-nodal cubic described as Case (5) in Proposition 4.1. The special fiber X0 is a 9-nodal cubic,
and the G-action fixes a smooth genus 1 curve on X0. From computations in Section 9, there exists an
(H1)-obstruction to stable linearizability of the G-action on X0. The six additional nodes form two G-
orbits with trivial stabilizer. By Proposition 2.9, a very general element in the family X is not G-stably
linearizable. �

5. Four nodes

Factorial cubics

We first consider the case when the four nodes are in general linear position, forming a ‘tetrahedron’.
This is case (J4) in [37]. We may assume that the nodes of X are contained in the hyperplane 𝑥5 = 0 and
are the points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0], [0 : 0 : 1 : 0 : 0], [0 : 0 : 0 : 1 : 0] .

The intersection 𝑋 ∩ {𝑥5 = 0} is the unique cubic surface with four nodes, the Cayley cubic surface.
Using this, we see that X can be given by

𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 + 𝑎𝑥3
5 + 𝑥

2
5
(
𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4

)
+

+𝑥5
(
𝑎1 (𝑥1𝑥2 + 𝑥3𝑥4) + 𝑎2 (𝑥1𝑥3 + 𝑥2𝑥4) + 𝑎3 (𝑥1𝑥4 + 𝑥2𝑥3)

)
= 0 (13)

for some 𝑎, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑎1, 𝑎2, 𝑎3 ∈ 𝑘 .

Theorem 5.1. Suppose that 𝑋 ⊂ P4 is a 4-nodal cubic threefold and Aut(𝑋) does not fix any node of
X. Then, up to a change of coordinates, one of the following holds:

(C2) 𝑏1 = 𝑏2 and 𝑏3 = 𝑏4 in (13), and Aut(𝑋) � 𝐶2, generated by

𝜎1 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥1, 𝑥4, 𝑥3, 𝑥5).
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(C4) 𝑎 = 0, 𝑎1 = 𝑎2 = 𝑎3 = 0, 𝑏1 = −𝑏2, 𝑏3 = −𝑏4 in (13), and Aut(𝑋) � 𝐶4, generated by

𝜎′
1 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥1, 𝑥4, 𝑥3, 𝑖𝑥5), 𝑖 = 𝑒

2𝜋𝑖
4 .

(C2
2) 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 in (13), and Aut(𝑋) � 𝐶2

2 , generated by 𝜎1 and

𝜎2 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥3, 𝑥4, 𝑥1, 𝑥2, 𝑥5).

(C8) 𝑎 = 0, 𝑎1 = 𝑎2 = 𝑎3 = 0, 𝑏1 = 1, 𝑏2 = −𝜁2
8 , 𝑏3 = −1, 𝑏4 = 𝜁2

8 in (13), and Aut(𝑋) � 𝐶8,
generated by

𝜎′
3 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥4, 𝑥1, 𝑥2, 𝑥3, 𝜁8𝑥5), 𝜁8 = 𝑒

2𝜋𝑖
8 .

(𝔇4) 𝑎1 = 𝑎3 = 0, 𝑎2 = 1, 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 in (13), and Aut(𝑋) � 𝔇4, generated by 𝜎1, 𝜎2 and

𝜎3 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥4, 𝑥1, 𝑥2, 𝑥3, 𝑥5).

(𝔖4) 𝑎 ≠ 0, 𝑎1 = 𝑎2 = 𝑎3 = 0, 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 1 in (13), and Aut(𝑋) �𝔖4, generated by 𝜎1, 𝜎2,
𝜎3 and

𝜎4 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝑥5).

Proof. Let 𝜙 : Aut(𝑋) →𝔖4 be the homomorphism given by the action on the nodes of X. Since Aut(𝑋)
does not fix nodes, we may assume that there is a 𝜄 ∈ Aut(𝑋) such that 𝜙(𝜄) = (12) (34) or 𝜙(𝜄) = (1234).

Suppose that 𝜙(𝜄) = (12) (34). Then 𝜄 is given by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2 + 𝑠𝑥5, 𝑥1 + 𝑠𝑥5, 𝑥3 + 𝑠𝑥5, 𝑥4 + 𝑠𝑥5, 𝑡𝑥5),

for some 𝑠, 𝑡 ∈ 𝑘 such that 𝑡 ≠ 0. Considering how 𝜄 acts on (13), we see that 𝑠 = 0 or 𝑎1 = 𝑎2 = 𝑎3.
In the former case, we have 𝑏1 = 𝑏2 and 𝑏3 = 𝑏4, which implies 𝑡 = 1, because otherwise, 𝑡 = −1 and
𝑎 = 𝑎1 = 𝑎2 = 𝑎3 = 0, which implies that X is not 4-nodal. Thus, if (𝑠, 𝑡) = (0, 1) and im(𝜙) � 𝐶2, then
we are in the case (𝐶2).

If 𝑎1 = 𝑎2 = 𝑎3, then after a coordinate change, we may assume that 𝑎1 = 𝑎2 = 𝑎3 = 0. In this case,
we get

0 = 𝑠 = 𝑎(1 − 𝑡3) = 𝑏3 − 𝑏4𝑡
2 = 𝑏4 − 𝑏3𝑡

2 = 𝑏2 − 𝑏1𝑡
2 = 𝑏1 − 𝑏2𝑡

2.

Since X is 4-nodal, this gives 𝑎 = 0, 𝑏1 = −𝑏2, 𝑏3 = −𝑏4 and 𝑡 = ±𝑖. Hence, if im(𝜙) � 𝐶2, then we are
in the case (𝐶4).

Now, we suppose that 𝜙(𝜄) = (1234). Then 𝜄 is given by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥4 + 𝑠𝑥5, 𝑥1 + 𝑠𝑥5, 𝑥2 + 𝑠𝑥5, 𝑥3 + 𝑠𝑥5, 𝑡𝑥5)

for some 𝑠, 𝑡 ∈ 𝑘 such that 𝑡 ≠ 0. Then

◦ 𝑎 = 2𝑎2𝑏4 − 𝑎3
2, 𝑎1 = 2𝑎2 − 𝑎3, 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4, or

◦ 𝑎1 = 𝑎3, 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4, or
◦ 𝑎1 = 𝑎2 = 𝑎3.

In the former case, X is not 4-nodal. If 𝑎1 = 𝑎2 = 𝑎3, then after a coordinate change, we may assume
that 𝑎1 = 𝑎2 = 𝑎3 = 0, which gives

0 = 𝑠 = 𝑎(1 − 𝑡3) = 𝑏2 − 𝑏3𝑡
2 = 𝑏3 − 𝑏4𝑡

2 = 𝑏4 − 𝑏1𝑡
2 = 𝑏1 − 𝑏2𝑡

2,
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so, after an appropriate scaling of 𝑥5, we see that

◦ 𝑎 ≠ 1, 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 1, or
◦ 𝑎 = 0, 𝑏1 = 1, 𝑏2 = −1, 𝑏3 = 1, 𝑏4 = −1, 𝑡 = 𝑖, or
◦ 𝑎 = 0, 𝑏1 = 1, 𝑏2 = −𝜁2

8 , 𝑏3 = −1, 𝑏4 = 𝜁2
8 , 𝑡 = 𝜁8,

which implies that we are in cases (𝔖4), (𝐶4), (𝐶8), respectively.
If 𝑎1 = 𝑎3 and 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4, then after a coordinate change, we may assume that 𝑎1 = 𝑎3 = 0.

If 𝑎2 = 0, then we are in the case (𝔖4). Finally, if 𝑎2 ≠ 0, then, scaling 𝑥5, we may further assume that
𝑎1 = 1, so X is given by

𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 + 𝑎𝑥3
5 + 𝑏1𝑥

2
5
(
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

)
+ 𝑥5

(
𝑥1𝑥3 + 𝑥2𝑥4

)
= 0,

which gives Aut(𝑋) = 〈𝜎1, 𝜎2, 𝜎3〉 � 𝔇4, so we are in the case (𝔇4).
To proceed, we may assume that im(𝜙) � 𝐶2 and im(𝜙) � 𝐶4. Then, up to a coordinate change, one

of the following four cases holds:

◦ im(𝜙) = 〈(12) (34), (14) (23)〉 � 𝐶2
2 ,

◦ im(𝜙) = 〈(12) (34), (1234)〉 � 𝔇4,
◦ im(𝜙) = 〈(12) (34), (14) (23), (123)〉 � 𝔄4,
◦ im(𝜙) = 〈(12) (34), (14) (23), (1234), (123)〉 �𝔖4.

Since im(𝜙) contains (12) (34) or (1234), the cubic X must be given by one of the equations explicitly
described above. Using additional symmetries of X, we conclude that we are in one of the cases (𝐶2

2 ),
(𝔇4), (𝔖4), or the cubic X is given by (13) with

𝑎 ≠ 0, 𝑎1 = 𝑎2 = 𝑎3 = 0, 𝑏1 = 𝑏3 = 1, 𝑏2 = 𝑏4 = −1,

or

𝑎1 = 1, 𝑎2 = 𝜁3, 𝑎3 = 𝜁2
3 , 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 0.

In the first of the latter two cases, X has eight nodes, and in the last case, the singularities of X are not
nodes. This completes the proof of the theorem. �

Birational model

Let 𝜋 : 𝑋 → 𝑋 be the blowup of the nodes of X. Then there exists an Aut(𝑋)-equivariant diagram:

𝑋
𝜌 ��������

𝜋

��

𝑋

𝜙

��
𝑋 𝑌

where 𝜌 is a composition of flops in the strict transform of the lines passing through pair of nodes,
𝜙 is a contraction of the strict transform of the hyperplane section containing four nodes (the surface
𝑋 ∩ {𝑥5 = 0}) to a smooth point of the threefold Y, and Y is a smooth divisor in (P1)4 of degree
(1, 1, 1, 1). Implicitly, the birational map 𝑋 � 𝑌 has been constructed in the proof of [48, Proposition
4.5]. Note that the anticanonical model of 𝑋 is a singular Fano threefold with six nodes of degree 16,
which can be smoothed to a smooth Fano threefold of degree 16 and Picard rank 1.

Burnside formalism

We realize the situation of Proposition 2.6 in some of the 4-nodal cases.
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Example 5.2. Let X be the cubic threefold given in the Case (𝔇4) or (𝔖4) in Theorem 5.1. Consider the
group 𝐺 ⊂ Aut(𝑋) where 𝐺 = 〈𝜎2, 𝜎1𝜎3〉 = 𝐶2

2 . Then we are in the situation of Proposition 2.6, and
the G-action is not linearizable. In particular, 𝜎1𝜎3 fixes a cubic surface receiving a residual 𝜎2-action
with a G-fixed elliptic curve on it.

Specialization

One can equivariantly specialize 4-nodal cubic threefolds to an 8-nodal one:

Proposition 5.3. Let X𝑏 be the 4-nodal cubic threefold defined by

𝑓𝑏 = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 + 𝑥2
5
(
𝑥1 + 𝑥2 + 𝑏(𝑥3 + 𝑥4)

)
= 0.

For all 𝑏 ∈ 𝑘 , X𝑏 carries a 𝐺 = 𝐶2-action generated by

𝜎1 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥1, 𝑥4, 𝑥3, 𝑥5).

Then X𝑏 is not G-stably linearizable for a very general 𝑏.

Proof. Let X → A1
𝑘 be the family given by 𝑓𝑏 . The generic fiber X𝑏 is a 4-nodal cubic of the type

(𝐶2) in Theorem 5.1. The special fiber X9/4 is an 8-nodal cubic, with an (H1)-obstruction to stable
linearizability of the G-action by Corollary 8.3. The additional four nodes have trivial stabilizer and
thus are 𝐵𝐺-rational singularities. Applying Proposition 2.9 and Example 2.8, one concludes that a very
general member in the family X is not G-stably linearizable. �

One can also specialize to the Segre cubic threefold:

Proposition 5.4. Let X𝑎 be a cubic of type (𝔖4) in Theorem 5.1; that is, X𝑎 is given by

𝑎𝑥3
5 + 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 + 𝑥2

5 (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4) = 0.

Consider the subgroup 𝐺 = 〈𝜎1, 𝜎2〉 � 𝐶2
2 ⊂ Aut(𝑋𝑎). Then, for a very general 𝑎 ∈ 𝑘 , the G-action on

X𝑎 is not stably linearizable.

Proof. Let X → A1
𝑘 be the family consisting of 𝑋𝑎. The special fiber 𝑐𝑋0 is a 10-nodal cubic, with an

(H1)-obstruction to stable linearizability of the G-action, from computations in [24]. The additional six
nodes have 𝐶2-stabilizers. They are 𝐵𝐺-rational singularities, by Example 2.8. Applying Proposition
2.9 and Example 2.8, one concludes that a very general fiber is not G-stably linearizable. �

Remark 5.5. We note that the degeneration of cubics in Proposition 5.4 is equivalent to the degeneration
of divisors in (P1)4 of degree (1, 1, 1, 1), which was studied in [48, Section 7] and [17]. In particular,
the product of projections from four planes in the tetrahedron formed by the four nodes of the cubics
gives an G-equivariant birational map from the cubics to divisors in (P1)4 of degree (1, 1, 1, 1).

Cubics with a plane

Now we treat the case when the four nodes are contained in a distinguished, G-stable plane Π. This is
case (J6) in [37]. Unprojecting from Π, we have a G-equivariant birational map

𝜙 : 𝑋 � 𝑋2,2,

where 𝑋2,2 is a smooth complete intersection in P5 of two quadrics with a G-fixed point 𝑃 ∈ 𝑋2,2, and
the map 𝜙−1 is a projection from P. Linearizability of actions on smooth 𝑋2,2 is determined by existence
of invariant lines [42, Theorem 24]. In particular, we have the following:
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Proposition 5.6. The G-action on X is not linearizable if and only if no singular points of X are fixed
by G, and X does not contain G-stable lines that are disjoint from Π.

Proof. We may assume that no singular point of X is G-fixed. If X contains a G-stable line that is disjoint
from Π, then the G-action on 𝑋2,2 is linearizable, by Lemma 1.1. Conversely, if the G-action on 𝑋2,2
is linearizable, then it follows from [42, Theorem 24] that 𝑋2,2 contains a G-stable line ℓ. And 𝑃 ∉ ℓ
because otherwise, the preimage of ℓ on X would be a G-fixed singular point. Similarly, we see that ℓ
must be disjoint from the four lines in 𝑋2,2 containing P. Then ℓ is mapped by 𝜙−1 to a G-stable line in
X that is disjoint from the plane Π. �

Examples of nonlinearizable actions, based on the Burnside formalism [46] or the adaptation to the
equivariant context of the torsors over intermediate Jacobians formalism from [43], [11], can be found
in [42, Sections 8.3 and 8.4]. As a special case, we have the following:

Example 5.7. We may assume that 𝑋2,2 is given by

6∑
𝑖=1

𝑎𝑖𝑥
2
𝑖 =

6∑
𝑖=1

𝑥2
𝑖 = 0.

Let 𝐺 = 〈𝜎〉, with 𝜎 acting diagonally by (1, 1, 1, 1,−1,−1). Then G does not leave invariant any line
on 𝑋2,2, and the action is not linearizable. However, there is a genus 1 curve C fixed by G, obtained by
intersecting 𝑋2,2 with 𝑥5 = 𝑥6 = 0. Projecting from any of the points on C, we obtain a singular cubic
threefold, generically with four nodes.

Example 5.8. Let 𝑋 ⊂ P4
𝑦1 ,...,𝑦5

be the 4-nodal cubic given by

(𝑦1 − 𝑦3)𝑦2𝑦4 + (𝑦2 − 𝑦3)𝑦1𝑦5 + (𝑦4 − 𝑦5)𝑦4𝑦5 − 𝑦3
4 − 𝑦3

5.

The four nodes lie on the unique plane 𝑦4 = 𝑦5 = 0. The automorphism group Aut(𝑋) contains 𝐺 = 𝐶3
2

generated by

𝜄1 : (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) ↦→ (−𝑦1,−𝑦1 + 𝑦3,−𝑦1 + 𝑦2, 𝑦4, 𝑦5)

𝜄2 : (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) ↦→ (𝑦2 − 𝑦3, 𝑦1 − 𝑦3,−𝑦3, 𝑦4, 𝑦5).

and

𝜄3 : (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) ↦→ (𝑦1, 𝑦2, 𝑦3,−𝑦4,−𝑦5).

Unprojecting X from the unique plane under the map

(𝑦1, . . . , 𝑦5) ↦→ (𝑦1𝑦5, 𝑦2𝑦5, 𝑦3𝑦5, 𝑦4𝑦5, 𝑦
2
5, 𝑦1𝑦2 − 𝑦2𝑦3 − 𝑦2

4),

one sees that X is G-equivariantly birational to a smooth intersection of two quadrics 𝑋2,2 ⊂ P5
𝑥1 ,...,𝑥6

given by

𝑥1𝑥2 − 𝑥2𝑥3 − 𝑥2
4 − 𝑥5𝑥6 = 𝑥1𝑥2 − 𝑥1𝑥3 + 𝑥2

4 − 𝑥4𝑥5 − 𝑥2
5 + 𝑥4𝑥6 = 0.

The 𝐺 = 𝐶3
2 action on the first five coordinates is the same as that on P4, 𝜄1 and 𝜄2 acts trivially on 𝑥6

and 𝜄3 changes the sign of 𝑥6. For any subgroup 𝐺 ′ ⊂ 𝐺, there is a 𝐺 ′-stable line in 𝑋2,2 if and only if
𝐺 ′ = 𝐶2 and the character of the 𝐺 ′-representation of the ambient A6

𝑥1 ,...,𝑥6
is

(6, 0) or (6, 4).
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In the first case, 𝐺 ′ fixes a singular point of X and thus is linearizable. In the latter case, 𝐺 ′ pointwise
fixes a smooth intersection of two quadrics in dimension 2 (i.e., a quartic Del Pezzo surface), which
contains 16 lines. The other𝐶2 subgroups have character (6, 2). They fix an elliptic curve but do not leave
any line invariant in 𝑋2,2. Any of the other subgroups of G will contain one of the nonlinearizable 𝐶2.

6. Five nodes

Now, we suppose that X has five nodes.

Birational model

If the nodes are not in general linear position, then there is a distinguished G-fixed node, and the G-action
on X is linearizable. Hence, we may assume that the nodes of X are

𝑝1 = [1 : 0 : 0 : 0 : 0], 𝑝2 = [0 : 1 : 0 : 0 : 0], 𝑝3 = [0 : 0 : 1 : 0 : 0],

𝑝4 = [0 : 0 : 0 : 1 : 0], 𝑝5 = [0 : 0 : 0 : 0 : 1] .

Then 𝐺 ⊆ 𝔖5 acts via permutation of coordinates. We may also assume that G does not fix any of the
nodes, since otherwise, the G-action is clearly linearizable.

Linearizability

Using the standard Cremona involution

𝜄 : P4 � P4,

we obtain a G-birational map 𝜒 : 𝑋 � 𝑄, where 𝑄 ⊂ P4 is a smooth quadric. For more details of this
map, see the proof of Theorem 2.12.

Lemma 6.1. Suppose that G does not act transitively on Sing(𝑋). Then the G-action on X is linearizable.

Proof. Since G does not fix any of the nodes, either𝐺 � 𝐶2 ×𝔖3 or𝐺 � 𝐶2 ×𝐶3. In both cases, we may
assume that G preserves the subset {𝑝1, 𝑝2} and {𝑝3, 𝑝4, 𝑝5}. Then G pointwise fixes the line 𝑙 ⊂ P4

that passes through the points [1 : 1 : 0 : 0 : 0] and [0 : 0 : 1 : 1 : 1]. Observe that 𝜄(𝑙) = 𝑙, so that the
intersection 𝑙 ∩𝑄 contains G-fixed points, which implies the assertion. �

Thus, we may assume that G acts transitively on the nodes of X, and G contains the 5-cycle
(1, 2, 3, 4, 5). Then X is defined by

𝑥1𝑥2𝑥3 + 𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥5 + 𝑥1𝑥4𝑥5 + 𝑥3𝑥4𝑥5 + 𝑎(𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥1𝑥3𝑥5 + 𝑥2𝑥3𝑥5 + 𝑥2𝑥4𝑥5) = 0,

for some a. And Q is defined by

𝑥1𝑥2 + 𝑥2𝑥3 + · · · + 𝑥5𝑥1 + 𝑎(𝑥1𝑥3 + 𝑥2𝑥4 + · · · + 𝑥5𝑥2) = 0. (14)

Note that 𝑎 ≠ −1, since otherwise, X would be 6-nodal. Then Q is smooth. For the group G, we have
the following possibilities:

(1) 𝐺 � 𝐶5,
(2) 𝐺 � 𝔇5,
(3) 𝐺 � 𝐶4 � 𝐶5 and 𝑎 = 1,
(4) 𝐺 � 𝔄5 and 𝑎 = 1,
(5) 𝐺 �𝔖5 and 𝑎 = 1.
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In the first case, 𝐺 = 𝐶5, the group G fixes a point in Q, and the G-action on X is linearizable. In the
second case, the action is necessarily of the form in the following lemma:

Lemma 6.2. Suppose that𝐺 � 𝔇5 acting on P4 = P(I⊕𝑉2⊕𝑉 ′
2), where𝑉2 and𝑉 ′

2 are two nonisomorphic
2-dimensional irreducible representations of𝔇5. Then the G-action on every G-invariant smooth quadric
in P4 is linearizable.

Proof. We may assume the G action is generated by

(𝑥1, . . . , 𝑥5) ↦→ (𝑥4, 𝑥3, 𝑥2, 𝑥1, 𝑥5),
(𝑥1, . . . , 𝑥5) ↦→ (𝜁𝑥1, 𝜁

2𝑥2, 𝜁
3𝑥3, 𝜁

4𝑥4, 𝑥5),

where 𝜁 = 𝑒
2𝜋𝑖

5 . Smooth G-invariant quadrics 𝑄𝑎,𝑏 are given by

𝑎𝑥1𝑥4 − 𝑏𝑥2𝑥3 + 𝑥2
5 = 0

for 𝑎, 𝑏 ≠ 0. Notice that each 𝑄𝑎,𝑏 is 𝔇5-isomorphic to 𝑄1,1 with the same 𝔇5-action under a change
of variables

𝑥 ′1 =
√
𝑎𝑥1, 𝑥

′
2 =

√
𝑏𝑥2, 𝑥

′
3 =

√
𝑏𝑥3, 𝑥

′
4 =

√
𝑎𝑥4, 𝑥

′
5 = 𝑥5.

Consider a G-invariant conic

𝐶 = {𝑥2 = 𝑥3 = 0} ∩𝑄1,1

and a G-invariant twisted cubic curve

𝑅 = {𝑥5 = 𝑥1𝑥3 − 𝑥2
2 = 𝑥2𝑥4 − 𝑥2

3 = 0} ∩𝑄1,1.

The system of quadric hypersurfaces on P4 containing both C and R induces a G-equivariant birational
map 𝑄1,1 � P3; see, for example, [3, Section 5.10]. �

Lemma 6.3. Suppose that 𝐺 � 𝐶4 � 𝐶5 and 𝑎 = 1. Then Q from (14) contains a G-invariant smooth
quintic elliptic curve E, and we have the following G-Sarkisov link:

𝑄

𝛼

����
��
��
�� 𝛽

���
��

��
��

𝑄 P3

where 𝛼 is a blowup of the curve E, and 𝛽 is a blowup of a smooth quintic elliptic curve isomorphic to E.

Proof. It is easy to see that Aut(𝑄) contains a unique subgroup isomorphic to 𝐶4 � 𝐶5. Thus, we may
change coordinates on P4 as we need and, in particular, assume that Q is given by

5∑
𝑖=1

𝑥2
𝑖 + 𝑖

∑
1�𝑖< 𝑗�5

𝑥𝑖𝑥 𝑗 = 0,

and that the action of G on Q is given by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥1),
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥3, 𝑥5, 𝑥2, 𝑥4).

https://doi.org/10.1017/fms.2024.148 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.148


30 I. Cheltsov, Y. Tschinkel and Z. Zhang

Then Q contains the following smooth quintic elliptic curve:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥2
1 + 𝑖(𝑥3𝑥4 + 𝑥2𝑥5) = 0,
𝑥2

2 + 𝑖(𝑥4𝑥5 + 𝑥3𝑥1) = 0,
𝑥2

3 + 𝑖(𝑥5𝑥1 + 𝑥4𝑥2) = 0,
𝑥2

4 + 𝑖(𝑥1𝑥2 + 𝑥5𝑥3) = 0,
𝑥2

5 + 𝑖(𝑥2𝑥3 + 𝑥1𝑥4) = 0.

Blowing up Q along this curve, we obtain the claim; cf. [19]. �

If 𝐺 � 𝔖5 and 𝑎 = 1, then it follows from [21] that X is G-solid, and the only G-Mori fiber spaces
G-birational to X are X and Q. In particular, the G-action is not linearizable. If 𝐺 � 𝔄5 and 𝑎 = 1, we
also expect that X and Q are the only G-Mori fiber spaces G-birational to X, which would imply that the
G-action is not linearizable.

7. Six nodes

Cubics without planes

Let X be the 6-nodal cubic threefold such that the nodes are in general linear position. Then rk Cl(𝑋) = 2,
so the defect of X is 1. This is case (J9) in [37]. Note that X does not contain planes, but it contains two
families of cubic scrolls (see Remark 7.1 below). Moreover, by [41, Section 3], X can be given by

det(𝑀) = 0

for a 3 × 3 matrix M whose entries are linear forms. Thus, one can define a rational map 𝑋 � P2 that
maps 𝑝 ↦→ (𝑎, 𝑏, 𝑐), where (𝑎, 𝑏, 𝑐) is a nonzero solution of the equation

𝑀
���
𝑎
𝑏
𝑐

��� = 0.

This map is dominant, it is undefined at the nodes of X, and its general fiber is a line in X. Similarly,
we can define another rational map 𝑋 � P2 using the transpose of the matrix M. Taking resolution
of singularities X, we resolve indeterminacy of both of these rational maps, which yields the following
commutative diagram:

𝑋

ℎ+

��			
			

			
			

	
ℎ−

		




















𝑓

��

𝑋+

𝑝+

��

𝑞+

		


















 𝑋−

𝑝−

��

𝑞−

�����
���

���
���

�

P2 𝑋

� � � � � � �������� P2

(15)

where f is the standard resolution, 𝑞+ and 𝑞− are small resolutions, ℎ+ and ℎ− are birational morphisms
such that ℎ− ◦ (ℎ+)−1 is a composition of six Atiyah flops, and both 𝑝+ and 𝑝− are P1-bundles. The
diagram (15) is implicitly contained in [44, §7.5], as an illustration of the first row in the table there.
Taking a product of morphisms 𝑝+ ◦ ℎ+ and 𝑝− ◦ ℎ−, we obtain a morphism 𝑋 → P2 × P2 that is
birational onto its image (a divisor of degree (2, 2) with 15 nodes).
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Remark 7.1. Let l be a general line in P2. Set

𝑆 = (𝑞−)∗(𝑝−)∗(𝑙) and 𝑆
′
= (𝑞+)∗(𝑝+)∗(𝑙).

Then 𝑆 and 𝑆
′

are smooth cubic scrolls in X that freely generate the class group Cl(𝑋).

Remark 7.2. Let 𝐺 ⊆ Aut(𝑋). Then the commutative diagram (15) is G-equivariant if and only if
rk Cl𝐺 (𝑋) ≠ 1.

To describe possibilities for Aut(𝑋), we can assume that the nodes of X are the points

𝑝1 = [1 : 0 : 0 : 0 : 0], 𝑝2 = [1 : 1 : 1 : 1 : 1], 𝑝3 = [0 : 0 : 0 : 0 : 1] .

𝑝4 = [0 : 0 : 0 : 1 : 0], 𝑝5 = [0 : 0 : 1 : 0 : 0], 𝑝6 = [0 : 1 : 0 : 0 : 0] .

Fix the 𝔖6-action on P4 generated by

𝜏(12) : (𝑥1, . . . , 𝑥5) ↦→ (−𝑥1,−𝑥1 + 𝑥2,−𝑥1 + 𝑥3,−𝑥1 + 𝑥4,−𝑥1 + 𝑥5), (16)
𝜏(1· · ·6) : (𝑥1, . . . , 𝑥5) ↦→ (−𝑥1 + 𝑥2,−𝑥1 + 𝑥3,−𝑥1 + 𝑥4,−𝑥1 + 𝑥5,−𝑥1),

where the indices correspond to the permutation of six nodes. Then Sing(𝑋) forms an𝔖6-orbit, but X is
not 𝔖6-invariant. Moreover, it follows from a classical construction [30] that there exists the following
4-dimensional 𝔖6-Sarkisov link:

𝑈

𝛼
��

𝛽 �������� 𝑌

𝛾

��
P4

𝜒
�������� 𝑉

where V is the 10-nodal Segre cubic threefold inP4, 𝜒 is given by the linear system of cubic hypersurfaces
singular at the points 𝑝1, . . . , 𝑝6, 𝛼 is the blowup of 𝑝1, . . . , 𝑝6, 𝛽 is a composition of antiflips in the
strict transforms of the 15 lines that contain two points among 𝑝1, . . . , 𝑝6, and 𝛾 is a P1-bundle.

Observe that Aut(𝑋) ⊆ 𝔖6. Restricting the above 𝔖6-Sarkisov link to X, we obtain the following
Aut(𝑋)-equivariant diagram:

𝑋

𝑓

��

�������� 𝑋

𝜋

��
𝑋 𝑆

(17)

where S is a smooth hyperplane section of the Segre cubic V, 𝑋 � 𝑋 is a composition of Atiyah flops
in the strict transforms of the 15 lines in X that contains two nodes among 𝑝1, . . . , 𝑝6, 𝜋 is a P1-bundle.
For more details, see [41].

Our cubic X is given by

𝑎1 𝑓1 + 𝑎2 𝑓2 + 𝑎3 𝑓3 + 𝑎4 𝑓4 + 𝑎5 𝑓5 = 0 (18)
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for some 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ∈ 𝑘 , where

𝑓1 = 𝑥1𝑥2𝑥3 − 𝑥2𝑥3𝑥4 − 𝑥2𝑥3𝑥5 − 𝑥1𝑥4𝑥5 + 𝑥2𝑥4𝑥5 + 𝑥3𝑥4𝑥5,

𝑓2 = 𝑥1𝑥2𝑥4 − 𝑥2𝑥3𝑥4 − 𝑥1𝑥4𝑥5 + 𝑥3𝑥4𝑥5,

𝑓3 = 𝑥1𝑥2𝑥5 − 𝑥2𝑥3𝑥5 − 𝑥1𝑥4𝑥5 + 𝑥3𝑥4𝑥5,

𝑓4 = 𝑥1𝑥3𝑥4 − 𝑥2𝑥3𝑥4 − 𝑥1𝑥4𝑥5 + 𝑥2𝑥4𝑥5,

𝑓5 = 𝑥1𝑥3𝑥5 − 𝑥2𝑥3𝑥5 − 𝑥1𝑥4𝑥5 + 𝑥2𝑥4𝑥5.

Enumerating 𝐺 ⊆ 𝔖6 and searching for G-invariant cubics singular at 𝑝1, . . . , 𝑝6, we can find all
possibilities for Aut(𝑋). In particular, Aut(𝑋) = 1 for general 𝑎1, . . . , 𝑎5. Moreover, one has the
following:

Proposition 7.3. Let 𝑋 ⊂ P4 be a 6-nodal cubic threefold given by (18). Assume that none of the nodes
of X is fixed by Aut(𝑋). Then under the 𝔖6-action specified in (16), one of the following holds:

1. 𝑎1 + 𝑎2 + 𝑎4 + 𝑎5 = 0, and

Aut(𝑋) � 𝐶2 = 〈(1, 3) (2, 5) (4, 6)〉.

2. 𝑎1 + 𝑎3 = 𝑎2 − 𝑎3 + 𝑎4 + 𝑎5 = 0, and

Aut(𝑋) �𝔖3 = 〈(1, 3) (2, 5) (4, 6), (1, 4, 5) (2, 6, 3)〉.

3. 𝑎1 + 𝑎4 = 𝑎2 + 𝑎5 = 𝑎3 − 𝑎4 = 0, and

Aut(𝑋) �𝔖4 = 〈(1, 3) (2, 5) (4, 6), (3, 4, 5, 6)〉.

4. 𝑎1 + 𝑎4 = 𝑎2 + 𝑎5 = 𝑎3 + 𝑎4 = 0, and

Aut(𝑋) � 𝔇4 = 〈(3, 5), (1, 3, 2, 5) (4, 6)〉.

5. 𝑎1 + 𝑎4 + 2𝑎5 = 𝑎2 − 𝑎5 = 0, and

Aut(𝑋) � 𝐶2
2 = 〈(1, 2) (3, 5) (4, 6), (1, 3) (2, 5) (4, 6)〉.

6. 𝑎1 + 𝑎4 + 2𝑎5 = 𝑎2 − 𝑎5 = 𝑎3 − 𝑎4 − 2𝑎5 = 0, and

Aut(𝑋) � 𝔇6 = 〈(1, 3) (2, 5) (4, 6), (1, 6, 5, 2, 4, 3)〉.

7. 𝑎1 = 𝑎3 = 𝑎5 = 1, 𝑎2 = 𝑎4 = −1, and

Aut(𝑋) �𝔖2
3 � 𝐶2 = 〈(1, 3) (2, 5) (4, 6), (2, 4), (1, 5) (2, 3, 4, 6)〉.

8. 𝑎1 = 𝑎4 = 1, 𝑎2 = 𝑎3 = 𝑎5 = −1, and

Aut(𝑋) �𝔖5 = 〈(1, 3) (2, 5) (4, 6), (1, 2, 5, 6, 4)〉.

Proof. Enumerating all (conjugacy classes of) subgroups G of 𝔖6 which do not fix any point among
𝑝1, . . . , 𝑝6, and computing all G-invariant cubics singular at 𝑝1, . . . , 𝑝6, we obtain the list of (families
of) 6-nodal cubics whose automorphism groups do not fix any of the nodes. These are the eight families
of cubics listed above. Since Aut(𝑋) ⊂ 𝔖6, one can find the full automorphism groups Aut(𝑋). �

As in [4], we find two maximal subgroups𝔖5 and𝔖2
3 �𝐶2 such that (up to conjugation in𝔖6) G and

X can be described as follows:
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1. 𝐺 = 𝔖5 = 〈(1, 3) (2, 5) (4, 6), (1, 2, 5, 6, 4)〉 and X is given by

𝑥1𝑥2𝑥3 − 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 − 𝑥2𝑥3𝑥4 − 𝑥1𝑥2𝑥5 − 𝑥1𝑥3𝑥5 + 𝑥2𝑥3𝑥5 + 𝑥1𝑥4𝑥5 + 𝑥2𝑥4𝑥5 − 𝑥3𝑥4𝑥5 = 0,
(19)

2. 𝐺 = 𝔖2
3 � 𝐶2 = 〈(1, 3) (2, 5) (4, 6), (2, 4), (1, 5) (2, 3, 4, 6)〉 and X is given by

𝑥1𝑥2𝑥3 − 𝑥1𝑥2𝑥4 − 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥5 + 𝑥1𝑥3𝑥5 + 𝑥2𝑥4𝑥5 − 3𝑥2𝑥3𝑥5 − 𝑥1𝑥4𝑥5 + 𝑥3𝑥4𝑥5 = 0.
(20)

In the first case, Aut(𝑋) � 𝔖5, rk Cl𝔖5 (𝑋) = 1, and (17) is a 𝔖5-Sarkisov link such that S is the
Clebsch diagonal cubic surface. In the second case, Aut(𝑋) �𝔖2

3 � 𝐶2, rk Cl𝔖
2
3�𝐶2 (𝑋) = 1, and (17) is

a 𝔖2
3 � 𝐶2-Sarkisov link such that S is the Fermat cubic surface.

Lemma 7.4. Let 𝑋 ⊂ P4 be a 6-nodal cubic threefold such that the nodes are in general linear position.
If Aut(𝑋) contains an involution 𝜎 not fixing any node, then rk Cl〈𝜎〉 (𝑋) = 1.

Proof. Since 𝜎 does not fix any node, we may assume that

𝜎 = (1, 3) (2, 5) (4, 6)

and X is one of the cases in Proposition 7.3. From the diagram (17), we know that

rk Cl〈𝜎〉 (𝑋) + 3 = rk Cl〈𝜎〉 (𝑋) = rk Cl〈𝜎〉 (𝑋) = rk Cl〈𝜎〉 (𝑆) + 1,

where S is a smooth cubic surface contained in a hyperplane 𝐻 ⊂ P4. By Lefschetz fixed-point theorem,
one has [36, Section 6]

rk Cl〈𝜎〉 (𝑆) = 1
2
(7 + Tr2(𝜎∗)),

Tr2 (𝜎∗) = 𝑠 − 2 +
∑
𝑖

(2 − 2𝑔𝑖),

where Tr2 (𝜎∗) is the trace of 𝜎∗-action on H2 (𝑆,C), s is the number of isolated 𝜎-fixed points on S,
and 𝑔𝑖 are the genera of fixed curves. In our case, we compute that the induced 𝜎-action on 𝐻 � P3 has
weights (1, 1, 1,−1). The fixed locus 𝑆𝜎 consists of one point and a smooth cubic curve. Substituting
into the formulae above we obtain

rk Cl〈𝜎〉 (𝑆) = 3,

which implies rk Cl〈𝜎〉 (𝑋) = 1. �

Proposition 7.5. Let 𝑋 ⊂ P4 be a 6-nodal cubic threefold such that the nodes are in general linear
position and Aut(𝑋) contains an involution 𝜎. Let 𝑋 be the standard resolution of X. Then the action
of 〈𝜎〉 � 𝐶2 on Pic(𝑋) fails (H1) if and only if 𝜎 does not fix any node.

Proof. We know that Pic(𝑋) is generated by the pullback of the hyperplane section H, six exceptional
divisors 𝐸1, . . . , 𝐸6, and the classes of the strict transforms of two cubic scrolls S and 𝑆′ (see Remark
7.1), subject to the relation

2𝐻 = 𝑆 + 𝑆′ +
6∑

𝑖=1
𝐸𝑖 .
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There is a short exact sequence of Aut(𝑋)-modules

0 →
6⊕

𝑖=1
𝐸𝑖 → Pic(𝑋) → Cl(𝑋) → 0,

giving rise to the long exact sequence of cohomology groups

. . . → H1(〈𝜎〉,
6⊕

𝑖=1
𝐸𝑖) → H1(〈𝜎〉, Pic(𝑋)) → H1 (〈𝜎〉,Cl(𝑋)) → H2 (〈𝜎〉,

6⊕
𝑖=1

𝐸𝑖) → . . . .

By our assumption, 𝜎 permutes the 𝐸𝑖 without fixing any 𝐸𝑖 . So

H1(〈𝜎〉,
6⊕

𝑖=1
𝐸𝑖) = H2 (〈𝜎〉,

6⊕
𝑖=1

𝐸𝑖) = 0,

and

H1 (〈𝜎〉, Pic(𝑋)) = H1 (〈𝜎〉,Cl(𝑋)).

If 𝜎 does not fix any node, Lemma 7.4 implies that rk Cl〈𝜎〉 (𝑋) = 1. So 𝜎 acts on Cl(𝑋) via

𝜎(𝐻) = 𝐻, 𝜎(𝑆) = 𝑆′ = 2𝐻 − 𝑆.

In another basis of Cl(𝑋) (namely, H and 𝐻 − 𝑆) the action becomes

𝜎(𝐻) = 𝐻, 𝜎(𝐻 − 𝑆) = −𝐻 + 𝑆.

Then

H1 (〈𝜎〉, Pic(𝑋)) = H1(〈𝜎〉,Cl(𝑋)) = Z/2.

Conversely, if 〈𝜎〉 fails (H1), it is not stably linearizable and thus cannot fix any node. �

Example 7.6. Let 𝑋 ⊂ P4 be a 6-nodal cubic threefold in one of the eight cases in Proposition 7.3. Then
Aut(𝑋) contains the involution

𝜎 = (1, 3) (2, 5) (4, 6),

satisfying the conditions in Proposition 7.5. Therefore, the 𝜎-action on any 6-nodal cubic is not stably
linearizable.

Cubics with a plane

This is case (J8) in [37]. Four of the six nodes of X are contained in a unique, and thus G-stable plane
Π ⊂ 𝑋 . The other two are on a G-stable line ℓ. Note that ℓ ∩ Π = ∅, since otherwise, the hyperplane
containing Π and ℓ would intersect X by three planes. So, the action of Aut(𝑋) on X is linearizable by
Lemma 1.1.

Cubics with three planes

Let X be a cubic threefold in P4 with six nodes such that X contains three planes Π1, Π2, Π3. Then
X belongs to a four-parameter family, which is denoted by (J11) in [37]. It follows from [37] that
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Π1 + Π2 + Π3 is cut out by a hyperplane. Thus, we may assume that this hyperplane is {𝑥1 = 0}, and

Π1 =
{
𝑥1 = 0, 𝑥2 = 0

}
,

Π2 =
{
𝑥1 = 0, 𝑥3 = 0

}
,

Π3 =
{
𝑥1 = 0, 𝑥4 = 0

}
.

Observe the existence of the following diagram:

𝑋

𝜋

����
��
��
�� 𝜂

���
��

��
��

�

𝑋 𝑌

where 𝜋 is the standard resolution, Y is the double cover of (P1)3 branched over a singular divisor of
degree (2, 2, 2), and 𝜂 is a birational morphism that contracts the strict transforms of Π1, Π2, Π3. Note
that Aut(𝑌 ) contains a Galois involution of the double cover, and this involution acts biregularly on X,
which follows from the following:

Proposition 7.7. Up to a change of coordinates, X is given by

𝑥2𝑥3𝑥4 + 𝑎𝑥3
1 + 𝑥

2
1 (𝑏1𝑥2 + 𝑏2𝑥3 + 𝑏3𝑥4) + 𝑥1 (𝑥2

2 + 𝑥
2
3 + 𝑥

2
4 − 𝑥

2
5) = 0, (21)

for some 𝑎, 𝑏1, 𝑏2, 𝑏3.

Proof. A priori, the cubic X is given by

𝑥2𝑥3𝑥4 + 𝑎𝑥3
1 + 𝑥

2
1
(
𝑏1𝑥2 + 𝑏2𝑥3 + 𝑏3𝑥4 + 𝑐𝑥5

)
+ 𝑥1

(
𝑒1𝑥

2
2 + 𝑒2𝑥

2
3 + 𝑒3𝑥

2
4 + 𝑒4𝑥2𝑥3 + 𝑒5𝑥2𝑥4 + 𝑒6𝑥3𝑥4

)
+

+𝑥1
(
𝑥5 (𝑑1𝑥2 + 𝑑2𝑥3 + 𝑑3𝑥4) − 𝑥2

5
)
= 0

for some 𝑎, 𝑏1, 𝑏2, 𝑏3, 𝑐, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑑1, 𝑑2, 𝑑3. Changing 𝑥2, 𝑥3, 𝑥4, we may assume that 𝑒4 =
𝑒5 = 𝑒6 = 0. Moreover, up to scaling, there exists a unique such choice of coordinates 𝑥2, 𝑥3, 𝑥4 that
preserves the equations of the planes Π1, Π2, Π3.

Similarly, changing the coordinate 𝑥5, we may further assume that 𝑐 = 𝑑1 = 𝑑2 = 𝑑3 = 0. As above,
we see that there is a unique such choice for 𝑥5 up to scaling.

Finally, using the fact that X has six nodes, we see that 𝑒1 ≠ 0, 𝑒2 ≠ 0, 𝑒3 ≠ 0. Hence, scaling the
coordinates 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, we may also assume that 𝑒1 = 𝑒2 = 𝑒3 = 1, which completes the proof. �

Remark 7.8. If we permute 𝑏1, 𝑏2, 𝑏3 in (21), or simultaneously change signs of two of them, we obtain
an isomorphic cubic threefold.

From now on, we assume that the cubic threefold X is given by (21). Then the nodes of X are

𝑝1 = [0 : 0 : 0 : 1 : 1], 𝑝2 = [0 : 0 : 0 : −1 : 1],
𝑝3 = [0 : 0 : 1 : 0 : 1], 𝑝4 = [0 : 0 : −1 : 0 : 1],
𝑝5 = [0 : 1 : 0 : 0 : 1], 𝑝6 = [0 : −1 : 0 : 0 : 1] .

Remark 7.9. Let 𝑆3 be the cubic surface {𝑥5 = 0} ∩ 𝑋 . Then 𝑆3 is smooth. The proof of Proposition
7.7 shows that 𝑆3 is Aut(𝑋)-invariant.

Remark 7.10. One can find an explicit condition on 𝑎, 𝑏1, 𝑏2, 𝑏3 that guarantees that (21) defines a
6-nodal cubic, but it is too bulky to present here. However, if the equation (21) has additional symmetries,
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the condition simplifies a lot. For instance, if 𝑏1 = 𝑏2 = 𝑏3 = 𝑏, then (21) defines a 6-nodal cubic if and
only if

(4𝑎 − 𝑏2 + 8𝑏 + 16) (4𝑏3 + 𝑎2 − 6𝑎𝑏 − 3𝑏2 + 4𝑎) ≠ 0.

Moreover, in this very special case, we have the following possibilities:
1. if 4𝑏3 + 𝑎2 − 6𝑎𝑏 − 3𝑏2 + 4𝑎 = 0 and

(𝑎, 𝑏) ∉ {(1, 1), (−4, 0), (−8, 28)}, then (21) defines a 7-nodal cubic;
2. if (𝑎, 𝑏) = (1, 1), then (21) defines a cubic with six nodes and one double non-nodal singularity;
3. if 4𝑎 − 𝑏2 + 8𝑏 + 16 = 0 and

(𝑎, 𝑏) ∉ {(−4, 0), (−8, 28)}, then (21) defines a 9-nodal cubic;
4. if (𝑎, 𝑏) ∈ {(−4, 0), (−8, 28)}, then (21) defines the Segre cubic.

As we mentioned earlier, Aut(𝑋) is never trivial since it contains the involution:

𝜄5 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝑥4,−𝑥5).

Moreover, if 𝑏1, 𝑏2, 𝑏3 in (21) are general enough, then Aut(𝑋) = 〈𝜄5〉. In fact, we can say more:
Proposition 7.11. Suppose Aut(𝑋) ≠ 〈𝜄5〉. Then, up to a permutation of coordinates 𝑥2, 𝑥3, 𝑥4 and
changing signs of two of them, one of the following holds:
1. 𝑏1 ≠ 𝑏2, 𝑏2 = 𝑏3, 𝑏1, 𝑏2 ≠ 0, so X is given by

𝑥2𝑥3𝑥4 + 𝑎𝑥3
1 + 𝑥

2
1 (𝑏1𝑥2 + 𝑏2(𝑥3 + 𝑥4)) + 𝑥1 (𝑥2

2 + 𝑥
2
3 + 𝑥

2
4 − 𝑥

2
5) = 0,

and Aut(𝑋) � 𝐶2
2 , generated by 𝜄5 and

𝜎34 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2, 𝑥4, 𝑥3, 𝑥5);

2. 𝑏1 ≠ 0, 𝑏2 = 𝑏3 = 0, so X is given

𝑥2𝑥3𝑥4 + 𝑎𝑥3
1 + 𝑏1𝑥

2
1𝑥2 + 𝑥1 (𝑥2

2 + 𝑥
2
3 + 𝑥

2
4 − 𝑥

2
5) = 0,

and Aut(𝑋) � 𝐶3
2 , generated by 𝜄5, 𝜎34 and

𝜄34 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2,−𝑥3,−𝑥4, 𝑥5);

3. 𝑏1 = 𝑏2 = 𝑏3 ≠ 0, so X is given by

𝑥2𝑥3𝑥4 + 𝑎𝑥3
1 + 𝑏1𝑥

2
1 (𝑥2 + 𝑥3 + 𝑥4) + 𝑥1 (𝑥2

2 + 𝑥
2
3 + 𝑥

2
4 − 𝑥

2
5) = 0,

and Aut(𝑋) � 𝐶2 ×𝔖3, generated by 𝜄5, 𝜎34 and

𝜎234 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥3, 𝑥4, 𝑥2, 𝑥5);

4. 𝑏1 = 𝑏2 = 𝑏3 = 0, so X is given by

𝑥2𝑥3𝑥4 + 𝑎𝑥3
1 + 𝑥1 (𝑥2

2 + 𝑥
2
3 + 𝑥

2
4 − 𝑥

2
5) = 0,

and Aut(𝑋) � 𝐶2 ×𝔖4, generated by 𝜄5, 𝜎34, 𝜎234, 𝜄34 and

𝜄24 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1,−𝑥2, 𝑥3,−𝑥4, 𝑥5).

Proof. Permuting the coordinates 𝑥2, 𝑥3, 𝑥4, we may assume that one of the following four cases hold:
1. 𝑏1 ≠ 0, 𝑏2 ≠ 0, 𝑏3 ≠ 0;
2. 𝑏1 = 0, 𝑏2 ≠ 0, 𝑏3 ≠ 0;
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3. 𝑏1 = 0, 𝑏2 = 0, 𝑏3 ≠ 0;
4. 𝑏1 = 0, 𝑏2 = 0, 𝑏3 = 0.
In the first two cases, we may assume 𝑏2 and 𝑏3 have the same sign by changing the signs of two among
three variables 𝑥2, 𝑥3 and 𝑥4.

There is a natural homomorphism 𝜙 : Aut(𝑋) →𝔖3 given by the action of Aut(𝑋) on the planes Π1,
Π2, Π3. Arguing as in the proof of Proposition 7.7, we see that an element in the kernel of 𝜙 is given by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝜆1𝑥2, 𝜆2𝑥3, 𝜆3𝑥4, 𝜆4𝑥5)

for some nonzero 𝜆1, 𝜆2, 𝜆3, 𝜆4. Using this, we see that the kernel of 𝜙 can be described as follows:
◦ if 𝑏2 ≠ 0, 𝑏3 ≠ 0, then ker(𝜙) = 〈𝜄5〉 � 𝐶2,
◦ if 𝑏1 = 𝑏2 = 0, 𝑏3 ≠ 0, then ker(𝜙) = 〈𝜄5, 𝜄23〉 � 𝐶2

2 ,
◦ if 𝑏1 = 𝑏2 = 𝑏3 = 0, then ker(𝜙) = 〈𝜄5, 𝜄23, 𝜄24〉 � 𝐶3

2 .
Let 𝐺 = Aut(𝑋). First, assume (2, 3) ∈ 𝜙(𝐺) (i.e., there exists an element 𝜎 ∈ 𝐺 swapping the

planes Π2 and Π3 and leaving Π1 invariant). Then 𝜎 takes the form

�������
1 0 0 0 0
𝑠1 𝑠9 0 0 0
𝑠2 0 0 𝑠10 0
𝑠3 0 𝑠11 0 0
𝑠4 𝑠5 𝑠6 𝑠7 𝑠8

�������
for parameters 𝑠1, . . . , 𝑠11. Note that 𝜎2 is contained in the kernel of 𝜙, which implies that 𝑠8 = ±1.
Moreover, we may assume that 𝑠8 = 1 by replacing 𝜎 by 𝜎 ◦ 𝜄5. Furthermore, the fact that 𝜎 leaves X
invariant imposes relations on the parameters. Solving for the equations, we obtain solutions
◦ 𝑏2 = 𝑏3, 𝑠1 = . . . = 𝑠7 = 0, 𝑠10 = 𝑠11 = 𝑠9 = 1,
◦ 𝑏2 = −𝑏3, 𝑠1 = . . . = 𝑠7 = 0, 𝑠10 = 𝑠11 = −1, 𝑠9 = 1.
Similarly, if (1, 2, 3) ∈ 𝜙(𝐺) (i.e., there exists an element 𝜎 ∈ 𝐺 translating three planes). As above,
we see that 𝜎 takes the form

�������
1 0 0 0 0
𝑠1 0 0 𝑠9 0
𝑠2 𝑠10 0 0 0
𝑠3 0 𝑠11 0 0
𝑠4 𝑠5 𝑠6 𝑠7 1

�������
.

In this case, we obtain four solutions
◦ 𝑏1 = 𝑏2 = −𝑏3, 𝑠1 = . . . = 𝑠7 = 0, 𝑠9 = 𝑠11 = −1, 𝑠10 = 1,
◦ 𝑏1 = −𝑏2 = −𝑏3, 𝑠1 = . . . = 𝑠7 = 0, 𝑠9 = 𝑠10 = −1, 𝑠11 = 1,
◦ 𝑏1 = −𝑏2 = 𝑏3, 𝑠1 = . . . = 𝑠7 = 0, 𝑠9 = 1, 𝑠10 = 𝑠11 = −1,
◦ 𝑏1 = 𝑏2 = 𝑏3, 𝑠1 = . . . = 𝑠7 = 0, 𝑠9 = 𝑠10 = 𝑠11 = 1.
Combining these solutions with symmetries, we obtain the result. �

Linearization

Let X be the 6-nodal cubic given by (21). In this subsection, we solve the linearizability problem for
subgroups in Aut(𝑋), almost completely. We use notation introduced in the previous subsection, and
let 𝑆3 be the cubic surface {𝑥5} ∩ 𝑋 . Then 𝑆3 is smooth by Remark 7.9, which implies the following:
Lemma 7.12. Let 𝐺 = 〈𝜄5〉. Then the G-action on X is linearizable.
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Proof. The surface 𝑆3 is pointwise fixed by 𝜄5, and Π1 ∩ 𝑆3 is a line. Since 𝑆3 is smooth, it contains
another line l disjoint from Π1 ∩ 𝑆3. Hence, l is disjoint from Π1. Since Π1 is G-invariant, the G-action
is linearizable by Lemma 1.1. �

Similarly, we prove the following:

Lemma 7.13. Suppose that 𝑏2 = 𝑏3 = 0, so X is given by

𝑥2𝑥3𝑥4 + 𝑎𝑥3
1 + 𝑏1𝑥

2
1𝑥2 + 𝑥1 (𝑥2

2 + 𝑥
2
3 + 𝑥

2
4 − 𝑥

2
5) = 0.

Let 𝐺 = 〈𝜄5, 𝜄34〉 � 𝐶2
2 . Then the G-action on X is linearizable.

Proof. Note that G leaves invariant the planes Π1, Π2, Π3. As in the proof of Lemma 7.12, we see
that 𝑆3 contains a G-invariant line that is disjoint from one of these planes. Indeed, if r is a root of
𝑟2 + 𝑏1𝑟 + 𝑎 = 0, then 𝑆3 contains the reducible conic

𝑥5 = 𝑥2 − 𝑟𝑥1 = 𝑟𝑥3𝑥4 + 𝑥2
3 + 𝑥

2
4 = 0,

and its irreducible components are G-invariant lines disjoint from Π2 and Π3. Hence, the G-action is
linearizable by Lemma 1.1. �

Now, let us discuss nonlinearizable actions. We start with

Lemma 7.14. Suppose that 𝑏2 = 𝑏3, and let 𝐺 = 〈𝜄5, 𝜎34〉 � 𝐶2
2 . Then the G-action on X is not

linearizable.

Proof. The involution 𝜄5 pointwise fixes the G-invariant surface 𝑆3, while the involution 𝜎34 pointwise
fixes the cubic curve

𝐶 = {𝑥3 = 𝑥4} ∩ 𝑆3 ⊂ 𝑆3.

One can check that a singular point on C is also a singular point of X. Then C is necessarily smooth
since the six nodes on X are away from 𝑆3. Therefore, C is a genus 1 curve, and by Proposition 2.6, the
G-action is not linearizable. �

Remark 7.15. The same argument shows that the following two G-actions on X (when they act) are not
linearizable:

𝐺 = 〈𝜄5, 𝜎34𝜄34〉 � 𝐶2
2 , and 𝐺 = 〈𝜎234, 𝜎34〉 �𝔖3.

In each of the two cases, there is a cubic surface in X fixed by a subgroup𝐶2 ⊂ 𝐺 and receiving a𝐺/𝐶2-
residual action which fixes an elliptic curve. Therefore, Proposition 2.6 is also applicable to these cases.

Using Proposition 7.11 and Lemma 7.12, we obtain the following:

Corollary 7.16. The action of Aut(𝑋) on X is linearizable if and only if Aut(𝑋) = 〈𝜄5〉.

We proceed to the actions of other subgroups of the full automorphism groups from Proposition 7.11.

Lemma 7.17. Let X𝑎 ⊂ P4 be a 6-nodal cubic threefold given by

𝑎𝑥3
1 + 𝑏(𝑥2 + 𝑥3 + 𝑥4)𝑥2

1 + 𝑥1 (𝑥2
2 + 𝑥

2
3 + 𝑥

2
4 − 𝑥

2
5) + 𝑥2𝑥3𝑥4 = 0, (22)

for some 𝑏 ∉ {0, 28}, and let 𝐺 � 𝐶3 be a group acting on P4 by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥4, 𝑥3, 𝑥2, 𝑥5).

Then X is G-invariant, and the G-action on X𝑎 is not stably linearizable for a very general 𝑎 ∈ 𝑘 .
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Proof. Fixing 𝑏 ∉ {0, 28}, consider the family X → A1
𝑘 whose fiber over 𝑎 ∈ 𝑘 is the cubic given by

(22). From Remark 7.10, we know that the generic fiber X𝑎 is 6-nodal if a is very general. However, the
special fiber X𝜖 is 9-nodal when 𝜖 = 𝑏2

4 − 2𝑏 − 4 and the additional three nodes have trivial stabilizer.
Now set 𝜖 = 𝑏2

4 − 2𝑏 − 4. Then the G-action on planes in X𝜖 has a G-orbit of length 3, consisting of
three planes

Π4 = {𝑥2 − 2𝑥1 = (𝑏𝑥1 + 2𝑥3 + 2𝑥4 + 2𝑥5) = 0},

Π5 = {𝑥3 − 2𝑥1 = (𝑏𝑥1 + 2𝑥4 + 2𝑥2 + 2𝑥5) = 0},

Π6 = {𝑥4 − 2𝑥1 = (𝑏𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥5) = 0}.

Moreover, Π4 +Π5 +Π6 is a Cartier divisor on X𝜖 . Then by Remark 9.1, the G-action on X𝜖 is not stably
linearizable. Applying Proposition 2.9, we conclude that the G-action on X𝑎 is not stably linearizable
for a very general 𝑎 ∈ 𝑘 . �

Lemma 7.18. Let X𝑎 ⊂ P4 be a cubic threefold given by

𝑎𝑥3
1 + 𝑥1 (𝑥2

2 + 𝑥
2
3 + 𝑥

2
4 − 𝑥

2
5) + 𝑥2𝑥3𝑥4 = 0. (23)

Consider a group 𝐺 � 𝐶2
2 acting on P4 via

𝜄24 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1,−𝑥2, 𝑥3,−𝑥4, 𝑥5),

𝜄34 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2,−𝑥3,−𝑥4, 𝑥5).

Then X𝑎 is G-invariant, and the G-action on X𝑎 is not stably linearizable for a very general 𝑎 ∈ 𝑘 .

Proof. Consider the family X → A1
𝑎 whose fiber over 𝑎 ∈ 𝑘 is the cubic given by (23). From Remark

7.10, we know that X𝑎 is 6-nodal for a very general a. However, the special fiber X ′
𝑎, when 𝑎′ = −4, is

the Segre cubic with 10 nodes. The G-action on X−4 leaves invariant three planes – namely,

Π𝑖 = {𝑥1 = 𝑥𝑖 = 0}, 𝑖 = 2, 3, 4.

The action has an orbit of nodes of length 4 and three orbits of nodes of length 2. By [24, Section 6],
the G-action on X−4 does not satisfy (H1) and is not stably linearizable. Moreover, the four additional
nodes are in one G-orbit and are 𝐵𝐺-rational singularities. Applying Proposition 2.9, one concludes
that a very general member in the family X is not G-stably linearizable. �

Remark 7.19. The same argument shows that for the same family of cubics, the action on X𝑎 of the
group

𝐺 = 〈𝜄5, 𝜄23𝜎34〉 � 𝐶2 × 𝐶4

for a very general a is not stably linearizable. The action specializes to the unique 𝐶2 ×𝐶4-action on the
Segre cubic X−4. This action on X−4 does not satisfy (SP). The four additional nodes have stabilizer 𝐶2,
and they are 𝐵𝐺-rational singularities; see Example 2.8.

Let us summarize what is left using the notation of Proposition 7.11.

1. When Aut(𝑋) � 𝐶2
2 , we are left with 〈𝜄5𝜎34〉 � 𝐶2,
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2. When Aut(𝑋) � 𝐶3
2 , we are left with five groups:

Group Generators Orbit of nodes Orbit of planes

𝐶2 𝜄5𝜎34 2 + 2 + 2 1 + 2
𝐶2 𝜄5𝜎34𝜄34 2 + 2 + 2 1 + 2
𝐶2

2 𝜄5𝜎34, 𝜄34 2 + 4 1 + 2
𝐶2

2 𝜄5𝜎34, 𝜄34𝜎34 2 + 2 + 2 1 + 2
𝐶2

2 𝜄5𝜄34, 𝜎34 2 + 2 + 2 1 + 2

3. When Aut(𝑋) � 𝐶2 ×𝔖3 and 𝑎, 𝑏1 are very general, we are left with 〈𝜄5𝜎34〉 � 𝐶2.
4. When Aut(𝑋) � 𝐶2 ×𝔖4, for very general a, we are left with

Group Generators Orbit of nodes Orbit of planes

𝐶2 𝜄5𝜎34 2 + 2 + 2 1 + 2
𝐶3 𝜎234 3 + 3 3
𝐶2

2 𝜄5𝜎34, 𝜄34 2 + 4 1 + 2
𝐶4 𝜄23𝜎34 2 + 4 1 + 2
𝐶2

2 𝜄5𝜎34, 𝜄34𝜎34 2 + 2 + 2 1 + 2
𝐶6 𝜄5𝜎234 6 3
𝔖3 𝜄5𝜎34, 𝜎234 3 + 3 3
𝔇4 𝜄5𝜄24, 𝜄23𝜎34 2 + 4 1 + 2

Specialization in Lemma 7.17 does not apply to the second row.

We also note that in each of the remaining cases, the construction in Lemma 1.1 does not apply. In
particular, every G-invariant line in these cases intersects with the G-invariant plane (when it exists) at
one point.

8. Eight nodes

The 8-nodal cubic threefolds form a two-parameter family, which is denoted by (J13) in [37]. Let X be
one such cubic, and 𝐺 = Aut(𝑋). Then Cl(𝑋) = Z4, and X contains five planes Π1, . . . ,Π5 that form a
very special configuration [37]. If 𝑝1, . . . , 𝑝8 are the nodes of X, then

Π1 ⊃ {𝑝1, 𝑝2, 𝑝6, 𝑝8},

Π2 ⊃ {𝑝1, 𝑝2, 𝑝5, 𝑝7},

Π3 ⊃ {𝑝5, 𝑝6, 𝑝7, 𝑝8},

Π4 ⊃ {𝑝3, 𝑝4, 𝑝5, 𝑝6},

Π5 ⊃ {𝑝3, 𝑝4, 𝑝7, 𝑝8}.

From this configuration, there are two distinguished sets of nodes

{𝑝1, 𝑝2, 𝑝3, 𝑝4} and {𝑝5, 𝑝6, 𝑝7, 𝑝8}. (24)

The planes Π1,Π2,Π3 form one tetrahedron (without a face), and Π3,Π4,Π5 form another one. In
particular, Π3 is distinguished, and must be G-invariant.
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Unprojecting from Π3, we obtain a G-equivariant birational map

𝑋 � 𝑋2,2 = 𝑄 ∩𝑄 ′ ⊂ P5

to a singular complete intersection of two quadrics Q and 𝑄 ′ in P5 that are singular along lines. The
threefold 𝑋2,2 has four nodes: 𝑄 ∩ Sing(𝑄 ′) and 𝑄 ′ ∩ Sing(𝑄), and G fixes a point in 𝑋2,2 – the inverse
map 𝑋2,2 � 𝑋 is just a projection from this point. Thus, one could study the geometry of X using 𝑋2,2
as in Section 5.

Standard form

We change the coordinates in P4 so that

Π3 = {𝑥4 = 𝑥5 = 0}

and

𝑝1 = [0 : 0 : 0 : 1 : 0], 𝑝3 = [0 : 0 : 0 : 0 : 1];

this is possible since the line through 𝑝1 and 𝑝3 is disjoint from Π3. Changing the variables 𝑥1, 𝑥2, 𝑥3,
we may assume that

𝑝5 = [1 : 1 : 1 : 0 : 0], 𝑝6 = [−1 : 1 : 1 : 0 : 0],

𝑝7 = [1 : −1 : 1 : 0 : 0], 𝑝8 = [1 : 1 : −1 : 0 : 0] .

This specifies the equations of the planes:

Π1 = {𝑥1 + 𝑥3 = 𝑥5 = 0},
Π2 = {𝑥1 − 𝑥3 = 𝑥5 = 0},
Π3 = {𝑥4 = 𝑥5 = 0},
Π4 = {𝑥2 − 𝑥3 = 𝑥4 = 0},
Π5 = {𝑥2 + 𝑥3 = 𝑥4 = 0}.

A cubic threefold containing Π1, . . . ,Π5 and singular at 𝑝1, 𝑝3, 𝑝5, . . . , 𝑝8 has the form

(𝑎22𝑥1 + 𝑎12𝑥2 + 𝑎6𝑥3)𝑥4𝑥5 + 𝑎9 (𝑥2
3 − 𝑥

2
1)𝑥4 + 𝑎8 (𝑥2

3 − 𝑥
2
2)𝑥5 = 0,

for some 𝑎6, 𝑎8, 𝑎9, 𝑎12, 𝑎22. Since X is 8-nodal, we have

𝑎8, 𝑎9, 𝑎12, 𝑎22 ≠ 0.

Scaling coordinates, we may assume that 𝑎8 = 𝑎9 = 𝑎12 = 1, and we let 𝑎22 = 𝑎 and 𝑎6 = 𝑏. Thus,
𝑋 = 𝑋𝑎,𝑏 is given by

(𝑎𝑥1 + 𝑥2 + 𝑏𝑥3)𝑥4𝑥5 + 𝑥4 (𝑥2
3 − 𝑥

2
1) + 𝑥5 (𝑥2

3 − 𝑥
2
2) = 0, (25)

for parameters 𝑎, 𝑏, where 𝑎 ≠ 0. Notice that a and b are defined up to ±1. For very general a and b, (25)
defines an 8-nodal cubic with nodes at 𝑝1, . . . , 𝑝8, where 𝑝1, 𝑝3, 𝑝5, . . . , 𝑝8 are described above, and

𝑝2 = [0 : 1 : 0 : 1 : 0], and 𝑝4 = [𝑎 : 0 : 0 : 0 : 1] .

For special parameters a and b, (25) defines a cubic with additional singularities, for instance, the Segre
cubic, when 𝑏 = 0 and 𝑎 = 1.
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Automorphisms

Recall that 𝐺 = Aut(𝑋) and Π3 is G-invariant. Let 𝑙12 be the line passing through 𝑝1 and 𝑝2, and 𝑙34 the
line through 𝑝3 and 𝑝4. Then the curve 𝑙12+𝑙34 is G-invariant. However, we have a group homomorphism

𝜙 : 𝐺 → PGL3 (𝑘),

arising from the action of G on Π3. Since 𝜙(𝐺) permutes the points 𝑝5, 𝑝6, 𝑝7, 𝑝8, we see that 𝜙(𝐺) ⊆
𝔖4 ⊂ PGL3 (𝑘), permuting the coordinates 𝑥1, 𝑥2, 𝑥3 and changing signs of these variables. Moreover,
the set (𝑙12 + 𝑙34) ∩Π3 is 𝜙(𝐺)-invariant, which implies that 𝜙(𝐺) is contained in 𝔇4 ⊂ 𝔖4 generated by

(𝑥1, 𝑥2, 𝑥3) ↦→ (−𝑥2, 𝑥1, 𝑥3),
(𝑥1, 𝑥2, 𝑥3) ↦→ (−𝑥1, 𝑥2, 𝑥3).

Lemma 8.1. The kernel ker(𝜙) of 𝜙 is nontrivial if and only if 𝑏 = 0. Moreover, if 𝑏 = 0, then
ker(𝜙) � 𝐶2, generated by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1 − 𝑎𝑥5, 𝑥2 − 𝑥4, 𝑥3,−𝑥4,−𝑥5).

Proof. An element 𝜏 ∈ ker(𝜙) preserves Π3, the points 𝑝6, 𝑝7, 𝑝8, 𝑝9, and each line 𝑙12 and 𝑙34.
Moreover, since 𝜏 leaves the subsets {𝑝1, 𝑝2}{𝑝3, 𝑝4} invariant, we have the following three possibilities:

1. 𝜏(𝑝1) = 𝜏(𝑝1), 𝜏(𝑝2) = 𝜏(𝑝2), 𝜏(𝑝3) = 𝜏(𝑝4), 𝜏(𝑝4) = 𝜏(𝑝3),
2. 𝜏(𝑝1) = 𝜏(𝑝2), 𝜏(𝑝2) = 𝜏(𝑝1), 𝜏(𝑝3) = 𝜏(𝑝3), 𝜏(𝑝4) = 𝜏(𝑝4),
3. 𝜏(𝑝1) = 𝜏(𝑝2), 𝜏(𝑝2) = 𝜏(𝑝1), 𝜏(𝑝3) = 𝜏(𝑝4), 𝜏(𝑝4) = 𝜏(𝑝3).

These impose linear conditions on 𝜏. Solving them, we see that 𝜏 is one of the following linear
transformations:

1. (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥2 − 𝑥4, 𝑥3,−𝑥4, 𝑥5),
2. (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (−𝑎𝑥5 + 𝑥1, 𝑥2, 𝑥3, 𝑥4,−𝑥5)
3. (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1 − 𝑎𝑥5, 𝑥2 − 𝑥4, 𝑥3,−𝑥4,−𝑥5).

However, (25) must be preserved by 𝜏, which implies that only the third case is possible, and only in the
case when 𝑏 = 0. �

We are ready to classify all possibilities for 𝐺 = Aut(𝑋).

Proposition 8.2. Let 𝑋 ⊂ P4 be an 8-nodal cubic threefold given by

(𝑎𝑥1 + 𝑥2 + 𝑏𝑥3)𝑥4𝑥5 + 𝑥4 (𝑥2
3 − 𝑥

2
1) + 𝑥5 (𝑥2

3 − 𝑥
2
2) = 0

and 𝐺 = Aut(𝑋). Then one of the following holds:

◦ 𝑏 ≠ 0 and 𝑎 ≠ ±1, 𝐺 � 𝐶2
2 = 〈𝜄1, 𝜄2〉, generated by

𝜄1 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑎𝑥5 − 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5),
𝜄2 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1, 𝑥4 − 𝑥2, 𝑥3, 𝑥4, 𝑥5);

◦ 𝑏 ≠ 0 and 𝑎 = ±1, 𝐺 � 𝔇4, generated by 𝜄2 and

𝜎1 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (±𝑥2, 𝑥5 ∓ 𝑥1, 𝑥3, 𝑥5, 𝑥4);

◦ 𝑏 = 0, 𝑎 ≠ ±𝑖, 𝐺 � 𝐶3
2 , generated by 𝜄1, 𝜄2 and

𝜏 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1 − 𝑎𝑥5, 𝑥2 − 𝑥4, 𝑥3,−𝑥4,−𝑥5);
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◦ 𝑏 = 0, 𝑎 = ±𝑖, 𝐺 � 𝐶2.𝔇4 � 𝐶2
2 � 𝐶4, generated by 𝜏, 𝜄2 and

𝜎2 : (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (∓𝑥2,±𝑥1, 𝑥3, 𝑖𝑥5, 𝑖𝑥4).

Proof. Observe that G always contains 𝜄1 and 𝜄2, and 〈𝜄1, 𝜄2〉 � 𝐶2
2 , which shows that 𝜙(𝐺) is at least𝐶2

2 .
Moreover, if 𝑏 = 0, then it follows from Lemma 8.1 that G also contains the involution 𝜏, so together,
the involutions 𝜄1, 𝜄2, 𝜏 generate a subgroup 𝐶3

2 in this case. If 𝜙(𝐺) � 𝐶2
2 , this gives us all possibilities

for G. To complete the proof, we have to find all a and b such that 𝜙(𝐺) � 𝔇4 and describe G in these
cases. This can be done explicitly.

If 𝜙(𝐺) � 𝔇4, then G contains a 𝜎 such that 𝜙(𝜎) is given by

(𝑥1, 𝑥2, 𝑥3) ↦→ (𝑥2,−𝑥1, 𝑥3),

which implies that 𝜎 is given by the matrix

�������
0 −1 0 0 0
1 0 0 0 𝑠25
0 0 1 0 0
𝑠14 0 0 0 𝑠54
0 𝑠25 0 𝑠45 0

�������
for some 𝑠14, 𝑠25, 𝑠45, 𝑠54. Since 𝜎 preserves (25), we obtain constraints on these entries, which result
in the following possibilities:

1. 𝑎 = 1, 𝑠14 = 0, 𝑠25 = 1, 𝑠45 = 1, 𝑠54 = 1;
2. 𝑎 = −1, 𝑠14 = −1, 𝑠25 = 0, 𝑠45 = 1, 𝑠54 = 1;
3. 𝑏 = 0, 𝑎 = −𝑖, 𝑠14 = 0, 𝑠25 = 0, 𝑠45 = 𝑖, 𝑠54 = 𝑖;
4. 𝑏 = 0, 𝑎 = 𝑖, 𝑠14 = −1, 𝑠25 = 𝑖, 𝑠45 = 𝑖, 𝑠54 = 𝑖.

Using them, we obtain all possibilities for G listed above. �

Cohomology

Let 𝑋 → 𝑋 be the standard resolution, let 𝐸1, . . . , 𝐸8 be exceptional divisors over 𝑝1, . . . , 𝑝8, and
let Π̃1, . . . , Π̃5 be the strict transforms of the planes Π1, . . . ,Π5 on 𝑋 , respectively. Then Pic(𝑋) is
generated by 𝐸1, . . . , 𝐸8, Π̃1, . . . , Π̃5. These are subject to the relation

Π̃1 + Π̃2 − Π̃4 − Π̃5 = 𝐸1 + 𝐸2 − 𝐸3 − 𝐸4.

Notice that this presentation of the lattice Pic(𝑋) is independent of the equation of the cubic threefold X.
To compute the (H1)-obstruction on Pic(𝑋), for generality, we may work with the maximal symmetry
group appearing in Proposition 8.2. Let 𝐺 = 𝐶2

2 � 𝐶4, as defined above. Then G acts on nodes via
permutation of indices

𝜏 : (1, 2) (3, 4),
𝜄1 : (3, 4) (5, 6) (7, 8),
𝜄2 : (1, 2) (5, 7) (6, 8),
𝜎2 : (1, 3) (2, 4) (5, 7, 8, 6).

There is a unique (conjugacy class of) 𝐶2 = 〈𝜄1𝜄2〉 contributing to

H1 (𝐶2, Pic(𝑋)) = Z/2.
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Indeed, this 𝐶2 acts on nodes via the permutation of indices

(1, 2) (3, 4) (5, 8) (6, 7).

Under the basis

Π̃1 − Π̃5 − 𝐸2 + 𝐸4, Π̃1, . . . , Π̃5, 𝐸3, . . . , 𝐸8,

one can see that 𝐶2 acts on Π̃1 − Π̃5 − 𝐸2 + 𝐸4 by −1, and on the rest as a permutation module.
Note that this 𝐶2 is contained in Aut(𝑋) = 𝐶2

2 for generic X in Proposition 8.2 (i.e., when 𝑏 ≠ 0 and
𝑎 ≠ ±1).

Linearization

Let X be an 8-nodal cubic threefold. The classification in Proposition 8.2 implies

◦ 𝑏 ≠ 0 and 𝑎 ≠ ±1: a subgroup of Aut(𝑋) � 𝐶2
2 is linearizable if and only if it fixes a singular point;

otherwise, it fails (H1).
◦ 𝑏 ≠ 0 and 𝑎 = ±1: a subgroup of Aut(𝑋) � 𝔇4 is linearizable if and only if it fixes a singular point;

otherwise, it fails (H1).
◦ 𝑏 = 0 and 𝑎 ≠ ±𝑖: Excluding subgroups failing (H1) or with a fixed singular point, we are left with

the following (classes of) subgroups
1. 𝐶2

2 = 〈(3, 4) (5, 7) (6, 8), (1, 2) (3, 4)〉, acting via

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1 + 𝑖𝑥5,−𝑥2, 𝑥3,−𝑥4,−𝑥5),
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1 + 𝑖𝑥5, 𝑥2 − 𝑥4, 𝑥3,−𝑥4,−𝑥5).

2. 𝐶2
2 = 〈𝜄1, 𝜏〉 = 〈(3, 4) (5, 6) (7, 8), (1, 2) (3, 4)〉, acting via

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (−𝑥1 − 𝑖𝑥5, 𝑥2, 𝑥3, 𝑥4, 𝑥5),
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1 + 𝑖𝑥5, 𝑥2 − 𝑥4, 𝑥3,−𝑥4,−𝑥5).

◦ 𝑏 = 0 and 𝑎 = ±𝑖: Excluding groups with an (H1)-obstruction or with a fixed singular point, we are
left with
1. 𝐶2

2 = 〈(3, 4) (5, 6) (7, 8), (1, 2) (3, 4)〉, acting via

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (−𝑥1 − 𝑖𝑥5, 𝑥2, 𝑥3, 𝑥4, 𝑥5),
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥1 + 𝑖𝑥5, 𝑥2 − 𝑥4, 𝑥3,−𝑥4,−𝑥5),

2. 𝐶4 = 〈(1, 3) (2, 4) (5, 7, 8, 6)〉, acting via

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ↦→ (𝑥2,−𝑥1, 𝑥3, 𝑖𝑥5, 𝑖𝑥4).

We turn to linearization constructions for subgroups unobstructed by cohomology and not fixing
singular points. Consider the maximal symmetry group, in the case 𝑏 = 0 and 𝑎 = ±𝑖. We have two
unobstructed cases:

◦ 𝐺 = 𝐶2
2 = 〈(3, 4) (5, 6) (7, 8), (1, 2) (3, 4)〉. The group G swaps the planes Π1 and Π2 and preserves

Π4 and Π5. The line passing through 𝑝1 and 𝑝2 is a G-invariant line disjoint from Π4. Then the
G-action on X is linearizable by Lemma 1.1.

◦ 𝐺 = 𝐶4 = 〈(1, 3) (2, 4) (5, 7, 8, 6)〉. In this case, G swaps the planes Π1,Π2 and swaps Π4,Π5. But
Π3 is G-invariant. The line passing through 𝑝1 and 𝑝3 is a G-invariant line disjoint from Π3. The
G-action on X is linearizable by Lemma 1.1.
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Note that the constructions above only depend on the group actions on singular points and planes. One
can also establish the same linearization results for the two unobstructed 𝐶2

2 in the case when 𝑏 = 0 and
𝑎 ≠ ±𝑖. We summarize this section by the following:

Corollary 8.3. Let X be an 8-nodal cubic threefold and 𝐺 ⊆ Aut(𝑋). The G-action on X is linearizable
if and only if it satisfies (H1), if and only if G does not contain a subgroup isomorphic to 𝐶2 which does
not fix any nodes of X; in particular, if it is not linearizable then it is not stably linearizable.

9. Nine nodes

Standard form

We follow [52]: 9-nodal cubic threefolds 𝑋𝑎 are given in P5 by equations

𝑥1𝑥2𝑥3 − 𝑥4𝑥5𝑥6 = 𝑎(𝑥1 + 𝑥2 + 𝑥3) + 𝑥4 + 𝑥5 + 𝑥6 = 0, 𝑎3 ≠ 0,−1.

Their automorphisms depend on the parameter a as follows:

Aut(𝑋𝑎) =
{
𝔖2

3 when 𝑎3 ≠ 1,
𝔖2

3 � 𝐶2 otherwise.

These groups act via 𝔖3-permutations of two sets of coordinates: 𝑥1, 𝑥2, 𝑥3, and 𝑥4, 𝑥5, 𝑥6. When 𝑎 = 1,
the additional 𝐶2 switches 𝑥𝑖 ↔ 𝑥3+𝑖 , 𝑖 = 1, 2, 3. In both cases, the nine nodes are given by

{𝑥𝑖1 = 𝑥𝑖2 = 𝑥 𝑗1 = 𝑥 𝑗2 = 0, 𝑥 𝑗3 + 𝑎𝑥𝑖3 = 0},

where

𝑖1 ≠ 𝑖2 ≠ 𝑖3 ∈ {1, 2, 3}, 𝑗1 ≠ 𝑗2 ≠ 𝑗3 ∈ {4, 5, 6}.

There are also nine distinguished planes, given by

Π𝑖, 𝑗 = {𝑥𝑖 = 𝑥3+ 𝑗 = 0} ∩ 𝑋, 𝑖, 𝑗 ∈ {1, 2, 3}.

The G-action on 𝑋𝑎 fixes a singular point if and only if G is a 2-group.

Fixed point obstruction

Let 𝐺 = 𝐶2
3 be the group generated by

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ↦→ (𝑥3, 𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6),

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝑥6, 𝑥4, 𝑥5).

Then 𝑋𝐺
𝑎 = ∅, for all a such that 𝑎3 ≠ 0,−1. By Lemma 2.1, the G-action on X is not linearizable.

Cohomology

Let �̃�𝑎 → 𝑋𝑎 be the blowup of 𝑋𝑎 at nine nodes. Then Pic( �̃�𝑎) is generated by 𝐸𝑖 , 𝑖 = 1, . . . , 9, the
exceptional divisors over the nine nodes, the pullbacks Π̃𝑖, 𝑗 ofΠ𝑖, 𝑗 , and H, the pullback of the hyperplane
section. They are subject to relations
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𝐻 = Π̃1,1 + Π̃1,2 + Π̃1,3 + 𝐸2 + 𝐸3 + 𝐸5 + 𝐸6 + 𝐸8 + 𝐸9,

𝐻 = Π̃1,1 + Π̃2,1 + Π̃3,1 + 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6,

𝐻 = Π̃1,2 + Π̃2,2 + Π̃3,2 + 𝐸1 + 𝐸2 + 𝐸3 + 𝐸7 + 𝐸8 + 𝐸9,

𝐻 = Π̃1,3 + Π̃2,3 + Π̃3,3 + 𝐸4 + 𝐸5 + 𝐸6 + 𝐸7 + 𝐸8 + 𝐸9,

𝐻 = Π̃2,1 + Π̃2,2 + Π̃2,3 + 𝐸1 + 𝐸3 + 𝐸4 + 𝐸6 + 𝐸7 + 𝐸9,

𝐻 = Π̃3,1 + Π̃3,2 + Π̃3,3 + 𝐸1 + 𝐸2 + 𝐸4 + 𝐸5 + 𝐸7 + 𝐸8.

When 𝑎3 ≠ 1, computation yields two minimal classes of groups contributing to nonvanishing coho-
mology:

H1 (𝐺 ′, Pic( �̃�𝑎)) = Z/3,

for 𝐺 ′ = 𝐶3 = 〈(1, 2, 3)〉 or 〈(4, 5, 6)〉, realized as permutations of indices of the coordinates. When
𝑎 = 1, these two classes of 𝐶3 are conjugate in Aut(𝑋1), and thus, we found a unique class of groups
contributing to nonvanishing cohomology:

H1 (𝐺 ′, Pic( �̃�𝑎)) = Z/3,

for 𝐺 ′ = 𝐶3 = 〈(1, 2, 3)〉. Any subgroup of Aut(𝑋𝑎) containing those classes has (H1)-obstructions to
stable linearizability.

Remark 9.1. One can characterize geometrically the 𝐶3-action contributing to (H1)-obstructions as
follows: let 𝑋𝑎 be a 9-nodal cubic threefold, and 𝐺 = 𝐶3 ⊆ Aut(𝑋𝑎). Then the G-action on 𝑋𝑎 does not
satisfy (H1) if and only if there exists a G-orbit of planes of length 3, which forms a Cartier divisor.

Excluding 𝐺 ⊆ Aut(𝑋𝑎) with (H1)-obstruction or with G-fixed singular points, one is left with

◦ When 𝑎3 = 1, the unobstructed groups are

𝔇6,𝔖3,𝔖
′
3, 𝐶6, 𝐶3, (26)

where 𝔇6 acts on {𝑥1, 𝑥2, 𝑥3} and {𝑥4, 𝑥5, 𝑥6} via diagonal 𝔖3 permutations and 𝐶2 swapping them
(i.e., 𝑥𝑖 ↔ 𝑥3+𝑖 , 𝑖 = 1, 2, 3). The other groups are all subgroups of 𝔇6.

◦ When 𝑎3 ≠ 1, we are left with

𝔖3 and 𝐶3,

where 𝔖3 is the diagonal permutation and 𝐶3 its subgroup.

Next, we show that the actions of these unobstructed groups on 𝑋𝑎 are equivariantly birational to actions
on a smooth quadric threefold. In particular, the actions of cyclic groups 𝐶3 and 𝐶6 are linearizable.

Linearization

Consider the family of degree (1, 1) divisors in (P2)2

𝑊𝑏 ⊂ P2
𝑡1 ,𝑡2 ,𝑡3 × P

2
𝑧1 ,𝑧2 ,𝑧3 , 𝑏 ∈ C \ {0,−1, 𝜁3, 𝜁

2
3 },

given by

(−𝑡1𝑧2 + 𝑡2𝑧1) + 𝑏(−𝑡1𝑧2 + 𝑡3𝑧3) = 0,
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with a 𝐺 = 𝔖3-action generated by

𝜄 : 𝑡1 ↔ 𝑧2, 𝑡2 ↔ 𝑧1, 𝑡3 ↔ 𝑧3

and

𝜎 : 𝑡1 ↦→ 𝜁𝑡1, 𝑡2 ↦→ 𝜁2𝑡2, 𝑧1 ↦→ 𝜁 𝑧1, 𝑧2 ↦→ 𝜁2𝑧2.

Let 𝑝1, 𝑝2, 𝑝3 ∈ 𝑊𝑏 be the points

[1 : 1 : 1] × [1 : 1 : 1], [𝜁 : 𝜁2 : 1] × [𝜁 : 𝜁2 : 1], [𝜁2 : 𝜁 : 1] × [𝜁2 : 𝜁 : 1],

where 𝜁 = 𝑒
2𝜋𝑖

3 . Note that {𝑝1, 𝑝2, 𝑝3} forms one G-orbit. The linear system

|𝐻 − 𝑝1 − 𝑝2 − 𝑝3 |

consisting of hyperplanes on P4 containing points 𝑝1, 𝑝2 and 𝑝3 has projective dimension 4. Under a
chosen basis, it gives a birational map to a 9-nodal cubic hypersurface 𝑌𝑏 ⊂ P4, with equation

𝑦1𝑦2𝑦3 + 𝑦1𝑦
2
5 − 𝑦2

2𝑦4 + 𝑦2𝑦
2
4 − 𝑦2

1𝑦5 −
𝑏

𝑏 + 1
𝑦1𝑦3𝑦4+

+ 𝑏

(𝑏 + 1)2 𝑦
3
3 −

𝑏

𝑏 + 1
𝑦2𝑦3𝑦5 −

1
𝑏 + 1

𝑦3𝑦4𝑦5 = 0.

Up to a change of variables by

(
𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

)
·

�����������

1 𝜁 𝜁2 −𝜁 𝑏+𝜁 2

𝑏−𝜁 2
−𝜁 2𝑏+1
𝑏−𝜁 2

1 𝜁2 𝜁 −𝑏+𝜁
𝑏−𝜁 2

−𝜁 2𝑏+1
𝑏−𝜁 2

𝜁 𝑏−𝜁 2

𝑏+1
𝜁 𝑏−𝜁 2

𝑏+1
𝜁 𝑏−𝜁 2

𝑏+1
−𝜁 𝑏+𝜁 2

𝑏+1
−𝜁 𝑏+𝜁 2

𝑏+1
𝜁 1 𝜁2 −𝜁 2𝑏+1

𝑏−𝜁 2
−𝜁 𝑏+𝜁 2

𝑏−𝜁 2

𝜁 𝜁2 1 −𝑏+𝜁
𝑏−𝜁 2

−𝜁 𝑏+𝜁 2

𝑏−𝜁 2

�����������
,

𝑌𝑏 is G-isomorphic to

{𝑦1𝑦2𝑦3 + 𝜆𝑏𝑦4𝑦5 (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5) = 0} ⊂ P4, 𝜆𝑏 = −
(
𝑏 − 𝜁2

𝑏 − 𝜁

)3

;

that is,

𝑋𝑎 = {𝑥1𝑥2𝑥3 − 𝑥4𝑥5𝑥6 = 𝑎(𝑥1 + 𝑥2 + 𝑥3) + 𝑥4 + 𝑥5 + 𝑥6 = 0} ⊂ P5,

where

𝑎 = −𝑏 − 𝜁2

𝑏 − 𝜁
.

The G-action on 𝑋𝑎 is given by the diagonal permutation of coordinates 𝑥1, 𝑥2, 𝑥3 and 𝑥4, 𝑥5, 𝑥6. When
𝑏 ≠ 0,−1, 𝜁 , 𝜁2, i.e., 𝑎3 ≠ −1, 0, one sees that 𝑊𝑏 (and thus 𝑋𝑎) is G-equivariantly birational to

𝑄𝑏 = {(𝑏 + 1)𝑡1𝑧2 − 𝑡2𝑧1 + 𝑏𝑧2 = 0} ⊂ P4
𝑡1 ,𝑡2 ,𝑧1 ,𝑧2 ,𝑧 , (27)
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realized as the equivariant compactification of the affine chart of 𝑊𝑏 given by

{𝑡3 ≠ 0, 𝑧3 ≠ 0} ⊂ 𝑊𝑏 ,

with the natural action of 𝜄 and 𝜎 (acting trivially on z).
When 𝑎3 = 1 (i.e. 𝑏 = 1,−2 or − 1

2 ), there is extra symmetry on 𝑊𝑏 and 𝑄𝑏 . For example, when
𝑏 = −2, 𝑊𝑏 and 𝑄𝑏 are invariant under the additional involution

𝜏 : 𝑡1 ↔ 𝑡2, 𝑧1 ↔ 𝑧2.

The group 𝐺 ′ = 〈𝜄, 𝜎, 𝜏〉 is isomorphic to 𝔇6. The corresponding 𝐺 ′-action on 𝑋1 is generated by the
diagonal 𝔖3-permutation and by swapping two sets of coordinates {𝑥1, 𝑥2, 𝑥3} and {𝑥4, 𝑥5, 𝑥6}. We do
not know whether or not this action is linearizable.

Corollary 9.2. Let 𝑋𝑎 be a 9-nodal cubic threefold as above. The 𝐶3-action on 𝑋𝑎 via permutation of
coordinates

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ↦→ (𝑥3, 𝑥1, 𝑥2, 𝑥6, 𝑥4, 𝑥5)

is linearizable for all 𝑎3 ≠ 0, 1. When 𝑎 = 1, the 𝐶6-action on 𝑋1 via

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) ↦→ (𝑥6, 𝑥4, 𝑥5, 𝑥3, 𝑥1, 𝑥2).

is linearizable.

Proof. By constructions above, these actions are equivariantly birational to actions on the corresponding
smooth quadric 𝑄𝑏 , necessarily with fixed points. Projection from a fixed point on 𝑄𝑏 gives lineariza-
tions. �

Birational rigidity

Let X be the 9-nodal cubic threefold in P4 ⊂ P5 given by

𝑥1𝑥2𝑥3 − 𝑥4𝑥5𝑥6 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 = 0,

and let 𝐺 = Aut(𝑋) = 𝔖2
3 � 𝐶2. We claim that X is G-birationally super-rigid. We start with several

preliminary results.

Lemma 9.3. If Σ is a G-orbit in X of length < 12, then |Σ | ∈ {6, 9}.

Proof. Left to the reader. �

Set

𝑆 = {𝑥1 + 𝑥2 + 𝑥3 − 𝑥4 − 𝑥5 − 𝑥6} ∩ 𝑋.

Then S is the unique G-invariant hyperplane section of X. Moreover, the cubic surface S is smooth, and
G acts faithfully on it. This implies that S is isomorphic to the Fermat cubic surface [35, 36]. Consider

𝛼𝐺 (𝑆) = sup

{
𝜆 ∈ Q

����� the pair (𝑆, 𝜆𝐷) is log canonical for every
effective𝐺-invariantQ-divisor 𝐷 ∼Q −𝐾𝑆

}
.

Lemma 9.4 (cf. [16, 25]). One has 𝛼𝐺 (𝑆) = 2.
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Proof. One can check that Pic𝐺 (𝑆) = Z[−𝐾𝑆]. Note that the group G is missed in [36, Theorem 6.14].
Note also that the linear system | − 𝐾𝑆 | does not contain G-invariant divisors, but | − 2𝐾𝑆 | contains a
G-invariant divisor. Applying Lemma 9.3 and [16, Lemma 5.1], we obtain 𝛼𝐺 (𝑆) = 2. �

Lemma 9.5. Let 𝐶 ⊂ 𝑋 be a G-irreducible curve of degree < 12. Then 𝐶 ⊂ 𝑆.

Proof. Assume 𝐶 ⊄ 𝑆. Set 𝑑 = deg(𝐶). Intersecting C with S, we immediately obtain 𝑑 = 6 or 𝑑 = 9,
by Lemma 9.3. Moreover, we also see that

|𝑆 ∩ 𝐶 | = 𝑑,

so that C is smooth at every point in 𝑆 ∩ 𝐶, and S intersects C transversally. Hence, if C is irreducible
and 𝐶 ⊄ 𝑆, then G acts faithfully on C, which implies that the stabilizer of any point in 𝐶 ∩ 𝑆 is cyclic,
which is impossible, since G does not have cyclic subgroups of index 6 and 9.

To complete the proof, we may assume that C is reducible. Let r be the number of its irreducible
components. Write

𝐶 = 𝐶1 + · · · + 𝐶𝑟 ,

where each 𝐶𝑖 is an irreducible component of C. Set 𝑑1 = deg(𝐶1), and let 𝐻1 be the stabilizer of the
component 𝐶1 in G. Then 𝑑 = 𝑑1𝑟 , and since G does not have subgroups of index 3, we have one of the
following cases:

(1) 𝑑 = 9, 𝑟 = 9, 𝑑1 = 1, 𝐻1 � 𝔇4,
(2) 𝑑 = 6, 𝑟 = 6, 𝑑1 = 1, 𝐻1 � 𝔇6,
(3) 𝑑 = 6, 𝑟 = 2, 𝑑1 = 3, 𝐻1 �𝔖2

3 or 𝐻1 � 𝐶2
3 � 𝐶4.

We exclude these cases one by one. In Case (1), there is a unique class of subgroups isomorphic to 𝔇4,
and the 𝔇4-linear representation decomposes as

P(I ⊕ 𝜒2 ⊕ 𝑉),

that is, a sum of the trivial representation I, two copies of a nontrivial 1-dimensional subrepresentation
𝜒, and an irreducible 2-dimensional representation V. By Schur’s lemma, V is the unique irreducible
2-dimensional representation in the ambient space of X. The projectivization P(𝑉) defines an invariant
line contained in S,

𝑙 = {𝑥1 + 𝑥2 = 𝑥3 = 𝑥5 = 0} ⊂ 𝑆.

The plane P(I ⊕ 𝜒2) ⊂ P4 intersects X along an irreducible cubic curve and contains no line. It follows
that l is the only 𝐻1-invariant line in X, and thus, 𝐶 ⊂ 𝑆.

In Case (2), there are two classes of subgroups isomorphic to 𝔇6. In one class, the 𝔇6-linear
representation is

P(I2 ⊕ 𝜒 ⊕ 𝑉),

that is, the sum of two copies of the trivial 1-dimensional representation I, a nontrivial 1-dimensional
representation 𝜒, and an irreducible 2-dimensional representation V. Again, V is the unique irreducible
2-dimensional representation. But in this case, the line P(𝑉) is not contained in X. And the plane
P(I2 ⊕ 𝜒) intersects X along an irreducible cubic curve. Therefore, there is no 𝐻1-invariant line. The
other class of 𝔇6 decomposes as representation as

P(𝜒 ⊕ 𝑉1 ⊕ 𝑉2),
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that is, the sum of a nontrivial 1-dimensional representation 𝜒 and two nonisomorphic irreducible 2-
dimensional representations 𝑉1 and 𝑉2. Here, P(𝑉1) defines a line contained in S:

𝑙 = {𝑥1 − 𝑥4 = 𝑥2 − 𝑥4 = 𝑥3 + 𝑥4 + 𝑥5 = 0} ⊂ 𝑆,

while P(𝑉2) is not contained in X. In this case, we also have 𝐶 ⊂ 𝑆.
In Case (3), suppose that 𝑑 = 6, 𝑟 = 2, 𝑑1 = 3. Then the hyperplane

{𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 = 0}

is the unique𝐻1-invariant hyperplane, and every𝐻1-invariant plane in P4 is contained in this hyperplane.
This implies that 𝐶 ⊂ 𝑆. �

Theorem 9.6. The Fano threefold X is G-birationally super-rigid.

Proof. Suppose that X is not G-birationally super-rigid. Then it follows from the equivariant version of
the Noether–Fano inequality [23] that there exists a G-invariant nonempty mobile linear system M on X
such that the singularities of the log pair (𝑋, 𝜆M) are not canonical for 𝜆 ∈ Q>0 such that 𝜆M ∼Q −𝐾𝑋 .
We seek a contradiction.

First, we claim that the singularities of the log pair (𝑋, 𝜆M) are canonical away from finitely many
points. Indeed, if this is not the case, then there exists a G-irreducible curve 𝐶 ⊂ 𝑋 such that

mult𝐶
(
M

)
>

1
𝜆
,

which immediately implies that the degree of C is less than 12, which implies that𝐶 ⊂ 𝑆 by Lemma 9.5,
so that the log pair (𝑆, 𝜆M|𝑆) is not log canonical, which contradicts Lemma 9.4, since 𝜆M|𝑆 ∼Q −2𝐾𝑆 .

Next, we claim that the log pair (𝑋, 𝜆M) is canonical at every singular point of X. Indeed, let
𝑓 : 𝑋 → 𝑋 be the blow up of all singular points of X, let 𝐸1, . . . , 𝐸9 be the f -exceptional surfaces, let
M̃ be the strict transform on 𝑋 of the linear system M, and let 𝑀 be a general surface in M̃. Then,
since Sing(𝑋) forms one G-orbit, we have

𝜆𝑀 ∼Q 𝑓 ∗
(
− 𝐾𝑋

)
− 𝑎

9∑
𝑖=1

𝐸𝑖 ,

for some integer 𝑎 > 1, by [26, Theorem 1.7.20] or [32, Theorem 3.10]. Recall that X contains nine
planes

Π𝑖, 𝑗 = {𝑥𝑖 = 0, 𝑥3+ 𝑗 = 0} ⊂ P4,

and each of them contains four singular points of X. Let Π be one of the planes, 𝐶2 a general conic in
Π that contains Π ∩ Sing(𝑋), and 𝐶2 its strict transform on 𝑋 . Then 𝐶2 ⊄ 𝑀 , so that

0 ≤ 𝜆𝑀 · 𝐶2 =

(
𝑓 ∗

(
− 𝐾𝑋

)
− 𝑎

9∑
𝑖=1

𝐸𝑖

)
· 𝐶2

= 4 − 𝑎
9∑

𝑖=1
𝐸𝑖 · 𝐶2 = 4 − 4𝑎 < 0,

which is absurd.
Let P be a point in X such that the log pair (𝑋, 𝜆M) is not canonical at P. Then (𝑋, 𝜆M) is canonical

in a punctured neighborhood of P, and it follows from [21, Remark 3.6] that the log pair (𝑋, 3𝜆
2 M) is

not log canonical at P. Arguing as in the proof of [21, Proposition 3.5], we obtain a contradiction. �
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