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For an odd prime p, we consider free actions of (Z/p)2 on S2n−1 × S2n−1 given by

linear actions of (Z/p)2 on R
4n. Simple examples include a lens space cross a lens

space, but k-invariant calculations show that other quotients exist. Using the tools of
Postnikov towers and surgery theory, the quotients are classified up to homotopy by
the k-invariants and up to homeomorphism by the Pontrjagin classes. We will
present these results and demonstrate how to calculate the k-invariants and the
Pontrjagin classes from the rotation numbers.
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1. Introduction

There is a free, linear Z/p action on S2n−1 ⊂ Cn given by γ(x1, . . . , xj) =
(e2πir1/px1, . . . , e

2πirj/pxj). The resulting quotient space is called a lens space
L = L(p; r1, . . . , rn) and the ri are called rotation numbers. These spaces are well-
known and well-studied. More generally, one can define a free, linear action of Z/p

on a product of two spheres, S2n−1 × S2m−1, by assigning a set of rotation numbers
for each sphere separately. The classification of the resulting quotient spaces can
be found in [14].

Work has also been done on which groups besides Z/p can act freely on a prod-
uct of spheres, but less is known about the classification of the quotient spaces
associated to those groups known to act freely. In [6], free actions of (Z/p)2 on
S2n−1 × S2n−1 are classified up to homotopy equivalence. In this paper, we con-
sider free, linear, spherewise actions of (Z/p)2 on S2n−1 × S2n−1 with n > 1 and
with p an odd prime, and classify the resulting quotient spaces up to piecewise
linear or topological homeomorphism. To be more precise about the ‘spherewise
linear’ actions under consideration, our classification follows a definition from Ray
[11] in which (Z/p)2 acts linearly on each sphere separately with the action being
free on at least one of the spheres. One example of such an action is that of a lens
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space cross a lens space, L(p; r1, . . . , rn) × L(p; r′1, . . . , r
′
n), where the first Z/p acts

on the first sphere and the second Z/p factor acts on the second sphere.
There are, however, many more possibilities than lens space cross lens space.

In § 2, we build those more general examples from the representation theory of
(Z/p)2. Then in § 3 we recall the classification up to homotopy from [6] but recast
for the specific case of linear spherewise actions, followed by the homeomorphism
classification in § 4. The paper concludes with an application of the classification
theorem presented in § 5.

2. Constructions

Throughout this paper, we assume n > 1. The quotient space resulting
from the free, linear Z/p action on S2n−1 ⊂ Cn given by γ(x1, . . . , xj) =
(e2πir1/px1, . . . , e

2πirj/pxj) is called a generalized lens space, often denoted by
L = L(p; r1, . . . , rn). We often conflate a group action with its quotient. The ri

are called rotation numbers, and the homotopy, simple homotopy, and homeomor-
phism types of generalized lens spaces are determined by various combinations of
products of rotation numbers. We now generalize this type of action to the case of
(Z/p)2 acting on S2n−1 × S2n−1.

2.1. Notation

Let Γ be the group (Z/p)2, where p �= 2 is a prime. The goal is to consider free
actions of Γ on S2n−1 × S2n−1.

Let R = (r1, . . . , rn, r′1, . . . , r
′
n) and Q = (q1, . . . , qn, q′1, . . . , q

′
n) be elements of

(Z/p)2n so that the span of R and Q yield a (Z/p)2 inside (Z/p)2n. The parameters
r1, . . . rn and r′1, . . . , r

′
n and q1, . . . , qn and q′1, . . . , q

′
n are called ‘rotation numbers’

in analogy with the case of a lens space. To get an action on a product of spheres,
note that the unit (2n − 1)-sphere in R2n ∼= Cn gives rise to a product of spheres
S2n−1 × S2n−1 in the product Cn × Cn, and then R acts on Cn × Cn preserving
these spheres via

R · (z, z′) = (r, r′) · (z, z′)

= (r, r′) · (z1, . . . , zn, z′1, . . . , z
′
n)

=
(
e2πir1/pz1, . . . , e

2πir1/pzn, e2πir′
1/pz′1, . . . e

2πir′
n/pz′n

)
,

and similarly for Q. As a result, the group (Z/p)2 ∼= 〈R,Q〉 acts on S2n−1 × S2n−1.
This action may not be free, but when the resulting action is free, we call these the
standard linear examples. Classifying these examples is the goal of this paper;
we will not consider other possibilities for (Z/p)2 actions on S2n−1 × S2n−1.

The tiniest bit of representation theory reveals that this construction involving
4n rotation numbers captures every free linear action of (Z/p)2 on S2n−1 × S2n−1.

Proposition 2.1. A representation of (Z/p)2 on R2n × R2n preserving the decom-
position of R4n into R2n × R2n is equivalent to a standard linear example.

Proof. Recall that ‘equivalent’ for (Z/p)2-representations V and W means there is
an equivariant isomorphism of vector spaces V → W .
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Linear actions of Z/p × Z/p on S2n−1 × S2n−1 3

By virtue of its being abelian, Γ’s irreducible complex representations are one-
dimensional. Let χ be a character of an irreducible complex representation. Since
the map x �→ x2 is a bijection and since p �= 2, the Frobenius–Schur indicator of χ is

1
|Γ|
∑
γ∈Γ

χ(γ2) =
1
|Γ|
∑
γ∈Γ

χ(γ) =

{
1 if χis trivial,
0 otherwise.

Consequently, a real irreducible representation of Γ is either the trivial represen-
tation or a complex representation [12, p. 108]. In other words, a non-trivial real
irreducible representation has character χ + χ̄ for some complex irreducible rep-
resentation with character χ. Then for Γ = (Z/p)2 generated by (1, 0) and (0, 1),
there are integers r and q, not both zero, so that

χ(1, 0) = e2πri/p,

χ(0, 1) = e2πqi/p,

and consequently χ + χ̄ is the character of the real two-dimensional representation
for which (1, 0) acts on R2 by rotating through the angle 2πr/p and (0, 1) by the
angle 2πq/p. Write Wr,q for this representation.

To finish, suppose Γ := Z/p × Z/p and Γ acts on R2n ⊕ R2n preserving the decom-
position, so the representation decomposes as V1 ⊕ V2 with dimV1 = dimV2 = 2n.
Then by Maschke, the representation on Vi decomposes into a sum of irreducible
real representations. Each real representation is either trivial or Wr,q for some r, q.
After gathering together any trivial representations in pairs as W0,0, we conclude
that every linear representation of Γ has the form

Wr1,q1 ⊕ · · · ⊕ Wrn,qn
⊕ Wr′

1,q′
1
⊕ · · · ⊕ Wr′

n,q′
n
,

i.e. the form given at the beginning of § 2. �

For convenience, define

WR,Q := Wr1,q1 ⊕ · · · ⊕ Wrn,qn
⊕ Wr′

1,q′
1
⊕ · · · ⊕ Wr′

n,q′
n
,

for the pair of 2n-tuples R = (r1, . . . , rn, r′1, . . . , r
′
n) and Q = (q1, . . . , qn, q′1, . . . , q

′
n).

Also note that proposition 2.1 generalizes to describe linear representations of
(Z/p)m on (S2n−1)m.

As a warning, note again that the action given by these linear representations
need not be a free action. There is a criterion, however, which characterizes when
the action is free.

Lemma 2.2. Let Bij be the codimensional two plane in the Z/p-vector space (Z/p)2n

consisting of tuples (x1, . . . , xn, x′
1, . . . , x

′
n) where xi = 0 and x′

j = 0. A standard
linear example is free exactly when the two-dimensional plane 〈R,Q〉 ⊂ (Z/p)2n

only intersects any of the Bij at the origin.

Proof. Let WR,Q
∼= R2n ⊕ R2n be a representation of Γ as above. The action on

S2n−1 × S2n−1 associated to WR,Q is free exactly when, for all vectors v = (v1, v2) ∈
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R2n ⊕ R2n with both v1 �= 0 and v2 �= 0, the vector v has trivial stabilizer. Stated
the other way, this means that for all γ ∈ Γ, the restriction of WR,Q from Γ to 〈γ〉
decomposes as a sum of representations—but there is a trivial representation in the
decomposition of at most one term of R2n ⊕ R2n.

Let γ = (γ1, γ2) ∈ (Z/p)2. Then the two-dimensional real representation Wr,q

restricted to 〈γ〉 is the representation on R2 by which γ acts by rotation through
an angle of 2π(γ1r + γ2q)/p. So the action is free exactly when, for all non-trivial
(γ1, γ2), there are some i’s so that

γ1ri + γ2qi ≡ 0 mod p,

or some j’s so that

γ1r
′
j + γ2q

′
j ≡ 0 mod p,

but no pair (i, j) which satisfies both conditions. This is exactly the condition given
in the lemma. �

In analogy with the lens space case, when the action given by these linear
representations is free, we write the quotient as L(p, p;R,Q).

3. Homotopy classification

The homotopy type of a CW complex in which the action of π1 on all homotopy
groups is trivial is determined by its homotopy groups and a sequence of cohomology
classes called k-invariants. In the lens space case of free Z/p actions on S2n−1, all of
the quotients for fixed p and n have the same homotopy groups, hence the homotopy
type is determined by the k-invariants. It turns out that the first non-trivial k-
invariant of a lens space is the product of its rotation numbers times a cohomology
class in Hn+1(Z/p; Z), and it is the only k-invariant necessary to determine the
homotopy type [5]. It is also the case (cf. [6]) that the first non-trivial k-invariant
determines the homotopy type of the L(p, p;R,Q) .

In this section, we start with the cohomology ring for K(Z/p × Z/p, 1), then
we describe the k-invariant to provide the homotopy classification. A torsion
calculation reveals that the homotopy and simple homotopy classifications coincide.

3.1. The first k-invariant and the homotopy type

The first non-trivial k-invariant for a (2n − 1)-dimensional lens space with
rotation numbers r1, . . . , rn is

k(L) =
n∏

i=1

(ria) ∈ H2n(Z/p; Z)

where a ∈ H2(Z/p; Z) is the generator [5]. We think of the (ria) as ‘rotation classes’
and then the k-invariant is just the cup product of the rotation classes. The
first non-trivial k-invariant in the case of linear Z/p × Z/p action on a product
of equidimensional odd spheres can be defined similarly.

To begin, we provide the integral cohomology of the fundamental group, i.e. the
cohomology of K(Z/p × Z/p, 1), as the generators are needed to describe the first
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non-trivial k-invariant. The ring structure is well known and can be found in [6],
[3], and [9].

Proposition 3.1. The integral cohomology ring of K(Z/p × Z/p, 1) is

H�(K(Z/p × Z/p, 1); Z) ∼= Z[a, b, c]/(pa, pb, pc, c2)

where |a| = |b| = 2 and |c| = 3.

More specifically, the isomorphism in proposition 3.1 is chosen so that a and b
correspond to the standard basis (1, 0) and (0, 1) of Z/p × Z/p. There is a copy
of Z/p × Z/p ⊂ Z[a, b]/(pa, pb) contained in the cohomology ring, and an auto-
morphism ϕ : Z/p × Z/p → Z/p × Z/p gives rise to an automorphism H�(ϕ) which,
when restricted to the copy of Z/p × Z/p, can be identified with ϕ.

Just as the first k-invariant for a lens space is given by the product of the rotation
numbers modulo p, the first non-trivial k-invariant in the case of L(p, p;R,Q) is
the product of rotation classes in H2(Z/p × Z/p; Z).

Lemma 3.2 Lemma 5.1 in [6]. Let L = L(p, p;R,Q) and suppose p > n. Then
k(L) ∈ H2n(Z/p × Z/p); Z2) is(

n∏
i=1

(ria + qib),
n∏

i=1

(r′ia + q′ib)

)
,

where a and b are generators of H2(Z/p × Z/p; Z) as in proposition 3.1.

Combining this with Theorem 3.3 in [6], we have the following result.

Proposition 3.3 Theorem 3.3 in [6]. Assume the prime p > 3 satisfies p > n + 1.
For free linear actions of Z/p × Z/p on S2n−1 × S2n−1 with a specified identification
of the quotient’s fundamental group with Z/p × Z/p, the quantity

k(L) =

(
n∏

i=1

(ria + qib),
n∏

i=1

(r′ia + q′ib)

)
∈ H2n(Z/p × Z/p; Z2),

modulo automorphisms of Z2, determines the homotopy type of the quotient.

Changing the specified identification of the fundamental group with Z/p × Z/p

amounts to applying the same automorphism to a and b, as in the discussion
following proposition 3.1.

We compare proposition 3.3 to the corresponding statement for Z/p actions on
Sn. In the lens space case, the homotopy classification (with a specified generator
of π1) boils down to the product of the rotation classes, i.e. rotation numbers, up
to automorphisms of Z, i.e. up to sign. Often, the classification of lens spaces up to
homotopy equivalence is described using a formula such as

tnr1 . . . rn ≡ ±r′1 . . . r′n (mod p), (3.1)

where t is an element of Z/p relatively prime to p, and r and r′ are the rotation num-
bers corresponding to two lens spaces. This ‘numeric’ formula might be contrasted
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with the cohomological perspective presented in proposition 3.3. The rotation num-
bers are now described as rotation classes; the power tn accounts for a change of
identification of π1 with Z/p × Z/p, which would be played by replacing a and b in
the formula in proposition 3.3. The sign in equation (3.1) corresponds to a choice of
automorphism of Z, the top dimensional cohomology group, which in proposition
3.3 becomes an automorphism of Z2.

3.2. Simple homotopy classification

In the lens space case, the simple homotopy type is determined by the rotation
numbers. Specifically, L(p; r1, . . . , rn) �s L(p; r′1 . . . r′n) if and only if for some k ∈
Z/p and permutation σ, ri ≡ kr′σ(i) for all i [10].

In the case of L(p, p;R,Q), because the quotients are even dimensional, the
homotopy classification and the simple homotopy classification coincide.

Proposition 3.4. Suppose f : X → Y is a homotopy equivalence between two of
(S2n−1 × S2m−1)/G’s, where n � m, and G is a finite abelian group that acts freely
on S2n−1 × S2m−1 and trivially on the cohomology of S2n−1 × S2m−1. If Wh(G) is
torsion-free, then f is a simple homotopy equivalence.

The proof carries through almost exactly the same as the proof for Proposition
2 in [14]. We include a version here for completeness.

Proof. The spaces X and Y are both simple Poincaré complexes since they are
both manifolds, hence they are finite, connected, CW complexes with funda-
mental classes [X] and [Y ], respectively, and chain homotopy equivalences φX :
C2n+2m−2−∗(X) → C∗(X) and φY : C2n+2m−2−∗(Y ) →C∗(Y ) satisfying τ(φX)= 0
and τ(φY ) = 0. Here τ , the torsion of the chain equivalence, vanishes by the fact
these are simple Poincaré complexes.

Similar to the work in [4] with π1X ∼= G finite and acting trivially on the
cohomology of the universal cover X̃, we have the chain-homotopy commutative
diagram

C2n+2m−2−∗(X)
φX �� C∗(X)

f∗
��

C2n+2m−2−∗(Y )

f∗

��

φY �� C∗(Y )

and so we have

0 = τ(φY ) = τ(f∗ ◦ φX ◦ f∗) = τ(f∗) + τ(φX) + τ(f∗)

= τ(f∗) + τ(f∗) = τ(f) + (−1)2n+2m−2τ(f),

where τ(f) is the result of applying the involution on Wh(π1Y ) to τ(f). Since
2n + 2m − 2 is even and the involution on Wh(G) is trivial when G is a finite
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abelian group [1],

τ(f) = −τ(f) = −τ(f).

As Wh(G) is torsion-free by assumption, τ(f) = 0. �

For Γ = Z/p × Z/p actions on S2n−1 × S2n−1, provided p > 3 the action on
cohomology is trivial, and so we immediately get the following result.

Corollary 3.5. For Γ = Z/p × Z/p with p > 3, two quotient spaces resulting from
a free Γ action on S2n−1 × S2n−1 that are homotopy equivalent are also simple
homotopy equivalent.

Proof. Note Γ = Z/p × Z/p is a finite, torsion abelian group that acts trivially on
cohomology of S2n−1 × S2n−1. Since Wh(Γ) = Wh(Z/p × Z/p) is torsion-free [2],
the result follows. �

Remark 3.6. Suppose X1 and X2 are homotopy equivalent but not simple homo-
topy equivalent lens spaces, and Y1 and Y2 are another such pair. Then for i = 1, 2,
the product Xi × Yi is the quotient of free Z/p × Z/p action on S2n−1 × S2n−1, and
by corollary 3.5, the product X1 × Y1 is simple homotopy equivalent to X2 × Y2.

4. Homeomorphism classification

For Γ = Z/p × Z/p and X, a quotient space obtained from a free, linear action of
Γ on S2n−1 × S2n−1 as described above, the simple structure set SCat,s(X), for
Cat being Top or PL, is determined by the p-localized Pontrjagin classes. In this
section, we calculate the Pontrjagin classes explicitly, determine the set of normal
invariants and then determine the full classification.

4.1. Classification by characteristic classes

Again Γ acts on S2n−1 × S2n−1 via a decomposition-preserving orthogonal repre-
sentation on V ⊕ V . Let α : Γ → SO(V ⊕ V ) be this representation. In the special
case Γ = Z/p × Z/p, combining knowledge of the representations of this abelian
group with dimV = 2n refines the map α to

Γ → SO(2)n × SO(2)n ⊂ SO(4n).

This description can be related to the above description: inside each SO(2) factor
is a copy of Z/p, so the map α amounts to a linearization of the above description
in terms of R and Q, which are both vectors of 2n elements of Z/p.

By constructing BG appropriately, regard (S2n−1 × S2n−1)/Γ as a subcomplex
of BG, and therefore build the map

Bα|(S2n−1×S2n−1)/Γ : (S2n−1 × S2n−1)/Γ → BSO(4n)

The main theorem in [13] implies that

T (S2n−1 × S2n−1/Γ) ⊕ R2

is a (4n)-dimensional vector bundle over (S2n−1 × S2n−1)/Γ with classifying map
Bα|(S2n−1×S2n−1)/Γ.
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The above description is explicit enough to compute the Pontrjagin classes.
Suppose R = (r1, . . . , rn, r′1, . . . , r

′
n) and Q = (q1, . . . , qn, q′1, . . . , q

′
n) be elements of

(Z/p)2n so that the map α can be defined via α(1, 0) = R and α(0, 1) = Q and the
inclusion Z/p ⊂ SO(2).

Consider the effect of α : BΓ → BSO(4n) on cohomology, namely

α� : H�(BSO(4n); Z) → H�(Γ; Z).

Corresponding to each SO(2) factor in the left-hand term of SO(2)n × SO(2)n ⊂
SO(4n), there is vi ∈ H2(BSO(4n); Z); similarly each SO(2) in the right-hand
factor results in v′

i ∈ H2(BSO(4n); Z). Then α�(vi) = ria + qib and α�(v′
i) =

r′ia + q′ib.

Proposition 4.1. The total Pontrjagin class in H�(B(SO(2)n × SO(2)n); Z) is
given by

n∏
i=1

(
1 + vi

2
) (

1 + v′
i
2
)

implying that

p(
(
S2n−1 × S2n−1

)
/Γ) =

n∏
i=1

(
1 +

(
riā + qib̄

)2)(1 +
(
r′iā + q′ib̄

)2)
.

There is the map from the quotient (S2n−1 × S2n−1)/Γ to the classifying space
BΓ which, in cohomology, provides a map from H�(BΓ) to the cohomology of the
quotient. We have denoted a and b as the generators of H2(BΓ; Z), and in what
follows, let ā and b̄ denote the image of the generators under the map

H�(BΓ) → H�(
(
S2n−1 × S2n−1

)
/Γ).

Compare the computation in proposition 4.1 with the computation for the total
Pontrjagin class of the lens space L, which is given by

p(L) =
n∏

i=1

(
1 + (riā)2

)

where the ri are the rotation numbers.

4.2. Surgery

To understand the possible actions of Γ = Z/p × Z/p on S2n−1 × S2n−1, we
consider the surgery exact sequence

· · · → Ls
4n−1(Γ) → SCat,s(X) → [X,G/Cat] → Ls

4n−2(Γ).

where X = (S2n−1 × S2n−1)/Γ and G/Cat is G/Top or G/PL. We note that this
is the simple surgery exact sequence and that the Ls

m are simple L-groups.
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In general, for a group Γ of odd order, the simple L-groups are Ls
m(ZΓ) = Σ ⊕

8Z, 0,Σ ⊕ Z/2, 0 for m ≡ 0, 1, 2, 3 (mod 4), where Σ has no torsion [1]. Since 4n −
2 ≡ 2 (mod 4), our surgery exact sequence becomes:

0 → SCat,s(X) → [X,G/Cat] → Σ ⊕ Z/2,

and our classification comes down to determining the set of normal invariants,
[X,G/Cat], and the map [X,G/Cat] → Ls

4n−2(Γ) = Σ ⊕ Z/2, for X = L(p, p;Q,R).
We start first with the set of normal invariants.

4.3. Normal invariants

We first need a couple of lemmas. We note that they are similar to lemmas
in [14].

Lemma 4.2. Suppose that Γ = Z/p × Z/p and that Y is a Cat-manifold for Cat =
PL or Top and with a free Γ-action such that Γ acts trivially on H�(Y ; Z[1/p]).
Then

[Y/Γ, G/Cat] [1/p] ∼= [Y,G/Cat] [1/p] .

Proof. Let π : Y → Y/Γ be the projection and let π∗ : H∗(Y ; Z[1/p]) →
H∗(Y/Γ; Z[1/p]) be the induced map on homology. The transfer gives a
map going the other way: tr : H∗(Y/Γ; Z[1/p]) → H∗(Y ; Z[1/p]). Then tr ◦ π∗ :
H∗(Y ; Z[1/p]) → H∗(Y ; Z[1/p]) is multiplication by |Γ| because Γ acts trivially
on H�(Y ; Z[1/p]). Consequently, 1/|Γ|tr ◦ π∗ = id and we also have that π∗ ◦
tr/|Γ| = id. Since Y is finite dimensional we see that there is an isomorphism
between H�(Y ; Z[1/p]) and H�(Y/Γ; Z[1/p]), and by Poincaré duality, we obtain
an isomorphism between H∗(Y ; Z[1/p]) and H�(Y/Γ; Z[1/p]).

As G/Cat is a spectrum, maps into the spaces of G/Cat are naturally equiv-
alent to a generalized cohomology theory, i.e. En(X) ∼= [X,G/Catn]. It fol-
lows from the Atiyah–Hirzebruch spectral sequence that H∗(Y ;E∗(∗; Z[1/p])) ∼=
H∗(Y/Γ;E∗(∗; Z[1/p])) and [Y,G/Cat[1/p]] ∼= [Y/Γ, G/Cat[1/p]]. �

Corollary 4.3. Suppose Γ = Z/p × Z/p acts freely on S2n−1 × S2n−1. Then for
Cat being Top or PL,[

(S2n−1 × S2n−1)/Γ, G/Cat
]
[1/p] ∼= Z/2.

Proof. By lemma 4.2,[
(S2n−1 × S2n−1)/Γ, G/Cat

]
[1/p] ∼= [S2n−1 × S2n−1, G/Cat

]
[1/p]

∼= π2n−1 (G/Cat [1/p]) ⊕ π2n−1 (G/Cat [1/p]) ⊕ π4n−2 (G/Cat [1/p]) .

To identify maps out of the product S2n−1 × S2n−1 with the given sum of homotopy
groups, we need to verify that the Whitehead products vanish; this follows from the
fact that G/Cat is a path-connected H-space and that localizations of such spaces
are path-connected H-spaces. The odd-dimensional homotopy groups of G/Cat are
trivial, so the localized group π2n−1(G/Cat[1/p]) also vanishes. Since 4n − 2 ≡ 2
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(mod 4) and since π4n−2(G/Cat) = Z/2, we have π4n−2(G/Cat[1/p]) = Z/2 and the
conclusion follows. �

In [14], lemma 6 gives that for odd primes p > 2n, there is a (2n + 2)-equivalence

(BO)(p) →
∏

0<j<n/2

K(Z(p), 4j).

Using the description of BO from Theorem 7.4 of the survey article [8], lemma 6
from [14] can be improved:

Lemma 4.4. For an odd prime p, there is a (2p + 1)-equivalence

(BO)(p) → K(Z(p), 4) × K(Z(p), 8) × · · · × K(Z(p), 2(p − 1))

�
(p−1)/2∏

i=1

K(Z(p), 4i).

Proof. For an odd prime p, there is an equivalence of H-spaces

(BO)(p) �
(p−3)/2∏

i=0

Ω4iW,

where W has trivial homotopy except for π2i(p−1)(W ) = Z(p) for positive integers
i [8]. For p an odd prime, 4(p − 1) > 2p + 1, and therefore

W → K(Z(p), 2(p − 1))

is a (2p + 1)-equivalence. Moreover, for any 0 � i � (p − 3)/2, then 4(p − 1) − 4i �
2p + 2 > 2p + 1, and so

Ω4iW → K(Z(p), 2(p − 1) − 4i)

is a (2p + 1)-equivalence. Therefore,

(BO)(p) →
(p−3)/2∏

i=0

Ω4iK(Z(p), 2(p − 1))

�
(p−3)/2∏

i=0

K(Z(p), 2(p − 1) − 4i)

�
(p−1)/2∏

i=1

K(Z(p), 4i)

is a (2p + 1)-equivalence. �

For example, when p = 3, we have that

(BO)(3) � K(Z(3), 4)

is a 7-equivalence.
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Lemma 4.5. Suppose that Γ = Z/p × Z/p acts freely on S2n−1 × S2n−1 with quotient
X. Then

[X,G/Cat] ∼= Z/2 ⊕
⊕

i

H4i(X; Z/p)

for Cat = PL or Top.

Proof. Localizing G/Cat at p and away from p gives rise to a localization square

[X,G/Cat] ��

��

[X,G/Cat] [1/p]

��
[X,G/Cat](p)

�� [X,G/Cat](0)

and hence then following exact sequence

0 → [X,G/Cat] → [X,G/Cat] [1/p] ⊕ [X,G/Cat](p) → [X,G/Cat](0) → 0.

Since [X,G/Cat](0) ∼=
⊕

i H4i(X; Q) ∼= 0,
the short exact sequence from the localization square yields

[X,G/Cat] ∼= [X,G/Cat] [1/p] ⊕ [X,G/Cat](p) .

By corollary 4.3,

[X,G/Cat] [1/p] ∼= Z/2,

a Kervaire–Arf invariant. But BO(p)
∼= G/Cat(p), so both localizations are a product

of Eilenberg–MacLane spaces and the lemma then follows from the calculation of
[X,G/Cat](p). �

4.4. The structure set

Recall that the surgery exact sequence for X = L(p, p;Q,R) becomes

0 → SCat,s(X) → [X,G/Cat] → Σ ⊕ Z/2.

From lemma 4.5, we have that the right most map in the surgery exact sequence
above is [X,G/Cat] ∼= Z/2 ⊕ H4i(X; Z/p) → Σ ⊕ Z/2. Both G/Top and G/PL have
H-space structures that make this map into a homomorphism. Since Σ is torsion-
free, and H4i(X; Z/p) is trivial or p-torsion for all i, all of the p-torsion in
H4i(X; Z/p) must come from the structure set.
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Consider the map X → S4n−2 given by sending everything but a disk to a point.
This induces a commutative diagram

[S4n−2, G/Cat] � � ��

��

[X,G/Cat]

��

�� �� [(S2n−1)2, G/Cat]

��
Ls

4n−2(e)
� � �� Ls

4n−2(Z/p × Z/p) �� �� Ls
4n−2(e).

By the Kerviare–Arf invariant, π4n−2(G/Cat) maps isomorphically into the L-group
of the trivial group, and we see that the Z/2 in the set of normal invariants maps
isomorphically onto the Z/2 in L4n−2(Γ).

From this discussion, we conclude that SCat,s(X) =
⊕

i H4i(X; Z/p), and the
classification is determined by the Pontrjagin classes. This yields theorem 4.6

Theorem 4.6. Suppose p > 3 and p > n + 1, and following proposition 3.3, sup-
pose X and Y are quotients of linear actions of Z/p × Z/p on S2n−1 × S2n−1 and
the map f : X → Y is a homotopy equivalence. Then f is homotopic to a home-
omorphism provided the Pontrjagin class p(Y ) ∈ H�(Y ; Z/p) pulls back via f� to
p(X) ∈ H�(X; Z/p).

Since f is a homotopy equivalence, the rings H�(X; Z/p) and H�(Y ; Z/p) are
isomorphic, and can be computed using knowledge of the k-invariant. Specifically,
one can compute the cohomology of L(p, p;R,Q) using the Serre spectral sequence
on the Borel fibration S2n−1 × S2n−1 → L(p, p;R,Q) → BΓ and the relationship
between the k-invariant and the transgression.

5. Applications and open questions

Kwasik–Schultz [7] classified squares of 3-dimensional lens spaces up to dif-
feomorphism: for a prime p > 3 and rotation numbers r and q, there is a
diffeomorphism

L(p; 1, r) × L(p; 1, r) ∼= L(p; 1, q) × L(p; 1, q).

The machinery of this paper can be used to provide a homeomorphism in that case,
and also extend the classification to products of different lens spaces.

Theorem 5.1. For a prime p > 3 and rotation numbers r1, r2, q1, q2 such that
±(r1r2)/(q1q2) is a quadratic residue mod p, there is a homeomorphism L(p; 1, r1) ×
L(p; 1, r2) ∼= L(p; 1, q1) × L(p; 1, q2).

Conversely, if there is such a homeomorphism, then the above condition on
rotation numbers is satisfied.

Proof. Let’s first show that they are homotopy equivalent; this was done with some-
what more machinery in [6] but for completeness, here we present a proof relying
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only on proposition 3.3. In the notation of § 2,

L(p; 1, r1) × L(p; 1, r2) = L(p, p;R1, R2),

L(p; 1, q1) × L(p; 1, q2) = L(p, p;Q1, Q2),

where

R1 = (1, r1, 0, 0),

R2 = (0, 0, 1, r2),

Q1 = (1, q1, 0, 0),

Q2 = (0, 0, 1, q2).

Invoke proposition 3.3 to conclude L(p, p;R1, R2) � L(p, p;Q1, Q2). The argument
proceeds via k-invariants. Specifically,

k(L(p, p;R1, R2)) =
(
r1a

2, r2b
2
) ∈ H4((Z/p)2; Z2)

k(L(p, p;Q1, Q2)) =
(
q1a

2, q2b
2
) ∈ H4((Z/p)2; Z2)

By the hypothesis, choose z so that r1r2z
2 = ±q1q2. Set λ := q1/(r1z

2) and set
μ := q2/r2. Then λμ ≡ ±1 mod p and since the map GL2(Z) → {M ∈ GL2(Z/p) :
det M = ±1} is surjective, there is an automorphism of Z2 which, when reduced
modulo p, amounts to multiplication by λ and μ on the two generators, respectively.
Note that GL2(Z) consists of matrices with integer entries and determinant ±1, and
the map GL2(Z) → {M ∈ GL2(Z/p) : detM = ±1} is reduction modulo p.

So the k-invariant k(L(p, p;R1, R2)) = (r1a
2, r2b

2) and the k-invariant
(λr1a

2, μr2b
2) correspond to homotopy equivalent spaces, but the latter k-invariant

is (q1a
2/z2, q2b

2), which, after changing the chosen generator of π1, yields the
k-invariant k(L(p, p;Q1, Q2)) = (q1a

2, q2b
2).

To finish the homeomorphism classification, we must compare Pontrjagin classes
modulo p. The total Pontrjagin class of L(p, p;R1, R2) is

(1 + ā2)(1 + r1
2ā2)(1 + b̄2)(1 + r2

2b̄2),

which is concentrated in H4 since L(p, p;R1, R2) is 6-dimensional, so the Pontrjagin
class is

ā2 + r1
2ā2 + b̄2 + r2

2b̄2 ∈ H4(L),

but ā2 and b̄2 both vanish, so this Pontrjagin class is zero. There are other ways
to see that this vanishes: twice the Pontrjagin class of L(p, p;R1, R2) is twice the
product of the Pontrjagin classes of the two lens spaces, but the Pontrjagin class of
a 3-dimensional lens spaces is trivial.

For the converse direction, note that a homeomorphism necessarily results in a
homotopy equivalence, and with the discussion of k-invariant in Section 6 of [6],
the condition on the rotation numbers must be satisfied. �
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Theorem 5.1 yields a homeomorphism, so a natural question is whether one can
produce a diffeomorphism. One could combine the proof of Theorem 1.1 of [7] with
the simple homotopy equivalence provided by propositions 3.3 and 3.4 to produce
a diffeomorphism.

However, several questions remain unanswered and present opportunities for
future work. For instance, theorem 5.1 examined the case of S3 × S3; a classi-
fication in the case of S5 × S5 remains open. In that case, instead of studying
pairs of quadratic forms, the homotopy classification involves cubic forms. And in
addition to studying diffeomorphism, one could seek a classification up to almost
diffeomorphism, meaning up to connected sums with exotic spheres. It would also
be interesting to extend proposition 4.1 to include not only information on the
Pontrjagin class, but also information on the action of the group of homotopy
self-equivalences on the Pontrjagin class.
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