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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES
AND THEIR RELATION TO PARADOXES

NEIL TENNANT

The Ohio State University

Abstract. This study focuses on certain combinations of rules or conditions involving a
would-be ‘provability’ or ‘truth’ predicate that would render a system of arithmetic containing
them either straightforwardly inconsistent (if those predicates were assumed to be definable) or
logico-semantically paradoxical (if those predicates were taken as primitive and governed by
the rules in question). These two negative properties are not to be conflated; we conjecture,
however, that they are complementary. Logico-semantic paradoxicality, we contend, admits of
proof-theoretic analysis: the ‘disproofs’ involved do not reveal straightforward inconsistency.
This is because, unlike the disproofs involved in establishing straightforward inconsistencies,
these paradox-revealing ‘disproofs’ cannot be brought into normal form.

The border between metamathematical proofs of certain (constructive) impossibility results
and the non-normalizable (and always constructive) disproofs engendered by semantic
paradoxicality is not fully understood. The respective strategies of reasoning on each
side—genuine proofs of inconsistency versus whatever kind of ‘disproof’ uncovers semantic
paradoxicality—seem somehow similar. They seem to involve the same ‘lines of reasoning’. But
there is an important and principled difference between them.

This difference will be emphasized throughout our discussion of certain arithmetical
impossibility results, and closely related semantic paradoxes. The proof-theoretic criterion for
paradoxicality is that in the case of paradoxes (as opposed to genuine inconsistencies) the
apparent ‘disproofs’ that use the rules stipulated for the primitive predicates in question cannot
be brought into normal form. In proof-theoretic terminology: their reduction sequences do
not terminate. This means that cut fails for languages generating paradox. But cut holds for
the language of arithmetic. It follows that the paradox-generating primitive predicates of a
semantically closed language cannot be defined in arithmetical terms. For, if they could be, then
they could be replaced by their definitions within the paradoxical disproofs, and the resulting
disproofs would be normalizable.

§1. Introduction. The border between metamathematical proofs of certain
(constructive) impossibility results and semantic paradoxicality is not fully understood.
The respective strategies of reasoning on each side are genuine proofs of inconsistency
versus whatever kind of ‘disproof’ uncovers semantic paradoxicality. They seem
somehow similar. They seem to involve the same ‘lines of reasoning’. But there is an
important and principled difference between them.
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2 NEIL TENNANT

This difference will be emphasized throughout our discussion of certain arithmetical
impossibility results, and closely related semantic paradoxes (actual or conjectural).
The proof-theoretic criterion for paradoxicality is that in the case of paradoxes
(as opposed to genuine inconsistencies) the apparent ‘disproofs’ establishing absurdity
cannot be brought into normal form. Proofs and disproofs that are in normal form have
no sentence occurrence standing as the conclusion of an application of the introduction
rule for its dominant logical operator and as the major premise of an application of that
operator’s corresponding elimination rule. Each operator has a well-known reduction
procedure that ensures the removal of any such ‘local peak’ of unnecessary complexity.1

In proof-theoretic terminology: their reduction sequences do not terminate.
This entails that cut fails for languages generating paradox. But cut holds for

both constructive and classical logic for the language of arithmetic. It follows that
the paradox-generating primitive predicates of a semantically closed language cannot
be defined in arithmetical terms. For, if those predicates (the definienda) could
be so defined, then they could be replaced by their definitions (the arithmetical
definientia) within the paradoxical disproofs employing those predicates, and the
resulting disproofs, which would be employing purely arithmetical expressions in their
sentences, would be normalizable.

§2. Paradoxicality vs. genuine inconsistency. The meta-rule of cut:

cut

Δ �S ϕ Γ, ϕ �S �

Δ,Γ �S �

expresses the unrestricted transitivity of deduction within the system S in question.
The underlying logic for the language of first-order arithmetic of course enjoys such
transitivity; and one can freely invoke this meta-rule within any axiomatized system
of first-order arithmetic. As we shall see, we can invoke the constant applicability of
cut within such systems S in order to show that S cannot, on pain of contradiction,
contain any ‘provability’ or ‘truth’ predicates (of code numbers of sentences) meeting
certain conditions.

There is an interesting variety of combinations of conditions that will precipitate
the inconsistency of S. Nota bene: these will be genuine inconsistencies, established by
disproofs within S (i.e., S-proofs of ⊥) that are in normal form. And what is especially
noteworthy is that the disproofs in question are constructive. That is, they can be
formalized in Intuitionistic Logic. Indeed, they can be formalized in Core Logic,
since the reasoning involved in them is relevant (as is the case with all informally
rigorous mathematical reasoning, be it constructive or strictly classical). Collectively,
the results establishing the constructive inconsistency of contemplated combinations of
conditions on ‘provability’ predicates mark out a frontier for systems that can represent
their own syntax—a frontier beyond which, should one make so bold as to allow any
new primitive predicates to behave in these forbidden ways, one would be confronted
(so we conjecture) with the dragons of paradox.

1 This criterion was first advanced in [7] (see also [8–10, 12]).
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 3

The (constructive) arithmetical impossibility results tell us

You cannot define predicates or operators within your existing
language for arithmetic that conform to such-and-such deducibility
conditions; for if you had such definitions they would precipitate,
constructively, inconsistency. And those proofs of inconsistency
would be normalizable—i.e., able to be brought into normal form
by applying reduction procedures for the logical operators involved,
á la Gentzen and Prawitz.

The corresponding logico-semantic paradoxicality results would tell us

You cannot extend your language for arithmetic with primitive
predicates or operators and stipulate that they are to obey rules of
inference codifying those deducibility conditions; for by the same
‘lines of argument’ as in the case of the attempted definitions
mentioned in the previous paragraph, use of those rules will lead,
constructively, to logico-semantic paradox within your extended
language. That is, they will allow there to be disproofs (proofs of
⊥, i.e., absurdity) that cannot be brought into normal form. The
reduction sequences generated by applying the reduction procedures
for the logical operators involved will not terminate.

Our emphasis on constructivity in this regard is doctrinal. Our view is that paradoxes
inflict their intellectual pain constructively. They reveal problems with our conceptual
apparatus which lie deep and do not require allegiance to Bivalence to be winkled
out (via any of Bivalence’s attendant strictly classical inference rules known as the
Law of Excluded Middle, the rule of Double Negation, the rule of Classical Reductio,
or the rule of Classical Dilemma). Likewise, the metamathematical and arithmetical
reasoning for the results analyzed in this study can all be arrived at constructively;
and it is the main purpose of this study to demonstrate this, at the level of formal
rigor required. The corresponding reasoning in the paradoxical setting (where the
problematic predicates are taken as primitives) will then, not surprisingly, turn out
to be constructive also. The reduction sequences for the formal disproofs will not
terminate—or so we conjecture. For lack of space we prescind here from the latter
details, but hold them in morally certain prospect. We believe that what happens with
the Liar (see below) generalizes to the other logico-semantic paradoxes.

There is a topical divide here, which is already illustrated clearly in the case of the
arithmetical indefinability of a truth predicate for arithmetic versus the Liar paradox,
which arises from taking such a predicate as a primitive. On one side of the topical
divide are the constructive arithmetical impossibilities; on the other side of the divide
are the complementary logico-semantic paradoxes that would arise (so we conjecture)
by taking the predicates involved not as arithmetical definienda, but rather as primitive
operators in their own right, governed by the conditions stated for the impossibility
results. There is, we contend, a deep correspondence between the two side of the topical
divide.

In our discussion thus far we have spoken of arithmetical impossibility results and
then segued into mention of the associated or ‘somehow related’ paradoxicality that
arises when one treats the problematic predicates as primitives and therefore does
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4 NEIL TENNANT

not assume them to be explicitly definable. Historically, of course, matters presented
themselves in the reverse order. The ancient philosopher Eubulides (circa 405–300 bce)
initiated the lesson that we cannot add primitive predicates (such as ‘is true’) to a
language containing expressions denoting sentences and stipulate that those primitive
predicates are to obey rules such as the obvious-looking ‘ϕ; ergo, �ϕ� is true’ and its
converse ‘�ϕ� is true; ergo, ϕ’.2 This is because of the notorious Liar sentence �, which
says ‘��� is not true’. If one tries to regiment the deductive reasoning in the resulting
Liar paradox as a disproof, it turns out that the disproof is not in normal form, and is
non-normalizable.3 The ancients of course could not conceptualize matters this way,
because they lacked the resources of modern Gentzenian proof theory. The proof-
theoretic observation here is an explication of the intuited vicious circularity induced
by the combination of self-reference with over-hastily adopted rules of inference
governing the truth predicate.

Well over two millenia later, this lesson was reprised (or applied) rather differently,
in the context of metamathematical studies of the first-order language of arithmetic, in
which consistent and sufficiently strong arithmetical theories S afforded representation
of linguistic expressions via numerical coding. This enabled those theories to
furnish linguistic representation of decidable relations among such expressions, via
representing formulae involving numerals for the code numbers of those expressions.
This is the basic contemporary requirement for a consistent arithmetical theory to be
called ‘sufficiently strong’. Somewhat ironically, the rather weak (in the arithmetical
sense) theories R and Q—due to Raphael Robinson—turn out to be sufficiently strong
in this ‘logical’ sense. The lesson was that one would not, on pain of inconsistency,
be able to define (explicitly) that same predicate (‘is true’) is any such system S.
The deductive reasoning involved is straightforwardly mathematical, and can be
regimented as a disproof in normal form. What we would informally call the line of
argument, however, is that of the ancients. In a nutshell: Tarski employed the same line
of reasoning as Eubulides. But what they respectively did was subtly different.
Eubulides revealed the logico-semantic paradoxicality of having a truth predicate as
a primitive predicate, governed by intuitively appealing and seemingly obvious rules,
in a language permitting reference to its own sentences. Tarski, by contrast, revealed
the impossibility of defining a truth predicate in arithmetical terms, in a language
for arithmetic that afforded numeralwise representation of its own expressions. No
would-be definiens in the language of arithmetic would work. The assumption that
any would-be definiens would work provably implies straightforward inconsistency, not
logico-semantic paradoxicality.

The later results in this initially Tarskian vein, which we shall be studying here, and
which are due to Löb, Montague, and McGee are (like Tarski’s), constructive (or, if not
constructive upon first presentation, constructivizable). But these classically-minded
metamathematicians did not have any axe to grind over constructivity. They produced
their deep impossibility results (about the indefinability of arithmetical predicates
satisfying certain sets of plausible-looking conditions—the set in question depending
on the author) with no explicitly expressed concern at all to have demonstrated them
constructively. But when matters are ‘deeply constructive’, it will often be the case that

2 Eubulides, of course, did not formulate the problem in such formal terms; we are taking the
liberty of so doing, for him.

3 We demonstrated this in [7].
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 5

habitually non-constructive mathematical reasoners will happen, in their initial foray,
upon what turn out to be constructive proofs.

We wish to take the necessary pains here to bring out the kernel of constructivity
in all of these impressive results. We intend thereby to lend further plausibility to the
organic connection (the recurring theme to which we wish to draw attention) between
the impossibility of would-be arithmetically defined predicates, on the one hand, and
the logico-semantics paradoxicality, on the other hand, of venturing to have primitive
‘surrogates’ of them, naively assumed to be governed by the same plausible-looking
conditions. We are obliged to postpone to a sequel to this study the painstaking
demonstration of paradoxicality in the ‘primitive’, as opposed to the ‘arithmetical’,
setting, for the results of Löb, Montague, and McGee. For these the historical order
that we have commented on in connection with the Liar would have to be reversed.
There are no known, let alone well-known, logico-semantic paradoxes that would
correspond with the impossibility results of Löb, Montague, and McGee in the way
we are contending. We would have to take their results, fully formalized as disproofs,
and ‘re-do’ them as disproofs (paradoxical ones) in a language that purports to treat
the problematic predicate as a primitive governed by rules of inference codifying the
sets of conditions that these authors, respectively, listed; and then we would have to
show that the disproofs are not normalizable.

§3. Our chosen case studies. We shall investigate here some important impossibility
results about first-order systems of arithmetic with ‘provability’ or ‘truth’ predicates
(defined or postulated). We rigorously formalize the proofs of these impossibility
results in the natural deduction system for Intuitionistic Logic. They are proofs of
straightforward, non-paradoxical, inconsistency. As already intimated, we leave for a
sequel the parallel treatment (or analysis) of the same cases when their paradoxicality
is at issue. That treatment would involve the regimentation of disproofs, and the
demonstration that their reduction sequences do not terminate, when each of these
results is re-cast in the guise of ‘adopting a primitive predicate’ governed by the rules
of inference that codify the problematic conditions on that predicate.

The Liar Paradox is by far the best known logico-semantic paradox to which our
recommended proof-theoretic ‘paradoxicality analysis’ has been applied. And there are
a host of other well known logico-semantic paradoxes that likewise, respectively, admit
of such paradoxicality analyses.4 We are not, however, looking for any ‘arithmetical
inconsistency’ results corresponding to these. Our interest here is in the reverse
correspondence: will the arithmetical inconsistency results of Löb, Montague, and
McGee engender logico-semantic paradoxes that will admit of paradoxicality analyses
of the kind we have described?

We are not aiming for comprehensiveness; there could well be other results of this
kind that the reader could use to test the general theme that we are trying to illustrate
with our chosen examples. Even so, we do not think we can fairly be accused of ‘cherry
picking’; for these are the most striking results of this general kind that came to the
author’s mind when the ‘general picture’ came to him. Moreover, the results are all

4 Among these are the Grelling Paradox, the Postcard Paradox, the Curry Paradox, Yablo’s
Paradox, Prior’s Paradox, and the Revenge Paradox.
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6 NEIL TENNANT

deep and impressive and important. So there is an element of desert—of homage to
the literature—if they are indeed cherries that have been picked.

The results we shall focus on are:

1. Tarski’s theorem about the indefinability of truth in arithmetic (see §5);
2. Löb’s theorem about limitations on the (defined) provability predicate in

arithmetical systems (see §6);
3. Montague’s theorem about how the necessity operator cannot be treated as a

predicate of sentences (see §7);
4. McGee’s version of the Liar, using weaker conditions on the would-be truth

predicate (see §8);
5. McGee’s theorem about the �-inconsistency of certain natural-looking

(postulated) conditions on a provability predicate in arithmetical systems
(see §9).

A summary of these five results is provided in §10. The reader might find it helpful
to look ahead to §10 for an overview, and also to consult it from time to time as our
study progresses.

(1) is the simplest of these impossibility results and we have already discussed it in
an introductory fashion in §2. We shall revisit it in §5 and—for McGee’s strengthened
version (4) of the result—in §8. (1) keeps company with (2)–(5) and has inspired
the present more detailed study of the latter four. The well-known Liar Paradox of
Eubulides became, in Tarski’s hands (as we have already mentioned in §2), the result
that arithmetic cannot contain its own (defined) truth-predicate.5 With (2)–(5), the
scholarly segue will have to be in the reverse order.

Once we have collected these inconsistency results, and established them
constructively, we shall have learned something important about the anatomy of
the aforementioned dragons. The lesson will be: for languages allowing the forbidden
behavior on the part of certain of its predicates, the meta-rule of cut fails. It has
been argued elsewhere that that very failure is the mark of paradox (as opposed to
genuine inconsistency). It has been argued also that the deductive reasoning within the
paradoxes that are involved is wholly constructive. That is, paradox cannot be blamed
on any allegedly noxious contribution of strictly classical reasoning. The sources of
paradox afflict the constructivist just as seriously as they do the classicist.

The remaining aim in this investigation, given limitations of space, is to constructivize
the deductive reasoning in the important ‘arithmetical impossibility’ results
(2)–(5) that are described and established in more detail below. Such results show the
impossibility of having explicit definitions of provability- or truth-predicates satisfying
certain collections of conditions. The proofs of these impossibilities are—to repeat—
constructive, and involve ‘cuts galore’. The cuts are permitted because we have
cut-Elimination6 for the first-order language of arithmetic, in which, one is assuming,
those explicit definitions are formulated.

5 The proof of this latter result has already been formalized (in Core Logic) in [13], whose
title is ‘Core Tarski and Core McGee’. The McGee result that [13] discusses (about Tarskian
biconditionals) is a different one from the just-mentioned McGee results (4) and (5) to be
discussed here.

6 Indeed, cut-Admissibility would suffice.
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 7

Shift now, then, to imagining that instead of trying to define the provability-like or
truth-like predicates so as to satisfy the various collections of conditions, one simply
adopts such (new) predicates as primitive, and as governed by rules of inference that
give full and faithful expression to those collections of conditions. One will then—we
contend—be confronted by (genuine) paradox, in the form of stretches of deductive
reasoning that appear to establish absurdity from no sentential premises, but only by
the action of the rules adopted for the new primitive predicate in question. This entails
that cut must fail for the system of reasoning that contains the rules in question—on
pain of having the (augmented) system of rules itself be inconsistent. And that failure
of cut manifests itself as the failure of attempts to normalize, i.e., eliminate the cuts
from, the formal proofs regimenting the deductive reasoning involved.

The reader might well wonder why the technical work here devoted to furnishing
explicitly constructive proofs is at all necessary, in light of the general result of [2] that
Heyting Arithmetic and (classical) Peano Arithmetic prove the same Π0

2-sentences.
Since the arithmetical impossibility results (construed as theorems of the form ¬ϕ) are
Π0

2, why go to all this bother? The answer is that we wish to avoid using any hammer
to crack these few walnuts because we want the edible flesh to be in pristine condition,
as manifestly constructive proofs, when it comes to re-framing them as the proofs
involved in the manifestation of paradoxicality, once the predicate at issue is taken to
be a primitive, rather than being assumed (for reductio) to be explicitly definable in the
language. That will involve translation of the explicit formal proofs we will have found;
we will not be able to rely upon the mere assurance that they exist.

The deductive, rule-governed reasoning with a paradox does not establish a genuine
inconsistency; the ‘disproof’ involved cannot be brought into normal form. This point
can be illustrated most simply with the Liar. As already mentioned we have taken the
trouble to provide that more detailed illustration in our earliest work on paradox. And
the Liar is treated in the same fashion in the later works cited in footnote 1 on p. 2.
Similar demonstrations of the non-normalizability of the ‘disproofs’ involved in the
‘primitive predicate’ versions of the other impossibility results (2)–(5) will be left to the
intrigued reader as tantalizing and non-trivial exercises (and perforce by the present
author to a sequel).

§4. Systems interpreting Robinson arithmetic Q. We turn our attention now to
formal first-order systems for arithmetic, since that is the setting for all the constructive
impossibility results under investigation here.

Let Q be the finitely axiomatized system of Robinson arithmetic. By n we mean the
numeral in the language of arithmetic for the natural number n. (This numeral will
be of the form s ... s0, with n occurrences of the symbol s for the successor function.)
We assume that each syntactic item ϕ has its own unique code number #(ϕ). By ϕ
we mean #(ϕ), that is, the numeral for that code number. If n = #(ϕ) then of course
ϕ = #–1(n).

We mention here some basic results in the theory of the coding of syntax—our
Theorems 1–3 below. That these three (meta)theorems can be proved using Core Logic
C as one’s metalogic, and with the deducibility sign � representing C-deducibility in
the object language, is demonstrated in [11].

Theorem 1 (Representability of recursive functions). For every k-place recursive
function f(x1, ... , xk) there is a formula ϕ(x1, ... , xk, y) with just the indicated k + 1
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8 NEIL TENNANT

variables free, such that for all natural numbers n1, ... , nk

ϕ(n1, ... , nk, a) �Q� a = f(n1, ... , nk),

with the parameter a not occurring in ϕ(x1, ... , xk, y).

Theorem 2 (Strong representability of decidable relations).7 Every decidable relation
R(n1, ... , nk) on the natural numbers can be strongly represented by a formula
�(x1, ... , xk) in the following sense:

for all natural numbers n1, ... , nk ,
if R(n1, ... , nk), then Q � �(n1, ... , nk); and
if not-R(n1, ... , nk), then Q, �(n1, ... , nk) � ⊥.

Theorem 3. Suppose that S is a theory that interprets Q. Let � be the sentence in the
language of S that axiomatizes Q upon the interpretation in question. Then S provides
fixed points, in the following sense:

for every formula �(x, y1, ... , yn) with just the indicated variables free,
there is a formula ϕ(y1, ... , yn) with just y1, ... , yn free, such that

�,�(ϕ(t1, ... , tn), t1, ... , tn) � ϕ(t1, ... , tn)

and

�, ϕ(t1, ... , tn) � �(ϕ(t1, ... , tn), t1, ... , tn).

Thusϕ(t1, ... , tn) is interdeducible, modulo �, with�(ϕ(t1, ... , tn), t1, ... , tn). Put another
way, the sentence ϕ(t1, ... , tn) ‘says of itself’ (via the coding, modulo �) that it has the
property �( , t1, ... , tn).

Proof. See [6]; and see [11] for their reprisal in the constructive and relevant system
C of Core Logic.

4.1. Predicates for formal provability in a system. It is useful to talk more generally
about systems S of formal arithmetic. Every system S that we shall consider will be
assumed to be complete for bounded sentences: that is, if ϕ is a true sentence of
the formal language of arithmetic containing no unrestricted quantifications, then S
proves ϕ. Robinson’s system Q has this property. (By ‘true’ here, of course, we mean
true in the intended model N of the natural numbers.)

The two-place proof-predicate PfS(x, y) in the formal language of first-order
arithmetic is so defined that it strongly represents the relation ‘x is the code number of a
proof, in the systemS, of the sentence with code number y’. Such ‘strong representation’
takes place in the following sense:

for all natural numbers n, m,
if n is the code number of a proof, in the system S, of the sentence
with code number m, then S proves PfS(n,m); and
if n is not the code number of a proof, in the system S, of the sentence
with code number m, then S refutes PfS(n,m).

7 Cf. S. C. Kleene, Introduction to Metamathematics, Van Nostrand, 1950, p. 195. Kleene says
that the relation is ‘numeralwise expressible’ rather than ‘strongly representable’.
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 9

The one-place provability-predicate PS(y) is defined as ∃xPfS(x, y). We shall re-write
PS(ϕ) as P[ϕ]. Sometimes we shall even omit the brackets, when no confusion can
result.

§5. Exposition of Tarski’s theorem. Tarski’s theorem ‘is’ the Liar, in the formal
setting introduced in §4. Let P be any unary formula. Once equipped with the rule
below of ‘P-Introduction’ in a sufficiently strong system S—thereby turning P into a
truth-predicate—one could take the famous Liar sentence �, which is the fixed point
(in the sense of Theorem 3) of the unary formula ¬P[x], and go through the reasoning
of the Liar Paradox in order to show that S is inconsistent. This insight in the context
of formal systems that express their own syntax is due to Tarski. The original insight,
concerning natural languages, is due to Eubulides, over two millenia ago, as we have
already pointed out.

Theorem 4 (Tarski). Suppose that the formal system S is sufficiently strong, and that it
has a predicate P that satisfies the rules of P-Introduction and P-Elimination:

S, � � P[�] ; 8

S, P[�] � � .
Then S is inconsistent.

Proof. Take � as the fixed point of the unary formula ¬P[x]. So we have the fixed-
point deducibilities

S, � � ¬P[�] ;

S,¬P[�] � � .
Of course we also have (by main supposition) the �-instances of the rules of
P-Introduction and P-Elimination:

S, � � P[�] ;

S, P[�] � � .
Use the first fixed-point deducibility to construct the following proof Ω of S, �,
P[�] � ⊥:

Ω S, � � ¬P[�]
P[�] � P[�] ¬L

P[�],¬P[�] � ⊥
cut.

S, �, P[�] � ⊥

8 Montague, in the hypotheses for his Lemma 3 (which is our Theorem 6), lays down a much
weaker ‘introductory’ condition on P than P-Introduction. The weaker condition is his
Condition 2:

� �
S � P[�],

which says that S proves P[�] (only) for logical theorems �.
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10 NEIL TENNANT

Then use Ω along with the second fixed-point deducibility and the �-instance of the
rule of P-Elimination to construct the following proof Θ of S � �:

Θ

S, P[�] � �
Ω

S, �, P[�] � ⊥
cut

S, P[�] � ⊥¬L
S � ¬P[�] S,¬P[�] � �

cut.

S � �
Finally use Θ and Ω once again, and the �-instance of the rule of P-Introduction to

construct the following proof of S � ⊥:

Θ
S � �

S, � � P[�]
Ω

S, �, P[�] � ⊥
cut

S, � � ⊥
cut.

S � ⊥

We remind the reader that this result, and the reasoning that establishes it, is on
the ‘arithmetical theorizing’ side of the topical divide essayed upon above. That is to
say, it shows that there is no definiens P in the arithmetical language that can be made
subject to the conditions expressed by the rules of P-Introduction and P-Elimination.
For, if there were such a definiens P, it would engender the inconsistency of the formal
system S of arithmetic, which—ex hypothesi, or in light of metamathematical proof
for particular choices of S—is sufficiently strong.

§6. Exposition of a theorem of Löb. The following are well-known facts about the
provability predicate. They can be shown to hold of any defined provability predicate
P obtained via the method of Gödel coding of sentences and proofs. We continue to
assume that S is a consistent and sufficiently strong system of first-order arithmetic.

1.
S � ϕ
S � Pϕ.

2. S, Pϕ, P[ϕ→�] � P�.9

3. S, Pϕ � P[Pϕ].10

Lemma 1.

S, ϕ � �
S, Pϕ � P�

9 See Boolos, The Logic of Provability, Cambridge University Press, 1993, for proofs,
terminating on p. 44.

10 Boolos (op. cit., pp. 46–49) proves, for the case where the system S is (or interprets) Peano
Arithmetic, a more general result than (3), from which (3) immediately follows: for Σ1-
sentences ϕ, we have PA, ϕ � P[ϕ]. Since P[ϕ] is Σ1, taking P[ϕ] as ϕ yields Condition (3)
(for S = PA). We do not, however, need to resort to having S so strong that it interprets PA.
It suffices if S interprets, in addition to Q, the axiom scheme of Σ1-induction. So for S here
we can take a system that interprets IΣ1 (I owe this observation to Vann McGee.) For more
on the systems IΣn , see [1].
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 11

Proof.

S, ϕ � � →R
S � ϕ→�

(1)
S � P[ϕ→�]

(2):
S, Pϕ, P[ϕ→�] � P�

cut.

S, Pϕ � P�

Lemma 2.

S, Pϕ � P[P[ϕ]→�]
S, Pϕ � P� .

Proof.

(3):
S, Pϕ � P[Pϕ]

Hyp:
S, Pϕ � P[P[ϕ]→�]

(2):
S, P[Pϕ], P[P[ϕ]→�] � P�

cut

S, Pϕ, P[Pϕ] � P�
cut

S, Pϕ � P�.

Lemma 3.

S, ϕ � P[ϕ]→�
S, Pϕ � P�.

Proof.
S, ϕ � P[ϕ]→�

(L1)
S, Pϕ � P[P[ϕ]→�]

(L2)
S, Pϕ � P�.

Lemma 4.

S, � � P[�]→ϕ S, Pϕ � ϕ
S, P� � ϕ.

Proof.

S, � � P[�]→ϕ
(L3)

S, P� � Pϕ S, Pϕ � ϕ
cut.

S, P� � ϕ

Lemma 5.

S, � � P[�]→ϕ S, P[�]→ϕ � � S, Pϕ � ϕ.
S � ϕ

Proof.

S, � � P[�]→ϕ S, Pϕ � ϕ
(L4)

S, P� � ϕ →R
S � P[�]→ϕ S, P[�]→ϕ � �

cut

S � �
(1)

S � P�
S, � � P[�]→ϕ S, Pϕ � ϕ

(L4)
S, P� � ϕ

cut.

S � ϕ

Theorem 5 (Löb).11 For all ϕ, if S, Pϕ � ϕ then S � ϕ.

Proof. Let ϕ be any sentence. Consider the predicate P[x]→ϕ. It has a fixed point.
Call it �. Thus we have S, � � P[�]→ϕ and S, P[�]→ϕ � �. Suppose now that
S, Pϕ � ϕ. Then by Lemma 5 it follows that S � ϕ.

11 See [3].
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12 NEIL TENNANT

Corollary 1 (Gödel’s Second). Suppose the logic of S contains the Absurdity Rule
( from ⊥ infer any sentence you like). Suppose S is consistent. Then S does not refute
P[0 = 1].

Proof. Suppose for reductio that S, P[0 = 1] � ⊥. Then by the Absurdity Rule we
have S, P[0 = 1] � 0 = 1. It follows by Theorem 5 that S � 0 = 1. But S interprets Q,
and Q, 0 = 1 � ⊥. So S � ⊥, contrary to the assumed consistency of S. Thus S does
not refute P[0 = 1].

Comments. In this section, we have assumed only such conditions on the provability
predicate P as can be shown to hold of any defined provability predicate P obtained via
the method of Gödel coding of sentences and proofs in any consistent extension ofQ. In
the next section we do something slightly different. We consider various conditions that
one might impose axiomatically on a primitive (not: defined) ‘provability’ predicate P.
P may be thought of as a single primitive monadic predicate. We call it a ‘provability’
predicate (note the scare quotes), and keep using the suggestive letter ‘P’, for the sake
of continuity. But it should be borne in mind that the predicate P might in some
cases be made subject to conditions weaker than those satisfied by an actual (defined)
provability predicate, or indeed in some cases stronger—more like a truth predicate
than a provability predicate.Since P is being taken as a primitive, it would acquire its
own Gödel code number. Complex expressions involving P (including formal proofs
involving sentences containing P) would thereby be assigned their own code numbers
according to the usual coding method. Since we shall be considering only theories that
interpret Robinson arithmetic Q, we shall be able to appeal to the fixed-point theorem
for those theories (see Theorem 3). And that theorem of course applies to all sentences
of the theory in question, including sentences that contain P.

Some of the conditions to be imposed on P will be identical to, or closely related to,
Conditions 1–3 above, which provably hold (as already remarked) when P is a genuine
(defined) provability predicate in a strong enough system. But the reader must bear in
mind that in what follows we are merely assuming that certain conditions hold of P,
and investigating the consequences of such assumptions.

§7. Exposition of a theorem of Montague. First, a simple result in Intuitionistic
Logic. We shall invoke it in due course in our constructive proof of Lemma 7.

Lemma 6.

�, 	 � 

� (
 → (� → ¬	)) → (� → ¬	).

Proof. Using the parallelized form of →-Elimination, the proof is as follows:

(5)

 → (� → ¬	)

(4)
� ,

(3)
	︸ ︷︷ ︸

...



(2)
� → ¬	

(4)
�

(1)
¬	

(3)
	

⊥ (1)
⊥

(2)
⊥ (3)
¬	 (4)

� → ¬	
(5)

(
 → (� → ¬	)) → (� → ¬	).
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 13

The sequent proof (in the sequent calculus for Intuitionistic Logic) that is isomorphic
to this last natural deduction (whose eliminations are parallelized) is as follows:

�, 	 : 


� : �
	 : 	
	, ¬	 :

�, 	, �→¬	 :
�, 	, 
 → (� → ¬	) :
�, 
 → (� → ¬	) : ¬	

 → (� → ¬	) : � → ¬	

: (
 → (� → ¬	)) → (� → ¬	).

Note that we have just used empty space on the left of the colon (when the antecedent
of the sequent in question is empty) and likewise empty space on the right of the colon,
in place of ⊥.

Consider now the following possible conditions on the provability predicate P
for a formal system S.12 Condition 3 governing the conditional is weaker than the
‘corresponding’ Condition 2 on conditionals that was used for Löb’s theorem in §6.

1. S � P[P[�] → �].

2.
� �

S � P[�].

3.
S � P[ϕ → �] S � P[ϕ]

S � P[�].
4. S, P[�] � �.

Lemma 7.

�, ϕ � P[� → ¬ϕ]
S � P[� → ¬ϕ].

Proof.

�, ϕ � P[� → ¬ϕ]
(L6)

� (P[� → ¬ϕ] → (� → ¬ϕ)) → (� → ¬ϕ)
(2)

S � P[(P[� → ¬ϕ] → (� → ¬ϕ)) → (� → ¬ϕ)]

(1) :
S � P[P[�] → �]

S � P[P[� → ¬ϕ] → (� → ¬ϕ)]
(3)

S � P[� → ¬ϕ].

Lemma 8.

�, ϕ � P[� → ¬ϕ] S, P[� → ¬ϕ] � ϕ
S � ϕ.

Proof.

�, ϕ � P[� → ¬ϕ]
(L7)

S � P[� → ¬ϕ] S, P[� → ¬ϕ] � ϕ
cut.

S � ϕ

Lemma 9.

�, ϕ � P[� → ¬ϕ]
S � � → ¬ϕ.

12 From now on we drop the scare quotes around ‘provability’.
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14 NEIL TENNANT

Proof.
�, ϕ � P[� → ¬ϕ]

(L7)
S � P[� → ¬ϕ]

(4) :
S, P[�] � �

S , P[� → ¬ϕ] � � → ¬ϕ
cut.

S � � → ¬ϕ
Observation 1. Suppose that S is a theory that interprets Q. Let � be the sentence in

the language of S that axiomatizes Q upon the interpretation in question. Then S � �.

Theorem 6 (Montague).13 Any theory S that interprets Q and whose provability
predicate P satisfies conditions (1)–(4) is inconsistent.

Proof. Let � be the sentence in the language of S that axiomatizes Q upon the
interpretation in question. By Observation 1 we have

S � �.
Consider the unary formula P[� → ¬x]. By Theorem 3 this formula has a fixed point.
Call it ϕ. So we have both

�, P[� → ¬ϕ] � ϕ
and

�, ϕ � P[� → ¬ϕ].

From the last three displayed deducibilities we now reason as follows:

�, ϕ � P[� → ¬ϕ]
S � � �, P[� → ¬ϕ] � ϕ

cut

S, P[� → ¬ϕ] � ϕ
(L8)

S � ϕ
S � �

�, ϕ � P[� → ¬ϕ]
(L9)

S � �→¬ϕ
→-E

S � ¬ϕ
¬-E.

S � ⊥

Supplying the proofs of Lemmas 8 and 9, and the proof of Lemma 7 within that of
Lemma 9, we obtain the following proof (so wide that it is in landscape mode). Within
the proof of Lemma 7 we have got rid of the coloration and repetition of sentences.
The premise of Lemma 7 is now written in red, and its conclusion in blue, in order to
help the reader to see what proof-work would need to be substituted for the vertical
dots.

13 This is Montague’s Lemma 3 in [5] at p. 289. We are rendering Montague’s proof more
perspicuous by casting it into natural deduction in the metalanguage.
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�, ϕ � P[�→¬ϕ]
...

S � P[�→¬ϕ]
S � � �, P[�→¬ϕ] � ϕ

cut

S, P[�→¬ϕ] � ϕ
cut

S � ϕ
S � �

�, ϕ � P[�→¬ϕ]
(L6)

� (P[�→¬ϕ]→(�→¬ϕ))→(�→¬ϕ)
(2)

S � P[(P[�→¬ϕ]→(�→¬ϕ))→(�→¬ϕ)]

(1) :
S � [P[�]→�]

S � P[P[�→¬ϕ]→(�→¬ϕ)]
(3)

S � P[�→¬ϕ]

(4) :
S, P[�] � �

S, P[�→¬ϕ] � �→¬ϕ
cut

S � �→¬ϕ
→ -E

S � ¬ϕ
¬-E

S � ⊥
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16 NEIL TENNANT

7.1. Comments on Montague’s conditions on a formal provability predicate. The
conditions on a formal provability predicate that Montague’s Theorem shows cannot
be met by any sufficiently strong, consistent theory are, in one regard at least, rather
weak. Note that Condition 4

S, P[�] � �

can be thought of as the rule of P-Elimination. Now of course the straightforwardly
corresponding rule of P-Introduction

P-Introduction S, � � P[�]

would turn P into a truth-predicate. This rule says that for any �, the system S proves
P[�] from the assumption �. This is obviously too strong a condition to impose on
provability. Nevertheless, we shall continue to make merely formal use of a predicate P,
so that the results produced by working with the overly strong rule will be easy to
compare with earlier results above.

Lemma 10. P-Introduction, along with P-Elimination (Condition 4), implies that P
satisfies Conditions 1–3.

Proof. Condition 1 is derived as follows:

(4) :
S, P[�] � � →R
S � P[�]→�

P-Intro:
S, P[�]→� � P[P[�]→�]

cut.

S � P[P[�]→�]

Condition 2 is derived as follows:

� �
P-Intro:

S, � � P[�]
cut.

S � P[�]

Condition 3 is derived as follows:

P-Intro :
S, � � P[�]

→-Lϕ � ϕ � � �
ϕ→�,ϕ � �

S � P[ϕ → �]
(4):

S, P[ϕ→�] � ϕ→�
cut

S � ϕ→�
cut

S, ϕ � �
S � P[ϕ]

(4) :
S, P[ϕ] � ϕ

cut

S � ϕ
cut

S � �
cut.

S � P[�]

§8. Exposition of McGee’s version of a Liar paradox. Vann McGee, in [4], at
p. 26, states what he calls ‘Theorem 1.4 (Montague)’. This is Montague’s Theorem
3 at p. 293 of [5]. It is not Montague’s Lemma 3, p. 289 (our Theorem 6), nor is it
Montague’s Theorem 1, loc. cit., pp. 292–293. Whereas Montague’s Theorem 3 follows
(by Lemma 10) as an immediate consequence of his Lemma 3 (which uses Conditions
1–3 instead of P-Introduction), McGee furnishes a detailed proof of Montague’s
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 17

Theorem 3 from simpler P-conditions, of which there are only two (see Theorem 7
below).14

McGee uses the introductory condition that the system S proves P[�] whenever S
proves �. This condition is stronger than Condition 2 for Montague’s Lemma 3 (that
the system proves P[�] whenever � is a logical theorem). Yet it is not so strong as to
make P into a truth-predicate. Rather, McGee’s introductory condition is one that it
would be plausible to think is satisfied by a provability predicate. Here are McGee’s
‘introductory’ and ‘eliminative’ conditions for P:

S � �
S � P[�]

(stronger than
� �

S � P[�]
, but plausible for provability);

S, P[�] � �.
It may be a little surprising to the reader to learn that the Liar Paradox affects any

sufficiently strong system S for which these P-conditions hold.

Theorem 7 (McGee). Suppose S is sufficiently strong, and that its provability predicate
P satisfies McGee’s introductory and eliminative conditions

S � �
S � P[�]

and S, P[�] � �.

Then S is inconsistent.

Proof. Once again take � as the fixed point of the unary formula ¬P[x]. So we have
the deducibilities

S, � � ¬P[�] and S,¬P[�] � � .
Of course we also have the �-instances of McGee’s introductory and eliminative
conditions on P:

S � �
S � P[�]

and S, P[�] � �.

Here is a faithful formalization of McGee’s reasoning, using the last four displayed
conditions. First, construct the following one-step sequent proof Π of S � �:

Π
S,¬P[�] � � S, P[�] � �

S � �.

14 Being no expert on the exact historical order and possibility of disagreements about priority
in these complicated matters, the present author feels obliged to share with his reader the
following helpful remark from an anonymous referee:

The paradox listed as McGee’s version of the Liar paradox (§8) is actually
what I had been taught by the folklore and by my teachers (informally at least)
to call the Montague paradox, and not the more complicated construction
in §7.

The present author is confining his efforts to the constructive formalization of the deductive
reasoning he finds in the various papers cited, and making attributions accordingly, trusting
that the various authors cited would not have overlooked any need to accord credit for any
their results to predecessors.
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18 NEIL TENNANT

Then use Π to reason as follows:

Π
S � �

Π
S � �

S � P[�]

S, � � ¬P[�]
P[�] � P[�]
P[�],¬P[�] � ⊥

cut

S, P[�], � � ⊥
cut

S, � � ⊥
cut.

S � ⊥
This ends our formalization of McGee’s reasoning.

McGee’s reasoning looks strictly classical, since there is a prima facie application
of classical dilemma in the subproof Π.15 But this classicality is only apparent; the
reasoning can be constructivized. To see this, let us give the name Σ to the following
(constructive) subproof at the top right of the immediately foregoing proof-display:

Σ S, � � ¬P[�]
P[�] � P[�]
P[�],¬P[�] � ⊥

cut.

S, P[�], � � ⊥
Then continue constructively as follows:

S, P[�] � �
Σ

S, P[�], � � ⊥
cut

S, P[�] � ⊥ ¬R
S � ¬P[�] S,¬P[�] � �

cut.

S � �

Call this last proof Π∗. Now finish off (constructively) as follows:

Π∗

S � �

Π∗

S � �
S � P[�]

Σ
S, P[�], � � ⊥

cut

S, � � ⊥
cut.

S � ⊥

§9. Exposition of a theorem of McGee about �-inconsistency. If English had a
suitably short and stylistically attractive word for ‘lengthy exposition’, it would have
been the first word in the title of this section. It is necessary to go through the logical
details that lie ahead in this section with the same granular precision as was involved
in §5–§8. We thereby set ourselves the strongest challenge in the proposed project of
showing (on the other side of the topical divide) that the reasoning with a primitive
predicate would be so formalizable as to be revealed as logico-semantically paradoxical.

Definition 1. S is �-inconsistent just in case for some unary formula �x, we have that

for every natural number n, S � �n,
and yet have also that

S,∀x(Nx → �x) � ⊥.

15 This corresponds to McGee’s step to his (iii)—ibid., at p. 26.
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 19

McGee proves another result, this time establishing the �-inconsistency of any
system S that interprets Q,16 and that satisfies certain conditions on a ‘provability’
predicate P (primitive or defined).

The conditions McGee places on S are as follows. Note that Conditions 1 and 2 are
as in the foregoing discussion of Löb’s Theorem.

1.
S � ϕ
S � Pϕ.

2. S, Pϕ, P[ϕ→�] � P�.
3. S, P[¬ϕ], P[ϕ] � ⊥.
4. S,∀x(Nx → P[ϕx]) � P[∀x(Nx → ϕx)].

9.1. Introductory and eliminative aspects of P. The reader will recall our having
noted that McGee’s Condition 2 here (also used by Löb), dealing with P and →,
is stronger than Montague’s corresponding Condition 3. Neither Löb nor McGee,
however, have a reasonably full-blooded rule of P-Elimination like Montague’s
Condition 4. One needs a certain amount of ‘P-Introduction’ and a certain amount
of ‘P-Elimination’ in order to cross the line into the territory of semantic paradox.
Löb has very little of the latter—indeed, only his Condition 2 (which he shares with
McGee) has any hint of ‘eliminativeness’ to it. On the ‘introductory’ side, Montague has
only the rather weak Condition 2, whereas McGee now has the significantly stronger
Condition 1 (which he shares with Löb).

It would appear, then, that the untoward result of �-inconsistency that McGee
establishes (see Theorem 8 below) from the four conditions just listed above must
engender, via its Conditions 2–4 reprised here:

2. S, Pϕ, P[ϕ→�] � P�.
3. S, P[¬ϕ], P[ϕ] � ⊥.
4. S,∀x(Nx → P[ϕx]) � P[∀x(Nx → ϕx)].

just enough ‘eliminativeness’ regarding P, to match the introductory flavor of
Condition 1. That eliminativeness can be detected clearly in Conditions 2 and 3.
Both these conditions invite one to think of P as being ‘locally’ eliminable—‘locally’,
because the contexts involve the conditional and negation, respectively. Let us illustrate
this thought by taking each of Conditions 2 and 3 in turn.

First, consider Condition 2. Within S, the obvious reasoning that would be invited
in order to ‘derive’ Condition 2 would involve eliminating P from Pϕ to get ϕ, then
eliminating P from P[ϕ → �] to get ϕ → �, then performing →-Elimination to get�,
and finally appealing to Condition 1 to reintroduce P so as to get P�.

Secondly, consider Condition 3. Within S, the obvious reasoning that would be
invited in order to ‘derive’ Condition 3 would involve eliminating P from Pϕ to get ϕ,
then eliminating P from P[¬ϕ] to get ¬ϕ, then performing ¬-Elimination so as to
get ⊥.

McGee’s Condition 4 invites a similar line of reflection. Note that this is the
only condition (among those of all three of the writers under consideration in this

16 Strictly speaking, McGee uses the weaker, infinitely axiomatized Robinson arithmetic R
(supplemented by the assertions that the successor function is one–one and that zero is not
a successor) in place of the stronger, finitely axiomatized Robinson arithmetic Q. Nothing
in our exposition turns on this difference.
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20 NEIL TENNANT

study) that involves the proper understanding of universal (numerical) quantification.
Interestingly, however, Condition 4 contributes—or so the present author believes—a
considerable degree of both ‘introductory’ and ‘eliminative’ force for P within S. The
matter is quite subtle, and merits further explanation.

We have just considered the natural lines of reasoning ‘within S’ that might generate
Conditions 2 and 3. So let us now embark on a similar thought-experiment for
Condition 4.

The natural way to ‘force’ a universal numerical quantification to be true if all its
numerical instances are true is to adopt the infinitary �-rule

ϕ0 ϕ1 ... ϕn ...

∀x(Nx → ϕx).

Suppose that ∀x(Nx → P[ϕx]). For each natural number n, the system S proves
Nn. Hence by ∀-Elimination and →-Elimination we can infer P[ϕn]. Partial progress
report: we now have, for each natural number n, that

S , ∀x(Nx → P[ϕx]) � P[ϕn].

Put another way: we have, for each natural number n, a proof of the form

S , ∀x(Nx → P[ϕx])︸ ︷︷ ︸
...

P[ϕn].

At this stage a natural-seeming eliminative move would seem to be invited, to infer
ϕn. Note, however, that this move would be made (within the system S) under the
supposition ∀x(Nx → P[ϕx]). So the P-Elimination rule being applied here would
take the considerably more powerful form

S,Δ � P[�]
S,Δ � � or

S , Δ︸ ︷︷ ︸
...
P[�]
�,

which is nothing less than the straightforward rule of P-Elimination that can be stated
simply as

P[�]
�.

Imagine, however, that we stifle our scruples about using such a powerful rule, and
proceed in our quest to exploit the �-rule in order to attain our ultimate goal.
Application of the �-rule at this stage yields only ∀x(Nx → ϕx). The picture is as
follows: ⎧⎪⎪⎨

⎪⎪⎩

S , ∀x(Nx → P[ϕx])︸ ︷︷ ︸
...

P[ϕn]

⎫⎪⎪⎬
⎪⎪⎭
n∈�

∀x(Nx → ϕx).
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 21

Our ultimate goal, however, is P[∀x(Nx → ϕx)]. In order to attain it, we appear to
need brute force: simply infer it now from ∀x(Nx → ϕx). This would require a rule of
P-Introduction in the form

S,Δ︸︷︷︸
...
�
P[�],

which simplifies down to

�
P[�]

.

Of course, the imputation that these straightforward introduction and elimination rules
for P are what is required to do the job has to be taken cum grano salis, since Δ is far
more general than S,∀x(Nx → ϕx). But the impression is inescapable that Condition
4 embodies a requirement of ‘introductoriness’ and ‘eliminativeness’ on the part of P to
a degree that makes it a candidate for (at least some kind of) semantic paradoxicality.
And that is what McGee’s theorem shows—at least, for one who contends that there
is this organic connection between:

(i) the arithmetical impossibility and (ii) the logico-semantic paradoxicality,
that arise, respectively, upon
(i) assuming the predicate to be definable, or (ii) taking it as a primitive.

9.2. Back to the proof of McGee’s theorem.

Theorem 8 (McGee). Suppose that S interprets Q and satisfies McGee’s Conditions
1–4 stated above. Then S is �-inconsistent.

Proof. To follow in due course. Our overriding concern here is to ensure that the
proof is constructive.

Lemma 11.
∀x(Nx → Ψx)
∀x(Nx → Ψsx).

Proof.

(1)
Na
Nsa

∀x(Nx → Ψx)
Nsa → Ψsa
Ψsa (1)

Na → Ψsa
∀x(Nx → Ψsx).

Lemma 12.
∀x(Nx → ∀z(Ξxz → Θz)) ∀x(Nx → Ξxt)

∀x(Nx → Θt).
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22 NEIL TENNANT

Proof.

(1)
Na

∀x(Nx → ∀z(Ξxz → Θz))
Na → ∀z(Ξaz → Θz)
∀z(Ξaz → Θt)

Ξat → Θt

(1)
Na

∀x(Nx → Ξxt)
Na → Ξat
Ξat

Θt (1)
Na → Θt

∀x(Nx → Θt).

9.3. McGee’s diagonalization. Take G(x, y, z, w0) to abbreviate the formula that
formalizes the following open sentence:17

w0 is a formula of the form

H (x, y, z) ∧ ((x = 0 ∧ z = y) ∨ ∃w(Nw ∧ x = sw ∧ z = ∀v(#–1(w0)xzwv → 
(v)))).

Now use Theorem 3 to find a formula F (x, y, z) so that S proves

∀x∀y∀z(F (x, y, z) ↔ G(x, y, z, F (x, y, z)))

—that is, so that S proves

∀x∀y∀z(F (x, y, z) ↔

[F (x, y, z) is a formula of the form

H (x, y, z) ∧ ((x = 0 ∧ z = y) ∨ ∃w(Nw ∧ x = sw ∧ z = ∀v(#–1(F (x, y, z))xzwv → 
(v)))))].

Note that

#–1(F (x, y, z))xzwv = F (x, y, z)xzwv = F (w, y, v).

So S proves

∀x∀y∀z(F (x, y, z) ↔

[F (x, y, z) is a formula of the form

H (x, y, z) ∧ ((x = 0 ∧ z = y) ∨ ∃w(Nw ∧ x = sw ∧ z = ∀v(F (w, y, v) → 
(v)))))].

Once the choice of F (x, y, z) is made, the left-hand conjunct of the right-hand side
of the biconditional, namely

F (x, y, z) is a formula of the formH (x, y, z),

will be true, hence, ex hypothesi, provable in S. Therefore S will prove

∀x∀y∀z(F (x, y, z) ↔ ([(x = 0 ∧ z = y)∨

∃w(Nw ∧ x = sw ∧ z = ∀v(F (w, y, v) → 
(v))))]).

17 Here I am indebted to Vann McGee (personal correspondence).
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 23

9.4. Some deducibilities, in S, involving the ternary relation F (x, y, z). From the
last displayed sentence we can infer that the following interdeducibilities hold within
the system S:

(i) F (0, u, a) �S� a = u ;
(ii) F (t, u, a) �S�

(t = 0 ∧ a = u) ∨ ∃w(Nw ∧ t = sw ∧ a = ∀v(Fwuv → P(v)) ).

Let us concentrate on (ii), first in the right-to-left direction:

(ii.a) S , (t = 0 ∧ a = u) ∨ ∃w(Nw ∧ t = sw ∧ a = ∀v(Fwuv → P(v)) )
� F (t, u, a).

By the properties of disjunction, we have

(iii) S , ∃w(Nw ∧ t = sw ∧ a = ∀v(Fwuv → P(v)) ) � F (t, u, a).
We shall make use of a substitution instance of (iii) presently.
Now consider (ii) in the left-to-right direction, in the case where t is of the form sk.

The left-hand disjunct in this case becomes (sk = 0 ∧ a = u). But Q, sk = 0 � ⊥; so
the left-hand disjunct leads to absurdity. From F (sk, u, a) it follows, then, that

∃w(Nw ∧ sk = sw ∧ a = ∀v(Fwuv → P(v)) ).

Note that Q, sk = sw � k = w. So it follows from the last claim that

a = ∀v(Fkuv → P(v)).

We have therefore shown that

(iv) S , F (sk, u, a) � a = ∀v(Fkuv → P(v)).

9.5. The fixed point 	. With the formula F (x, y, z) in hand, McGee appeals to
Theorem 3 once more, this time to find a sentence 	 that is a fixed point for the unary
formula

¬∀x(Nx → ∀z(F (x, y, z) → P(z)))

(with free variable y). This yields the interdeducibility
(v) 	 �S� ¬∀x(Nx → ∀z(F (x, 	, z) → P(z))).

Using in (iii) the substitutions
t
↓
sb

u
↓
	

a
↓

∀v(F b	v → P(v))
we obtain

Observation 2.

S , ∃w(Nw ∧ sb = sw ∧ ∀v(F b	v → P(v)) = ∀v(Fw	v → P(v)) )

� F (sb, 	,∀v(F b	v → P(v)) ).

9.6. Back to proving lemmas.

Lemma 13. S , Nb � F (sb, 	,∀v(F b	v → P(v)) ).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S175502032510097X
Downloaded from https://www.cambridge.org/core. IP address: 10.9.184.56, on 14 Nov 2025 at 21:33:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S175502032510097X
https://www.cambridge.org/core


24 NEIL TENNANT

Proof.

S ,

Nb

Nb
∃! a
∃! sb
sb = sb

Nb ∧ sb = sb ∀v(F b	v → P(v)) = ∀v(F b	v → P(v))

Nb ∧ sb = sb ∧ ∀v(F b	v → P(v)) = ∀v(F b	v → P(v))

∃w(Nw ∧ sb = sw ∧ ∀v(F b	v → P(v)) = ∀v(Fw	v → P(v)))︸ ︷︷ ︸
... by Observation 2

F (sb, 	,∀v(F b	v → P(v)) ).

Lemma 14. S � ∀x(Nx→F (sx, 	,∀v(F (x, 	, v)→P(v)))).

Proof. Immediate from Lemma 13, in which b is parametric:

S ,
(1)

Nb︸ ︷︷ ︸
... by (L13)

F (sb, 	,∀v(F (b, 	, v)→P(v)))
(1)

Nb→F (sb, 	,∀v(F (b, 	, v) → P(v)))

∀x(Nx→F (sx, 	,∀v(F (x, 	, v)→P(v)))).

Lemma 15.
∀x(Nx → ∀z(F (x, 	, z) → P(z)))
∀x(Nx → ∀z(F (sx, 	, z) → P(z))).

Proof. In Lemma 11, use the substitution

Ψx
↓

∀z(F (x, 	, z) → P(z)).

Lemma 16.

∀x(Nx→∀z(F (sx, 	, z)→P(z))) ∀x(Nx→F (sx, 	,∀z(F (x, 	, z)→P(z))))
∀x(Nx→P[∀z(F (x, 	, z)→P(z))]).

Proof. In Lemma 12:

∀x(Nx → ∀z(Ξxz → Θz)) ∀x(Nx → Ξxt)
∀x(Nx → Θt)
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 25

use the substitutions

Ξxz
↓

F (x, 	, z)

Θ
↓
P

t
↓

∀z(F (x, 	, z)→P(z)).

Lemma 17.

∀x(Nx→∀z(F (x, 	, z)→P(z))) ∀x(Nx→F (sx, 	,∀z(F (x, 	, z)→P(z))))
P[∀x(Nx→∀z(F (x, 	, z)→P(z)))].

Proof. Immediate by (4) and Lemmas 15 and 16:

S ,

∀x(Nx→∀z(F (x, 	, z)→P(z)))
(L15)

∀x(Nx → ∀z(F (sx, 	, z) → P(z))) ∀x(Nx→F (sx, 	, ∀z(F (x, 	, z)→P(z))))
(L16)

∀x(Nx→P[∀z(F (x, 	, z)→P(z))])︸ ︷︷ ︸
... by (4)

P[∀x(Nx→∀z(F (x, 	, z)→P(z)))].

Lemma 18. S,∀x(Nx→∀z(F (x, 	, z)→P(z))) � P[	].

Proof.

S , 	 = 	︸ ︷︷ ︸
... by (i)

F (0, 	, 	)

∀x(Nx→∀z(F (x, 	, z)→P(z)))
N0→∀z(F (0, 	, z)→P(z)) N0

∀z(F (0, 	, z)→P(z))
F (0, 	, 	)→P[	]

P[	].

Lemma 19. S � P[	→¬∀x(Nx→∀z(F (x, 	, z)→P(z)))].

Proof.

S ,
(1)
	︸ ︷︷ ︸
... by (v)

¬∀x(Nx→∀z(F (x, 	, z)→P(z)))
(1)

	→¬∀x(Nx→∀z(F (x, 	, z)→P(z))) (1)
P[	→¬∀x(Nx→∀z(F (x, 	, z)→P(z)))].

Lemma 20. S , ∀x(Nx→∀z(F (x, 	, z)→P(z))) �
P[¬∀x(Nx→∀z(F (x, 	, z)→P(z)))].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S175502032510097X
Downloaded from https://www.cambridge.org/core. IP address: 10.9.184.56, on 14 Nov 2025 at 21:33:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S175502032510097X
https://www.cambridge.org/core


26 NEIL TENNANT

Proof. Immediate from (2) and Lemmas 18 and 19:

S , ∀x(Nx→∀z(F (x, 	, z)→P(z)))︸ ︷︷ ︸
... (L18)

P[	]

S
... (L19)

P[	→¬∀x(Nx→∀z(F (x, 	, z)→P(z)))] (2)
P[¬∀x(Nx→∀z(F (x, 	, z)→P(z)))].

Lemma 21. S , ∀x(Nx→∀z(F (x, 	, z)→P(z))) �
P[∀x(Nx→∀z(F (x, 	, z)→P(z)))].

Proof. Immediate by Lemmas 14, 15, and 17:

S , ∀x(Nx→∀z(F (x, 	, z)→P(z))) ,

S
... (L14)

∀x(Nx → ∀z(F (x, 	, z) → P(z)))
(L15)

∀x(Nx → ∀z(F (sx, 	, z) → P(z)))︸ ︷︷ ︸
... (L17)

P[∀x(Nx→∀z(F (x, 	, z)→P(z)))].

Lemma 22. S , ∀x(Nx→∀z(F (x, 	, z)→P(z))) � ⊥.

Proof. Immediate by (3) and Lemmas 20 and 21:

S , ∀x(Nx→∀z(F (x, 	, z)→P(z)))︸ ︷︷ ︸
... (L20)

P[¬∀x(Nx→∀z(F (x, 	, z)→P(z)))]

S , ∀x(Nx→∀z(F (x, 	, z)→P(z)))︸ ︷︷ ︸
... (L21)

P[∀x(Nx→∀z(F (x, 	, z)→P(z)))]
(3).

⊥

Lemma 23. S � 	.

Proof. Immediate by (v) and Lemma 22:

S ,

S ,
(1)

∀x(Nx→∀z(F (x, 	, z)→P(z)))︸ ︷︷ ︸
... (L22)
⊥ (1)

¬∀x(Nx→∀z(F (x, 	, z)→P(z)))︸ ︷︷ ︸
... (v)
	.
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Lemma 24. S � P[	], i.e., S � P(	).

Proof. Immediate from Lemma 23 by Condition 1.

Lemma 25. S � ∀z(F (0, 	, z) → P(z)).

Proof.

S ,
(1)

F (0, 	, a)︸ ︷︷ ︸
... by (i)

a = 	

S
... (L24)

P(	)
P(a)

(1)
F (0, 	, a) → P(a)

∀z(F (0, 	, z) → P(z)).

Lemma 26. S � P[∀z(F (0, 	, z) → P(z))], i.e., S � P(∀z(F (0, 	, z) → P(z))).

Proof. Immediate from Lemma 25 by Condition 1.

Lemma 27. For all n, we have S � ∀z(F (n, 	, z) → P(z)).

Proof. By mathematical induction on n. The basis is accomplished by Lemma 25.
Now assume the Inductive Hypothesis that

S � ∀z(F (k, 	, z) → P(z)).

It follows by Condition 1 that

(vi) S � P[∀z(F (k, 	, z) → P(z))].
For the inductive step, consider the following proof within the system S:

S ,
(1)

F (sk, 	, a)︸ ︷︷ ︸
... by (iv)

a = 	

S
... by (vi)

P(	)
P(a)

(1)
F (sk, 	, a) → P(a)

∀z(F (sk, 	, z) → P(z)).

Thus S � ∀z(F (sk, 	, z) → P(z)). The result now follows by induction.

Recall Lemma 22: S , ∀x(Nx→∀z(F (x, 	, z)→P(z))) � ⊥. It follows that S is
�-inconsistent. This completes our constructive proof of Theorem 8.

§10. Concluding summary. We gather here the main results constructively proved
in full formal detail above. This is for the convenience of the reader who might wish,
on the other side of the topical divide, to pursue ‘paradoxicality analyses’ of any of
them.
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28 NEIL TENNANT

We have seen that in the case of Theorem 4 both sides of the divide have been worked
out. We remind the reader that in our exposition of Theorems 5–8 we have been working
on the metamathematical and arithmetical side of the topical divide, establishing
the straightforward impossibility of furnishing definitions, within the language of
arithmetic, of predicates P satisfying the respective and various combinations of
conditions. Below is our summary list of those theorems, with their respective sets
of P-conditions. We remind the reader that in these metamathematical theorems there
is no occasion to discuss matters of normal form or normalizability. Those matters
come into play only on the other side of the topical divide, when one studies the
structures of the disproofs that are involved as regimentations of the reasoning involved
in diagnosing logico-semantic paradoxicality.

Theorem 4 (Tarski). Suppose that the formal system S is sufficiently strong, and that it
has a predicate P that satisfies the rules of P-Introduction and P-Elimination:

S, � � P[�] and S, P[�] � �.
Then S is inconsistent.

Theorem 5 (Löb). For all ϕ, if S, Pϕ � ϕ then S � ϕ.

Theorem 6 (Montague). Any theory S that interprets Q and whose provability predicate
P satisfies the following four conditions is inconsistent:

1. S � P[P[�] → �].

2.
� �

S � P[�].

3.
S � P[ϕ → �] S � P[ϕ]
S � P[�].

4. S, P[�] � �.
Theorem 7 (McGee). Suppose S is sufficiently strong, and that its provability predicate
P satisfies the introductory and eliminative conditions

S � �
S � P[�]

and S, P[�] � �.

Then S is inconsistent.

Theorem 8 (McGee). Suppose thatS interpretsQ and satisfies the four conditions stated
below. Then S is �-inconsistent.

1.
S � ϕ
S � Pϕ.

2. S, Pϕ, P[ϕ→�] � P�.
3. S, P[¬ϕ], P[ϕ] � ⊥.
4. S,∀x(Nx → P[ϕx]) � P[∀x(Nx → ϕx)].

On the other side of the topical divide, we conjecture, would be complementing
revelations of the logico-semantic paradoxicality that would ensue if one were to
take these various sets of conditions as new rules of inference directly governing a
freshly adopted primitive predicate P (in an extension of the language of arithmetic).
That would require demonstrating that the new rules of inference would engender
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CONSTRUCTIVE ARITHMETICAL IMPOSSIBILITIES 29

paradoxical disproofs, where the paradoxicality consists in their non-normalizability.
The reduction sequences emanating from such a disproof would fail to terminate.

We commend this unfinished business as a challenging and potentially rewarding
research program.
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