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STIEFEL-WHITNEY CLASSES OF A SYMMETRIC BILINEAR 
FORM — A FORMULA OF SERRE 

BY 

VICTOR SNAITH 

ABSTRACT. Let K be a field of characteristic different from two. Let L 
be a finite separable extension of K. If K is the separable closure of K, we 
have a continuous homomorphism TT : Ga{K/K) —> X„(n - [L : K]). We 
give a very short proof of Serre's formula which evaluates the Hasse-Witt 
invariant of a symmetric bilinear form, transferred from L, in terms of the 
topological Stiefel-Whitney classes of IT. 

1. Let K be a field of characteristic different from two and suppose that L/K is a 
finite separable extension. Write K for the separable closure of K and G(M/K) for the 
Galois group of a finite normal, separable extension of K. G(K/K) is the profinite 
group lim G(M/K), always considered with the profinite topology ([11], 1.1). 

M 

L/K is equivalent to the following data. Let N/K be the normal closure of L/K then 
we have, by the normal basis theorem, a map \:G(K/K) —> 2W, the symmetric 
group n( = [L:K]) letters. The image of X acts transitively on {1, . . . , n} and if 
H = X"1 (stabiliser of 1) then L = NH, the fixed field of //. Of course, 
[G(K/K):H] = [G(N/K):K(H)] = n. 

1.1. Now let (V, P) be a non-singular symmetric, bilinear form over L of rank m. 
The Scharlau transfer, Trf /K, [L] of (V, P) is the non-singular symmetric, bilinear form 
obtained by considering V as an nm-dimensional A'-vector space and forming the 

ft ' i fjiff 
composition V x V -^ L > K. 

An important example is (L), the Trace Form of L/K, which is Trf/A:(l) where (1) 
is the form given by the product on L. 

Since char K ± 2, any symmetric, bilinear form over K may be diagonalised to look 
like 

(a,) © . . . 0 <am) where a, E K 

and where (a,) : K x À'—> K is given by (a;)(jc, v) = ayjcv. Each a, defines (a,) E 
H\G(K/K)\ Z/2) = lim Horn {G{M/K), Z/2) which sends g E G(K/K) to 

__ _ M/K 

(V^j)'1 g(V^j) e {±\}. 
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1.2. DEFINITION. The i-th Stiefel-Whitney class of(V, p) ([3], [6]), is defined to be 

w,((V, p)) = ^-((a,), (a2), . . . , (am)) E H\G(K/K)\ Z/2) 

w/iere a, w the i-th elementary symmetric function. 

1.3. REMARK. When ^ is a number field, the Witt class of ( V, (3) E W(AT) is entirely 
determined by rank (V, p), w{(V, P), w2(V, P) and signatures (see [6] for example). 

1.4. By diagonalising a symmetric, bilinear form over L, we can consider it as giving 
rise to a representation [V, p] : G(K/L) -> (Z/2)m = {± \}m defined over any field — 
for example, (R, the real numbers. For if V = (a,) © . . . © (am) then (a,) © . . . © 
(am) is such a representation. Since \G(K/K) : G(K/L)] = n we may form the induced 
representation 

(1.5) Tr,V[V, p]) = U[G(K/K)] ®R[C(*/L)][V, P]. 

Of course, a real representation of G(K/K) is entitled to Stiefel-Whitney classes in the 
topological sense ([5], [8]). 

The following attractive formulae are originally due to J-P. Serre [13]. I learnt of it 
from conversations with Pierre Conner. My proof, which is extremely short, is a 
product of a more general framework which I developed in order simultaneously to 
tackle (i) these formulae in higher dimensions and (ii) to obtain similar formulae for 
Milnor's ^-theory characteristic classes. It seemed a good idea to isolate this result — 
as my other material is monolithic and incomplete. 

1.6. THEOREM. Let L/K be a finite separable field extension of characteristic not 
equal to two. Let (V, P) be a non-singular, symmetric, bilinear form over L. Then 

(0 WX{TTS
L/K(V, P)) = WX(TTV

L/K[V9 p]) E H](G(K/K); Z/2). 

(ii) w2(Trs
L/K(V, P)) = W2(JTV

L/K[V, p]) + rank (V, p){(2)w1(Tr[/j,(l»} 

E H2(G(K/K); Z/2). 

(iïi) w3(Trs
L/K(V, P)) = W3(Tr[/[V, p]) + rank (V, P) { ( 2 ) ^ ( ^ 0 » 

x M T r ^ U ) ) + WXÇTTIAV, P])]} 

in H\G(K/K); Z/2). 

1.7. In addition to the references given above, other references concerning sym­
metric, bilinear forms are [2], [7] and [9]. 

2. Proof of Theorem 1.6. 

2.1. Recall, by Galois descent theory, that non-singular, symmetric, bilinear forms 
of rank m are classified by HX(G(K/K)\ Om{K)) ([12], pp. 152-153). This in turn 
coincides with continuous homomorphisms/:G(A7/0 —» G(K/K) « Om(K) of the 
form/"(g) = (g, <j>(g)), UP t 0 composition with an inner automorphism given by an 
element of Om(K). If (V, P) is a bilinear form, we choose a basis so that (V, P) is 
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given by a symmetric m x m matrix B E GLmK,thcn choose A E GLmK so that 
B = AAT and set <|>(g) = A_,g(A). Notice that if (V, p) - (a,) © . . . 0 <aw), then 
c|> is the diagonal homomorphism, diag ((a0, • •, (ou))- For us, Om(M) = {X E 
GLmM|XXr = U . 

2.2. LEMMA. Lfader the conditions of 1.6, suppose (V, P) w represented by a 
diagonal homomorphism, <f>(V,p), ^ /« 2.1, then Trs

L/K(V, P) w represented byf(s) = 
(#, Tr[/^[V, p](g)), ï/i die /wtorio/i o/f7.5J. 

PROOF. This is very straightforward — probably well-known to experts in quadratic 
forms — so I will give merely the key details. 

In general if, as in 2.1, (V, P) is represented by B = AAT, let V!, . . . , vn be a basis 
for L/K. Form an nm x nm matrix A consisting of n2m x m blocks. The (/, y)-th 
m x m block in A is g,-(v/A) where gu . . . , gn are coset representatives for 
G(K/K)/G(K/L). If C has (ij)-th m x m block |/(vyA_I) and <L) is then x «matrix 
of the trace form of L/K, then C((L)~l 0 lm) - A~l. One easily computes the 
representing cocyle for Trs

L/K(V, P) as this has matrix AÂJ, using the consequences of 
the equation C((L)~l 0 Im)Â = lnm to smooth the apparently complicated algebra. 

2.3. Let 9 : Om(M) -* M*/M** denote the Spinor norm ([9], p. 137), where M** 
denotes the non-zero squares in M. We will need to recall that 6 is a homomorphism 
and on a permutation matrix, a, 9(a) is trivial if a is even while 6(a) = 2 if a is odd. 
If a E 2m / Z/2, the wreath product of Sw with the diagonal group {+ \}m, then 6(a) 
equals the Spinor norm of the image of a in 2m. Finally, (cf. [1], [9] and [4], p. 99), 
there are central extensions on which G(K/K) acts through G(M/K), 

(2.4) Z/2 -> Pinm(M) -5 tfOw(M), 

where N0mM = {X E 0m(Af)|8(X) = 1 mod M**}. G(M/K) acts trivial on ker (IT). 

2.5. Choose a section/: O(ff) -> Pin(K) (so that I T / ( X ) = X) such that if X E 
Ow(^), then/(X) E Pinm(/^(V6(X))). Define a 2-cochain 

w2 E Map((G(ff/tf) a 0(K)f, Z/2) 

by 

(2.6) w2((x, X), (v, Y)) = f(X)x(f(Y)) [f(Xx(Y))]-] E ker IT = Z/2. 

Here X, F E 0(tf), JC, y E G(K/K). Note that ifX, F E <9m(M), the expression (2.6) 
depends only on the images of*, y in G(M(VÔ(X), VêaÔ) / t f ) . 

It is straightforward to verify that w2 is a 2-cocyle. In addition, changing the section, 
/ , changes w2 only by the boundary of a 1-cochain of the form g : G(K/K) <* O(K) —> 
Z/2 for which g(x, X) depends only on X. 

2.7. COMPLETION OF THE PROOF OF 1.6. Firstly wx : (JC, X) —> detX EZ/2 is a 1-cocyle 
in Map (G(K/K) <* O(K), Z/2) which can be used to define wx. For if (V, p) is 
classified by (1, <|>) : G(K/K) -> G(K/K) oc Om(^), then w,(l, ()>) clearly represents 
w,(V, P) in H](G(K/K); Z/2). From 2.2, 1.6(0 follows at once. 
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In addition, 1.6(///) follows by applying Sqx to the formula for w2(Trs
L/K(V, 0)). 

Here we use Sq\w2) = w3 + wxw2 for both types of Stiefel-Whitney classes and that 
(2)2 = 0 since 2 is a norm from K{ v2) . 

Next I claim that assigning (V, P) to w2(l, (|>) defines w2(V, P) E 
H2(G(K/K):Z/2). Observe that, by 2.5, w2(l, cj>) is indeed a continuous cocyle. To 
verify the claim, we may assume $(g) E {±l}m C Om{K), then as G(K/K) acts 
trivially on ({>(#), (2.6) shows us that 

*2(1, <W(*1, ft) =/(4>Ul))/(c|>(^2))[/(cJ>(^,^2))]-1. 

This is $* of the class in //2({±l}m; Z/2) which classifies the restriction of (2.4) to 
{± l}m. However, in ([10], 4), the 2-cocyle of this extra-special 2-extension is explicitly 
computed, from which we see that if 4>(^) = diag (oti(g), . . . , am(g)), then w2(l, <$>) 
represents 2/<y- (a,) (a,). 

To complete the proof, it remains, by 2.2, only to evaluate w2(l, Tr[/Ar[V, (3]). To 
do this, we observe that w2 defines a class, w2, in 

H2(G(M/K) x 0(K)\ Z/2) = 0 Ha(G(M/K); Z/2) 0 H2~a(0(K); Z/2), 

for any finite Galois extension M/K and we wish to evaluate A*(l 0 Txv
L/K\_V, P])n>2 

where A* is the cup product. 
Consider the H2(0(K)\ Z/2) component of w2. If A' were R, the real numbers, then 

from (2.6) we see that w2 has H2(0(K); Z/2)-component equal to 1 0 w2
op where w2

op 

is the topological 2nd Stiefel-Whitney class (here we appeal again to the fact that (2.6) 
restricts on (1) x {±l}m to the 2-cocyle of ([10], 4)). However, K is not, in general, 
equal to R. Nevertheless, the homomorphism Tr[7^[V, p] lands in the monoidal 
subgroup S = £„m J (±1) in Onm(K) and the pullback of the//2(0(AT);Z/2) -component 
of w2 to S is equal to the restriction of w2

op to S. Hence this component contributes 
^(Tr^tV, P]). 

Next observe that (2.6) implies that the H2(G(M/K), Z/2)-component of w2 is 
trivial. Finally, we come to the H\G{M/K)\ Z/2) ®H\0{K)\ Z/2) component — 
the (1, l)-component — of w2. Suppose in (2.6) that X = /, y = 1 and Y E 2, / {± 1} 
is a monoidal matrix (like TrL/A:[V, p](g)). We may write Y as a product of trans­
positions of the canonical basis of À'' — a reflection in the plane perpendicular to a unit 
vector of the form 1/V2fc — e7) and of reflections in planes perpendicular to some 
ej. If Tx denotes the reflection in the plane perpendicular to a unit vector x, then Y = 
TX]TX2 ...TXH lifts to f(Y) = X]oX2o...oXnE Pin,(tf( V2)) (see [1], or [4], p. 73) 
where (— ° —) is Clifford multiplication. Hence, by (2.6), w2((x, / ) , (1, Y)) = 
(x(V2)/V2f where e is the determinant of the image of Y E 2, / {± 1} in 2,. In the 
case of Y = Tvv

L/K[V, 0](g), e is given by e = (det T r ^ l ) (g))rank(V'P), which 
completes the proof. 

2.8. REMARK. A recent result of Merkurjev-Suslin states that, for a AT of characteristic 
not equal to two, the norm residue symbol [6], 

K2(K) 0 Z/2 -> H2(G(K/K); Z/2), 
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is an isomorphism. Consequently, the 2-dimensional formula of 1.6 holds also for the 
A'-theory Stiefel-Whitney classes which were introduced in [6]. 
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