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STIEFEL-WHITNEY CLASSES OF A SYMMETRIC BILINEAR
FORM — A FORMULA OF SERRE

BY
VICTOR SNAITH

ABSTRACT. Let K be a field of characteristic different from two. Let L
be a finite separable extension of K. If K is the separable closure of K, we
have a continuous homomorphism 7 : Ga(K/K) — 2,(n = [L:K]). We
give a very short proof of Serre’s formula which evaluates the Hasse-Witt
invariant of a symmetric bilinear form, transferred from L, in terms of the
topological Stiefel-Whitney classes of .

1. Let K be a field of characteristic different from two and suppose that L/K is a
finite separable extension. Write K for the separable closure of K and G(M /K) for the
Galois group of a finite normal, separable extension of K. G(K/K) is the profinite
group lim G(M/K), always considered with the profinite topology ([11], 1.1).

M

L /K is equivalent to the following data. Let N/ K be the normal closure of L/K then
we have, by the normal basis theorem, a map N:G(K/K) — 3,, the symmetric
group n(=[L:K]) letters. The image of N acts transitively on {1, ..., n} and if
H = X' (stabiliser of 1) then L = N the fixed field of H. Of course,
[G(K/K):H] = [G(N/K):\(H)] = n.

1.1. Now let (V, B) be a non-singular symmetric, bilinear form over L of rank m.
The Scharlau transfer, Tr} /x> [L]of (V, B) is the non-singular symmetric, bilinear form

obtained by considering V as an nm-dimensional K-vector space and forming the

composition V X V B L race, K.

An important example is (L), the Trace Form of L /K, which is Tr} sk (1) where (1)
is the form given by the product on L.

Since char K # 2, any symmetric, bilinear form over K may be diagonalised to look
like

(a)) D ... D(a,) where a; € K
and where (o) : K X K — K is given by (o;)(x, y) = a;xy. Each o; defines (o;) €
H' (G(K/K); Z/2) = lim Hom (G(M/K), Z/2) which sends g € G(K/K) to
MK
(Vo)™ g(Voy) € {=1}.
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1.2. DEFINITION. The i-th Stiefel-Whitney class of (V, B) ([3], [6]), is defined to be
wi((V, B) = ai((@), (@), - .., (o)) € H(G(K/K); Z/2)
where o; is the i-th elementary symmetric function.

1.3. REMARK. When K is a number field, the Witt class of (V, B) € W(KX) is entirely
determined by rank (V, B), w,(V, B), w.(V, B) and signatures (see [6] for example).

1.4. By diagonalising a symmetric, bilinear form over L, we can consider it as giving
rise to a representation [V, B]: G(K/L) — (Z/2)™ = {=1}" defined over any field —
for example, R, the real numbers. For if V = (o) ® ... ® (a,) then (a,) D ... D
(a,,) is such a representation. Since [G(K/K) : G(K/L)] = n we may form the induced
representation

(1.5) Tryk([V, B]) = R[G(K/K)] ®siok/nlV, Bl.

Of course, a real representation of G(K/K) is entitled to Stiefel-Whitney classes in the
topological sense ([5], [8]).

The following attractive formulae are originally due to J-P. Serre [13]. I learnt of it
from conversations with Pierre Conner. My proof, which is extremely short, is a
product of a more general framework which I developed in order simultaneously to
tackle (i) these formulae in higher dimensions and (ii) to obtain similar formulae for
Milnor’s K-theory characteristic classes. It seemed a good idea to isolate this result —
as my other material is monolithic and incomplete.

1.6. THEOREM. Let L/K be a finite separable field extension of characteristic not
equal to two. Let (V, B) be a non-singular, symmetric, bilinear form over L. Then

() wi(Try(V, B) = wi(Tr,,[V, B) € H(G(K/K); Z/2).
@) wa(Try(V, B) = wa(Tr,x[V, B]) + rank (V, B){(2Q)wi(Tr; (1)}
€ HX(G(K/K); Z/2).
(i) wi(Tryc(V, B) = wy(Tr/,[V, B]) + rank (V, B) {2)wi(Tr/ (1))
X [wi(Tr] (1)) + wi(Tr/ [V, BDT}
in H3(G(I?/K); Z/2).

1.7. In addition to the references given above, other references concerning sym-
metric, bilinear forms are [2], [7] and [9].

2. Proof of Theorem 1.6.

2.1. Recall, by Galois descent theory, that non-singular, symmetric, bilinear forms
of rank m are classified by H'(G(K/K); 0,,(K)) ((12], pp. 152—153). This in turn
coincides with continuous homomorphisms f: G(K/K) = G(K/K) « 0,(K) of the
form f(g) = (g, d(g)), up to composition with an inner automorphism given by an
element of 0,,(K). If (V, B) is a bilinear form, we choose a basis so that (V, B) is

https://doi.org/10.4153/CMB-1985-025-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1985-025-2

220 V. SNAITH [June

given by a symmetric m X m matrix B € GL,K,then choose A € GL,K so that
B = AAT and set ¢(g) = A~'g(A). Notice that if (V, B) = (a;) D ... D (an), then
¢ is the diagonal homomorphism, diag ((o), ..., (a,)). For us, 0,(M) = {X €
GL,M|XX" = 1,}.

2.2. LEMMA. Under the conditions of 1.6, suppose (V, B) is represented by a
diagonal homomorphism, &y g), as in 2.1, then Tr} k(V, B) is represented by f (s) =
(g, Tt/ k[V, B(8)), in the notation of (1.5).

PROOF. This is very straightforward — probably well-known to experts in quadratic
forms — so I will give merely the key details.

In general if, as in 2.1, (V, B) is represented by B = AAT, letv,, ..., v, be a basis
for L /K. Form an nm X nm matrix A consisting of n?m X m blocks. The (i, j)-th
m X m block in A is g(viA) where g, ..., g, are coset representatives for
G(K/K)/G(K/L).If Chas (i, j)-th m X mblock §,(v;A™') and (L) is the n X n matrix
of the trace form of L/K, then C({L)™' ® I,) = A~'. One easily computes the
representing cocyle for Tr; /k(V, B) as this has matrix AAT, using the consequences of
the equation C({L)™' ® 1,,)A = I,,, to smooth the apparently complicated algebra.

2.3. Let 0:0,(M) — M*/M** denote the Spinor norm ([9], p. 137), where M **
denotes the non-zero squares in M. We will need to recall that 0 is a homomorphism
and on a permutation matrix, o, 8(o) is trivial if o is even while 6(o) = 2 if o is odd.
If 0 €3, [ Z/2, the wreath product of 3, with the diagonal group {¥1}", then 6 ()
equals the Spinor norm of the image of ¢ in %.,,. Finally, (c.f. [1], [9] and [4], p. 99),
there are central extensions on which G(K/K) acts through G(M /K),

(2.4) Z/2 = Pin, (M) > NO,(M),
where NO,M = {X € 0,,(M)|0(X) = 1 mod M**}. G(M/K) acts trivial on ker ().
2.5. Choose a section f: O(K) — Pin(K) (so that 7 f(X) = X) such that if X €
0,.(K), then f(X) € Pin,,(K(V8(X))). Define a 2-cochain
W, € Map((G(K/K) = O(K)), Z/2)
by
(2.6)  wal(x, X), (y, V) = fXx(f (V) [f(Xx(Y)]" € ker w = Z/2.
Here X, Y € O(K), x, y € G(K/K). Note that if X, Y € 0,,(M), the expression (2.6)
depends only on the images of x, y in G(M(V0(X), Vo(Y))/K).
It is straightforward to verify that w, is a 2-cocyle. In addition, changing the section,

f, changes W, only by the boundary of a I-cochain of the form g : G(K/K) x O(K) —
Z /2 for which g(x, X) depends only on X.

2.7. COMPLETION OF THE PROOF OF 1.6. Firstly w; : (x, X) — det X €Z /2 is a 1-cocyle
in Map (G(K/K) = O(K), Z/2) which can be used to define w,. For if (V, B) is
classified by (1, ):G(K/K) = G(K/K) « 0,.(K), then w,(1, &) clearly represents
wi(V, B) in H'(G(K/K); Z/2). From 2.2, 1.6(i) follows at once.
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In addition, 1.6(iii) follows by applying Sq' to the formula for wz(Trf «(V, B)).
Here we use Sq'(w;) = ws + w,w, for both types of Stiefel-Whitney classes and that
(2)? = 0 since 2 is a norm from K(V?2).

Next I claim that assigning (V, B) to w,(I, ¢) defines w,(V, B) €
H*(G(K/K):Z/2). Observe that, by 2.5, w,(1, &) is indeed a continuous cocyle. To
verify the claim, we may assume ¢(g) € {=1}" C 0,(K), then as G(K/K) acts
trivially on &(g), (2.6) shows us that

wa(1, d)(g1, &) =f(d)(gn))f(¢(gz))[f(¢(g|gz))]"-

This is ¢* of the class in H*({=1}"; Z/2) which classifies the restriction of (2.4) to
{=1}". However, in ([10], 4), the 2-cocyle of this extra-special 2-extension is explicitly
computed, from which we see that if b(g) = diag (o, (g), - - . , aw(g)), then W,(1, d)
represents 2, (o) (a;).

To complete the proof, it remains, by 2.2, only to evaluate W,(1, Tr; x[V, B]). To
do this, we observe that W, defines a class, W5, in

H*(G(M/K) X O(K); Z/2) = EEO H(G(M/K); Z/2) ® H*™*(0(K); Z/2),

for any finite Galois extension M /K and we wish to evaluate A*(1 ® Tr, x[V, B])W,
where A* is the cup product.

Consider the H*(O(K); Z/2) component of w,. If K were R, the real numbers, then
from (2.6) we see that w, has H*(O(K); Z/2)-component equal to 1 X) w;* where w5”
is the topological 2nd Stiefel-Whitney class (here we appeal again to the fact that (2.6)
restricts on (1) X {1}" to the 2-cocyle of ([10], 4)). However, K is not, in general,
equal to R. Nevertheless, the homomorphism Tr) [V, B] lands in the monoidal
subgroup S = %, J (£1)in 0,,(K) and the pullback of the H*(O(K); Z/ 2)-component

of W, to S is equal to the restriction of w3" to S. Hence this component contributes

WZ(TrI‘,,/K[V’ BD-

Next observe that (2.6) implies that the H*(G(M/K), Z/2)-component of W, is
trivial. Finally, we come to the H'(G(M /K); Z/2) ® H'(O(K); Z/2) component —
the (1, 1)-component — of w,. Suppose in (2.6)that X =,y =land Y € 3, [ {1}
is a monoidal matrix (like TrZ/K[V, BJ(g)). We may write Y as a product of trans-
positions of the canonical basis of K’ — a reflection in the plane perpendicular to a unit
vector of the form 1/ \/E(e,« — ¢;) and of reflections in planes perpendicular to some
e;. If T, denotes the reflection in the plane perpendicular to a unit vector x, then Y =
T,T., ... T,liftstof(Y) =xj°ox°...0x, € Pin,(K(V/2)) (see [1], or [4], p. 73)
where (— o —) is Clifford multiplication. Hence, by (2.6), w,((x, I), (1, Y)) =
(x(V2)/V2)¢ where € is the determinant of the image of Y € 3, [ {1} in 3,. In the
case of ¥ = Tr/x[V, Bl(g), € is given by € = (det Tr) (1) (g)™*"®, which
completes the proof.

2.8. REMARK. A recent result of Merkurjev-Suslin states that, for a K of characteristic
not equal to two, the norm residue symbol [6],

K:(K) ® Z/2 — H*(G(K/K); Z/2),
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is an isomorphism. Consequently, the 2-dimensional formula of 1.6 holds also for the
K-theory Stiefel-Whitney classes which were introduced in [6].
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