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Heavy particles suspended in turbulent flow possess inertia and are ejected from
violent vortical structures by centrifugal forces. Once piled up along particle paths,
this small-scale mechanism leads to an effective large-scale drift. This phenomenon,
known as ‘turbophoresis’, causes particles to leave highly turbulent regions and migrate
towards calmer regions, explaining why particles transported by non-homogeneous flows
tend to concentrate near the minima of turbulent kinetic energy. It is demonstrated
here that turbophoretic effects are just as crucial in statistically homogeneous flows.
Although the average turbulent activity is uniform, instantaneous spatial fluctuations
are responsible for inertial-range inhomogeneities in the particle distribution. Direct
numerical simulations are used to probe particle accelerations, specifically how they
correlate to local turbulent activity, yielding an effective coarse-grained dynamics that
accounts for particle detachment from the fluid and ejection from excited regions through
a space- and time-dependent non-Fickian diffusion. This leads to cast fluctuations in
particle distributions in terms of a scale-dependent Péclet number Pe�, which measures
the importance of turbulent advection compared with inertial turbophoresis at a given
scale �. Multifractal statistics of energy dissipation indicate that Pe� ∼ �δ/τp with δ ≈
0.84. Numerical simulations support this behaviour and emphasise the relevance of the
turbophoretic Péclet number in characterising how particle distributions, including their
radial distribution function, depends on �. This approach also explains the presence
of voids with inertial-range sizes, and the fact that their volumes have a non-trivial
distribution with a power-law tail p(V) ∝ V−α , with an exponent α that tends to 2 as
Pe� → 0.
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1. Introduction

The transport of small, heavy particles by a developed turbulent flow is a common
occurrence in nature and industry. Whether they are droplets in air, dust in gas, or
sediments in water, these particles are often smaller than the smallest active scale of
the fluid and have a larger mass density. They thus possess inertia, resulting in their
detachment from the carrier fluid and uneven spatial distributions, a phenomenon known
as preferential concentration. This is important in determining the interactions between
these particles, such as collisions and aggregation. It also alters the transfers of momentum,
kinetic energy and heat in the particle-laden fluid. One notable example of inertial particles
is water droplets in atmospheric clouds. As stressed by Jonas (1996), turbulence triggers
variability in droplet sizes that can explain why the time scales for rain initiation are much
shorter than those predicted by mean-field arguments. Pinsky & Khain (1997) (see also
Shaw (2003)) demonstrated that the preferential concentration of droplets affects their
growth by condensation and coalescence. Heterogeneities have been observed in situ
(see e.g. Kostinski & Shaw 2001) and their small-scale effects have been quantified to
improve droplet collision rates (see Reade & Collins 2000; Falkovich, Fouxon & Stepanov
2002). Still, many challenging questions raised in clouds involve interactions over a huge
range of scales and thus, cannot be addressed without having recourse to large-eddy
simulations (LES). Such approaches need ad hoc parameterisations of particle dynamics
and their microphysical interactions, as discussed for instance in Morrison et al. (2020).
Planet formation by dust aggregation in the early Solar system is another important natural
instance of inertial particles, which raises similar issues. Local fluctuations in the particle
concentration trigger gravitational collapse and thus the formation of larger objects.
Because of rotation around the star, dust particles migrate in large-scale anticyclonic
Keplerian vortices (Gerosa, Méheut & Bec 2023) or in pressure bumps (Johansen et al.
2007). It is probably in these regions that primary accretions occur, but the effect
of turbulence is still unclear (Johansen et al. 2015). A better understanding requires
developing models to quantify dust clustering in the inertial range of turbulence (see e.g.
Hartlep & Cuzzi 2020) and designing LES tools that cope with astrophysical specificities.
Other natural situations where inertial particles occur include plankton ecology in the
ocean (Seuront, Schmitt & Lagadeuc 2001) and seed dispersion above plant canopies (Pan,
Chamecki & Isard 2014). In all cases, a precise description of large-scale fluctuations in
particle density is crucial.

Equivalent questions arise in engineering. When optimising droplet vaporisation in
injection sprays (Sahu, Hardalupas & Taylor 2018) or monitoring particulate fouling
(Henry, Minier & Lefèvre 2012), it is important to understand how inertial particles
distribute over scales comparable to the larger scales of the carrier turbulent flow. The
complexity of flow geometries and inhomogeneities in industrial applications give a
critical role to the spatial variations of the time-averaged particle density. Much effort has
thus been dedicated to derive effective transport equations for the average concentration
field. In this context, Caporaloni et al. (1975) unveiled a fundamental mechanism in which
turbulence inhomogeneities drive particles out of the most excited regions of the flow
and concentrate them in quieter zones. They dubbed this phenomenon turbophoresis (see
also Reeks (1983)), in analogy to thermophoresis, where temperature gradients cause
a motion of diffusive particles towards colder regions of space. Reeks (1983, 1992)
proposed closures of the kinetic equations for the particle phase-space distribution to
derive effective diffusion equations for the average spatial concentration. This leads to
the particle fluxes due to inertia being described by a Fick law, where the coefficient
of diffusion is related to the local Lagrangian correlation of the fluid velocity. Such
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Homogeneous turbophoresis of inertial particles

arguments have been successfully employed to explain why particles in turbulent channel
flows tend to migrate towards the walls (see e.g. Marchioli & Soldati 2002; Kuerten &
Vreman 2005; Sardina et al. 2012; Fouxon et al. 2018; Brandt & Coletti 2022). However,
the dependence of the diffusion coefficient on the particle Stokes number is not yet
fully understood. Belan, Fouxon & Falkovich (2014) (see also Belan (2016)) showed
that particles with sufficient inertia escape from low-kinetic-energy regions, leading to
a localisation–delocalisation phase transition. De Lillo et al. (2016) examined the case
of turbulent flows with an inhomogeneous forcing and found that turbophoretic effects
are more pronounced at intermediate particle inertia. Mitra, Haugen & Rogachevskii
(2018) interpreted this behaviour as a balance between turbophoretic and turbulent
diffusions.

The applicability of turbophoresis to particle transport in flows with average
inhomogeneities raises questions about its relevance in homogeneous situations. In
homogeneous isotropic turbulence, instantaneous snapshots reveal spatial fluctuations of
kinetic energy throughout the inertial range. Meanwhile, particle distributions display
heterogeneous concentrations characterised by large-scale quasiuniform regions, localised
voids and sheet-like clusters, as observed for instance by Eaton & Fessler (1994). To
quantify inertial-range particle distributions, different observables are needed compared
with those used for the dissipative range. At small scales, particle distributions exhibit
multifractal scaling properties (see Hogan, Cuzzi & Dobrovolskis 1999; Bec et al. 2011;
Schmidt, Fouxon & Holzner 2017; Bec, Gustavsson & Mehlig 2024) and are fully
characterised by a dimension spectrum that depends solely on the Stokes number. The
unified picture of the joint dependence on length scale and response time arises from
the fact that dissipative-range dynamics involve a unique time scale determined by the
typical amplitude of velocity gradients. This is in contrast to the hierarchy of time scales
involved in inertial-range physics. In the two-dimensional inverse cascade, Boffetta, De
Lillo & Gamba (2004) found that particles concentrate quasiuniformly on thin filamentary
structures separated by voids whose distribution follows a universal scaling law. However,
in the random, white-in-time, self-similar flows considered by Bec, Cencini & Hillerbrand
(2007b), such scaling is absent, and particle distributions are characterised by local
fractal dimensions determined by the scale-dependent Stokes number St� ∝ τp/�

2/3

(Balkovsky, Falkovich & Fouxon 2001), defined by non-dimensionalising the particle
response time by the turnover time at the observation scale �. Both of these scenarios
coexist in three-dimensional turbulence, as pointed up by Bec et al. (2007a), Yoshimoto &
Goto (2007) or inferred from the sweep-stick mechanism of Goto & Vassilicos (2008).
The intricate spatial correlations of the pressure gradient, or equivalently of the fluid
acceleration, play a key role. By using Voronoï tessellations, Monchaux, Bourgoin &
Cartellier (2010, 2012) introduced a definition of particle clusters and found that their
size distribution follows a universal scaling law independent of the Stokes number. This
was confirmed by Baker et al. (2017), who showed that clusters preferentially sample
regions of the flow with higher strain and lower vorticity. However, Bragg, Ireland
& Collins (2015) found that this statistical bias depends on inertia and is actually
quantified by the scale-dependent Stokes number St�. These arguments led them to
predict scale invariance for two-particle statistics when St� � 1, which was confirmed
by Hartlep, Cuzzi & Weston (2017) using a cascade multiplier approach. Ariki et al.
(2018) further argued that the pair correlation function follows a universal power-law
∝ St2� using a Lagrangian renormalisation closure. The wavelet analysis conducted by
Matsuda, Schneider & Yoshimatsu (2021) shows intermittent particle densities, with a
stronger contribution from voids observed at smaller spatial scales. However, the question
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of whether scale invariance holds in the inertial-range distributions of particles and, if so,
which mechanisms are involved, remains ambiguous.

To shed new light on these issues, an appropriate effective model for inertial-range
particle dynamics is expected to be useful. While there are various simplified approaches
to dilute particle suspensions, reviewed for instance by Balachandar & Eaton (2010), the
Eulerian field representations of the particle phase proposed by Ferry & Balachandar
(2001) provide promising tools. In this approach, the particle velocity is tied to the carrier
phase, with the effect of inertia being regarded as a compressible correction proportional to
the fluid velocity acceleration. While this approximation has often shown its relevance, it
remains limited to the asymptotics of small particle inertia, and it combines very different
time scales, as acceleration is influenced by dissipative-range physics. Fevrier, Simonin
& Squires (2005) extended these considerations to large Stokes numbers by assuming
that the particle motion can be seen as the sum of a mesoscopic velocity and a random
component. The latter term corresponds to a diffusive motion, is uncorrelated in space,
and has been found to properly reproduce particle properties when their response time
is much larger than the turbulent large-eddy turnover time. This contribution, dubbed
random uncorrelated motion by Reeks, Fabbro & Soldati (2006), was used by Gustavsson
et al. (2012) in synthetic random flows and shown to suitably describe the effect of fold
caustics on the particle kinetics. This approach relies on the idea that turbulence has only
a cumulative effect along particle paths, as long as the latter have a sufficiently long
correlation time. However, fluctuations do not need to be averaged over times prescribed
by the particles’ lag, but this procedure can rather stem from a spatial or temporal
coarse-graining of the turbulent field, thus incorporating the effect of instantaneous spatial
inhomogeneities.

We aim here to introduce a model capable of effectively describing and quantifying
particle dynamics within the inertial range of fully developed turbulent flows. We
argue that small-scale detachments from the fluid can be elucidated by examining the
accelerations experienced by the particles. Rather than simply filtering out fluctuations
in a time-reversible manner, these detachments cause particles to carry forward past
fluctuations. Building on the phenomenology introduced by Bec & Chétrite (2007), we
argue that this mechanism cumulates over time, leading to an ejection process that causes
non-Fickian particle fluxes. Our proposed model utilises an Itô, rather than Stratonovich,
diffusion process with a diffusion coefficient that varies based on the local flow activity.
This statistically homogeneous turbophoresis can be used to quantify inhomogeneities
in the particle distribution and, to some extent, reconcile the various viewpoints
discussed above. Our analysis is grounded in the results of direct numerical simulations
conducted at large Reynolds numbers and relies on a comprehensive evaluation of particle
accelerations.

The paper is structured as follows. In § 2 we introduce our settings and discuss
the relevant observables for our analysis. We also provide a general appreciation of
the correlations between particle concentrations and instantaneous inhomogeneities in
turbulent activity. In § 3 we develop a Lagrangian perspective and conduct a detailed
statistical analysis of particle acceleration to quantify particle detachment from the
fluid across varying response times and observation scales. In § 4 we shift our focus
to the Eulerian frame and use acceleration results to derive an effective equation
for the particle coarse-grained density. From this model, we draw properties of the
inertial-range distribution and discuss specifically the implications of this approach to
the distribution of voids. Finally, in § 5 we summarise our findings and discuss possible
perspectives.
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N3 ν �t ε η urms L Rλ Np

10243 6 × 10−5 0.003 3.47 × 10−3 2.81 × 10−3 0.185 1.82 290 1.25 × 107

20483 2.5 × 10−5 0.0012 3.61 × 10−3 1.44 × 10−3 0.189 1.87 460 108

Table 1. Parameters of the numerical simulations: N3, number of collocation points; ν, fluid kinematic
viscosity; �t, time step; ε, average kinetic-energy dissipation rate; η = ν3/4/ε1/4, Kolmogorov dissipative
scale; urms, root mean square velocity; L = u3

rms/ε, large scale; Rλ = √
15 u2

rms/(εν)1/2, Taylor-scale Reynolds
number; Np number of particles for each value of the Stokes number.

2. Models, simulations and spatial coarse-graining

2.1. Homogeneous isotropic turbulence and energy dissipation
We investigate the behaviour of particles passively suspended in a three-dimensional
fluid flow. The velocity field of the fluid, denoted by u(x, t), satisfies the incompressible
Navier–Stokes equations

∂tu + u · ∇u = −(1/ρf )∇p + ν∇2u + f with ∇ · u = 0, (2.1)

where p represents the pressure, ρf is the mass density of the fluid, ν is its kinematic
viscosity and f is an external volume force. The force is prescribed with homogeneous and
isotropic statistics and is correlated on large scales in both space and time. The force injects
kinetic energy into the flow at an average rate of ε = 〈 f · u〉. We perform direct numerical
simulations of (2.1) using the pseudospectral code LaTu on the triply periodic box [0, 2π]3

and employ third-order Runge–Kutta time marching. The details of the code can be found
in Homann, Dreher & Grauer (2007). Two sets of simulations are carried out with different
resolutions. Corresponding numerical and turbulent parameters are presented in table 1.

After a certain period of time, the fluid velocity field u reaches a statistical
steady state characterised by multifractal statistics of the local dissipation rate
εloc(x) = (ν/2) tr(∇u(x) + ∇uT(x))2 (see e.g. Frisch 1995). This is evidenced from the
scale-dependent statistics of the coarse-grained dissipation ε� obtained by averaging
the local dissipation over the ball B�(x) of centre x and diameter �, that is ε�(x) ≡
(1/|B�|)

∫
B�(x)

εloc(x′) d3x′. For η � � � L, the probability distribution of ε� takes the
form

p(ε�) dε� = (�/L)3−F(α) dμ(α) with ε� = ε(�/L)α−1, (2.2)

where F(α) is the multifractal spectrum, which can be interpreted as the dimension
of the fractal set on which the scale-averaged dissipation is ∝ �α−1 when �/L → 0,
and dμ(α) corresponds to the weight associated with each singularity exponent α. In
Kolmogorov 1941 phenomenology, there are no fluctuations of ε� and F(α) = −∞
except for α = 1, for which F(1) = 3. Figure 1(a) shows the multifractal spectrum
obtained from numerical measurements of ε�. We find that log-normal statistics, for
which the dimension spectrum is a parabola F(α) = 3 − (α − 1 − μ/2)2/(2μ), provide
a good approximation for the lowest values of α. It is, however, known that log-normal
distributions have several shortcomings due to the non-conservative nature of the cascade
models on which they are based (see discussion in Frisch (1995), § 8.6.5). Despite this,
such an approximation is still useful for estimating moderate-order statistics, well beyond
the central-limit approximation. Using Kolmogorov (1962) refined similarity hypothesis,
and recent confirmations by Lawson et al. (2019), the statistics of the fluid velocity
can be related to fluctuations in ε�. For the longitudinal structure functions S‖

n(�) =
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Figure 1. Statistics of the scale-averaged dissipation rate ε� for Rλ = 460. (a) Measured dimension spectrum
F(α) as a function of α = 1 + log(ε�/ε)/ log(�/L) at various scales �. The log-normal approximation for μ =
0.26 is shown as a dashed line. (b) Moments of order p = 2, 3, 4 of the average dissipation rate ε� conditioned
on its value ε�′ in a larger box of size �′ = 128η, as a function of �/�′ and different conditionings as indicated
in the colour bar. Log-normal behaviours are displayed as dashed lines.

〈[�̂ · (u(x + �) − u(x))]n〉, the log-normal approximation with intermittency parameter
μ predicts a scaling behaviour S‖

n(�) ∼ �ζn , where ζn = n/3 + (μ/18)(3n − n2). In our
simulations, we observe μ ≈ 0.26, consistent with the seminal work of Sreenivasan &
Kailasnath (1993). This results in ζ2 ≈ 0.696, ζ4 ≈ 1.276, ζ6 ≈ 1.740, which are in good
agreement with experimentally measured values (see Saw et al. (2018) for a recent review).

Multifractal statistics are often interpreted phenomenologically as resulting from
the random multiplicative cascade experienced by the coarse-grained dissipation. This
scenario suggests that the probability distribution (2.2) should also apply to the
fluctuations of ε�(x) conditioned on the observed value of ε�′(x) at the same location
but over a larger scale �′ > �. As shown in figure 1(b) for �′ = 128η, numerical
simulations confirm this feature, revealing a scaling regime with an exponent that is closely
approximated by the log-normal prediction. These multiscale statistics play a crucial role
in investigating the coarse-grained dynamics of transported particles, as we will discuss in
more detail later on.

2.2. Particles, preferential sampling and concentrations
After the fluid flow reaches a statistical steady state, we introduce heavy, inertial, point-like
particles that are homogeneously seeded with velocities equal to that of the fluid at their
positions. The trajectories xp(t) of these particles follow

dxp

dt
= vp,

dvp

dt
= ap = − 1

τp

[
vp − u(xp, t)

]
. (2.3a,b)

Particles are assumed much smaller than the Kolmogorov dissipative scale η, and
sufficiently massive to neglect so added-mass, Magnus, and history effects. The viscous
drag intensity is given by the response time τp = ρp d2

p/(18νρf ), where ρp is the particle
mass density and dp its diameter. This time is used to define the Stokes number St = τp/τη,
with τη = (ν/ε)1/2 denoting a Kolmogorov dissipative time scale. The Stokes number
measures particle inertia. When St � 1, the particles almost follow the flow and behave
as tracers. When St � 1, they detach from the flow and behave ballistically. We adopt
a Lagrangian approach in our simulations, where particles’ trajectories are tracked by
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Figure 2. (a) Two-dimensional slice of the instantaneous energy dissipation field εloc(x) for Rλ = 460,
together with particle positions for St = 1 shown as black dots. Colours stand for log10(εloc/ε). (b) Particle
coarse-grained density 〈ρp〉� in the upper-half of the same slice obtained for � = 32η. Colours are again
on a logarithmic scale. (c) Root mean square particle acceleration, coarse-grained over the same grid, here
normalised by (ε3/ν)1/4.

integrating (2.3a,b) with the fluid velocity at their location obtained by linear interpolation
from the grid. We use 10 different values of the Stokes number in the range St ∈ [0.1, 6.5]
and, for each value of St, a number Np of particles that roughly corresponds to one particle
per box of size (9η)3.

Upon reaching a statistically stationary state, the particle distributions exhibit highly
non-uniform patterns and strongly correlate with the turbulent structures of the flow, as
depicted in figure 2(a). The spatial arrangement of particles shows voids in the most
active regions of the flow, where dissipation is high, sheet-like clusters that encapsulate
these voids, and quasiuniform distributions in regions with lower turbulent intensity.
These concentration fluctuations are attributed to the inertial-range motions of particles,
as the sizes of the regions are much larger than the dissipative scale η. To filter out
dissipative-range effects, we introduce the coarse-grained particle density 〈ρp〉�. It is
obtained by counting the number of particles in small boxes of size �, which define
a partition of the spatial domain. Figure 2(b) shows 〈ρp〉� obtained with � = 32η. The
spatial variations of particle dynamics also serve as a marker for the different regions
of the flow. In figure 2(c), we show the coarse-grained root mean square acceleration
obtained by averaging the squared modulus of acceleration for all particles located in
given boxes of size �. Particle voids clearly correspond to high accelerations, indicating
that concentration fluctuations are caused by detachment from the fluid and expulsion
from active regions. It is worth noting that this mechanism differs somewhat from the
conventional picture of inertial ejection by centrifugal forces from isolated vortices, as the
thickness of vortex filaments is several times smaller than the coarse-graining scale �. This
suggests that the observed particle ejections results from the collective effect of multiple
turbulent structures.

The observed correlations between particle concentrations and Lagrangian accelerations
prompt a discussion on whether these findings can be explained by the sweep-stick
mechanism, originally proposed by Goto & Vassilicos (2008) (see also Coleman &
Vassilicos (2009)). In this scenario, particles ‘stick’ along the manifolds where fluid
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Figure 3. (a) Mean coarse-grained dissipation ε� at particle location as a function of the averaging scale �

for various Stokes numbers and Rλ = 460. (b) Discrepancy shown this time as a function of St for � = 16, 32
and 64η. Solid lines are fits ∝ exp(−c(�)/St1/2). (c) Dimension spectrum of the singularity exponent αp =
1 + log(ε�(xp)/〈ε�(xp)〉)/ log(�/L) at particle position for � = 32η, various St, tracers, and the log-normal
approximation.

acceleration is orthogonal to the directions associated with the largest eigenvalues of
its gradient. These particle-laden manifolds are then ‘swept’ by the fluid flow. The
sweep-stick mechanism is most effective in describing particles’ concentrations for St ≈ 1
and on observation scales within the dissipative range of turbulence. Oka & Goto (2021)
extended this approach by proposing that, for inertial-range response times (τη � τp �
τL), particles cluster near manifolds derived from a coarse-grained acceleration field at a
scale � chosen such that the associated turnover time τ� = ε−1/3�2/3 matches τp. However,
by focusing on a single resonant scale, this approach may overlook the multiscale nature of
particle clustering, which requires accounting for turbulent fluctuations across a broader
range of scales to fully capture the complex dynamics involved.

The importance of turbulent fluctuations and the tendency of particles to concentrate in
regions of low turbulent activity can be further quantified by measuring their preferential
sampling of energy dissipation within the flow. The mean value of ε� computed along
the paths of particles with different Stokes numbers is shown as a function of the
coarse-graining scale � in figure 3(a). Particles sample preferentially regions where ε�

is lower than the average dissipation ε, even when their inertia is weak, see figure 3(b).
This bias persists in the inertial range, indicating that it stems from agitation accumulated
along particle paths rather than instantaneous ejection from the flow small-scale structures.
Measurements of the multifractal spectrum evaluated at particle positions confirm this
tendency, as shown in figure 3(c) for � = 32η. The dependence on St is weak and
visible only at negative values of the singularity exponent corresponding to the most
violent events. At αp > 1, the dimension spectra associated with different Stokes numbers
are almost undistinguishable. This suggests that preferential sampling results from the
expulsion of particles from the most singular regions rather than convergence towards
calmer ones.

The observed correlations between the dynamical and concentration properties of
particles and the instantaneous inertial-range inhomogeneities of the turbulent flow
suggest that the underlying mechanisms are akin to turbophoresis in non-homogeneous
flows, at least qualitatively. Specifically, particles tend to move away from regions with
high turbulent activity, forming voids and follow the fluid in calmer zones. To provide
quantitative support for these ideas, we aim to develop effective equations for an averaged
particle density. In the study of turbophoresis in non-homogeneous flows, these equations
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are obtained by averaging over either the realisations of turbulence or time in statistically
stationary and ergodic situations. However, such classical averages are not applicable to
instantaneous particle distribution in homogeneous turbulence. Nevertheless, we expect
that a similar effective dynamics can be derived from a low-pass-filtered viewpoint, where
the coarse-grained average 〈·〉� plays a central role.

3. Non-homogeneous diffusion of Lagrangian trajectories

We revisit here the classical approach used to develop stochastic Langevin models for
turbulent transport (see e.g. Minier (2016), for a review). The approach is based on
the assumption that while Lagrangian velocities are correlated over time scales of the
order of the integral time scale, acceleration becomes uncorrelated much faster, justifying
an approximation of trajectories as diffusive processes. We begin in § 3.1 by providing
effective approximations for the second-order statistics of fluid acceleration. We then
extend these approximations to inertial particles in § 3.2, specifically to describe their
spatially averaged acceleration. Finally, we use these results in § 3.3 to approximate
particle dynamics as a diffusion process with a space- and time-dependent diffusion
coefficient.

3.1. Fluid acceleration
Turbulent accelerations of fluid particles are among the most striking signatures of
intermittency. At the turn of the century, significant advances in direct numerical
simulations and in particle-tracking experimental techniques have enabled detailed
investigations into acceleration statistics (see Toschi & Bodenschatz (2009), for a review).
These studies revealed that the variance of acceleration deviates from its dimensional
estimate and exhibits a notable dependence on the Reynolds number. Specifically, it
can be expressed as 〈|a|2〉 = A2(Re) ε3/2/ν1/2, where A2 accounts for this dependence,
with Re = R2

λ/15 = ε1/3L4/3/ν = urmsL/ν denoting the large-scale Reynolds number.
Hill (2002b) found that at moderate values of the Reynolds number, Taylor’s scaling
suggests A2 ∝ Re1/2, assuming that acceleration is dominated by pressure gradients.
At large Re, intermittency prevails and A2 ∝ Reγ , where γ can be estimated using
multifractal approaches (see e.g. Borgas 1993; Sawford et al. 2003; Biferale et al.
2004). Indeed, assuming that |a|2 ∼ ε

3/2
ηα /ν1/2 with ηα such that Reηα = ε

1/3
ηα η

4/3
α /ν =

1 and εηα = ε(ηα/L)α−1, one can relate the fluctuation of acceleration to that of
the singularity exponent α. A saddle-point argument then yields γ = supα[3(F(α) +
3)/(α + 3)] − 9/2. Using the log-normal approximation of § 2.1, one gets γ = −3[2μ +√

(μ − 32)μ + 64 − 8]/(2μ) ≈ 0.078 for μ = 0.26. To match the two behaviours
expected at moderate and large Reynolds numbers, we introduce the ad hoc approximation

A2(Re) ≈ a Reγ

[1 + (R�/Re)1/2]1−2γ
. (3.1)

Figure 4(a) compares this fit with numerical measurements by Gotoh & Fukayama
(2001), Bec et al. (2006) and Yeung et al. (2006), together with current simulations. The
approximation (3.1) with γ = 0.078, a = 6.2 and R� = 80 provides a reasonably good
agreement.

We now examine the spatial correlations of acceleration, which will be important in
approximating particle displacement later. In an isotropic flow, the correlation tensor
components in the longitudinal and transverse directions to a given separation r are
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Figure 4. (a) Normalised variance of the fluid acceleration as a function of the Reynolds number Re = R2
λ/15.

Data from several numerical studies are shown as symbols. The dashed line is a behaviour ∝ Reγ with
γ = 0.078. The solid line corresponds to the fitting formula (3.1) with a = 6.2 and R� = 80. (b) Spatial
correlation of the fluid acceleration C(r) = 〈a(r, t) · a(0, t)〉 with r = |r|, shown for the two Reynolds numbers
of our dataset. The dashed line is ∝ rζ4−2 with ζ4 = 1.276. The dotted curve is the parabolic approximation
C(r) ≈ C(0) [1 − (r/λ1)

2/2] with λ1 = [3 C(0)/Q(0)]1/2 ≈ 5.3η. The solid line is the approximation (3.4)
that displays a behaviour �C(0) λ1/r at large separations.

interrelated. In a homogeneous and isotropic flow, C(r) = 〈a(r, t) · a(0, t)〉 depends only
on the distance r = |r| and satisfies (Obukhov & Yaglom 1951; Hill & Wilczak 1995)

1
r2

d
dr

(
r2 dC

dr

)
≈ −Q(r), with Q(r) ≡ 〈

∂jui(r, t) ∂iuj(r, t) ∂luk(0, t) ∂kul(0, t)
〉
, (3.2)

where summation is assumed over repeated indices. This relation assumes that pressure
gradients dominate acceleration and uses the Poisson equation to express them in
terms of velocity gradients. In homogeneous isotropic flow, the right-hand side of (3.2)
can be expressed as Q(r) = (1/6) ∂ijklDijkl(r), where Dijkl(r) = 〈[ui(r) − ui(0)][uj(r) −
uj(0)][uk(r) − uk(0)][ul(r) − ul(0)]〉 is the fourth-order structure function. Since Dijkl ∝
rζ4 , we expect acceleration correlations to decrease as C(r) ∝ rζ4−2 when η � r � L.
Therefore, we get ∝ r−0.724, which is steeper than the K41 prediction ∝ r−2/3 proposed
by Obukhov & Yaglom (1951). Figure 4(b) shows the spatial correlations of acceleration
for our two numerical simulations. Our data are consistent with the experimental
measurements of Xu et al. (2007) and display a power law with an even steeper exponent
close to −1.

This behaviour extends beyond the transition scale introduced by Hill (2002a), which
is derived from the Taylor expansion of correlations at small separations. Equation (3.2)
yields

C(r) = 1
r

∫ r

0
r′2 Q(r′) dr′ +

∫ ∞

r
r′ Q(r′) dr′. (3.3)

Hence, the correlation function C(r) can be approximated to leading order as C(r) ≈
C(0)[1 − (1/2) (r/λ1)

2] as r approaches zero. Here, λ1 = [3 C(0)/Q(0)]1/2 with Q(0) =
〈[tr(∇u)2]2〉 > 0 is the length scale characterising the parabolic decay of the acceleration
correlations, analogous to the Taylor microscale for velocity correlations.

It is worth noting that both C(0) and Q(0) exhibit an intermittent dependence on
the Reynolds number. While C(0)/(ε3/2/ν1/2) scales as Reγ , the Reynolds-number
dependence of Q(0) relates to that of the fourth-order moment of velocity gradients.
As found by Nelkin (1990), the pth order moments of fluid velocity derivatives can
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be expressed using multifractal formalism, similar to the variance of acceleration.
Specifically, assuming that |∇u| ∼ (εηα/ν)1/2, with the same definition as before of
the fluctuating dissipative scale ηα , one obtains 〈|∇u|p〉 ∼ (ε/ν)p/2 Reχp , where χp =
supα[3( p(1 − α)/2 + 3 − F(α))/(α + 3)]. This leads to Q(0)/(ε/ν)2 ∼ Reχ4 , where
the log-normal approximation gives χ4 = −3(3μ + √

(μ − 48)μ + 64 − 8)/(2μ). In
summary, we have λ1 ∝ η Re(γ−χ4)/2. Using μ = 0.26 for the intermittency parameter,
we obtain γ ≈ 0.078 and χ4 ≈ 0.217, which yields λ1 ∝ η Re−0.069, consistent with
the prediction of Hill (2002a). Our numerical simulations reveal that λ1/η = 5.51 for
Rλ = 290 and λ1/η = 5.32 for Rλ = 460, confirming a weak dependence on Reynolds
number. Nevertheless, as shown in figure 4(b), deviations from the predicted inertial-range
scaling persist for scales much larger than λ1.

We interpret the observed behaviour as an extended contribution from small scales
to the integral relation (3.3). For r > λ1, the first term always gives a contribution
�Q(0) λ3

1/(3 r) = C(0) λ1/r, obtained by evaluating the integral over the interval 0 <

r′ < λ1. Furthermore, separations r′ in the inertial range contribute to both integrals a term
∝ ε4/3r−2/3(r/L)ζ4−4/3, with a universal constant determined by the fourth-order structure
function, independent of Reynolds number. Balancing these two terms, we find that the
first contribution is dominant as long as C(0) λ1/η � (ε3/2/ν1/2) (r/η)ζ4−1(η/L)ζ4−4/3,
which is satisfied for r � λ2 = η [(L/η)4/3−ζ4 C(0)/(ε3/2/ν1/2) λ1/η]1/(ζ4−1) ∼ η Reα

where α = [1 − 3 ζ4/4 + 3 γ /2 − χ4/2]/(ζ4 − 1). The log-normal approximation gives
α ≈ 0.189, which is smaller than 3/4, consistently ensuring that λ2 � L. This second
crossover scale is much larger than λ1, hence ensuring the existence of a range of
separations λ1 � r � λ2 over which the correlations of acceleration behave as C(r) �
C(0) λ1/r and this range increases with Re. The numerical data of figure 4(b) confirm
this picture. The scaling observed at r � 10 η extends further in the inertial range as Re
increases, and corresponds to C(r) ∝ 1/r with a constant that depends weakly on Re. Both
this regime and the small-scale parabolic approximation of the correlation can be matched
by the following ad hoc formula

C(r) ≈ A2(Re) ε3/2

ν1/2[1 + (r/λ1)2]1/2 . (3.4)

This approximation, shown as a solid line in figure 4(b), is in good agreement with
numerical data. In the following, we will use this formula to coarse-grain the particle
dynamics.

3.2. Particle accelerations
We focus here on the statistical properties of the acceleration ap = dvp/dt of inertial
particles. Figure 5(a) shows its variance as a function of the Stokes number. Our
measurements agree with those of Bec et al. (2006) and, as they span larger values of
the Reynolds numbers, they allow us to substantiate and extend several observations made
in that work.

First, we observe that our data, corresponding to two different Reynolds numbers,
collapse reasonably well on the top of each other when plotted as a function of St and
rescaled by the acceleration variance of tracers. This can be seen in figure 5(b), which
shows the relative discrepancy in acceleration variance Δa ≡ [〈|a|2〉 − 〈|ap|2〉]/〈|a|2〉.
Although a weak Reynolds-number dependence is noticeable at very small Stokes
numbers, one difficulty distinguishes deviations from possible statistical or numerical
errors. Therefore, most effects of intermittency are accounted for by the factor A2(Re)
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Figure 5. (a) Variance of particle acceleration for the two Reynolds numbers as a function of the Stokes
number. The two solid curves are corresponding fits of the form (3.5) with b = 0.42 and c = 0.17. (b) Relative
discrepancy in acceleration variance in log–log coordinates. The solid curve is Δa = exp(−b/St1/2).
(c) Time autocorrelations of particle acceleration for Rλ = 290 and various St. (d) Integral correlation time
of acceleration. The solid line corresponds to (3.6) with τI(0) = 2.15τη, b = 0.42 and d = 0.2.

introduced in § 3.1. This suggests that acceleration variance can be approximated as
〈|ap|2〉 ≈ 〈|a|2〉[1 − Δa(St)], where Δa is a non-dimensional function of the Stokes
number with no significant dependence on Re.

The second observation is an abrupt reduction in the acceleration variance at small
but finite values of St. There is a drop of over 25 % from St = 0 to St = 0.1, which we
interpret as a consequence of preferential sampling, specifically of particle ejection from
violent small-scale vortical structures. Our data suggest that the relative discrepancy Δa
increases faster than any a power law of St. This is evidenced by its convexity when
plotted in log–log coordinates in figure 5(b), indicating that the acceleration variance
may have an essential singularity at St = 0. Such a dependence on Stokes number has
been observed previously for the rate at which fold caustics occur (Wilkinson, Mehlig &
Bezuglyy 2006), a phenomenon also coined the sling effect (Falkovich et al. 2002). These
same events drive the abrupt depletion observed for energy dissipation in § 2.2 and here for
acceleration variance. Figures 3(b) and 5(b) show that both discrepancies are well-fitted
by a curve ∝ exp(−c/St1/2), where c depends weakly on Re. This can be interpreted as
a contribution from the probability that the local Stokes number τp|∇u| is sufficiently
large for the particle to detach from the flow, and thus that τη|∇u| � St−1. At high Re,
the distribution of turbulent velocity gradients is known to display stretched-exponential
tails with an exponent ≈1/2 (see Yeung, Sreenivasan & Pope 2018), consistent with the
behaviour of Δa. However, Buaria et al. (2019) found that the constant in the exponential
has a significant dependence on the Reynolds number. Therefore, to further refine our
discussion, it will be necessary to better understand this dependence in future studies.

Deviation to this singular behaviour occurs at St � 1. Preferential sampling becomes
less important, and acceleration statistics are dominated by the particle delay on the flow:
their velocity is given by low-pass filtering the fluid velocity over time scales smaller than
τp (see Bec et al. 2006). Gorokhovski & Zamansky (2018) used such considerations to
estimate 〈|u − vp|2〉 � 〈|u(t) − u(t − τp)|2〉 ∝ ετp, where the last relation assumes τp �
τη and uses the inertial-range scaling of the second-order Lagrangian structure function.
Consequently, the variance of acceleration approaches a power-law 〈|ap|2〉 ∝ St−1 when
St � 1.
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The two asymptotics St � 1 and St � 1 can be matched by the ad hoc formula

〈|ap|2〉 ≈ A2(Re) ε3/2

ν1/2
1 − exp(−b/St1/2)

(1 + c St2)1/4
, (3.5)

which, as seen from figure 5(a), gives a fairly good approximation of particle acceleration
variance up to St ≈ 7. Note that this fitting formula differs from other proposals, such
as the one suggested by Gorokhovski & Zamansky (2018), which aimed to also capture
response times larger than the large-eddy turnover time τL = u2

rms/ε. As the response times
of our particles lie below τL (i.e. are such that St � Re1/2), we use hereafter (3.5).

We now turn to two-time statistics of the particle acceleration, focusing on the
autocorrelation A(t) = 〈ap(t) · ap(0)〉/〈|ap|2〉. The results are shown in figure 5(c).
Figure 5(d) shows the integral time τI = ∫ |A(t)| dt as a function of St. At small Stokes
numbers, it approaches the value for tracers, τI(0) ≈ 2.15τη. Deviations occur due again
to preferential sampling. Ejection from small-scale vortical structures leads to particles
concentrating in regions where the local dissipative time scale is larger than its average.
Dimensionally, we expect τ

@part
η /τη � [〈|a|2〉/〈|ap|2〉]1/3 and, assuming that τI ≈ τ

@part
η ,

we get τI(St) � τI(0)[1 − exp(−b/St1/2)]−1/3 for St � 1. On the other hand, for large
Stokes numbers, the particle response time effectively filters out all the flow time scales
below it, resulting in τI(St) ∝ τp. These two regimes can be matched using the fitting
formula

τI(St) = τI(0)[1 + d St]5/6

[1 − exp(−b/St1/2)]1/3
, (3.6)

where τI(0) = 2.15τη is the value measured from tracers, b = 0.42 is obtained from the
acceleration variance, and d = 0.2 provides a good agreement with the data of figure 5(d).

To complete this survey, we examine the spatially averaged particle acceleration
〈ap〉�(x, t). This quantity is defined as the instantaneous average acceleration of all
particles that, at time t, are located within a ball B� of diameter � centred at position
x. We are particularly interested in the statistical properties of 〈ap〉� when conditioned on
the local value of the spatially averaged dissipation rate ε�, which is calculated in the same
region B� at the same time. Our goal is to account for the intermittency and variability
of turbulence using Kolmogorov’s refined similarity hypothesis. This hypothesis suggests
that the statistical properties of turbulent quantities at a scale � should be expressed in
terms of the local dissipation ε�, rather than its global average ε. This approach allows us to
relate local fluctuations in small-scale quantities, such as acceleration, to the inertial-range
fluctuations of the dissipation field. According to dimensional analysis, the conditional
statistics of the coarse-grained particle acceleration 〈ap〉�, once normalised by (ε3

�/ν)1/4,
should depend only on two parameters: the local Stokes number St� = τp/(ν/ε�)

1/2, which
is obtained by non-dimensionalising τp with the local Kolmogorov time (ν/ε�)

1/2; and the
local Reynolds number Re� = u��/ν = ε

1/3
� �4/3/ν, which characterises the instantaneous

turbulence intensity in the region of size �.
We can express the conditional mean-squared coarse-grained acceleration of particles

as 〈
|〈ap〉�|2

∣∣∣ ε�

〉
∝ 1

�3

∫ �/2

0

〈
ap(r, t) · ap(0, t)

∣∣ ε�

〉
r2 dr. (3.7)

Based on our earlier analysis of the spatial correlations of the fluid acceleration and
the approximation (3.4), we can assume that for Re� � 1, 〈ap(r, t) · ap(0, t) | ε�〉 ≈
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Figure 6. Coarse-grained statistics of particle acceleration conditioned on the local dissipation ε� for Rλ =
460. (a) Mean-square coarse-grained acceleration as a function of the local Stokes number St� = τp/(ν/ε�)

1/2

for various Re� = ε
1/3
� �4/3/ν labelled by different colours. Solid lines show prediction (3.8), while symbols

correspond to numerical measurements for different St. (b) Same representation for the coarse-grained variance
of particle acceleration. Solid lines are to the fit (3.9) with e = 2.

〈|ap|2 | ε�〉/[1 + (r/λ1(ε�))
2]1/2, where λ1(ε�) ∝ η(ε�) Re(γ−χ4)/2

� is the cut-off scale of
acceleration spatial correlations associated with the local conditioning dissipation ε�. The
conditional acceleration variance 〈|ap|2 | ε�〉 is obtained from (3.5) by replacing ε, Re and
St with their local values ε�, Re� and St� given by the instantaneous spatially averaged
dissipation. Using λ1(ε�) ∝ � Re−β

� with β = 3/4 + (χ4 − γ )/2 ≈ 0.819, we obtain

〈
|〈ap〉�|2

∣∣∣ ε�

〉
≈ e

Reβ
�

A2(Re�) ε
3/2
�

ν1/2

1 − exp
(
−b/St1/2

�

)
(
1 + c St2�

)1/4 , (3.8)

with e > 0. Local fluctuations about this average are described by the coarse-grained
variance of acceleration, which we can obtain by replacing the dissipation rate with the
conditioning value in (3.5). We get

〈
〈|ap|2〉� − |〈ap〉�|2

∣∣∣ ε�

〉
≈ A2(Re�) ε

3/2
�

ν1/2

1 − exp
(
−b/St1/2

�

)
(
1 + c St2�

)1/4

(
1 − e

Reβ
�

)
. (3.9)

These approximations are valid under the conditions Re� � 1 and � � λ2. The assumption
Re� � 1 ensures that turbulent scaling and refined similarity hypotheses apply, while
� � λ2 is required to match the observed scaling C(r) ∝ r−1 of acceleration spatial
correlations.

Figure 6 shows scatter plots of the conditional mean-squared coarse-grained
acceleration and the coarse-grained variance of acceleration obtained from numerical
simulations. The solid lines in the figure represent the predictions (3.8) and (3.9), which
are based on the approximations made in the preceding text and fitted parameters. The
close agreement between the numerical data and the predictions supports the validity of
our approximations.

3.3. An effective diffusion process
To derive effective equations for the particle coarse-grained dynamics, we combine all
ingredients from previous analyses. Using (2.3a,b), we can write the particle velocity as
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vp(t) = u(xp(t), t) − τp ap(t), allowing us to express its displacement over a time δt as

δxp(t) ≡ xp(t + δt) − xp(t) =
∫ t+δt

t
u(xp(s), s) ds − τp

∫ t+δt

t
ap(s) ds. (3.10)

We choose δt to be much smaller than the Lagrangian correlation time τLag of u to ensure
that the fluid velocity along particle path does not vary significantly in [t, t + δt]. Thus,
the first integral on the right-hand side of (3.10) can be approximated as u(xp(t), t) δt +
O(δt/τLag)

2. All fluctuations and dependences on particle inertia are entailed in the second
integral. Additionally, if we assume that δt is much longer than the correlation time τI(St)
of the particle acceleration, we can apply the central-limit theorem and write∫ t+δt

t
ap(s) ds

law∼ N (ap δt, [ap ⊗ ap − ap ⊗ ap] τI δt
)+ O(δt/τI)

3/2, (3.11)

where ⊗ is the outer product and N(m, C) denotes a multivariate normal random variable
with mean m and covariance matrix C. The Lagrangian time average (·) introduced here
is obtained by time integration along particle paths over the interval [t, t + T], assuming
the limit T/τI → ∞. It contains information about the turbulent state in which the particle
is at the initial time t and is crucial to account for inertial-range fluctuations. To estimate
this time average, we use an Eulerian spatial average over a coarse-graining scale �, so
that (·) � 〈·〉�(xp(t), t). This estimate assumes that T is chosen of the order of the turnover
time τ� = ε−1/3�2/3 associated with �, and hence that τ� � τI(St). Preferential sampling
by particles, which naturally arises from the Lagrangian average, is now accounted for by
evaluating the Eulerian average at the current particle position xp.

Under these assumptions, we can now express the particle displacement as

δxp(t) ≈ [
u(xp(t), t) − τp 〈ap(t)〉�

]
δt + σ �(xp(t), t) δW (t). (3.12)

Here, δW denotes the increment of the three-dimensional Wiener process, and σ � is a
tensorial diffusion coefficient that satisfies

1
2σ � σ T

� = D� with D� = 1
2τ 2

p τI [〈ap ⊗ ap〉� − 〈ap〉� ⊗ 〈ap〉�]. (3.13)

This diffusion coefficient not only depends on the particle response time and the
coarse-graining scale, but also fluctuates in space and time. Taking the limit δt → 0 while
keeping τI � δt � τ� = ε

1/2
� �2/3, we can write the effective displacement (3.12) as the

stochastic differential equation

dxp(t) ≈ [
u(xp(t), t) − τp 〈ap(t)〉�

]
dt + σ �(xp, t) dW (t), (3.14)

where σ � is given by (3.13). The diffusion appears here as a multiplicative noise, which
we define using the Itô convention. This is imposed by the requirement that in the
statistical steady state, the average particle velocity should vanish, i.e. 〈dxp(t)/dt〉 = 0.
Since 〈u(xp(t), t)〉 = 0 and 〈〈ap〉�〉 = 〈〈ap〉〉� = 0, the contribution of noise should vanish
as well.

The proposed model (3.14) for particle dynamics share some similarities with the model
introduced by Fevrier et al. (2005). In both cases, the drift term, the ‘mesoscopic Eulerian
particle velocity’ in their work, is the sum of the fluid velocity and a residual one.
In our model, this residual velocity is proportional to the filtered particle acceleration.
Both models also include a noise term. However, while the ‘quasi-Brownian velocity’
of Fevrier et al. (2005) satisfies a molecular chaos assumption and is uncorrelated in
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space, we identify it in our model as a diffusion with a space–time dependent coefficient
that fluctuates due to turbulent agitation. As a result, this contribution is correlated over
inertial-range separations.

Particle inertia affect both drift and diffusion in the stochastic equation (3.14). These
two contributions have different weights at different scales. They balance each other at
a scale �diff , estimated as �diff = 〈Dii

� 〉/[τp〈|〈ap〉�|2〉1/2]. Diffusion dominates at scales
smaller than �diff and is negligible at larger scales. Thus, the diffusion term is relevant
only when �diff is larger than the coarse-graining scale �. Using considerations from the
previous subsection, and in particular (3.8) and (3.9) for the statistics of the coarse-grained
acceleration, we can approximate for � � η:

�diff

�
= τp

2 �

〈
τI
[〈|ap|2〉� − |〈ap〉�|2

]〉
〈|〈ap〉�|2〉1/2 � Ψ (St)

(
�

η

)−1+(2/3)(γ+β)

. (3.15)

The exponent is negative, indicating that the diffusive scale becomes very small when the
coarse-graining scale � is far inside the inertial range. Numerical measurements of �diff ,
reported in figure 7(a), obtained from the coarse-grained statistics of particle acceleration,
confirm the power-law behaviour (3.15) at � � η. We also observe that, for the moderate
values of the Stokes number considered, �diff is always smaller than �. Based on previous
acceleration correlation measurements, we expect that the constant Ψ behaves as

Ψ (St) ∝ St(1 + d St)5/6[1 − exp(−b/St1/2)]1/6

(1 + c St2)1/8
. (3.16)

This prediction, shown as a solid curve in figure 7(b), compares well with the
numerical measurements shown as circles. Extrapolating this behaviour to higher Stokes
numbers, we obtain that Ψ ∼ St3/2, implying that neglecting diffusion requires choosing
a coarse-graining scale such that �/η � St(3/2)/[1−(2/3)(γ+β)] ≈ St3.73. Note that this
condition applies to particle response times in the inertial range but still smaller than
the fluid velocity Lagrangian correlation time τLag. This condition is more restrictive than
the classical idea that the particle response time should be smaller than the eddy turnover
time τ� = ε−1/3�2/3 associated with the coarse-graining scale, which would instead lead
to �/η � St3/2.

In this section, we have shown that the coarse-grained dynamics of inertial particles,
when averaged over time, can be effectively modelled using a stochastic equation that
includes both drift and diffusion terms. The contributions from particle inertia, which
distinguish heavy particles from fluid elements, are governed by the coarse-grained
particle acceleration. This acceleration, which fluctuates both spatially and temporally,
serves as a clear indicator of turbulent activity. Our analysis shows that for sufficiently
large temporal coarse-graining scales, or equivalently small Stokes numbers, the diffusive
effects become negligible, leading to dynamics that are predominantly governed by
drift. In the following section, we will focus on this asymptotic regime and develop a
further level of modelling that allows us to derive an effective dynamics for the Eulerian
coarse-grained density of particles, shifting the emphasis from temporal to spatiotemporal
averaging.

4. Particle transport as an Eulerian ejection process

4.1. Model dynamics for the particle density

In the previous section, we introduced an effective velocity field v
eff
p = u − τp, 〈ap〉�,

which describes the Lagrangian dynamics of particles at large temporal averaging scales
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Figure 7. (a) Ratio of the diffusive scale �diff to the coarse-graining scale � for various Stokes numbers at
Rλ = 460. The scale �diff is the ‘Batchelor’ scale above which the diffusive term in (3.14) becomes negligible.
The dashed line has a slope −1 + (2/3)(γ + β) ≈ −0.402, as predicted from the log-normal approximation.
(b) Coefficient Ψ of the power law (3.15). Symbols are numerical measurements and the solid curve is the
prediction (3.16).

u(x,t)

∂B�

−τpap

Φt (i, j, k)

Φt(i − 1, j, k)

Φt(i + 1, j, k)

(a) (b)

�

B�

Figure 8. Sketch of the ejection process. (a) A quasi-Lagrangian viewpoint is adopted to emphasise
discrepancies due to inertia. Outgoing fluxes correspond to particles that acquired large-enough accelerations
within B�. (b) The reference cell (i, j, k) ejects particles with a rate Φt(i, j, k) to all its neighbours and receives
their individual contributions.

(corresponding to the limit of weak inertia) in terms of the coarse-grained particle
acceleration. The effective dynamics, characterised by both drift and diffusion terms,
simplify as diffusion becomes negligible at sufficiently large scales or small Stokes
numbers. While this approach provides insights into how inertia influences particle
dynamics over time, to fully capture their spatial distribution in turbulent flows, we
shift to an Eulerian framework. This involves reformulating the problem by tracking the
evolution of the coarse-grained particle density 〈ρp〉� within a volume B� of size � –
figure 8(a), combining spatial and temporal averages. This transition is not merely a change
in perspective but a complementary methodology, enabling us to model the macroscopic
behaviour of particles as a continuum, thus better quantifying how they cluster or disperse
across different scales of turbulence.

We adopt a quasi-Lagrangian approach and follow the control volume in its motion
with the fluid velocity u, while considering its exchanges with its Eulerian neighbours.
To evaluate the fluxes due to particles’ inertia at the boundary ∂B� of the control volume,
we distinguish between outgoing and incoming fluxes. Some particles leave the volume
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because they have acquired a large-enough acceleration inside B�, and the outgoing flux
should thus be controlled by the coarse-grained acceleration 〈ap〉� computed inside the
reference volume. This flux can be expressed as

Φt(x) ≈
∫

∂B�(x)

〈(−τp ap · n
)
θ(−ap · n) ρp

〉
�

dS ≈ 3�2τp〈ρp〉� |〈ap〉�|. (4.1)

Here, θ denotes the Heaviside function, n is the unit vector normal to the surface of B�, and
the average is taken over accelerations satisfying ap · n < 0 to account only for outgoing
particles. Assuming isotropic distribution of the outgoing flux, this signed average can be
approximated by (1/2)|〈ap〉�|. The control volume B� is chosen as a cube with edge length
�, and the spatial domain is tiled by such cubes, see figure 8(b). The time evolution of the
mass �3〈ρp〉� of particles contained in the cell (i, j, k) is then given by

D
Dt

[
�3〈ρp〉�

]
= −Φt(i, j, k) + 1

6

[
Φt(i − 1, j, k) + Φt(i + 1, j, k) + Φt(i, j − 1, k)

+Φt(i, j + 1, k) + Φt(i, j, k − 1) + Φt(i, j, k + 1)
]
. (4.2)

Here D/Dt = ∂t + u · ∇ denotes the material derivative along the trajectories of fluid
elements. Mass is lost from the outgoing flux Φt(i, j, k) in the reference cell and gained
from the outgoing flux coming from its six neighbours on the cubic tiling. The right-hand
side of (4.2) corresponds to the discrete Laplacian of the outgoing flux Φt. By considering
the mass evolution on scales much larger than the coarse-graining scale �, we can write a
continuous limit which reads

∂t〈ρp〉� + u(x, t) · ∇〈ρp〉� ≈ ∇2 [κ�(x, t) 〈ρp〉�
]
, with κ� = τp� |〈ap〉�|/2. (4.3)

The position- and time-dependent coarse-grained diffusion coefficient, κ�, appears inside
the Laplacian as expected for an ejection process. This model for particle transport
provides a quantitative extension of the phenomenological ideas proposed in Bec &
Chétrite (2007). As we will discuss later, the underlying ejection process gives rise to
specific features in the probability distribution of the spatially averaged density, 〈ρp〉�.

The diffusive term in (4.3) can be expressed as the divergence of the flux vector
ϕt = −κ� ∇〈ρp〉� − 〈ρp〉� ∇κ�, which consists of two distinct contributions. The first
corresponds to osmotic forces, resulting in classical Fickian diffusion that enhances
mixing alongside fluid advection. The second arises from turbophoretic forces due
to convection by the velocity ∇κ�, which drive particles from regions with high κ�,
characterised by strong particle accelerations and high turbulent activity, to regions with
low κ�. The turbophoretic contribution is responsible for the preferential sampling of
particles in the inertial range, as qualitatively discussed in § 2.2. To determine whether
turbophoretic forces are strong enough to induce significant concentration fluctuations and
inertial-range voids, we need to compare the magnitudes of the terms in ϕt. In particular,
turbophoretic forces dominate when |∇κ�|/κ� > |∇〈ρp〉�|/〈ρp〉�, which implies that the
scale of variation of the diffusion coefficient (and thus of the particle acceleration) should
be smaller than that of density.

The balance between fluid flow convection and turbophoretic diffusion can be
characterised at a given coarse-graining scale � by a dimensionless Péclet number that
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Figure 9. Scale-dependent Péclet number Pr� defined from (4.4) shown in (a) as a function of the
coarse-graining scale � for various Stokes numbers and in (b) as a function of the Stokes number for various
coarse-graining scales �. The dashed line in (a) shows a behaviour Pr� ∝ (�/η)δ with δ = ζ2/2 + (2/3) (γ −
β) ≈ 0.84 that is expected for � � η. The dashed line in (b) corresponds to Pr� ∝ St−1 that prevails at small
values of the Stokes number.

we define as

Pr� = �δu(�)

〈κ2
� 〉1/2

= 2
√

3[S‖
2(�)]

1/2

τp
〈|〈ap〉�|2

〉1/2 . (4.4)

Here, δu(�) is the typical fluid velocity fluctuation at scale �, which is estimated
by the square root of the second-order longitudinal structure function S‖

2. In the
inertial-range, S‖

2 ∼ �ζ2 with ζ2 ≈ 0.696. Equation (3.8) shows that for the spatially
averaged acceleration, 〈|〈ap〉�|2〉 ∝ A2(Re�) Re−β

� ∼ �(4/3)(γ−β), which leads to the
scaling behaviour Pr� ∼ �δ with δ = ζ2/2 − (2/3)(γ − β) ≈ 0.84 for coarse-graining
scales � in the inertial range. Figure 9(a) confirms this power-law dependence. Regarding
the dependence on the Stokes number, we have Pr� ∼ St−1 when St � 1, as shown in
figure 9(b). The numerical data indicate that the Péclet number can reach values larger than
1 for both � � η and St � 1. The scaling laws for small Stokes number and large averaging
scale give Pr� ∼ (�/η)δ/St, which results in a Péclet number much higher than unity when
�/η � St1/δ ∼ St1.19. This scaling is distinct from those discussed in the previous section
based on Lagrangian considerations.

4.2. Distribution of the coarse-grained density
Based on our previous arguments, we anticipate that for sufficiently large scales, the Péclet
number Pr� defined in (4.4) captures alone dependences upon both the Stokes number
St and the coarse-graining scale �. This asymptotic regime corresponds to the range of
parameter values where the approximation (4.3) accurately describes particle dynamics,
and we expect that their clustering behaviour will primarily depend on Pr�.

We start with examining the radial distribution function, or pair distribution function
g(�), which describes the probability of finding two particles at a distance �, normalised
by the probability for a uniform distribution. It can be expressed through the second-order
moment of the coarse-grained density 〈ρp〉�, namely g(�) = 〈〈ρp〉2

�〉/〈〈ρp〉�〉2. For a
uniform distribution, we have 〈ρp〉� ≡ ρ0 = 〈〈ρp〉�〉, so g(�) = 1. Deviations from
uniformity as a function of the scale-dependent Péclet number are shown in figure 10(a).
Data associated with different values of the Stokes number collapse onto a unique master
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Figure 10. (a) Deviation from uniformity of the radial distribution function, g(�) − 1, as a function of the
scale-dependent Péclet number Pr� for Rλ = 460 and various Stokes numbers. The dashed lines show the
expected behaviours at moderate and large values of Pr�. The solid curve is an approximation ∝ Prζ2/δ−2

� /[1 +
Pr�/P]ζ2/δ with P = 200. (b) Probability density function (p.d.f.) of the particle coarse-grained density 〈ρp〉�
for six different values of the Péclet number (different symbols), each corresponding to two Stokes numbers
(different colours) and two coarse-graining scales combining to the same Pr�.

curve, when the coarse-graining scale � is chosen far enough in the inertial range. This
curve shows two distinct scaling regimes: one at moderate Péclet numbers and another at
large values.

For large values of Pr�, we can express the coarse-grained density as 〈ρp〉� = ρ0 + δρ

with δρ � ρ0. To leading order, the perturbation satisfies ∂tδρ + u·∇δρ = ρ0∇2κ�. For
statistically stationary deviations to uniformity, we get δu(�) δρ ∼ ρ0κ�/�, which implies
that δρ ∼ Pr−1

� and the variance scales as g(�) − 1 ∼ Pr−2
� . At lower Péclet numbers

and higher Stokes numbers, when deviations to uniformity are still small, the velocity
contribution is dominated by the large-scale advection, so we have urmsδρ ∼ κ�/�. This
means that deviations from uniformity depend on κ�, but not on fluid velocity fluctuations
at the scale �. Thus, we have δρ ∼ κ�/� ∼ δu(�)/Pr�. Using Pr� ∼ �δ , we obtain the
second scaling regime g(�) − 1 ∼ Prζ2/δ−2

� . A solid curve in figure 10(a) shows an ad
hoc approximation matching these two asymptotic laws. It provides a reasonable fit to the
numerical measurements.

Let us contextualise our results with respect to previous findings on how particles
recover a uniform distribution at large scales. When � becomes large, g(�) tends to
unity and in our approach, we find that log g(�) ≈ g(�) − 1 ∼ Pr−2

� ∼ τ 2
p �−1.68. Such an

algebraic dependence differs from the exponential decay proposed by Reade & Collins
(2000) that seems confirmed by the experimental measurements of Petersen, Baker &
Coletti (2019) (see also Brandt & Coletti (2022)). The scaling that we observe also
significantly deviates from the prediction of Balkovsky et al. (2001) (see also Falkovich,
Fouxon & Stepanov (2003)), who proposed that the radial distribution depends primarily
on the scale-dependent Stokes number, with log g(�) ∝ St2� ∼ τ 2

p �−4/3 when St� � 1.
However, the relevance of St� has so far been demonstrated only in models assuming
the fluid velocity is a white noise process. For instance, for velocities in the Kraichnan
ensemble, it has been shown by Bec et al. (2007b) that log g(�) ∝ (D2(St�) − 3) log � ∼
St2� log �, which is not a pure function of St�. Moreover, the direct numerical simulations
of Bec et al. (2007a) at moderate Reynolds numbers suggest that particle distributions
primarily depend on a scale-dependent contraction rate ∝ τp�

−5/3, without clear evidence
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Figure 11. (a) The p.d.f. of the coarse-grained density p(〈ρp〉�) shown for � = 64η represented as a function of
〈ρp〉� log〈ρp〉� to evidence the subexponential tail at large masses. (b) Cumulative distribution function (CDF)
of the coarse-grained density for different Stokes numbers, � = 64η and Rλ = 460 (same labels as panel
a), showing a power-law behaviour ∝ 〈ρp〉ξ� at small values. Inset (c) Exponent ξ as a function of the
scale-dependent Péclet number, measured for various St and coarse-graining scales �.

of scaling for the radial distribution function in the inertial range. More recent numerics
by Bragg et al. (2015) and Ariki et al. (2018) indicate a scaling log g(�) ∼ �−4/3,
albeit with uncertainties on the Stokes number dependence. Our approach reveals a
second power-law regime, persisting up to Pr� ≈ 100, where log g(�) ∼ Prζ2/δ−2

� ∼
τ 1.17�−1.39, potentially masquerading a behaviour ∝ �−4/3. It would be of interest to
reassess previous measurements of the radial distribution function in the light of present
findings.

To complement our analysis, we turn to the p.d.f. p(〈ρp〉�) of the coarse-grained
density. Figure 10(b) displays numerical measurements for six different high values
of the Péclet number. Remarkably, data obtained from various combinations of the
particle response time τp and the coarse-graining scale �, resulting in the same Pr�,
exhibit a reasonable collapse, within the range of statistical errors. This confirms the
significance of the scale-dependent Péclet number in characterising density fluctuations.
The observed probability distributions manifest distinctive features. Both tails, associated
with small and large values of 〈ρp〉�, are broader than those expected for a Poisson
distribution corresponding to a uniform particle density. These deviations can be
explained by the ejection process framework developed in Bec & Chétrite (2007).
Specifically, we find that large densities occur more frequently than the quasi-Gaussian
tail of the Poisson distribution. The p.d.f.s exhibit a subexponential behaviour
p(〈ρp〉�) ∝ exp(−C〈ρp〉� log〈ρp〉�), which is clearly captured by our data, as evident
in figure 11(a).

Regarding the left-hand tail, quasiempty regions occur also more frequently than in
a simple Poisson process. Density distributions follow there a power-law p(〈ρp〉�) ∝
〈ρp〉ξ−1

� , as depicted in figure 11(b). This behaviour is again a characteristic feature of
ejection processes. To provide a heuristic explanation, we consider the approximation
(4.3) of the dynamics, where the evolution of the coarse-grained density along a particle
trajectory is given by

ρ̃p ≡ 〈ρp〉�(xp(t), t) ≈ ρ0 exp
∫ t

−∞
∇2κ�(xp(s), s) ds. (4.5)
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We can thus write the cumulative distribution of the Lagrangian density ρ̃p for ρ̃p � ρ0
as

Pr(ρ̃p < ρ) ≈ Pr
(∫ t

−∞
∇2κ�(xp(s), s) ds < log

ρ

ρ0

)

≈ max
N

[
Pr
(

τ�∇2κ� <
1
N

log
ρ

ρ0

)]N

. (4.6)

Here, we have decomposed the Lagrangian integral of the turbophoretic term into a sum
of N equally distributed independent random variables τ�∇2κ�, where τ� represents the
correlation time of the ejection rate along particle paths. The asymptotic ρ � ρ0 behaviour
is then obtained by optimising N, which represents the number of times mass must be
ejected to create a void. If this number is of the order of unity, the above formula samples
the (negative) tail of the distribution of ∇2κ�. A power-law behaviour arises because it is
more favourable to choose a value of N of the order of | log(ρ/ρ0)|, indicating that empty
regions are more likely to results from persistent ejections rather than rare, violent events
leading to instantaneous voids. Thus, by writing the optimum as N = −n log(ρ/ρ0) with
n = O(1), the CDF becomes

Pr(ρ̃p < ρ) ∝ (ρ/ρ0)
ξ̃ , with ξ̃ = −n log Pr

(
τ�∇2κ�(xp(t), t) < −1/n

)
. (4.7)

When the Péclet number is large enough, advection dominates, resulting in
the correlation time τ� being given by the eddy-turnover time at scale τ� �
�/δu(�). Consequently, Pr(τ�∇2κ� < −1/n) � Pr(|�δu(�)/κ�| < n) ∝ Pr−1

� for Pr� � 1.
Furthermore, the exponent ξ̃ is bounded from below by zero in order for the probability
distribution of ρ̃p to be normalisable. Eulerian statistics are then obtained by accounting
for the additional factor of ρ/ρ0 involved in the Lagrangian average, because it is itself
weighted by the particle density. This finally leads us to write the probability distribution
of the Eulerian coarse-grained density as

Pr(〈ρp〉� < ρ) ∝ (ρ/ρ0)
ξ , with ξ = 1 + ξ̃ ≈ 1 + f max

[
0, log(Pr�/Pe�)

]
, (4.8)

where f is a positive constant. Figure 11(c) displays the measured exponent ξ as a function
of the scale-dependent Péclet number. The exponent saturates at ξ = 1 for Pr� < Pe� ≈
5.5 and is larger than 1 above that threshold, increasing as f log(Pr�/Pe�) with f ≈ 0.75
for larger values, confirming the prediction given by (4.8).

4.3. Distribution of voids
We now shift our attention to the large voids that prominently emerge in the spatial
distribution of particles. As we observed in § 2.2, the sizes of these empty regions span
the entire inertial range, even at moderate Stokes numbers. Our goal here is to investigate
to what extent the statistics of these voids can be explained by the effective diffusion (4.3)
introduced in § 4.1.

To detect these voids numerically, we rely on the spatially averaged density. They are
defined as connected sets of empty cells, identified by a label-propagation algorithm. The
volume V of each void is determined by counting the number of cubes with a volume
�3 that it encompasses. While alternative techniques for void detection, such as Delaunay
tessellations (see e.g. Gaite 2005), may offer better algorithmic efficiency and the ability
to define voids in a parameter-free manner, they yield the same results as presented
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(a) (b) (c)

Figure 12. Two-dimensional cuts of the instantaneous distribution of voids for Rλ = 460 and (a) St = 0.4,
(b) St = 1 and (c) St = 2.5. The time and the position of this slice are the same as in figure 2. Voids are
obtained as connected empty cubes of size � = 16 η.

below. Therefore, we have chosen to continue working with the spatially averaged density,
which is central to the model for particle coarse-grained dynamics proposed in § 4.1.
Figure 12 displays two-dimensional slices of the three-dimensional distribution of voids
for a coarse-graining scale of � = 16η and for three different values of the particle response
time. These distributions are shown at the same instant of time and in the same slice as the
local kinetic energy dissipation rate in figure 2(a). The comparison of these two figures
clearly identifies voids as regions with high turbulent activity. Furthermore, there are
evident correlations between the empty regions associated with different Stokes numbers.
One such correlation can be observed for the circled greenish structure, where the intensity
of voids increases with St. Conversely, in other cases, exemplified by the lower orangish
structure circled with dots, a void that exists at small St can be filled by particles with a
larger inertia.

Figure 13(a) presents the complementary cumulative probability distributions of void
volumes obtained for different Stokes numbers and an elementary coarse-graining scale
� = 16η. These distributions exhibit broad tails at large inertial-range volumes, displaying
a distinctive power-law behaviour Pr(V > v) ∝ v−ζ , where ζ ≈ 1 is particularly evident
for the highest Stokes number values. These statistics remain robust when using alternative
definitions of voids, or when changing either the total number of particles Np or the
coarse-graining scale �. Similar power-law dependencies have been previously observed in
the probability distribution of void sizes. In the two-dimensional inverse cascade, Boffetta
et al. (2004) found an intermediate regime where the p.d.f. of void areas behaves as
p(a) ∝ a−1.8, independent of the Stokes number, with an exponential cutoff at larger
sizes. Goto & Vassilicos (2006) proposed a self-similar distribution of void areas with
p(a) ∝ a−5/3, arising from sweep-stick mechanisms where particles preferentially trace
fluid zero-acceleration points. Extending these arguments to three dimensions, Yoshimoto
& Goto (2007) predicted a power-law exponent ζ = 7/9 ≈ 0.778 for the cumulative
distribution of void volumes, with reasonable numerical support at moderate values of
the Reynolds number. Figure 13(a) showcases this behaviour for comparison. Additional
evidence supporting this shallow trend comes from grid-turbulence experiments by
Sumbekova et al. (2017) and analyses employing Voronoï diagrams, where they found
p(a) ∝ a−1.8±0.1 for void areas in two-dimensional cross-sections of the three-dimensional
particle distribution. Assuming a relationship of the form p(v) ∼ v−1/3p(a) with a ∼ v2/3,
these observations suggest ζ ≈ 0.53 ± 0.07. However, our data clearly show a steeper
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Figure 13. (a) Complementary CDF Pr(V > v) of the void volumes V shown for Rλ = 460 and various
Stokes numbers, as labelled. The numerical data is represented by symbols, while the solid lines correspond
to approximations of the form (4.10) – see text for parameter values. (b) Same data, rescaled to emphasise
the log-normal behaviour for v � v�, shown as a solid line, which is independent of the Stokes number. Inset
is the measured power-law exponent ζ as a function of the Stokes number. The solid line corresponds to
ζ = 1 − 0.17 log St.

slope, even for Stokes numbers exceeding those considered in both Yoshimoto & Goto
(2007) and Sumbekova et al. (2017).

We revisit here void statistics in light of the ejection process that we introduced to model
particle dynamics in the inertial range. The probability that the volume of a void exceeds
the value v can be estimated as the probability of finding very few particles in a cube
of size � ∼ v1/3. This implies that the coarse-grained density is there of the order of or
smaller than v−1. Thus, we can write Pr(V > v) ∼ Pr(〈ρp〉� � v−1). Using the asymptotic
behaviour (4.8) for the distribution of 〈ρp〉� at small values, we obtain

Pr(V > v) ∼ (v/η3)−ξ(Pr�) ∼ (v/η3)−1 exp(− log(v/η3) f max[0, log(Pr�/Pe�)]). (4.9)

Choosing � to be of the order of v1/3, we have Pr� ∼ (�/η)δ/St ∝ (v/η3)δ/3/St, resulting
in

Pr(V > v) ∼
{

St−3/δ(v/v�)
−1 if v < v�,

St−3/δ(v/v�)
−ζ(St) exp(−g[log(v/v�)]2) if v � v�.

(4.10)

Here, g is a positive constant, v� ∝ η3St3/δ and the exponent ζ has a logarithmic
dependence on the Stokes number of the form ζ ≈ 1 − h log(St/St�), where h > 0.
Figure 13(a) shows such predictions for the distribution of void volumes along with
numerical data. Reasonable agreement is obtained by choosing for fitting parameters
v�/η

3 = 4000 St3/δ , g = 0.0085, h = 0.17 and St� = 1. The measurements shown in
figure 13(b) corroborate these values. Figure 13(b) represents the rescaled complementary
cumulative distribution of void volumes as a function of v/v�. Despite statistical noise,
data associated with various Stokes numbers (symbols) seem to collapse for v > v�

onto the log-normal master curve exp[−0.0085[log(v/v�)]2] (solid line). The measured
exponent ζ is represented in the inset in figure 13(b). It follows ζ ≈ 1 − 0.17 log St for
St � 1 and saturates to ζ ≈ 1 for larger St.

It is worth noting that the intermediate power-law behaviour that we observe in the
distribution of void sizes can be interpreted in terms of Zipf’s law (see e.g. Cristelli, Batty
& Pietronero 2012). Samples following this law exhibit coherence and adhere to certain
dynamical constraints, which are satisfied when the size dynamics of the objects under
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consideration can be described as a multiplicative process. In the context of turbophoresis,
interpreted as an ejection process, this framework naturally emerges, as the mass of
particles ejected from a given cell is proportional to its volume. For such a coherent
process, the exponent ζ = 1 represents a classical case. It arises when large voids are
formed through the merging of smaller, independent voids with uncorrelated histories, as
may occur at large Stokes numbers. The growth rate of a large void becomes proportional
to the probability of intersecting other empty regions, which, in turn, is proportional to its
volume. This process, known as ‘preferential attachment’, leads to an exponent of ζ = 1
(see De Marzo et al. 2021).

5. Concluding remarks

In this paper, we have presented convincing evidence that the phenomenon of
turbophoresis, previously thought to occur only in turbulent flows containing
inhomogeneities, also manifests in statistically homogeneous situations. This effect arises
from the instantaneous non-uniformities intrinsic to turbulent flows, spanning the whole
inertial range. Our direct numerical simulations clearly illustrate the ejection of inertial
particles from highly active regions of the flow, leading to their concentration in calmer
regions. Remarkably, this behaviour persists in spatially coarse-grained representations
of both the flow and the particles, resulting in strong correlations between the spatially
averaged particle concentration and the fluctuations in turbulent kinetic energy dissipation
within the inertial range.

The fluctuations in particle acceleration play a crucial role in the turbophoresis process.
When particles experience pure Stokes drag, these acceleration fluctuations govern their
deviations from fluid motion. Through analytical and phenomenological arguments, as
well as a detailed analysis of numerical simulations, we have gained insights into
the statistics of particle acceleration. This includes understanding spatial and temporal
correlations, as well as the influence of fluid flow intermittency on second-order statistics.
Building upon these insights, we have introduced approximations for the inertial-range
dynamics of particles in terms of effective diffusion equations with a diffusivity that
varies in both space and time. The diffusion coefficient is expressed in terms of the
coarse-grained particle acceleration, which, in turn, is determined by local turbulent
activity. These approximations hold when spatial averaging scales are sufficiently large or
particle inertia is sufficiently small, ensuring that higher-order corrections to this dynamics
remain negligible. Our study integrates two complementary perspectives: the Lagrangian
view, which involves temporal averaging of particle dynamics; and the Eulerian view,
which incorporates both temporal and spatial averaging. The Lagrangian model captures
time-dependent effects of inertia, while the Eulerian model provides a macroscopic
description of particle distributions as a continuum. Although neither model is fully
closed due to the need for detailed statistical input, the preliminary studies that we present
offer a foundation for linking particle dynamics with coarse-grained turbulent statistics,
particularly under Kolmogorov’s (1962) refined similarity hypothesis. An important
finding is that inertial-range particle dynamics depend solely on a local Péclet number
that quantifies the relative importance of advection by the fluid flow compared with
inertia-induced diffusion at a given coarse-graining scale �. Notably this Péclet number
exhibits a non-trivial power-law dependence on the observation scale, Pr� ∼ (�/η)0.84/St,
where the exponent is prescribed by the intermittent statistics of the fluid velocity and
deviates significantly from the value 2/3 that would be obtained by dimensional analysis.

The diffusive models we have developed provide means to infer of the distribution of
particles in the inertial range. Similarly to other situations where diffusiophoresis is at
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play (see e.g. Raynal et al. 2018; Basset et al. 2022), the effective diffusivity of particles
can be interpreted as an effective coarse-grained compressibility that is responsible
for particle clustering. Specifically, we demonstrate in this work that the statistics of
the coarse-grained particle density 〈ρp〉� at a given inertial-range scale � � η depend
solely on the scale-dependent Péclet number Pr�. Furthermore, these diffusive models
predict that the p.d.f.s of 〈ρp〉� exhibit algebraic tails at small values and allow for
the characterisation of the associated exponent as a function of Pr�. For large masses,
the models predict a superexponential behaviour that is also well reproduced by our
direct numerical simulations. However, statistics that span different scales, such as the
distribution of voids, display more intricate dependencies. Nonetheless, we find that the
probability distribution of void volumes follows a power law with exponent steeper than
−2 at intermediate values, transitioning to a log-normal tail at larger values. Our direct
numerical simulations demonstrate a reasonably good agreement with this prediction,
emphasising the need to revisit previous work on void statistics in the light of these
potential behaviours.

The introduction of space-dependent diffusions in this study presents a novel
framework for incorporating inertial particles into models or LES of turbulent flows. The
coarse-grained particle density can be effectively approximated using diffusion equations
derived from spatial averaging, with a fluctuating diffusion coefficient determined by
the local turbulent dissipation rate. To test, calibrate and validate this approach, further
numerical simulations that integrate the effective advection-diffusion equations at various
coarse-graining resolutions are necessary. Although beyond the scope of this work, this
perspective holds promise for future work.
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