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Abstract

Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the
functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and
accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.
In this manuscript, it is hypothesized that the coordinated and synchronized temporal patterns within the brain
network, termed as brain synergy, contain valuable information to decode handmovements. 32-channel EEGswere
acquired from 10 healthy participants during hand grasp and open. Synergistic spatial distribution pattern and
power spectra of brain activity were investigated using independent component analysis of EEG. Out of 32 EEG
channels, 15 channels spanning the frontal, central and parietal regions were strategically selected based on the
synergy of spatial distribution pattern and power spectrum of independent components. Time-domain and
synergistic features were extracted from the selected 15 EEG channels. These features were employed to train a
Bayesian optimizer-based support vector machine (SVM). The optimized SVM classifier could achieve an average
testing accuracy of 94.39 ± .84% using synergistic features. The paired t-test showed that synergistic features
yielded significantly higher area under curve values (p < .05) compared to time-domain features in classifying hand
movements. The output of the classifier was employed for the control of the prosthetic hand. This synergistic
approach for analyzing temporal activities in motor control and control of prosthetic hands have potential
contributions to future research. It addresses the limitations of EMG-based approaches and emphasizes the
effectiveness of synergy-based control for prostheses.

1. Background and summary

The field of prosthetic hand control has witnessed remarkable advancements in recent years, aiming to
enhance the functionality and usability of prosthetic hands by individuals with hand amputation. In
research on motor control, electromyogram (EMG) has been a cornerstone enabling users to manipulate
prosthetic hands through the detection of residual muscle activity (Campbell et al., 2020). However,
EMG-controlled prostheses heavily rely on the availability and functionality of residual muscles. For
individuals with amputations or muscle impairments, this reliance poses challenges in achieving consis-
tent and reliable control (Fleming et al., 2021). Additionally, the overall versatility of prosthetic hand
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movements in EMG-controlled systems is constrained by the number of accessible muscle and their
associated contractions. The complexity of muscle-based interfaces hinders the naturalness and speed of
interaction. The users of EMG-controlled prostheses often face a learning curve associated with specific
muscle contractions for precise control (Kumar et al., 2019).

With the advancement of neuroscientific understanding and technology, brain–computer interface
(BCI) system with an electroencephalogram (EEG) serves as a means of enhancing the control
precision and usability of prosthetic devices (Abiri et al., 2019). This will establish a direct channel
for communication and control between the human brain and external devices, eliminating the need for
reliance on peripheral nerves and muscles. Myokinetic interfaces were introduced for controlling
prosthetic hands that rely on detectingmuscle movements using surgically implanted sensors in or near
the muscles (Gherardini et al., 2023). This technique presents an alternative to using scalp EEG for
prosthetic hand control. However, this interface involves surgically implanting sensors to detect
muscle activity posing several challenges. These challenges include the invasiveness of the surgery,
risks of infection, rejection, and long-term biocompatibility issues (Salminger et al., 2019). Addition-
ally, the implanted sensors can cause discomfort for users and require periodic maintenance or
replacement resulting in higher costs. However, EEG provides comprehensive motor and cognitive
activity insights without the associated risks and complexities of myokinetic interfaces. Bypassing the
need for intact muscles, EEG offers an alternative for individuals with nonfunctional or absent
muscles, broadening the scope of prosthesis accessibility. EEG allows for the decoding of more
intricate neural patterns, potentially offering a greater range of distinguishable hand movements
(Hazrati & Erfanian, 2010). Furthermore, EEG-based control strategies are more anthropomorphic
enabling the interaction between the user and the prosthetic hand intuitively. Previous research has
highlighted distinctions in EEG patterns associated with various hand movements such as opening,
closing, supination, and pronation (Zou et al., 2023). Additionally, differences have been observed
among different types of grasps, including pincer, power, and intermediate grasps (Su et al., 2023).
However, these control strategies using EEG have limitations and challenges in detecting complex
hand movements in higher dimensions (Zou et al., 2023; Su et al., 2023). EEG acquisition and
processing require further engineering to integrate smoothly with prosthetic hands. To address these
challenges, synergies are being explored that mimic the intelligent approach employed by the human
brain for motor control (Santello et al., 2013). Studies have demonstrated the effective identification of
synergies in hand movement (Antuvan et al., 2016).

Moreover, the complex functional structure of cortical motor areas and the reasons for their numerous
interaction during voluntary movement remain not fully elucidated. Neurons within these regions possess
distinctive characteristics and engage in diverse stages of movement, from planning to execution through
functional integration (Andres & Gerloff, 1999; Tononi et al., 1998). Hand synergy correlation in
kinematic movement (Pei et al., 2020), hand movement classification (Erdoĝan et al., 2019), effects of
beta rebound, and alpha-coherence during execution of hand movements (Wang et al., 2022; Formaggio
et al., 2015) have been reported involving EEG channels spanning over central, frontal, occipital, and
parietal regions. Studying the synchronization of temporal patterns of the parallel pathways connecting
frontal, central, parietal, and occipital regions of the brain provides an understanding of their dynamic
roles in voluntary hand movement. Previous studies have shown that the analysis of muscle synergy is
employed to investigate the coordination of signals associated with muscle activity (Santello et al., 2016;
Li et al., 2021). The muscle synergy theory is grounded in the concept that the highly redundant
musculoskeletal system requires a mechanism to streamline the degrees of freedom in motor control.
This mechanism enables the execution ofmovements. The relevance ofmuscle synergy analysis becomes
particularly evident in studies focusing on motor impairment. Currently, there is no method that ensures
consistent categorization of distinct hand movements based on synergy in the brain using
noninvasive EEG.

In this study, it is hypothesised that coordinating temporal patterns within the different regions of
the brain, referred to as brain synergy, contain sufficient information for decoding various hand
movements for prosthetic hand control. 32-channels EEG were recorded from 10 healthy participants
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during hand grasp and open tasks. Movement-related synergistic brain activity was analyzed using
coherence of spatial power distribution pattern and power spectral density (PSD) of independent
components of EEG. From the 32 channels, 15 channels located in the frontal, central, and parietal
regions were selected using independent component analysis (ICA) based spatial power distribution
and power spectral analysis to accurately decode the neural activity associated with hand movements.
Time-domain and synergistic features (coherence of spatial power distribution and power spectral)
were extracted from the selected 15 channels. These features were used to train a support vector
machine (SVM) classifier. The SVM classifier was optimized using a Bayesian optimizer. The
optimized SVM classifier achieved an average testing accuracy of 94.39 ± .84% across 10 participants
using synergistic features. As a proof of concept, the output of the classifier was utilized to control a
prosthetic hand. This synergistic method for analyzing temporal neural activities in motor control and
controlling prosthetic devices offers promising contributions to future research in synergy-based
prosthetic control.

2. Materials and methods

2.1. Human participants

Studies have shown that motor intentions and signals can still be detected after limb loss (Reilly et al.,
2006). Individuals with hand amputation sometimes experience sensations where they perceive the
presence of the lost limb (Wijk & Carlsson, 2015). These sensations are generated by the same motor
cortical areas that were active before limb loss and thereby indicate the capability to generate motor
signals. Furthermore, studies have shown that the motor intentions and signals remain the same for both
healthy and individuals with limb amputations (Bruurmijn et al., 2017; Chen et al., 2013). Following
these, our study involved 10 right-handed healthy participants, consisting of four males and six females,
with an average age of 23:0 ± 3:1 years. All procedures were conducted in compliance with relevant
standards and regulations. The experimental protocol received approval from the Institutional Review
Board at the Stevens Institute of Technology under Protocol No. 2015-022(20-AR6). Prior to the
experiment, all participants provided informed written consent, demonstrating their understanding and
agreement to participate in the study.

2.2. Task performance and data acquisition

In the experimental setup for data acquisition, an EEG cap (g.GAMMA cap from g.tec, Schieldberg,
Austria), an EEG electrode set known as g.Ladybird, and BCI2000 EEG acquisition system (Schalk et al.,
2004) were employed. Additionally, a computational unit and a cylindrical water bottle were integral parts
of the setup. The schematic representation of the experimental methodology employed in this study is
illustrated in Figure 1. To evaluate the SVM classifier used for the classification of hand movement, a
prosthetic hand (Kakoty et al., 2022) controlled using the classification results was employed. The EEG
was acquired with 10/20 configuration 32-active high-density electrodes covering central, frontal,
parietal, and occipital areas and additional intermediate positions (In1, In2, In3, In4, In5, In6, In7, and
In8). The reference electrode was positioned on the earlobe, either at the left (A1) or right (A2), with the
ground electrode on the nasion (NZ).

Following the EEG cap setup, participants were seated in a relaxed position placing their dominant
hand palm-down on the table. A water bottle was placed 40 cm away from the body midline of the
participant to grasp comfortably as presented in Figure 2(a). The experimental timeline, illustrated in
Figure 2(b), guided the participants through the task. Upon hearing an initiation signal from the
computational unit, the participants were directed to grasp the cylindrical water bottle and release it
when a subsequent signal was heard. The recording duration was set at 4 s, and each participant performed
the experiment 30 times. Subjects were advised tominimize blinking and swallowing tomitigate potential
artifacts.
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2.3. Data and statistical analysis

2.3.1. Data preprocessing
The EEG was recorded continuously with electrode impedance maintained below 10 kOhms and 256 Hz
sampling rate, capturing the temporal dynamics of brain activity at a high resolution. To enhance data
quality, trials containing artifacts due to eye blinking or swallowing were rejected. Furthermore, the raw
EEG data underwent a fourth order Butterworth bandpass filter from a frequency range between .53 and
60 Hz. The utilization of a Butterworth filter (Subasi & Gursoy, 2010), helped to achieve a smooth and
effective filtering of the EEG signals, contributing to the precision of subsequent analyses. This specific
frequency range was chosen to focus on the relevant neural activity while attenuating unwanted noise and
potential artifacts. ICA was applied to the 32 channels of filtered EEG data to separate them into
independent components (ICs) in EEGLAB v 2022.1 (Lee et al., 1999; Delorme & Makeig, 2004).
The spatial power distribution pattern associated with each ICs are examined. Furthermore, channels
exhibiting task-relevant patterns of PSD across the ICs are also identified. Based on the coherence of both
the spatial power distribution patterns and the PSD of ICs, 15 channels corresponding to these ICs are

Figure 1. The schematic of the proposed method consists of data acquisition, computational unit, and
interfacing with the prosthetic hand for the control of hand open and close tasks.

Figure 2. Experimental setup and timeline. (a) The illustration of a participant grasping an object during
EEG acquisition (image has been adapted from (Pei et al., 2019)). (b) Experimental timeline for

participants to perform the grasping and opening tasks.
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selected. The acquired 32-channel EEG were narrowed down to a subset of 15 channels for the
classification of hand grasp and open tasks. These selected 15 channels span the frontal, central, and
parietal regions of the human brain. The spatial distribution of the selected EEG channels across the scalp
is depicted in Figure 3. This strategic placement of electrodes ensures a representative sampling of neural
activity, effectively covering key regions that are directly influenced during the initiation and execution of
handmovement indicating brain synergy (Erdoĝan et al., 2019; Teplan, 2002;Wang et al., 2022; Pei et al.,
2020).

2.3.2. Feature extraction in the time domain
Eleven time-domain features were extracted from the filtered EEG using a window size of .5 s with an
overlap of .3 s (Meier et al., 2008). The extracted time-domain features are minimum value (min),
maximum value (max), median amplitude (med), mean amplitude (μ), standard deviation (σ), variance
(var), waveform length (WL), mean absolute value (MAV), root mean square (X rms), skewness (skew), and
kurtosis (kur). These features encompass crucial aspects of EEG signals, including amplitude, regularity,
and synchronization (Emigdio et al., 2016; Olcay & Karaçalı, 2019). A 9,000 × 11 feature matrix was
created to classify hand movements. Each row in the matrix corresponds to 10 individuals conducting
hand open and grasp operations. Each subject performed the task 30 times, resulting in 600 trials. The
matrix includes data from 15 EEG channels, resulting in 9,000 data points. Each column represents the
11 extracted features across 15 selected EEG channels. The details of the extracted time domain features
were reported in (Pooya Chanu et al., 2023).

Figure 3. The spatial distribution of the selected 15 EEG channels across the scalp for this study. The
specific locations of these channels are critical for the accurate analysis of EEG, ensuring a represen-

tative sampling of neural activity from frontal, central, parietal, and occipital areas.
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2.3.3. Computation of power spectral density
EEG signals collected during grasp and open tasks were segmented into specific time windows. These
time windows were .5–1 s, 1.5–2 s, 2.5–3 s, and 3.5–4 s. ICA was employed on the segmented data to
decompose the EEG data into ICs where each component represented a distinct neural source. After
extracting ICs using ICA, the PSD of each IC was calculated by applying the Fourier transform using
Welch’s method (Zhao & He, 2013). PSD values were computed for each frequency band, including
Broadband (4–100 Hz), theta (3–8 Hz), alpha (8–12 Hz), beta (13–35 Hz), and gamma (36–100 Hz). The
frequency range for each band was determined based on previous literature cited (Ali et al., 2022; Van
Albada & Robinson, 2013). The coherence of spatial power distribution pattern and PSD during hand
grasp and opening were estimated from the ICs. The analysis resulted in 54,000 synergistic features per
window, considering all frequency bands across 15 EEG channels.

2.4. Classification

The recorded EEG data results in a high-dimensional feature space. The versatility of kernel selection in
SVM allows for nonlinear mapping of input features to higher dimensional spaces, making it suitable for
EEG data. The SVM operates by transforming the training dataset through mapping to a nonlinear vector
space of high dimensions, accommodating the complexity of EEG data (Lotte et al., 2007). Additionally,
SVM is known for its robustness to overfitting which is a crucial consideration in EEG analysis (Hosseini
et al., 2023; Thanigaivelu et al., 2023; Martínez-Ramón et al., 2006). Based on these, the SVM classifier
was chosen as the model for classification in this study.

For the classification training phase, two sets of features were utilized: time-domain features and
synergistic features. Initially, the SVM classifier was trained using a combined matrix of time-domain
features, which encompassed class labels for hand grasp and open states. The trials of each participant
were divided into 24 folds to ensure robust training and evaluation. Subsequently, the synergistic features
were employed for classification training using the SVM classifier. This involved a similar methodology
to the time-domain feature training incorporating synergistic information.

To further enhance the performance of the SVM classifier, hyperparameter optimization was per-
formed. Given the significant impact of internal parameters on SVM effectiveness, Bayesian optimizer
(Luo et al., 2020) was employed for optimization of SVM. The objective function for training the model
was defined as the mean square error. The Bayesian optimizer iteratively adjusted the hyperparameters
within specified search ranges to minimize error in cross-validation. This approach ensured that the SVM
classifier was fine-tuned for optimal performance in classifying EEG data.

Figure 4 depicts the average training classification accuracy of linear, cubic, Gaussian, and quadratic
kernel functions, both before and after optimization with standard deviation. It utilizes time-domain and
synergistic features from 10 participants. Averaging the training set, the minimized classification error
was computed considering the input-to-output potential mappings. The adaptation of optimal values for
internal parameters underscores the significance of hyper-parameters in minimizing prediction error. The
highest accuracy of classification during training was achieved using gaussian kernel with both time-
domain and synergistic features.

3. Results and discussion

3.1. SVM optimization

Figure 5(a and b) depicts the SVM hyperparameter optimization using Bayesian optimization for time
domain synergistic features-based classification. The green surface illustrates the performance at different
hyperparameter points, while the sampled parameter space is in blue points. The estimated objective
function value corresponds to the misclassification rate. The hyperparameter values in the optimized
SVM that resulted in the lowest misclassification error during the training phase were identified. The
optimized values of the SVM classifier hyperparameter were achieved with Gaussian kernel, kernel scale
of 341.21 and box constrain level of 5.93. The optimized values for synergistic features with Gaussian
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kernel are a kernel scale of .87 and a box constraint level of 271.80. The optimized misclassification rate
with time-domain and synergistic features are 2:2 × 10�1 and 3:3 × 10�1 respectively during training of
the optimized SVM. This optimized configuration enhances the performance of the SVM classifier,
considering both time-domain and synergistic features.

3.2. Spatial distribution of power

Studies have shown that investigation of the spatial distribution of power in different regions of the brain
demonstrates the specific neural networks engaged during hand movements (Andres & Gerloff, 1999;
Tononi et al., 1998). The identification of task-specific activation patterns during hand grasp and open

Figure 4. Comparative plot of classification accuracy using different kernel functions pre-optimization
and post-optimization across 10 participants.

Figure 5. The SVM hyper-parameters optimization using a Bayesian optimization approach. (A) The
optimized hyper-parameters were obtained for time domain feature-based classification. (B) The opti-

mized hyper-parameters were obtained for synergistic feature-based classification.
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tasks contributes to characterizing distinct motor control processes. The spatial distribution of power,
expressed in decibels (dB), over time (in s) during hand grasp and open across 10 participants is depicted
in Figure 6. A dynamic changes in the power levels and their spatial patterns was observed during hand
grasp and opening. However, no distinct difference was observed during the initiation of hand grasp and
execution of hand opening. During the initiation of hand opening at 2.5 s, the increase in power in F4,
FC4, FC2, CP1, and P3 shows the formulation of motor commands necessary to perform the hand open
task and continuous sensory feedback in refining the movement.

3.3. Temporal neural coordination

The graphs depicting inter-trial coherence (ITC) with a significance level of .01 during hand grasp and
open for the EEG channels located in the frontal, central, and parietal regions are shown in Figures 7–9.
The x-axis represents time in ms, while the y-axis denotes the coherence values, reflecting the degree of
synchronization among the brain regions. The scale on the right of the ITC plots ranging from green to red
indicates the magnitude of coherence and the blue squares present in the graph indicate no significant

Figure 6. Spatial distribution of power (in decibels (dB) with time (in s) during hand grasp and open
states across 10 participants.

Figure 7. ITC during hand grasping and opening in the EEG channel located at the frontal region with
the significance values of .01.
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coherence. Furthermore, Figures 7–9 show the event-related potentials (ERP) and frequency power
changes over time during hand grasp and open. The ITC analysis illustrates the temporal dynamics of
neural synchronization during the hand grasp and open task providing insights into the coordinated
activity across different brain regions. This significance level indicates a high level of confidence in the
coherence values in which the observed synchronization patterns are unlikely due to random chance.
These results highlight the temporal dynamics of synergy between different EEG channels during the
motor tasks for visual comparison of coherence patterns. In Figure 7, the ITC values indicate consistent
engagement in synchronized neural activity in the frontal region during hand grasp. Additionally, distinct
peaks in the ERP waveforms show active neural processing in the frontal region for planning and
decision-making involved in initiating and executing handmovements. In Figure 8, the ITC values for the
central region show strong synchronization and neural activation during hand movements. The high ITC
values observed in Figure 8 reflect significant engagement of the motor cortex, with the ERP waveforms
indicating the direct involvement motor cortex in controlling and executing grasp tasks in a time-locked
manner. In Figure 9, the ITC values for the parietal region exhibit significant synchronization patterns
with high coherence. The ERP alterations in this region indicate its role in guidingmotor responses during
hand grasp and open tasks with sensory feedback. These findings collectively illustrate the coordinated
neural activity known as synergy across different brain regions during hand movements with ITC and
ERP analyses.

Figure 8. ITC during hand grasping and opening in the EEG channel located at the central region with
the significance values of .01.
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The frequency versus time plot for EEG during hand grasp and open tasks is presented in Figure 10.
This result shows the temporal variations in neural activity, highlighting a surge in power within 3–8 Hz
frequency range during the hand grasping phase. This elevation in power in the theta frequency band
signifies intensified neural engagement associated with motor planning, execution, and sensorimotor
integration of voluntary movements. The observed increase in power in theta range (3–8 Hz) reflects the
complex neural processes involved in hand grasping. The frequency versus time plot not only captures
variations in power but also provides insights into the temporal dynamics and functional connectivity
patterns contributing to the successful execution of the hand grasp task. However, during the hand-
opening phase, distinct neural activation patterns are not observed with no power surge. The neural
activation diminishes after 2 s of hand grasp. The distinct surge in power within the theta frequency range
(3–8 Hz) during hand grasp and no power surge during hand opening shows the more intensive neural
engagement due to the need for precise motor control and sensorimotor feedback integration. This neural
activity can be a critical feature for differentiating hand grasp and open task classification. These results
underscore the importance of considering both the temporal dynamics and frequency-specific power
changes in neural activity for effective synergistic classification of handmovements. Studies reported that
during hand grasp, the complex network of cortical areas is involved in planning and execution leading to
a significant rise in theta activity (Goldenkoff et al., 2023; Iturrate et al., 2018). However, during hand
opening, the less complex motor planning and execution were involved compared to hand grasp

Figure 9. ITC during hand grasping and opening in the EEG channel located at the parietal region with
the significance values of .01.
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(Goldenkoff et al., 2023). Therefore, there may not be a significant rise in theta activity as the demands on
the cortical grasping network and associated neural populations are less.

3.4. Evaluation of classifier performance

The analysis of the area under the curve (AUC) for the classifier trained using the time domain and
synergistic features presented in Figure 11 provides valuable insights into the SVM classifier in the
context of distinguishing handmovement classes. The AUC value for synergistic features is .945 which is
higher than the AUC for time-domain features which .926. The resulted values of AUC value indicates
that the classifier is optimal for classifying the hand movement dataset as reported in (Metz, 1978). This
distinction suggests that synergistic features play a more effective role in enhancing the accuracy of a
classifier to discern subtle variations in hand movement patterns.

Figure 10. Spatial distribution of power (in decibels (dB) with time (in s)) during hand grasp and open
across 10 participants.

Figure 11. AUC values indicate the performance of 10 participants using time-domain and synergistic
features with p < .005. Grey dots = individual performance AUC values, thick dotted line = group mean.
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Z-score normalizationwas applied to both the synergistic and time-domain features to standardize each
feature. A paired t-test was performed to compare the performance of classifiers trained with the
normalized time-domain features versus synergistic features. This test evaluates the significance of the
difference in AUC values between the two classifiers. The results revealed a p-value < .05, indicating that
the difference inAUC values is statistically significant. This finding shows that synergistic features offer a
more accurate and reliable basis for classifying hand movement patterns compared to time-domain
features. The reliance of the SVM classifier on synergistic features highlights the significance of
frequency-specific information in capturing the neural signals associated with distinct motor activities.
This finding has practical implications for the design and optimization of classifiers in applications for
synergy-based prosthetic control.

For the classification of hand grasp and open using the SVM classifier, 80% of the dataset was
randomly selected for training, while the remaining 20%was used for testing. This division of the dataset
ensures a comprehensive evaluation of the performance of the classifier. This leveraged a significant
portion of the data for trainingwhile reserving a sufficient sample for testing to validate the accuracy of the
classifier. The classification accuracy using time-domain and synergistic features of 10 participants is
presented in Figure 12. During the training, the classifier exhibits an accuracy of 96.8 ± .98% with time-
domain features. During testing of the classifier, an average accuracy of 93.4 ± 1.16% was obtained
across 10 participants. The lowest accuracy of classification was 92.1% in the S10 and the highest
accuracy of 95.4% was observed in S8.

In the second set of classifications with synergistic features, the classifier maintained a high accuracy
of 97.1 ± .9134% during the training and achieved an accuracy of 94.39 ± .8434% during testing. The
classification accuracy varied among subjects, with the highest accuracy recorded for S10 at 96.47% and
the lowest accuracy observed in S2 at 91.24%. These findings underscore the robustness of the classifier
across different sets of data, indicating its adaptability and effectiveness in consistently distinguishing
between hand grasp and open task.

3.5. Proof-of-concept

The optimized SVM classifier used for the classification of hand grasp and open was deployed to control
prosthetic hand grasping operations. A seamless interface was established between the output of the SVM
classifier and a prosthetic hand for the visualisation of classification performance. The output of the SVM
classifier framed in transistor-transistor logic was directed to an 8-bit microcontroller. The controller
translates the output of the SVM classifier into the corresponding actuating signal. The actuating signal
was transmitted to the actuators on the prosthetic hand through a current buffer circuit. The control circuit
was powered by a standalone 9-volt lithium polymer battery.

This controlled operation effectively demonstrated accurate classification performance by the
optimized SVM. The integration of selected EEG channels, time-domain features and synergistic

Figure 12.Classification accuracy of 10 participants with time domain features and synergistic features.
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features underscored the versatility and adaptability of the SVM classifier. Figure 13 visually
depicts the grasp and open task of the prosthetic hand, showcasing the successful implementation
of the optimized SVM classifier in real-time prosthetic hand control. This innovative proof of
concept not only validates the efficacy of the synergistic features-based SVM classification but
also highlights its potential for practical applications in neuroprosthetics, offering a promising
avenue for enhancing the lives of individuals with limb loss. However, the integration of EEG with
prosthetic hand control presents significant challenges during both data acquisition and control of
prosthetic devices. Noise from muscle activity and environmental factors distort neural signals,
necessitating the use of artifact removal techniques. Variability in classification accuracy is
influenced by fluctuations in EEG signals and the user, suggests increasing the number of
participants for improved classification outcomes. While the integration of SVM classifier outputs
with prosthetic hand actuators has shown promise in translating EEG into hand movement
commands, residual noise in EEG and classification variability remain as a limiting factor. To
overcome these challenges, advanced signal processing techniques, algorithm optimization, and
the development of compact EEG systems will be essential in fully realizing the potential of EEG-
based prosthetic control in practical applications.

4. Conclusions

The study demonstrated the complex neural dynamics associated with hand grasp and open tasks using
EEG-based analysis. The spatial distribution of power across different brain regions during these tasks
observed dynamic changes in power levels and spatial patterns. Inter-trial coherence analysis further
reveals consistent synchronization patterns in the coordination of neural activity. Examining ERP and
frequency dynamics during hand grasp and open tasks demonstrated temporal variations in neural
activity. Notably, the alteration in power within the theta frequency range during hand grasp indicates
neural engagement associated with motor planning and execution. The temporal dynamics and functional
connectivity patterns revealed through these analyses contribute to our understanding of the synergy
between different EEG channels during motor tasks.

The classifier performance analysis underscores the robustness of an optimized SVM classifier in
distinguishing hand movement classes. Both time-domain and synergistic features contribute to high
accuracy during training and robust generalization during testing. The higher AUC for synergistic
features highlights their effectiveness in enhancing classifier accuracy, emphasizing the significance of
frequency-specific information in capturing neural signals for hand movement. The high accuracy
during training and robust generalization during testing underscores the potential of this approach for

Figure 13. Prosthetic hand executing grasping and opening task with the optimized SVM classifier using
synergistic features.
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real-time applications in neuroprosthetics. These findings contribute to advancing the field, offering a
promising avenue for enhancing the quality of life for individuals with limb loss through brain synergy-
based control of prosthesis.
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