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Abstract

In this paper, existence criteria for multiple solutions of periodic boundary value problems for the first-
order difference equation {

4x(k) = f (k, x(k + 1)), k ∈ [0, T ],

x(0) = x(T + 1),

are established by using the Leggett–Williams multiple fixed point theorem and fixed point theorem of
cone expansion and compression. Two examples are also given to illustrate the main results.
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1. Introduction

Due to its wide application in many fields such as science, economics, neural networks,
ecology and cybernetics, the theory of nonlinear difference equations has been widely
studied since the 1970s; see, for example, [1, 6, 21, 22]. At the same time, boundary
value problems (BVPs) of difference equations have received much attention from
many authors; see [2–5, 7–13, 15, 18–20, 25–31] and the references therein. However,
to the best of our knowledge, few papers can be found in the literature for periodic
boundary value problems (PBVPs) of difference equations [9, 10, 25, 27].

In this paper, we are concerned with the existence of multiple solutions of the PBVP
for the first-order difference equation{

4x(k) = f (k, x(k + 1)), k ∈ [0, T ],

x(0) = x(T + 1),
(1.1)
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where T is a fixed positive integer, 4 denotes the forward difference operator
with stepsize 1, [a, b] = {a, a + 1, . . . , b − 1, b} ⊂ Z (the set of all integers), and
f : [0, T ] × R → R is continuous.

In [25], by using a fixed point theorem [14], Sun considered the existence of one
positive solutions of the PBVP (1.1).

In this paper, by using the Leggett–Williams multiple fixed point theorem and fixed
point theorem of cone expansion and compression, we investigate the existence of
multiple positive solutions of (1.1). It is worth noting that the Leggett–Williams
multiple fixed point theorem is used extensively in yielding three solutions for BVPs
of differential or difference equations; see [12, 16, 17, 24, 26] and references therein.

2. Preliminaries

In this section, we provide some background material from the theory of cones in
Banach spaces and we then state the Leggett–Williams multiple fixed point theorem
and fixed point theorem of cone expansion and compression.

DEFINITION 2.1. Let E be a real Banach space. A nonempty, closed, convex set
P ⊂ E is said to be a cone provided the following conditions are satisfied:
(i) if x ∈ P and λ ≥ 0, then λx ∈ P;
(ii) if x ∈ P and −x ∈ P , then x = 0.
Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

DEFINITION 2.2. A map α is said to be a nonnegative, continuous, concave functional
on a cone P of a real Banach space E if

α : P → [0, ∞)

is continuous and

α(t x + (1 − t)y) ≥ tα(x) + (1 − t)α(y),

for all x , y ∈ P and t ∈ [0, 1].

Let E be a real Banach space with norm ‖ · ‖ and P ⊂ E be a cone of E . We define

Pr = {x ∈ P | ‖x‖ < r},

where r > 0.
Let α be a nonnegative continuous and concave functional defined on P . We define

P(α, a, b) = {x ∈ P | α(x) ≥ a, ‖x‖ ≤ b},

where 0 < a < b.
To prove our main results, we need the following Leggett–Williams multiple fixed

point theorem and fixed point theorem of cone expansion and compression.
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THEOREM 2.1 ([23] Leggett–Williams fixed point theorem). Let the operator
8 : Pc → Pc be completely continuous and let α be a nonnegative continuous concave
functional on P such that α(x) ≤ ‖x‖ for every x ∈ Pc. Suppose that there exist
0 < d < a < b ≤ c such that:
(C1) {x | x ∈ P(α, a, b), α(x) > a} 6= φ and α(8x) > a for each x ∈ P(α, a, b);
(C2) ‖8x‖ < d for x ∈ Pd ;
(C3) α(8x) > a for x ∈ P(α, a, c) with ‖8x‖ > b.
Then 8 has at least three fixed points, x1, x2, and x3 in Pc satisfying

‖x1‖ < d, a < α(x2), ‖x3‖ > d and α(x3) < a.

THEOREM 2.2 ([14] Fixed point theorem of cone expansion and compression). Let P
be a cone of real Banach space E and Pr,s = {x ∈ P | r ≤ ‖x‖ ≤ s} with 0 < r < s.
Suppose that 8 : Pr,s → P is a completely continuous mapping such that one of the
following two conditions is satisfied:
(i) ‖8x‖ ≤ ‖x‖ for x ∈ P, ‖x‖ = r and ‖8x‖ ≥ ‖x‖ for x ∈ P, ‖x‖ = s;
(ii) ‖8x‖ ≥ ‖x‖ for x ∈ P, ‖x‖ = r and ‖8x‖ ≤ ‖x‖ for x ∈ P, ‖x‖ = s.
Then 8 has a fixed point x ∈ P such that r ≤ ‖x‖ ≤ s.

3. Main results

In this section, by defining an appropriate Banach space and cones, we impose the
conditions on f which allow us to apply the Leggett–Williams multiple fixed point
theorem and fixed point theorem of cone expansion and compression to establish the
existence of multiple positive solutions of the PBVP (1.1).

For convenience, let us list the following assumptions.
(H1) There exists a positive number M > 1 such that

(M − 1)x + f (k, x) ≥ 0 for k ∈ [0, T ], x ∈ [0, ∞).

(H2) limx→+∞(( f (k, x))/x) < 0 uniformly with respect to k ∈ [0, T ].
(H3) There exist two positive numbers a, b with b ≥ aM (T +1) and g : [0, T ] → R

such that

f (k, x) ≥ g(k) ≥ 0 for k ∈ [0, T ], x ∈ [a, b] and
T∑

k=0

g(k) > 0.

(H4) limx→0(( f (k, x))/x) < 0 uniformly with respect to k ∈ [0, T ].
Let C = {x | [0, T ] → R}. For σ ∈ C , we first consider the following linear PBVP:{

4x(k) + (M − 1)x(k + 1) = σ(k), k ∈ [0, T ],

x(0) = x(T + 1),
(3.1)

where M > 1 is a constant.
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Let

G(k, s) =


M−(k−s)

1 − M−(T +1)
, 0 ≤ s ≤ k − 1,

M−(T +1+k−s)

1 − M−(T +1)
, k ≤ s ≤ T .

Then

M−(T +1)

1 − M−(T +1)
≤ G(k, s) ≤

1

1 − M−(T +1)
, (k, s) ∈ [0, T + 1] × [0, T ]. (3.2)

It is easy to see that the following lemma holds.

LEMMA 3.1. Suppose that M > 1. Then for any σ ∈ C, the PBVP (3.1) has a unique
solution:

x(k) =

T∑
s=0

G(k, s)σ (s), k ∈ [0, T + 1]. (3.3)

In addition, if we choose σ(k) ≡ 1, then we know that

T∑
s=0

G(k, s) =
1

M − 1
. (3.4)

Let E = {x | [0, T +1] →R} be equipped with the norm ‖x‖ = maxk∈[0,T +1] |x(k)|;
then E is a Banach space.

Now for u ∈ E , we consider the following PBVP:
4x(k) + (M − 1)x(k + 1) = (M − 1)u(k + 1)

+ f (k, u(k + 1)), k ∈ [0, T ],

x(0) = x(T + 1).

(3.5)

It follows from Lemma 3.1 that PBVP (3.5) has a unique solution

x(k) =

T∑
s=0

G(k, s) [(M − 1)u(s + 1) + f (s, u(s + 1))], k ∈ [0, T + 1].

Define an operator 8 : E → E by

(8x) (k) =

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))], k ∈ [0, T + 1].

It is obvious that fixed points of 8 are solutions of the PBVP (1.1).
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THEOREM 3.1. Suppose that (H1)–(H4) hold. Then the PBVP (1.1) has at least three
nonnegative solutions.

PROOF. We define a cone P in E as follows:

P = {x ∈ E | x(k) ≥ 0, k ∈ [0, T + 1]}.

Then, by (H1) it is easy to see that 8 : P → P is completely continuous.
Define a functional α(x) on P by

α(x) = min
k∈[0,T +1]

x(k), x ∈ P.

Obviously, α : P → [0, +∞) is nonnegative continuous and concave. Moreover,
α(x) ≤ ‖x‖ for each x ∈ P .

Now we are in position to certify that the assumptions of Theorem 2.1 are satisfied.
We first assert that there exists a positive number c with c ≥ b such that

8 : Pc → Pc.
By (H2) we know that there exist ε ∈ (0, M − 1) and L > 0 such that

f (k, x)

x
< −ε for k ∈ [0, T ], x ≥ L .

Notice that f (k, x) is continuous on [0, T ] × [0, +∞), and there exists L1 > 0
such that

f (k, x) < −εx + L1 for k ∈ [0, T ], x ∈ [0, +∞).

Choose c = max{b, (L1/ε) + 1}, for each x ∈ Pc. In view of (3.4),

(8x) (k) =

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

≤

T∑
s=0

G(k, s) [(M − 1 − ε)x(s + 1) + L1]

≤ [(M − 1 − ε)c + L1]

T∑
s=0

G(k, s)

=
1

M − 1
[(M − 1 − ε)c + L1]

< c. (3.6)

Thus, ‖8x‖ ≤ c, 8 : Pc → Pc.
Secondly, we assert that {x | x ∈ P(α, a, b), α(x) > a} 6= φ and α(8x) > a for

each x ∈ P(α, a, b). In fact, the constant function

((a + b)/2) ∈ {x | x ∈ P(α, a, b), α(x) > a}.
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Moreover, for x ∈ P(α, a, b),

a ≤ α(x) ≤ x(k) ≤ ‖x‖ ≤ b.

Thus, in view of (H3) and (3.4), we see that

(8x) (k) =

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

≥

T∑
s=0

G(k, s) [(M − 1)a + g(s)]

≥ (M − 1)a
T∑

s=0

G(k, s) +

T∑
s=0

G(k, s)g(s)

> a,

as required.
Thirdly, we assert that ‖8x‖ < d for x ∈ Pd . Indeed, By (H4), there exists

ε′
∈ (0, M − 1) and d ∈ (0, a) such that

f (k, x) < −ε′x for k ∈ [0, T ], x ∈ [0, d].

So, for each x ∈ Pd ,

(8x) (k) =

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

≤

T∑
s=0

G(k, s) [(M − 1)x(s + 1) − ε′x(s + 1)]

≤ (M − 1 − ε′) d
T∑

s=0

G(k, s)

< d. (3.7)

Hence, ‖8x‖ < d for x ∈ Pd .
Finally, we assert that α(8x) > a for x ∈ P(α, a, c) with ‖8x‖ > b. To see this,

suppose that x ∈ P(α, a, c) with ‖8x‖ > b. By (H3) and (3.2) we obtain

α(8x) = min
k∈[0,T +1]

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

≥
M−(T +1)

1 − M−(T +1)

T∑
s=0

[(M − 1)x(s + 1) + f (s, x(s + 1))],

for k ∈ [0, T + 1]. Thus,
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‖8x‖ = max
k∈[0,T +1]

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

≤
1

1 − M−(T +1)

T∑
s=0

[(M − 1)x(s + 1) + f (s, x(s + 1))]

= M (T +1) M−(T +1)

1 − M−(T +1)

T∑
s=0

[(M − 1)x(s + 1) + f (s, x(s + 1))]

≤ M (T +1)α(8x).

That is,

α(8x) ≥ M−(T +1)
‖8x‖ > M−(T +1)b ≥ a.

To sum up, all the hypotheses of Theorem 2.1 are satisfied. Hence, 8 has at least three
fixed points, that is, (1.1) has at least three nonnegative solutions x1, x2, x3 such that

‖x1‖ < d, a < min
k∈[0,T +1]

x2, ‖x3‖ > d and min
k∈[0,T +1]

x3 < a.

THEOREM 3.2. Assume that (H1), (H2) and (H4) hold. Assume also that there exists
a positive number e satisfying M (T +1) d < e < c such that

f (k, x) > (M − 1) (1 − δ)e, k ∈ [0, T ], x ∈ [δe, e],

where δ = M−(T +1), then the PBVP (1.1) has at least three nonnegative solutions.

PROOF. Define a cone P in E as follows:

P = {x ∈ E | x(k) ≥ δ‖x‖, k ∈ [0, T + 1]}.

Then, by (H1) and (3.2), it is easy to see that 8 : P → P is completely continuous.
Firstly, by (H4) and (3.7), we have that 8 : Pd → Pd ⊂ Pd . Then, it follows from

the Schauder fixed point theorem that (1.1) has one nonnegative solution x1 ∈ Pd . This,
together with (3.7), guarantees that x1 ∈ Pd .

Secondly, from (3.6) and (3.7), it is easy to see that

‖8x‖ < ‖x‖ if ‖x‖ = c; ‖8x‖ < ‖x‖ if ‖x‖ = d. (3.8)

Finally, by definition of P , for each x ∈ ∂ Pe = {x ∈ P | ‖x‖ = e}, we know that
δe ≤ x(k) ≤ e, k ∈ [0, T ].
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Combining this with hypothesis of theorem, we obtain

(8x) (k) =

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

>

T∑
s=0

G(k, s) [(M − 1)δe + (M − 1) (1 − δ)e]

= (M − 1)e
T∑

s=0

G(k, s)

= e.

From this and (3.8), applying Theorem 2.2 twice, it follows that there exist two positive
solutions x2 and x3 satisfying x2 ∈ Pe\Pd and x3 ∈ Pc\Pe.

When f is superlinear at ∞, we have the following results.

THEOREM 3.3. Suppose that (H1) and:
(H5) limx→0+(( f (k, x))/x) > N uniformly with respect to k ∈ [0, T ], where

N = (((M − 1) (1 − δ))/δ);
(H6) there exist e and h : [0, T ] → R such that

f (k, x) ≤ h(k) ≤ 0 for k ∈ [0, T ], x ∈ [δe, e] and
T∑

k=0

h(k) < 0;

(H7) limx→+∞(( f (k, x))/x) > N uniformly with respect to k ∈ [0, T ], where N is
the same as in (H5).

Then the PBVP (1.1) has least two positive solutions.

PROOF. Let P be a cone in E defined as in Theorem 3.2. From (H5), there exist ε > 0
and r ∈ (0, e) such that

f (k, x) ≥ (N + ε)x, k ∈ [0, T ], x ∈ [0, r ].

Then for each x ∈ ∂ Pr , from (3.4) and the definition of P , we obtain

(8x) (k) =

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

≥

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + (N + ε)x(s + 1)]

>

T∑
s=0

G(k, s) (M − 1 + N )δ‖x‖

= ‖x‖. (3.9)
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Thus,

‖8x‖ > ‖x‖ for x ∈ ∂ Pr . (3.10)

On the other hand, for each x ∈ ∂ Pe, from (H6) we obtain

(8x) (k) =

T∑
s=0

G(k, s) [(M − 1)x(s + 1) + f (s, x(s + 1))]

≤

T∑
s=0

G(k, s) [(M − 1)e + h(s)]

< e = ‖x‖.

Hence,

‖8x‖ < ‖x‖ for x ∈ ∂ Pe. (3.11)

In addition, from (H7) there exist ε′ > 0 and e′ > e such that

f (k, x) ≥ (N + ε′)x, k ∈ [0, T ], x ≥ e′.

Choose e∗
= (1/δ)e′. Then for each x ∈ ∂ Pe∗ , we get x(k) ≥ δ‖x‖ = δe∗

= e′.
Similar to (3.9), we have ‖8x‖ > ‖x‖ for x ∈ ∂ Pe∗ .
This, together with (3.10), (3.11) and Theorem 2.2, leads to the conclusion that

there exist two positive solutions of (1.1): x1 ∈ Pe\Pr and x2 ∈ Pe∗\Pe.

COROLLARY 3.1. Assume that (H1), (H6), and either (H5) or (H7) hold. Then the
PBVP (1.1) has least one positive solution.

4. Examples

EXAMPLE 4.1. Consider the PBVP{
4x(k) = f (k, x(k + 1)), k ∈ [0, 3],

x(0) = x(4),
(4.1)

where T = 3 and

f (k, x) =


−x +

1
6 k ln(1 + x), k ∈ [0, 3], x ∈ [0, 1],

1
2 (x − 3) +

1
6 k ln(1 + x), k ∈ [0, 3], x ∈ [1, 3],

1
6 k ln(1 + x), k ∈ [0, 3], x ∈ [3, 50],

(50 − x) +
1
6 k ln(1 + x), k ∈ [0, 3], x ∈ [50, +∞).

Then (4.1) has at least three nonnegative solutions.
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PROOF. Choose M = 2, a = 3, b = 50. Hence b = 50 > 48 = 3 · 24
= aM (T +1).

Then it is not difficult to show that (H1)–(H4) hold. By Theorem 3.1, (4.1) has at
least three nonnegative solutions.

EXAMPLE 4.2. Consider the PBVP4x(k) =
1 + k

400
[(x)(1/2)

+ x2
] − x, k ∈ [0, 3],

x(0) = x(4),
(4.2)

Then (4.2) has at least two positive solutions.

PROOF. Let T = 3 and f (k, x) = ((1 + k)/400) [(x)(1/2)
+ x2

] − x .
Choose M = 2; then δ = M−(T +1)

= 2−4
= 1/16, and (H1) is satisfied. Moreover,

it is easy to see that

lim
x→0+

(( f (k, x))/x) = +∞ and lim
x→+∞

(( f (k, x))/x) = +∞

both uniformly with respect to k ∈ [0, 3], that is, (H5) and (H7) are satisfied.
Now we prove that (H6) is satisfied. Choose e = 16; then [δe, e] = [1, 16]. Let

h(k) ≡ −(49/50) for k ∈ [0, 3]; then

f (k, x) =
1 + k

400
[(x)(1/2)

+ x2
] − x ≤

1
100

[(x)(1/2)
+ x2

] − x

≤ −
49
50

, k ∈ [0, 3], x ∈ [1, 16].

So, f (k, x) ≤ h(k) < 0, k ∈ [0, 3], x ∈ [1, 16], that is, (H6) is satisfied. It follows
from Theorem 3.3 that (4.2) has two positive solutions.
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