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Abstract. We give an example of a path-wise connected open set of C∞ partially
hyperbolic endomorphisms on the 2-torus, on which the (unique) Sinai–Ruelle–Bowen
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the sign of its central Lyapunov exponent changes.
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1. Introduction
In this paper, we present an example of an open connected set of smooth maps on the
2-torus T

2 for which the (unique) Sinai–Ruelle–Bowen (SRB) measure depends on the
system smoothly while one of its Lyapunov exponents changes its sign. This implies that
the statistical properties of smooth dynamical systems can be robust despite drastic changes
of geometric structure.

Let us consider a dynamical system generated by a C∞ map F : M → M on a
two-dimensional closed C∞ Riemann manifold M. We suppose that F is a local diffeo-
morphism and not injective. The Lyapunov exponent of F is defined by

χ(v) = lim sup
n→∞

1
n

log‖dFn(v)‖ for v ∈ TM .

We write χ1(x; F) ≤ χ2(x; F) for the values that χ(v) takes for v ∈ TxM \ {0}. These are
important characteristics which describe the local geometric properties of the dynamics
and play major roles in smooth ergodic theory (or Pesin theory). See [3, 13, 16] for
instance.

To proceed, let us consider a one-parameter family Fs : M → M , s ∈ [0, 1], of local
diffeomorphisms as F above. Assume that, at the parameters s = 0 and s = 1, the
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dynamical system Fs admits an SRB measure, which is by definition an invariant
probability measure μs such that

1
n

n−1∑
k=0

δFks (x)
→ μs weakly

for almost every x ∈ M with respect to the Riemann volume m on M. Assume also that,
at the parameter s = 0 and s = 1, the Lyapunov exponents χ1(x; Fs) ≤ χ2(x; Fs) are
constant and satisfy

χ1(x; F0) < 0 < χ2(x; F0) and 0 < χ1(x; F1) < χ2(x; F1)

for almost every x with respect to m. These imply that the local geometric structure of
the orbits of F0 and F1 are totally different. Indeed, most of points on M will have local
stable manifold for F0 but this will not be the case for F1. (See [3, 16].) It is then natural
to expect drastic geometric (or topological) bifurcation phenomena of the dynamics of Fs
as the parameter s varies from 0 to 1.

A general question we would like to pose is whether such geometric changes in the
dynamics necessarily lead to some bifurcations of statistical properties of Fs . Here, we
present an open set of examples where we hardly observe such bifurcations. More precisely,
we will show that there exists a path-wise connected open subset U in the space C∞(T2)

of C∞ mappings on the torus T2 such that the SRB measure μF depends on F smoothly
and there exist F+ and F− in U such that

χ1(x; F−) < 0 < χ2(x; F−), 0 < χ1(x; F+) < χ2(x; F+)

for almost every point x ∈ M . Then any C∞ one-parameter family that connects F− and
F+ in U will be of the kind that we mentioned.

The idea behind the construction of the open subset U as above can be explained as
follows. Let us consider a skew product map on the 2-torus

F : T2 → T
2, F(x, y) = (mx, gx(y)). (1)

Its iteration is written

Fn(x) = (mnx, g(n)x (y)) where g(n)x (y) = gmn−1x ◦ · · · ◦ gmx ◦ gx(y).
In the x-component, the dynamics is an angle-multiplying map and is strongly chaotic.
In the y-component, the coordinate g(n)x (y) is the composition of maps gz for the points
z along the orbit of the dynamics in the x-component and hence we may regard it as a
‘random dynamical system’ driven by the strongly chaotic dynamics in the x-component.
We refer to [2, 14] for the general theory of random dynamical systems.

For random dynamical systems, under some mild assumptions on the transition density,
a unique invariant density exists and depends on the system smoothly. So bifurcations
of the original (non-random) system do not necessarily lead to that of the randomized
system. See [7, 8] for more detailed arguments relevant to the result of this paper. From
the comparison mentioned in the last paragraph, it is then not surprising that the SBR
measure of the map F in equation (1) can depend on F smoothly even at the parameter
where the Lyapunov exponent of the SRB measure in the y-direction changes its sign.
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To proceed along the idea explained above and to construct the open subset
U ⊂ C∞(T2), it is convenient to consider in the framework of a partially hyperbolic
dynamical system. Partially hyperbolic dynamical systems have been studied extensively
from many aspects since the works of Brin, Pesin, Grayson, Pugh, and Shub. (See [1, 4, 5,
10, 19].) For recent works relevant to the argument in this paper, we refer to [6, 11, 15, 17,
20] and the references therein. Note that there are a few slight variations in the definition
of partial hyperbolicity. For definiteness, let us recall a definition of partially hyperbolic
endomorphism in the two-dimensional non-invertible setting given in [17].

Definition. A C∞ map F : M → M on a surface M is said to be partially hyperbolic if
there are positive constants λ and c and a continuous decomposition of the tangent bundle
TM = Ec ⊕ Eu with dim Ec = dim Eu = 1 such that:
(a) ‖DFn|Eu(z)‖ > exp(λn− c);
(b) ‖DFn|Ec(z)‖ < exp(−λn+ c)‖DFn|Eu(z)‖
for all z ∈ M and n ≥ 0.

Remark 1. In the definition above, the decomposition TM = Ec ⊕ Eu is not necessarily
invariant nor smooth. However, the component Ec turns out to be invariant as a
consequence of the conditions (a) and (b).

The subset of partially hyperbolic endomorphisms is C1 open in the space of C∞ self
mappings on M. A primitive idea in the study of a partially hyperbolic dynamical system
is that the dynamics in the direction of the unstable subbundle Eu is uniformly expanding
and, under some generic conditions, it induces some ‘randomness’ in the dynamics in the
transversal direction in the manner explained above in the case of the skew product in
equation (1). And, with this idea in mind, it is not surprising that the analogy of the skew
product map in equation (1) with random dynamical systems extends, at least, to some
open subset of partially hyperbolic dynamical systems.

Still, we would like to emphasize that not much is known about what can happen exactly
at the parameter where the Lyapunov exponent of the SRB measure in the central direction
Ec changes its sign. As we wrote in the beginning, since a switch of the sign of the
Lyapunov exponent implies drastic changes of the geometric structure of the dynamics, it
is not easy to convince oneself that the statistical properties of smooth dynamical systems
can be robust under such changes. And our example shows that there are such cases indeed.
To illustrate what the dynamics and their bifurcations in our examples look like, we give a
few results of numerical computations in §6.

2. Result
We write T = R/Z for the unit circle and T

2 for the two-dimensional torus. We consider
the iteration of a C∞ local diffeomorphism F : T2 → T

2 as a discrete dynamical system.
The Perron–Frobenius operator

P : Cr(T2) → Cr(T2), Pu(p) =
∑

p′∈T2:F(p′)=(p)

u(p′)
|det DF(p′)| (2)
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expresses the action of F on the space of densities, where Cr(T2) denotes the space of Cr

functions on T
2.

An invariant Borel probability measure μ is said to be an SRB measure if almost
every point on T

2 with respect to the Lebesgue measure is generic for μ. We consider
a partially hyperbolic endomorphism F on T

2 and suppose that F admits an ergodic SRB
measure μF . Then the Lyapunov exponents take constant values

χc(μF ) < χu(μF ) with χu(μF ) > 0

at almost every point with respect to μF and also with respect to the Lebesgue measure.
Our main result is stated as follows.

THEOREM 1. For any r > 0, there exists a path-wise connected C∞ open subset U of
C∞(T2, T2) that consists of partially hyperbolic local diffeomorphisms, a Hilbert space

C∞(T2) ⊂ H ⊂ Cr(T2), (3)

and a constant 0 < ρ < 1 such that the following hold.
(a) The Perron–Frobenius operator PF for F ∈ U restricts to a bounded operator

PF : H → H. (4)

(b) The restriction in equation (4) has a simple eigenvalue 1 and the rest of its spectral
set is contained in the disk |z| < ρ < 1.

(c) F ∈ U admits a unique SRB measure μF = ρFLeb where ρF ∈ H is the eigenfunc-
tion of PF for the simple eigenvalue 1.

(d) The SRB measure μF depends on F ∈ U smoothly in the sense that, for any C∞
one-parameter family Gt of maps in U and ψ ∈ C∞(T2), the correspondence
t �→ ∫

ψ dμGt is a Cr function.
(e) There are Fσ ∈ U for σ ∈ {+, −} such that the central Lyapunov exponent χc(μFσ )

has the same sign as σ .

The claims of the theorem above imply that, if we take anyC∞ one-parameter familyGt
that connects F− and F+ in U , we observe that the SRB measure μGt varies smoothly with
respect to t while the central Lyapunov exponent will change its sign at some parameter.

Remark 2. The conclusions of Theorem 1 imply more about the statistical properties of
F ∈ U and their smooth dependence on F. For instance, the central limit theorem for
smooth observables holds for F ∈ U and, for each fixed observable, the variance of the
normal distribution in the limit depends on F smoothly. See [12].

3. Circle endomorphisms
We first consider the doubling map on the circle T:

f0 : T → T, f0(y) = 2y mod Z.

Below, we deform the map f0 to make a neutral fixed point in a small neighborhood of
0 ∈ T.
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FIGURE 1. The graph of the function fε .

Let ϕ : R → R be a C∞ map with the following properties:
(i) 0 ≤ ϕ(y) ≤ 1 and |ϕ′(y)| ≤ 4/3 for y ∈ R;

(ii) ϕ(y) = 0 for y /∈ [1/10, 1];
(iii) ϕ(1/2) = 1/2, ϕ′(1/2) = 1, ϕ′′(1/2) < 0; and
(iv) ϕ(y) < y for y ∈ (0, 1) \ {1/2}.
For a small real number ε > 0, we define

fε : T → T, fε(y) =
{
f0(y)− ε · ϕ(ε−1y) if y ∈ [0, ε];

f0(y) otherwise.

For the dynamics of fε, we observe that there are only two fixed points 0 and P = ε/2:
0 is a hyperbolic repelling fixed point and P = ε/2 is a one-sided attracting neutral fixed
point with immediate basin (0, P ]. See Figure 1 for the graph of fε.

We henceforth suppose that the parameter ε > 0 is sufficiently small, say 0 < ε <

1/100. Then, for a ∈ R, we set

fε,a : T → T, fε,a(y) = fε(y)+ aε. (5)

From assumption (iv) on ϕ, we have

2
3

≤ f ′
ε,a(y) ≤ 10

3
for any y ∈ T.

Hence, if a ≥ 1, we have that f−1
ε,a ([0, ε]) ∩ (0, ε) = ∅ and hence

(f 2
ε,a)

′(y) ≥ 2 · 2
3

= 4
3
> 1 for any y ∈ T. (6)

The family a �→ fε,a exhibits the saddle-node bifurcation of the fixed point 0 at the
parameter a = 0. It is not difficult to check that fε,a is uniformly expanding if 0 < a ≤ 2.
If a < 0 and |a| is sufficiently small, then fε,a admits three fixed points

0 < P0 = −aε < P− < P+
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in a small neighborhood of 0, where P0 and P+ are hyperbolic repelling while P− is
hyperbolic attracting. The immediate basin of the hyperbolic attracting fixed point P− is
the interval B = (P0, P+) and we have

lim
a→−0

P0 = 0, lim
a→−0

P− = lim
a→−0

P+ = ε

2
.

4. Skew products over angle-multiplying maps
We consider the dynamics of perturbations of the skew product

Fε,a,δ,m : T2 → T
2, Fε,a,δ,m(x, y) = (mx, fε,a(y)+ δε cos 2πx),

where m is a positive integer and δ > 0 is a positive real parameter. In the following, we
suppose that r > 0 is a given integer. We suppose that the constants ε > 0 and δ > 0 are
small, say ε, δ ∈ (0, 1/100). We will also fix m as a large constant so that the conclusion
of Theorem 2 below holds true. Since we regard Fε,a,δ,m as a one-parameter family with
parameter a ∈ [−2δ, 2], we henceforth write Fa for Fε,a,δ,m.

4.1. Quasi-compactness of P . We adapt the argument in [20] to get the next theorem.
Since the situation is only a little different from that in [20], we give a brief account on its
proof in §5.

THEOREM 2. Let 0 < ρ0 < 1 be a given real number. If we let m be sufficiently large
depending on the parameters r, ε, δ, and ρ0, the following hold true.

There exist a C∞ neighborhood U ⊂ C∞(T2, T2) of the family F = {Fa =
Fε,a,δ,m, a ∈ [−2δ, 2]} and a Hilbert space H satisfying equation (3) such that, for any
F ∈ U , the Perron–Frobenius operator PF : H → H is bounded and its essential spectral
radius is bounded by ρ0, which is strictly smaller than its spectral radius 1.

Further, if 1 is a simple eigenvalue of PF : H → H for every F ∈ F , then, by
letting the neighborhood U be smaller, we may suppose that the same is true for all
F ∈ U and the positive eigenfunction ρF ∈ H for the simple eigenvalue 1, normalized
by the condition

∫
ρF dLeb = 1, depends on F smoothly in the following sense: for

any C∞ one-parameter family Gt of maps in U and ψ ∈ C∞(T2), the correspondence
t �→ ∫

ψ dμGt = ∫
ψρGt dLeb is a Cr function.

Remark 3. We cannot let r = ∞ in our construction because it is essential to take m large
enough depending on r.

4.2. Simplicity of the eigenvalue 1. We show the following theorem for the family
F = {Fa = Fε,a,δ,m | a ∈ [−2δ, 2]}.

THEOREM 3. For any a ∈ [−2δ, 2], the principal eigenvalue 1 of PF : H → H is simple
and there is no other eigenvalue on the unit circle. The eigenfunction ρa ∈ H for the simple
eigenvalue 1 satisfying

∫
ρa dLeb = 1 is the density of the SRB measure μa with respect

to the Riemann volume m on T
2.
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Proof. We consider the following two cases for a ∈ [−2δ, 2] separately:

(i) a + δ > 0; (ii) a + δ ≤ 0.

Case (i). First we prove the following lemma.

LEMMA 4. In Case (i), we have U∞ := ⋃
n≥0 F

n
a (U) = T

2 for any non-empty open
subset U on T

2.

Proof. Since Fa is expanding in the horizontal (or x-) direction, we have that U∞ ∩
({0} × T) �= ∅. The map Fa restricted to {0} × T can be identified with fε,a+δ . From the
assumption, we have a + δ > 0 and hence fε,a+δ is uniformly expanding, provided that
δ > 0 is sufficiently small.

Remark 4. The last claim is not completely obvious but easy to check. Let f = fε,a . To
show that f is uniformly expanding, it is enough to show that there exists n > 0 for any
x ∈ T such that (f n)′(x) > 1. This holds obviously with n = 1 for x on the outside of
(0, ε). For a point x ∈ (0, ε), we let k be the smallest integer such that f k(x) /∈ (0, ε). By
the elementary estimates on an intermittent one-dimensional map, we see that (f k)′(x) >
h > 0 for some constant h > 0 independent of a > 0 and ε > 0 (as far as they are
sufficiently small). By letting ε > 0 be sufficiently small, we may suppose that the orbit
starting from f k(x) will not return to (0, ε) for arbitrarily long time and therefore we can
find n > k such that (f n)′(x) > 1.

Hence, we have U∞ ⊃ {0} × T. Again, using the fact that Fa is expanding in the
horizontal direction, we obtain the claim U∞ = T

2.

Suppose that ρ ∈ H is an eigenfunction for an eigenvalue on the unit circle. Then we
have |Pnρ| = |ρ| = Pn|ρ| for n ≥ 1. From the last lemma, this holds only if ρ = eiθ |ρ|
for some θ ∈ [0, 2π) and therefore we may suppose ρ ≥ 0. This implies that there is no
eigenvalue on the unit circle other than 1. For the same reason, the geometric multiplicity
of the eigenvalue 1 should be 1. Further, since P preserves the integral of functions with
respect to the Lebesgue measure, we conclude that the algebraic multiplicity is not greater
than 1.

Let ρFa ∈ H ⊂ Cr(T2) be the eigenfunction of PFa for the simple eigenvalue 1. We
may and do suppose that ρFa is non-negative and

∫
ρFa dLeb = 1. Then the measure

νFa := ρFa Leb is ergodic since Pnu converges to a constant multiple of ρFa for any
u ∈ H. Since ρFa ∈ Cr(T), there is an open subset U ⊂ T

2 on which ρFa > 0 and
therefore almost every point in U is generic for μFa . As Fa is a local diffeomorphism,
almost every point on Fna (U) with n ≥ 0 is generic for μFa . Since

⋃
n≥0 F

n
a (U) = T

2, as
we showed in Lemma 4, we conclude that almost every point on T

2 is generic for μFa .
This finishes the proof of the theorem in Case (i).

Case (ii). Note that a ≤ −δ < 0 in this case. The region

W = T × ((δ − a)ε, ε/2)

satisfies Fa(W) ⊂ W and the iteration of Fa is (non-uniformly) contracting on the fibers
{x} × ((δ − a)ε, ε/2) for x ∈ T.
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Remark 5. The choice of the interval (δ − a)ε, ε/2) in the definition of W is made as
follows. The left end point y− = (δ − a)ε is the unique point in (0, ε/10) satisfying
fε,a−δ(y−) = y−. (Recall condition (ii) in the definition of the function ϕ.) The right end
point y+ = ε/2 is the neutral fixed point of fε,0, which satisfies fε,a+δ(y+) ≤ y+ when
a + δ ≤ 0.

Hence, there exists a unique mixing Fa-invariant measure μFa supported in W such that
Lebesgue almost every point on W is generic for μFa .

Writing π2 : R2 → R for the projection to the second component, we have
π2∂y(Fa ◦ Fa)(p) > 1 on the complement of F−1

a (W), with only one exception
p = (0, ε/2) when a + δ = 0. Hence, the intersection of the complement

C = T
2 \

⋃
n≥0

F−n
a (W)

with any fiber {x} × T cannot contain any non-trivial interval.
We next show that the complement C is of null Lebesgue measure. Suppose that C has

positive Lebesgue measure and write 1C for the characteristic function of it. Then we can
find a weak limit point ρ of the sequence (1/n)

∑n−1
k=0 Pk1C . By approximating 1C by the

C∞ function in an L1 sense and using the spectral property of P in Theorem 2, we see that
ρ belongs to H ⊂ Cr(T2) and is supported on C. However, this is impossible because C
has no interior point.

Since the complement C is of null Lebesgue measure, almost every point on T
2 is

generic for the mixing measure μF . This implies the conclusion of the theorem. �

Finally, we prove the following theorem on the central Lyapunov exponent of the SRB
measure μFa for Fa with a ∈ [−2δ, 2]. Note that we always assume that ε > 0 and δ > 0
are small.

THEOREM 5
(a) If a + δ < 0, the central Lyapunov exponent χc(μFa ) is negative.
(b) If a ≥ 1, the central Lyapunov exponent χc(μFa ) is positive.

Proof. (a) As we observed in the proof of Theorem 3 in Case (ii), there is a unique
SRB measure μFa whose support is contained in W and its central Lyapunov exponent
is negative.

(b) By equation (6), the map Fa is expanding along the fibers in this case and therefore
the central Lyapunov exponent of the SRB measure is positive, provided that δ > 0 is
sufficiently small.

We can now deduce Theorem 1 from Theorems 2, 3, and 5.

5. The proof of Theorem 2
We can obtain the proof of Theorem 2 by following the argument in [20] with slight
modifications. Below, we explain briefly how we modify the argument in [20].
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First, we check a kind of transversality condition. We consider the constant cones in the
tangent bundle

C =
⋃
p∈T2

Cp = {(p, v) = ((x, y), (vx , vy)) ∈ TT2 | |vy | ≤ C0δε|vx |},

where we fix a large constant C0 so that DF(C) ⊂ C. For given p ∈ T
2 and q, q ′ ∈ T

2,
we write q � q ′ if

DFq(C) ∩DFq ′(C) = {0}.
We define

m(F ) = 1
(2/3) ·m · sup

p∈T2
sup

q∈F−1(p)

#{q ′ ∈ F−1(p) | q ′ � q},

where (2/3) ·m stands for a lower bound of det dF . We can check the following lemma
by crude estimates. (We can actually prove m(F ) < const . m−1/2. One can find a relevant
computation in [18, Appendix].)

LEMMA 6. The quantity m(F ) converges to 0 when we let m go to infinity and the
convergence is uniform for sufficiently small ε > 0, δ > 0, and any a ∈ [−2, 2].

We then follow the argument in [20] almost literally, noting that m(F ) corresponds
to m(f , 1) defined in [20, §3] and that we just consider the first iteration (or the case
n = 1 there). Note also that we consider nonlinear endomorphisms in equation (5) on the
fibers though the corresponding maps are rigid rotations in [20]. However, since we just
consider the first iteration, if we take sufficiently fine local charts and a C∞ partition of
unity subordinate to them in the argument in [20, §4], it is direct to get a parallel argument
in our setting. Then the claim corresponding to [20, Proposition 3] and Hennion’s theorem
give the former part of Theorem 2 on the essential spectral radius of PF . We can deduce the
latter part using the abstract perturbation theorem in [9, §8] about perturbation of transfer
operators. For this, we again follow the argument in [20, §4.4].

6. Some numerical experiments
We present some results of numerical experiments related to the claim of the main theorem.
For simplicity of computation, we consider a similar but slightly different setting from that
in the previous sections. We consider a C∞ map f : T → T defined by

f (y) = 2y − sin(2πy)+ cos(2πx)− 1
2π

mod Z.

It has a neutral fixed point at 0 and its dynamics is very similar to that of fε in §3. (The
graph of the function f is depicted in Figure 2.)

Then we consider a family of dynamical systems Fa : T2 → T
2 defined by

Fa(x, y) = (7x, f (y)+ δ · cos(2πx)+ a) for a ∈ [−2δ, 2δ],

where we set δ = 10−2. In Figure 3, we compute the approximate central Lyapunov
exponent at a randomly chosen point by iterating F for 106 times and plot it against
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FIGURE 2. The graph of the function f.

FIGURE 3. The central Lyapunov exponent of the SRB measure as a function of the parameters a close to 0. We
draw the graph with the domain [−0.02, 0.02] and [−0.004, 0.004] respectively on the left and right pictures.

the parameters −0.02 ≤ a ≤ 0.02 (respectively −0.004 ≤ a ≤ 0.004) with step 10−3

(respectively 10−4). We observe that the (central) Lyapunov exponent varies smoothly and
changes its sign at a parameter −0.001 < a0 < 0.

We also plot an orbit of randomly chosen initial point at the parameters a =
−0.02, −0.006, −0.003, −0.002. (We draw the orbit from time 103 to time 106.) At
the parameter a = −0.02, we observe that the orbits are trapped by a horizontal zonal
region. When the parameter a crosses the value −δ = −0.01, we expect that the orbits
start to spread over the whole space T

2 and, as the parameter a gets large, the density
of the orbits becomes more uniform. However, when the value of a is close to −0.01, it
is difficult to detect this phenomenon because only a very small portion of orbits go out
of (the ruin of) the attracting region and return to it again soon. (See the picture for the
parameter a = −0.006 in Figure 4.)
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FIGURE 4. Plots of orbits of Fa at a few values of the parameter a.
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