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ANALYTIC SPREAD OF FILTRATIONS ON TWO-DIMENSIONAL
NORMAL LOCAL RINGS

STEVEN DALE CUTKOSKY

Abstract. In this paper, we prove that a classical theorem by McAdam about

the analytic spread of an ideal in a Noetherian local ring continues to be true

for divisorial filtrations on a two-dimensional normal excellent local ring R,

and that the Hilbert polynomial of the fiber cone of a divisorial filtration on R

has a Hilbert function which is the sum of a linear polynomial and a bounded

function. We prove these theorems by first studying asymptotic properties of

divisors on a resolution of singularities of the spectrum of R. The filtration of

the symbolic powers of an ideal is an example of a divisorial filtration. Divisorial

filtrations are often not Noetherian, giving a significant difference in the classical

case of filtrations of powers of ideals and divisorial filtrations.

§1. Introduction

Divisorial filtrations on two-dimensional normal excellent local rings have excellent

properties, as we show in this article.

1.1 Filtrations of powers of ideals and analytic spread

In this subsection, we give an outline of how the classical theory of the analytic spread

of an ideal admits a simple geometric interpretation in the case of an ideal in a normal

excellent local ring. The generalization of analytic spread to divisorial filtrations can then

be seen as a natural extension of this theory.

Expositions of the theory of complete ideals, integral closure of ideals and their relation to

valuation ideals, Rees valuations, analytic spread, and birational morphisms can be found,

from different perspectives, in [23], [25], [33], and [36]. The book [33] and the article [25]

contain references to original work in this subject. Concepts in this introduction which are

not defined in this section or in these references can be found in §2 of this paper. A survey

of recent work on symbolic algebras is given in [15]. A different notion of analytic spread for

families of ideals is given in [16]. A recent paper exploring ideal theory in two-dimensional

normal local domains using geometric methods is [31].

Let R be a normal excellent local ring with maximal ideal mR, and let I be an ideal in

R. Let π :X → Spec(R) be projective and birational (so that π is the blowup of an ideal)

and such that X is normal and IOX is an invertible sheaf. Let IOX =OX(−D) where D

is an effective and anti-nef divisor (the intersection product (D ·E)≤ 0 for all exceptional

curves E of X ). Then Γ(X,OX(−nD)) = In, the integral closure of In, for all n ∈N. Write

D = a1F1+ · · ·+asFs where the Fi are prime divisors. The local rings OX,Fi are discrete

(rank 1) valuation rings. Let νFi be the associated valuations. We have that the integral

closure of In is

In = Γ(X,OX(−nD)) = I(νF1)na1 ∩· · ·∩ I(νFs)nas ,
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where

I(νFi)b = {f ∈R | νFi(f)≥ b}

are the valuation ideals in R associated with νFi . The center of νFi on R is the prime ideal

I(νFi)1. The Rees valuations of I are those νFj such that In �= ∩i �=jI(νFi)nai . Let Y be

the normalization of the blowup B(I) of I, and let IOY = OY (−B). Then Y → Spec(R)

is projective (since R is universally Nagata). The divisor −B is ample on Y and so the

Rees valuations of I are exactly the prime components of B. By the universal property

of blowing up, π factors through B(I) and since X is normal, π factors through Y. Let

φ :X → Y be the induced morphism. Let F be a prime component of D, with associated

valuation νF . Then νF is a Rees valuation of I if and only if φ does not contract F, in which

case φ(F ) = E is a prime component of B and we have that OX,F =OY,E .

In the case that dimR = 2, the prime divisor F is contracted by φ if and only if F is

exceptional (π(F ) =mR) and (D ·F ) = 0. Thus, the Rees valuations of I are precisely the

valuations associated with prime divisors F of X such that either νF has its center at a

height 1 prime of R or F is exceptional for π (the center of νF on R is mR) and (D ·F )< 0.

Let us return to not having any restrictions on the dimension of R. We have an associated

graded ring R[It] =
∑

n≥0 I
ntn (the Rees algebra of I ). The integral closure of R[It] in R[t]

is the graded algebra R[It] =
∑

n≥0 I
ntn, which is a finite extension of R[It] (since R is

universally Nagata). The blowup of I is B(I) = Proj(R[It]), and Y = Proj(R[It]) is the

normalization of the blowup of I, which was introduced earlier. Let ψ :B(I)→ Spec(R) be

the projection.

The blowup B(I) has the important subschemes

ψ−1(V (I)) = Proj(grI(R)) and ψ−1(mR) = Proj(R[It]/mRR[It]).

The R-algebra grI(R) =
∑

n≥0 I
n/In+1tn is the associated graded ring of I, and the R-

algebra R[It]/mRR[It] is the fiber cone of I.

Since Proj(R[It])→ Spec(R) and Proj(R[It])→ Spec(R) are birational, the dimensions

of Proj(R[It]) and Proj(R[It]) are the same as the dimension of R. Furthermore, since

Proj(grI(R)) is a Cartier divisor on Proj(R[It]), we have that dim(Proj(grI(R)) = dimR−1.

Now, since I ⊂mR, we have that Proj(R[It]/mRR[It]) is a subscheme of Proj(grI(R)), so

we have dim(Proj(R[It]/mRR[It]))≤ dimR−1.

Let ψ0 : Proj(grI(R)) → Spec(R/I) be the projective morphism induced by ψ. Let P

be a minimum prime of I. Then dimψ−1
0 (P ) = dimRP − 1 since Ip is primary for the

maximal ideal of RP . We have that dimψ−1(mR) = dimψ−1
0 (mR)≥ dimψ−1

0 (P ) by upper

semicontinuity of fiber dimension [19, Cor. IV.13.1.5]. Thus,

ht(I)≤ dimψ−1(mR)+1.

The analytic spread of I is defined to be

�(I) = dimR[It]/mRR[It].

Since the dimension of the Proj of a graded ring is one less than the dimension of the

ring, we have established in our case of normal excellent local rings the following theorems.
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Theorem 1.1 ([33, Prop. 5.1.6 and Cor. 8.3.9]). Let R be a Noetherian local ring, and

let I be an ideal in R. Then

ht(I)≤ �(I)≤ dimgrI(R) = dimR.

Theorem 1.2 ([33, Prop. 5.4.8]). Let R be a Noetherian formally equidimensional

local ring, and let I be an ideal in R. For every minimal prime ideal P of grI(R),

dim(grI(R)/P ) = dimR.

We return to the case that R is a normal excellent local ring of arbitrary dimension. We

have that �(I) = dimR if and only if dimψ−1(mR) = dimR−1. Since

Y = Proj(R[It])→B(I) = Proj(R[It])

is finite, dimψ−1(mR) = dimR−1 if and only if there exists a prime divisor E on Y which

contracts to mR; that is, the center of νE on R is mR. Writing

IOY =OY (−b1F1−·· ·− bsFs),

where Fi are prime divisors and bi > 0, we have that

In = I(νF1)nb1 ∩· · ·∩ I(νFs)nbs ,

where νFi is the discrete rank 1 valuation associated with the valuation ring OY,Fi . Since

−b1F1−·· ·−bsFs is ample on Y, we have that In �= ∩i �=jI(νFi) for all j and n	 0 (so that

νF1 , . . . ,νFs are the Rees valuations of I ). Thus, dimψ−1(mR) = dimR−1 holds if and only

if mR ∈Ass(R/In) for some n.

We have established the following theorem in our case of normal excellent local rings.

Theorem 1.3 ([27], [33, Th. 5.4.6]). Let R be a formally equidimensional local ring,

and let I be an ideal in R. Then mR ∈Ass(R/In) for some n if and only if �(I) = dim(R).

The assumption of being formally equidimensional is not required for the “if” direction

of Theorem 1.3. (This is Burch’s theorem (see [6], [33, Prop. 5.4.7]).)

Let k =R/mR. Since R[It]/mRR[It] is a standard graded ring over k (finitely generated

in degree 1), it has a Hilbert polynomial P (n) which has degree d= �(I)−1; there exists a

positive integer n0 such that

dimk I
n/mRI

n = P (n) for n≥ n0. (1)

As R[It]/mRR[It] is a finitely generated graded ring over k, there exists e ∈ Z>0 and

polynomials P0, . . . ,Pe−1 of degree d= �(I)−1 such that

dimk In/mRIn = Pi(n) for n≥ n0 where i≡ n mod e. (2)

1.2 Filtrations

Let I = {In} be a filtration on a local ring R. The Rees algebra of the filtration is

R[I] =⊕n≥0In. Analogously to the case of ideals, we define the fiber cone of the filtration

I to be R[I]/mRR[I] and the analytic spread of the filtration of I to be

�(I) = dimR[I]/mRR[I]. (3)

We have that ht(In) = ht(I1) for all n [12, (7)], so it is natural to define ht(I) = ht(I1).

We always have [12, Lem. 3.6] that

�(I)≤ dimR,

https://doi.org/10.1017/nmj.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.35


242 S. D. CUTKOSKY

so the second inequality of Theorem 1.1 always holds. However, the first inequality of

Theorem 1.1, ht(I) ≤ �(I), fails spectacularly, even attaining the condition that �(I) = 0

[12, Exams. 1.2, 6.1, and 6.6]. The last two of these examples are of symbolic algebras of

space curves, which are divisorial filtrations. We give a further example where the inequality

fails in Example 7.3 of this paper. Example 7.3 is of a symbolic algebra of an intersection of

height 1 prime ideals in a two-dimensional excellent normal local ring. In the case that I is a

Noetherian filtration (R[I] is a finitely generated R-algebra), the lower bound ht(I)≤ �(I)
always holds [12, Prop. 3.7], so that the inequality of Theorem 1.1 for ideals continues to

hold for Noetherian filtrations.

The condition that a filtration has analytic spread zero has a simple ideal theoretic

interpretation (see [12, Lem. 3.8]). Suppose that I = {In} is a filtration in a local ring R.

Then the analytic spread �(I) = 0 if and only if

For all n > 0 and f ∈ In,there exists m> 0 such that fm ∈mRImn.

1.3 Divisorial Filtrations

Let R be a local domain of dimension d with quotient field K. Let ν be a discrete valuation

of K with valuation ring Vν and maximal ideal mν . Suppose that R⊂ Vν . Then, for n ∈N,

define valuation ideals

I(ν)n = {f ∈R | ν(f)≥ n}=mn
ν ∩R.

A divisorial valuation of R (see [33, Def. 9.3.1]) is a valuation ν of K such that if Vν

is the valuation ring of ν with maximal ideal mν , then R ⊂ Vν , and if p = mν ∩R, then

trdegκ(p)κ(ν) = ht(p)−1, where κ(p) is the residue field of Rp and κ(ν) is the residue field of

Vν . If ν is divisorial valuation of R such that mR =mν∩R, then ν is called an mR-valuation.

By [33, Th. 9.3.2], the valuation ring of every divisorial valuation ν is Noetherian, and

hence is a discrete valuation. Suppose that R is an excellent local domain. Then a valuation

ν of the quotient field K of R which is nonnegative on R is a divisorial valuation of R if

and only if the valuation ring Vν of ν is essentially of finite type over R (see [13, Lem. 5.1]).

In general, the filtration I(ν) = {I(ν)n} is not Noetherian; that is, the graded R-algebra∑
n≥0 I(ν)nt

n is not a finitely generated R-algebra. In a two-dimensional normal local

ring R, the condition that the filtration of valuation ideals I(ν) is Noetherian for all mR-

valuations ν dominating R is the condition (N) of Muhly and Sakuma [29]. It is proved in

[9] that a complete normal local ring of dimension 2 satisfies condition (N) if and only if its

divisor class group is a torsion group.

An integral divisorial filtration of R (which we refer to as a divisorial filtration in this

paper) is a filtration I = {Im} such that there exist divisorial valuations ν1, . . . ,νs and

a1, . . . ,as ∈ Z≥0 such that for all m ∈ N,

Im = I(ν1)ma1 ∩· · ·∩ I(νs)mas .

I is called an R-divisorial filtration if a1, . . . ,as ∈ R>0 and I is called a Q-divisorial

filtration if a1, . . . ,as ∈Q. If ai ∈ R>0, then

I(νi)nai := {f ∈R | νi(f)≥ nai}= I(νi)�nai�,

where �x is the roundup of a real number.
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Given an ideal I in R, the filtration {In} is an example of a divisorial filtration of R.

The filtration {In} is Noetherian if R is universally Nagata.

It is shown in [12, Th. 4.6] that the “if” statement of Theorem 1.3 is true for divisorial

filtrations of a local domain R.

Theorem 1.4 [12, Th. 4.6]. Suppose that R is a local domain and I = {In} is a divisorial

filtration on R such that �(I) = dimR. Then there exists a positive integer n0 such that

mR ∈Ass(R/In) for all n≥ n0.

An interesting question is if the converse of Theorem 1.3 is also true for divisorial

filtrations of a local ring R. We prove this for two-dimensional excellent normal local rings

in this paper (Theorem 7.1, also stated in Theorem 1.5 of this introduction).

1.4 Divisorial filtrations on normal excellent local rings

Let R be a normal excellent local ring. Let I = {Im} where

Im = I(ν1)ma1 ∩· · ·∩ I(νs)mas

for some divisorial valuations ν1, . . . ,νs on R, be an R-divisorial filtration on a normal

excellent local ring R, with a1, . . . ,as ∈ R>0. Then there exists a projective birational

morphism φ : X → Spec(R) such that there exist prime divisors F1, . . . ,Fs on X such

that Vνi = OX,Fi for 1 ≤ i ≤ s. Let D = a1F1 + · · ·+ asFs, an effective R-divisor. Define

�D= �a1F1+ · · ·+ �asFs, an integral divisor. We have coherent sheaves OX(−�nD) on
X such that

Γ(X,OX(−�nD)) = In (4)

for n∈N. If X is nonsingular, thenOX(−�nD) is invertible. The formula (4) is independent

of choice of X. Furthermore, even on a particular X, there are generally many different

choices of effective R-divisors G on X such that Γ(X,OX(−�nG)) = In for all n ∈ N. Any

choice of a divisor G on such an X for which the formula Γ(X,OX(−�nG)) = In for all

n ∈ N holds will be called a representation of the filtration I.
Given an R-divisor D = a1F1+ · · ·+ asFs on X, we have a divisorial filtration I(D) =

{I(D)n} where

I(D)n = Γ(X,OX(−�nD)) = I(ν1)�na1�∩· · ·∩ I(νs)�nas� = I(ν1)ma1 ∩· · ·∩ I(νs)mas .

We write R[D] =R[I(D)].

1.5 Summary of principal results in this paper

Let R be an excellent two-dimensional normal excellent local ring with maximal idealmR.

All possible analytic spreads �(I(D)) = 0,1,2 can occur for Q-divisors D on R. An

example where �(I(D)) = 0 < ht(I(D)) = 1 is given in Example 7.3. This example is of a

symbolic filtration I(D) = {Q(n)
1 ∩Q

(n)
2 ∩Q

(n)
3 } where Q1,Q2,Q3 are height 1 prime ideals

in a two-dimensional normal excellent local ring R. In contrast, since the filtration I(D) is

not Noetherian, we have (by [12, Cor. 1.9]) that for every a ∈ Z>0, the analytic spread of

the ideal Q
(a)
1 ∩Q

(a)
2 ∩Q

(a)
3 is �(Q

(a)
1 ∩Q

(a)
2 ∩Q

(a)
3 ) = 2, the largest possible.

We prove that the conclusions of Theorem 1.3 hold for Q-divisorial filtrations on R in

Theorem 7.1.
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Theorem 1.5 (Theorem 7.1). Let R be a two-dimensional normal excellent local ring.

The following are equivalent for a Q-divisorial filtration I(D) on R.

(1) The analytic spread �(I(D)) = dimR[D]/mRR[D] = 2.

(2) mR ∈ Ass(R/I(nD)) for some n.

(3) There exists n0 ∈ Z>0 such that mR ∈Ass(R/I(nD)) for all n≥ n0.

We generalize the formula on Hilbert functions of filtrations of powers of ideals in (1)

and (2) to Q-divisorial filtrations on R in Theorem 8.1.

Theorem 1.6 (Theorem 8.1). Suppose that R is a two-dimensional normal excellent

local ring and I(D) is a Q-divisorial filtration on R. Then there exist a nonnegative rational

number α and a bounded function σ : N→Q such that the length

λR(I(nD)/mRI(nD)) = λR((R[D]/mRR[D])n) = nα+σ(n)

for n ∈ N. The constant α is positive if and only if dim(R[D]/mRR[D]) = 2.

It is unlikely that the function σ(n) will always be eventually periodic. It is shown

in [14, Th. 9] that if D has exceptional support, then the Hilbert function of grI(R) =∑
n≥0 I(nD)/I((n+1)D)tn has an expression

λR(I(nD)/I((n+1)D)) = nβ+ τ(n),

where β ∈ Q and τ(n) is a bounded function. If R has equicharacteristic zero, then it is

shown in [14, Th. 9] that τ(n) is eventually periodic, and [14, Exam. 5] gives an example

where R has equicharacteristic p > 0 and τ(n) is not eventually periodic.

Suppose that A is an excellent normal local ring of dimension 3. Let Z → Spec(A) be a

resolution of singularities, and let D be an effective divisor on Z, all of whose components

contract to the maximal ideal mA. Then the Hilbert polynomial h(n) = λA(I(nD)/

I((n+1)D)) may be far from being polynomial like. The examples ([14, Exam. 6] and

[11, Th. 1.4]) have the property that

lim
n→∞

h(n)

n2

is an irrational number. These examples are in three-dimensional equicharacteristic rings

A of any characteristic. The reason for this irrational behavior in dimension 3 is because of

the lack of existence of Zariski decompositions in dimension 3.

We now give an outline of the proof of Theorem 7.1. Let π :X → Spec(R) be a resolution

of singularities such that D is represented on X. Let E1, . . . ,Er be the prime exceptional

divisors of π. An R-divisor Δ on X is anti-nef if (E ·Δ)≤ 0 for all prime exceptional divisors

E on X. Since X has dimension 2, D has a Zariski decomposition, Δ =D+B where Δ is

an anti-nef divisor and B is an effective divisor with exceptional support such that

I(nD) = Γ(X,OX(−�nD)) = Γ(X,OX(−�nΔ)) = I(nΔ)

for all n ∈ N. This decomposition does not exist in higher dimensions, even after blowing

up ([8], [30, §IV.2.10], [21, §2.3]).

Proposition 1.7 (Corollary 6.5). Suppose that Δ is an effective anti-nef Q-divisor on

X. Then the following are equivalent.
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(1) There exists n such that mR ∈ Ass(R/I(nΔ)).

(2) There exists n0 such that mR ∈Ass(R/I(nΔ)) for all n≥ n0.

(3) There exists j such that Ej is exceptional and (Δ ·Ej)< 0.

Let Ej be an exceptional divisor of π and

Pj =
⊕
n≥0

Γ(X,OX(−�nΔ−Ej))

for 1≤ j ≤ r. Pj is a prime ideal in R[Δ] =R[D]. In Proposition 6.7, it is shown that√
mRR[Δ] = ∩r

i=1Pi.

The following proposition computes the dimension of R[Δ]/Pj in terms of the intersection

theory of X.

Proposition 1.8 (Proposition 6.9). Suppose that Δ is an effective anti-nef Q-divisor

on X and Ej is a prime exceptional divisor for π :X → Spec(R). Then:

(1) dimR[Δ]/Pj = 2 if (Δ ·Ej)< 0.

(2) dimR[Δ]/Pj ≤ 1 if (Δ ·Ej) = 0.

Since
√
mRR[Δ] = ∩r

i=1Pi, we deduce Theorem 7.1 from Propositions 6.5 and 6.9.

The theory of Zariski decomposition was created and developed by Zariski in [35] for

projective surfaces over an algebraically closed field. In §4, we give the relative version of

this theory, over a two-dimensional excellent normal local ring, and in §5, we extend some

results in [35] for numerically effective divisors on a nonsingular projective surface to our

situation of a resolution of singularities of a two-dimensional normal excellent local ring. We

prove the main results of this paper on asymptotic properties of divisors on a resolution of

singularities of a two-dimensional normal excellent local ring in §6. We prove Theorem 7.1

in §7 and Theorem 8.1 in §8.

1.6 Notation

We will denote the nonnegative integers by N and the positive integers by Z>0, and the

set of nonnegative rational numbers by Q≥0 and the positive rational numbers by Q>0. We

will denote the set of nonnegative real numbers by R≥0 and the positive real numbers by

R>0. If x ∈ R, then �x is the smallest integer, which is greater than or equal to x.

The maximal ideal of a local ring R will be denoted by mR. We will denote the length

of an R-module M by λR(M). Scholie IV.7.8.3 of [18] gives a list of good properties of

excellent local rings which we will assume.

§2. Divisors on a resolution of singularities of a two-dimensional local ring

Throughout this paper, R is a two-dimensional excellent normal local ring with quotient

field K, maximal ideal mR, and residue field k =R/mR.

From this section to §6, π : X → Spec(R) is a resolution of singularities such that π

is projective and all exceptional prime divisors of π are nonsingular. Such a resolution of

singularities exists by [24] or [7]. Let E1, . . . ,Er be the exceptional prime divisors for π. A

divisor is exceptional if all its prime components map to mR by π. We will further assume

that π is not an isomorphism.
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Remark 2.1. Suppose that F is a coherent sheaf on X. Then H0(X,F) is a finitely

generated R-module, H1(X,F) is an R module of finite length, and H2(X,F) = 0.

Proof. By [20, Th. III.5.2], H0(X,F) is a finitely generated R-module. By [20, Th.

III.5.2 and Cor. III.11.2],H1(X,F) is an R-module of finite length and by [20, Cor. III.11.2],

H2(X,F) = 0 since dimπ−1(mR) = 1.

An element of the free abelian group Div(X) on the prime divisors of X is called a

divisor. Elements of Div(X)⊗Q are called Q-divisors, and elements of Div(X)⊗R are called

R-divisors. We will sometimes refer to a divisor as an integral divisor if we want to emphasize

this fact. If D1 and D2 are R-divisors, then write D2 ≥D1 if D2−D1 is an effective divisor.

The degree deg(L) for L an invertible sheaf on a projective curve is defined in §3.
We use the intersection theory on X developed in [23, §§12 and 13]. The intersection

theory on X is determined by the formula (D ·E) = deg(OX(D)⊗OE) if D is a divisor on

X and E is a prime exceptional divisor on X.

An R-divisor D is numerically effective (nef) if (E ·D) ≥ 0 for all prime exceptional

divisors E of X. An R-divisor D on X is anti-effective or anti-nef if −D is, respectively,

effective or nef. A Q-divisor D is anti-ample if −D is ample and an (integral) divisor D is

anti-very ample if −D is very ample.

Let F be a prime divisor on X. Then OX,F is a (rank 1) discrete valuation ring. Let νF be

the associated valuation. For 0 �= f ∈K, the divisor of f on X is (f) =
∑

νF (f)F where the

sum is over all the prime divisors F of X. Two divisors D1 and D2 are linearly equivalent,

written D1 ∼D2 if there exists f ∈K such that (f) =D2−D1. Two divisors D1 and D2

which are linearly equivalent are also numerically equivalent; that is, (E ·D2) = (E ·D1) for

all prime exceptional divisors E of π.

LetD=
∑

biFi be an integral divisor on X. There is an associated invertible sheaf OX(D)

on X which is determined by the property that if U is an affine open subset of X and h∈K

is such that h= 0 is a local equation of D in U, then OX(D) | U = 1
hOU . Thus,

Γ(X,OX(D)) = {f ∈R | (f)+D ≥ 0}.

Since R is a subset of Γ(X,OX) in K and R is normal, we have that Γ(X,OX) = R by

Remark 2.1, and so if D is an effective divisor, then Γ(X,OX(−D)) is an ideal in R.

If D =
∑s

i=1aiFi with ai ∈ R is an R-divisor, let �D=
∑

�aiFi.

Let F be a prime divisor on X. For α ∈ R≥0, define valuation ideals in R by

I(νF )α = {f ∈R | νF (f)≥ α}.

We necessarily have that I(νF )α = I(νF )�α�.

For an effective R-divisor D = a1F1+ · · ·+asFs, where F1, . . . ,Fs are prime divisors on

X and ai ∈ R≥0, we have an associated ideal in R

I(D) := I(νF1)a1 ∩· · ·∩ I(νFs)as = I(νF1)�a1�∩· · ·∩ I(νFs)�as� = Γ(X,OX(−�D)).

Let D be a divisor on X. Then Γ(X,OX(D)) �=0. The fixed component of D is the largest

effective divisor F on X such that

Γ(X,OX(D)) = Γ(X,OX(D−F )).
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For n ∈ N, let Bn be the fixed component of nD and let

Mi = {n ∈ N | Ei is not a component of Bn}.

Mi is a numerical semigroup, so if Mi is nonzero, there exists hi ∈ Z>0 such that for n	 0,

n ∈Mi if and only if hi divides n.

The global sections Γ(X,OX(D)) of OX(D) generate OX(D) at a point q ∈ X if

OX(D)q = Γ(X,OX(D))OX,q. The points q ∈ X where OX(D) is generated by global

sections are necessarily disjoint from the support of the fixed component of D.

Lemma 2.2. Let D be an effective divisor on X, and let F be a prime divisor in the

support of the fixed component of −D. Then the support of F is exceptional.

Proof. Write D =
∑r

i=1aiFi where the Fi are distinct prime divisors on X and ai ∈ N.

Suppose that Fj is not exceptional for π. Let qj = π(Fj), a height 1 prime ideal in R. Since

π is an isomorphism over Spec(R)\mR, we have that Rqj =OX,Fj , so

OX(−D)Fj = (q
aj

j )qj = (I(νj)aj )qj = Γ(X,OX(−D))qj
= Γ(X,OX(−D))OX,Fj .

Thus, Fj is not in the support of F.

The intersection matrix of the exceptional curves of π is the r× r matrix ((Ei ·Ej)),

which is negative-definite (see [23, Lem. 14.1]).

Proposition 2.3. Let D be a Q-divisor on X. Then D is ample if and only if (D ·E)> 0

for all prime exceptional divisors E on X.

This is proved in [23, Th. 12.1]. As commented in the proof of [23, Th. 12.1], the additional

assumption there that H1(X,OX) = 0 is not necessary for this conclusion.

Lemma 2.4. The support of a nonzero effective anti-nef R-divisor D on X contains all

exceptional prime divisors.

Proof. Let S be the set of exceptional prime divisors which are in the support of D.

Write D = B+
∑r

i=1aiEi where B is an effective divisor which contains no exceptional

prime divisors in its support and all ai ≥ 0. For all Ej , we have that

0≥ (D ·Ej) = (B ·Ej)+
∑
i �=j

ai(Ei ·Ej)+aj(E
2
j ),

and so

−aj(E
2
j )≥ (B ·Ej)+

∑
i �=j

ai(Ei ·Ej)≥ 0. (5)

If B is nonzero, then there exists Ej such that (Ej ·B)> 0 and thus aj > 0 and so Ej ∈ S.

If B = 0, then there exists Ej such that (Ej ·D) < 0 since D �= 0 and the intersection

matrix ((Ei ·Ej)) is nonsingular. Thus, S is nonempty. If Ej′ ∈ S and Ej is such that

(Ej ·Ej′) > 0, then Ej ∈ S by (5). The exceptional fiber π−1(mR) is connected as R is

normal and π is birational (by [20, Cor. III.11.4]). Thus, S is the set of all exceptional prime

divisors of X.

Lemma 2.5. X is the blowup of an mR-primary ideal.
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Proof. Since the intersection matrix ((Ei ·Ej)) is negative definite, there exists an

effective anti-ample Q-divisor A on X with exceptional support (by Proposition 2.3). Thus,

−dA is very ample for some d ∈ Z>0. Let I = Γ(X,OX(−dA)). The ideal I is mR-primary

since the support of A is exceptional. The integral closure of
∑

n≥0 I
ntn in R[t] is∑

n≥0

Intn =
∑
n≥0

Γ(X,OX(−ndA))tn.

Since R is excellent,
∑

n≥0 I
ntn is a finitely generated graded R-algebra. Thus, after

replacing d with a higher power of d, we may assume that In = In = Γ(X,OX(−ndA))

for all n ∈ Z>0 (as follows from [4, Props. III.3.2 and III.3.3 on pages 158 and 159]).

Let Y =Proj(⊕n≥0I
n), which is normal since⊕n≥0I

n is integrally closed. SinceOX(−dA)

is generated by global sections, we have that IOX =OX(−dA). By the universal property

of blowing up (see [20, Prop. II.7.14]), there exists a unique R-morphism φ :X → Y such

that φ∗OY (1)∼=OX(−dA). φ is a birational morphism which is an isomorphism away from

the preimage of mR. φ is of finite type since X → Spec(R) is. Since (−A ·E) > 0 for all

exceptional curves of X, we have that φ does not contract any curves of X and thus φ is

quasi-finite. Let p ∈X and q = φ(p). Let A=OY,q and B =OX,p. The birational extension

A→B satisfies mAB is mB-primary since φ is quasi-finite. Since A is normal and excellent,

it is analytically irreducible by [18, Scholie IV.7.8.3(vii)]. Thus, by Zariski’s main theorem

[1, (10.7), p. 240] or [10, Prop. 21.53], we have that A=B and so φ is an isomorphism and

X is the blowup of the mR-primary ideal I.

Lemma 2.6. Let A be a universally Nagata domain, and let I be an ideal in A. Let

Y = Proj(
⊕

n≥0 I
n). Then the graded ring

⊕
n≥0Γ(Y,I

nOY ) is a finite
⊕

n≥0 I
n-module

and there exists n0 ∈ Z>0 such that Γ(Y,InOY ) = In for n≥ n0.

Proof. This follows from the proof on the last two lines of page 122 to the first half

of page 123 of [20, Th. II.5.19], along with the fact (observed in [20, Rem. 5.19.2])

that the integral closure of a Nagata domain in its quotient field is a finite extension

(by [26, Prop. 31.B]).

§3. Riemann–Roch theorems for curves

We summarize the famous Riemann–Roch theorems for curves. The following theorems

are standard over algebraically closed fields. A reference where they are proved over an

arbitrary field k is [22, §7.3]. The results that we need are stated in [22, Rem. 7.3.33].

Let E be an integral regular projective curve over a field k. For F a coherent sheaf on E,

define hi(F) = dimkH
i(E,F).

Let D =
∑

aipi be a divisor on E, where pi are prime divisors on E (closed points) and

ai ∈ Z. We have an associated invertible sheaf OX(D). Define

deg(D) = deg(OE(D)) =
∑

ai[OEi,pi/mpi : k].

The Riemann–Roch formula is

χ(OE(D)) := h0(OE(D))−h1(OE(D)) = deg(D)+1−pa(E), (6)

where pa(E) is the arithmetic genus of E.
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We further have Serre duality,

H1(E,OE(D))∼=H0(E,OE(K−D)), (7)

where K =KE is a canonical divisor on E. As a consequence, we have

degD > 2pa(E)−2 = deg(K) implies H1(E,OE(D)) = 0. (8)

We have the following well-known consequence of these formulas, which we record for

future reference.

Lemma 3.1. Let E be an integral regular projective curve over a field k. Let {Dn}n≥0

be an infinite sequence of divisors on E such that deg(Dn) is bounded from below, and let

Z be a divisor on E. Then there exists s ∈ Z>0 such that

h1(OE(Dn+Z))≤ s for all n ∈ N.

Proof. There exists an integer c such that deg(Dn)≥ c for all n. Let U be an effective

divisor on E of degree larger than 2pa(E)−2+ c. By Serre duality (7),

h1(OE(Dn+Z)) = h0(OE(K− (Dn+Z)),

where K is a cononical divisor on E. We have

deg(K− (Z+Dn))≤ deg(K−Z)− c.

If deg(K−Z)−c < 0, then certainly h0(OE(K− (Dn+Z)) = 0. If deg(K−Z)−c≥ 0, then

h1(OE(K− (Dn+Z)+U) = 0 by (8) and so

h0(OE(K− (Dn+Z)) ≤ h0(OE(K− (Dn+Z)+U)

= deg(K− (Dn+Z))+deg(U)+1−pa(E)

≤ deg(K−Z)− c+deg(U)+1−pa(E).

If L is an invertible sheaf on E, then L ∼=OE(D) for some divisor D on E, and we may

define deg(L) = deg(OX(D)) = deg(D).

We will apply the above formulas in the case that E is a prime exceptional divisor for a

resolution of singularities π :X → Spec(R) as in §2. We take k = R/mR. We have that E

is projective over k =R/mR, and E is a nonsingular (by assumption) integral curve. Let D

be a divisor on X. Then deg(OX(D)⊗OE) = (D ·E).

§4. Zariski decomposition

In this section, we present a relative form of the Zariski decomposition defined for

projective surfaces over an algebraically closed field in [35]. Lemma 4.1 in the case that

D is exceptional follows directly from [35] or [3, Th. 3.3].

We continue with our ongoing assumptions that R is a two-dimensional excellent normal

local ring with quotient field K, maximal ideal mR, and residue field k=R/mR and π :X →
Spec(R) is a resolution of singularities such that the exceptional prime divisors E1, . . . ,Er

are nonsingular.

The proof of the following lemma is a modification of the proof of [3, Th. 3.3].

Lemma 4.1. Let D be an effective R-divisor on X. Then there exist unique effective

R-divisors Δ and B on X such that the following (1) and (2) hold.
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(1) Δ =D+B is anti-nef and B has exceptional support.

(2) (Δ ·E) = 0 if E is a component of B.

Further,

(3) Δ is the unique minimal effective anti-nef R-divisor such that Δ−D is effective with

exceptional support.

(4) If D is a Q-divisor, then Δ and B are Q-divisors.

The decomposition Δ = D+B of the conclusions of Lemma 4.1 is called the Zariski

decomposition of D.

Proof. For x= (x1, . . . ,xr) ∈ Rr, consider the inequalities

0≤ xi for 1≤ i≤ r (9)

and (
(D+

r∑
i=1

xiEi) ·Ej

)
≤ 0 for 1≤ j ≤ r. (10)

Since the matrix ((Ei ·Ej)) is negative-definite and by Proposition 2.3, there exists an

anti-ample, effective divisor A=
∑r

i=1aiEi on X. Thus, ai > 0 for all i (by Lemma 2.4) and

after possibly replacing A with a positive multiple of A, x= a= (a1, . . . ,ar) satisfies (9) and

(10). Let

S = {x ∈ Rr | xi ≤ ai for all i and the 2r inequalities (9) and (10) are satisfied}. (11)

The set S is nonempty and compact. Thus, there is at least one point in S such that
∑r

i=1xi

is minimized on S. Let b= (b1, . . . , br) be such a point. Let B= b1E1+ · · ·+brEr and Δ=D+

B. Then Δ is an effective, anti-nef R-divisor and B is an effective R-divisor with exceptional

support. Let Ej be a component of B. Since b minimizes
∑

xi, B− εEj is effective and

Δ− εEj is not anti-nef for all ε > 0 sufficiently small. However, ((Δ− εEj) ·Ei) ≤ 0 for all

i �= j, so we must have that ((Δ− εEj) ·Ej)> 0 for all positive ε and thus (Δ ·Ej) = 0 since

Δ is anti-nef. Thus, the decomposition Δ =D+B satisfies (1) and (2).

For b= (b1, . . . , br) and b′ = (b′1, . . . , b
′
r) ∈ Rr, define

min(b,b′) = (min(b1, b
′
1), . . . ,min(br, b

′
r)).

If b and b′ satisfy (9) and (10), then min(b,b′) also satisfies (9) and (10), as we now show.

For a fixed j, we may assume that min(bj , b
′
j) = bj (after possibly interchanging b and b′).

Then, since (Ei ·Ej)≥ 0 if i �= j, we have that

((D+
∑
i

min(bi, b
′
i)Ei) ·Ej)≤ ((D+

∑
i

biEi) ·Ej)≤ 0.

Suppose that B =
∑

biEi and B′ =
∑

b′iEi are effective R-divisors such that Δ =D+B

and Δ′ =D = B′ satisfy both (1) and (2). We will show that B = B′ and so Δ = Δ′. Let

min(B,B′) =
∑

imin(bi, b
′
i)Ei. There exist xi ≥ 0 such that min(B,B′) =B−

∑
ixiEi. Since

D+min(B,B′) is anti-nef, for each element Ej of the support of B, we have

0≥ ((D+min(B,B′)) ·Ej) =

(
(Δ−

∑
i

xiEi) ·Ej

)
=−

∑
i

xi(Ei ·Ej).
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Thus,
∑

ixi(Ei ·Ej)≥ 0 and so⎛⎝(
∑
i

xiEi) · (
∑
j

xjEj)

⎞⎠=
∑
i

∑
j

xixj(Ei ·Ej)≥ 0.

Since the matrix ((Ei ·Ej)) is negative-definite, we have that xi = 0 for all i. Thus, B =

min(B,B′). Similarly, B′ = min(B,B′) and so B = B′. Thus, there is a unique effective

R-divisor B with exceptional support such that B and Δ =D+B satisfy (1) and (2).

We now show that Δ is the unique minimal effective and anti-nef R-divisor on X such

that Δ−D is effective with exceptional support. Let U be an effective anti-nef R-divisor on

X such that U −D is effective with exceptional support. Let U ′ =D+min(Δ−D,U −D).

As shown earlier in the proof, U ′ ≥D is effective and anti-nef. Write U ′−D =
∑

uiEi and

B =Δ−D =
∑

biEi. We have
∑

ui ≤
∑

bi ≤
∑

ai, so U ′−D ∈ S (defined in (11)). Since∑
bi is the minimum of

∑
xi on S, we have that ui = bi for all i and so U ′ = Δ. Thus,

Δ≤ U .

Now, suppose that D is an effective Q-divisor on X. Let Δ = D+B be the Zariski

decomposition of D. After possibly reindexing the E1, . . . ,Er, we may assume that the

support of B is E1∪· · ·∪Es for some s with 1≤ s≤ r. Expand D = F +
∑r

i=1 ciEi where F

is an effective Q-divisor whose support does not contain any prime exceptional divisor and

c1, . . . , cr ∈Q≥0. Then Δ= F +
∑r

i=1 diEi with ci ≤ di for all i and di = ci for s+1≤ i≤ r.

Furthermore, for 1 ≤ j ≤ s, we have 0 = (Δ ·Ej) =
∑s

i=1 di(Ei ·Ej) + gj where gj = (F ·
Ej)+

∑r
i=s+1 ci(Ei ·Ej) ∈ Q. Since the s× s matrix ((Ei ·Ej))1≤i,j≤s is negative-definite,

and thus is nonsingular, we have that d1, . . . ,ds ∈Q. Thus, Δ and B are Q-divisors.

Remark 4.2. From (3) of the conclusions of Lemma 4.1, we deduce that if D1 ≤D2 are

effective R-divisors such that D2−D1 has exceptional support and the respective anti-nef

parts of their Zariski decompositions are Δ1 and Δ2, then Δ1 ≤Δ2.

Lemma 4.3. Suppose that D is an effective R-divisor on X and Δ=D+B is the Zariski

decomposition of D. Then, for all n ∈ N,

Γ(X,OX(−�nD)) = Γ(X,OX(−�nΔ)).

Proof. Suppose that f ∈Γ(X,OX(−�nΔ)). Then (f)−�nΔ≥ 0. Writing nΔ= �nΔ−
G with G≥ 0, we have −nΔ=G−�nΔ. From

−nD =−nΔ+nB =−�nΔ+(G+nB)

and the fact that G+nB ≥ 0, we have that (f)−nD ≥ 0 so that f ∈ Γ(X,OX(−�nD)).
Let S be the set of prime divisors in the support of B. Suppose that

f ∈ Γ(X,OX(−�nD)).

Then (f)−nD ≥ 0. Write (f)−nD = A+C where A and C are effective R-divisors on X,

no components of A are in S and all components of C are in S. We have that (f)−nΔ=

A+(C−nB). If E ∈ S, then

(E · (A+(C−nB))) = (E · ((f)−nΔ)) = 0,

which implies (E · (C − nB)) = −(E ·A) ≤ 0. The intersection matrix of the curves in

S is negative-definite since it is so for the set of all exceptional curves, so C − nB ≥ 0
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(by [35, Lem. 7.1]). Thus, (f)− nΔ ≥ 0, which implies (f)− �nΔ ≥ 0 since (f) is an

integral divisor. Thus, f ∈ Γ(X,OX(−�nΔ)).

§5. Nef divisors

In this section, we extend to our relative situation X → Spec(R) some theorems proved

by Zariski in [35] for projective surfaces over an algebraically closed field. We stay as close

as possible to Zariski’s original proof, although some parts require modification. In [21], and

the references in that book, a theory of nef divisors on nonsingular projective varieties of

arbitrary dimension over an algebraically closed field of characteristic zero is derived. Much

of this theory can be extended to the relative situation, over Spec(A), where the local ring

A is normal and essentially of finite type over an algebraically closed field of characteristic

zero, or even of positive characteristic.

We continue with our ongoing assumptions that R is a two-dimensional excellent normal

local ring with quotient field K, maximal ideal mR, and residue field k, and that π :X →
Spec(R) is a resolution of singularities such that the exceptional prime divisors E1, . . . ,Er

of π are all nonsingular.

Proposition 5.1. Let Δ be an effective anti-nef divisor on X. For n ≥ 0, let Bn be

the fixed component of −nΔ. Suppose that E is a prime divisor which is in the support of

the fixed component Bn of −nΔ for infinitely many n. Then E is exceptional for π and

(Δ ·E) = 0.

Proof. By Lemma 2.2, E is exceptional. We will assume that (Δ ·E) < 0 and derive a

contradiction. Since Γ(X,OX(−Δ)) �= 0, there exists an effective divisor D on X such that

D ∼ −Δ. Write D = U +F1+ · · ·+Fs where U is an effective divisor with no exceptional

divisors in its support and F1 = E,F2, . . . ,Fs are prime exceptional divisors. Let Δi =

U +F1+ · · ·+Fi for 0≤ i≤ s.

We have short exact sequences

0→OX(nD−Δ0)→OX(nD)→OX(nD)⊗OΔ0 → 0.

There exists a very ample effective divisor H on X which contains no exceptional prime

divisors in its support and whose support is disjoint from Δ0 by [20, Th. III.5.2] since

Δ0 intersects π−1(mR) in only a finite number of closed points and so Δ0 is a closed

subscheme of the affine scheme X \V (H) and thus Δ0 is an affine scheme. We thus have

that H1(Δ0,OX(−nD)⊗OΔ0) = 0 for all n and so

h1(OX(nD))≤ h1(OX(nD−Δ0)) (12)

for all n ∈ N.

For i < s and n ∈ N, we have short exact sequences

0→OX(nD−Δi−Fi+1)→OX(nD−Δi)→OX(nD−Δi)⊗OFi+1 → 0.

Thus,

h1(OX(nD−Δi))≤ h1(OX(nD−Δi+1)+h1(Fi+1,OX(nD−Δi)⊗OFi+1).
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(D ·Fi+1) = (−Δ ·Fi+1) ≥ 0 implies that there exists σi > 0 such that h1(Fi+1,OX(nD−
Δi)⊗OFi+1)≤ σi for all n ∈ N by Lemma 3.1, so

h1(OX(nD−Δi))≤ h1(OX(nD−Δi+1))+σi (13)

for all i≥ 0 and n ∈ N.

Now, consider the exact sequences

0→OX(nD−Δ0−F1)→OX(nD−Δ0)→OX(nD−Δ0)⊗OF1 → 0

for n ∈ N. Since (F1 ·D) = (F1 ·−Δ)> 0, we have that H1(F1,OX(nD−Δi)⊗OF1) = 0 for

n	 0 by (8). From the natural inclusion OX(nD−Δ0)→OX(nD), we deduce that F1 is

in the support of the fixed locus of nD−Δ0 if F1 is in the support of the fixed locus of

−nΔ. Thus, for n such that F1 is a component of the base locus Bn of −nΔ, the image of

H0(X,OX(nD−Δ0)) in H0(F1,OX(nD−Δi)⊗OF1) is zero. Thus,

h1(OX(nD−Δ0)) = h1(OX(nD−Δ0−F1))−χ(OF1(nD−Δ0)⊗OF1)

so that by the Riemann Roch theorem (6),

h1(OX(nD−Δ0)) = h1(OX(nD−Δ0−F1))+n(Δ ·F1)+(Δ0 ·F1)+pa(F1)−1. (14)

As explained before the statement of Lemma 2.2, there exists a positive integer h such

that for n	 0, F1 is a component of Bn if h � n.

By (12) and (13), there exists a constant c > 0 such that

h1(OX(nD))≤ h1(OX((n−1)D))+ c

for all n ∈ Z>0 and for all n	 0 such that h � n we have by (12)–(14) that

h1(OX(nD))≤ h1(OX((n−1)D)+n(Δ ·F1)+ c.

Thus, we have h1(OX(nD))< 0 for n	 0 since we have assumed that (Δ ·F1)< 0. However,

this is impossible, giving a contradiction and so (Δ ·F1) = 0.

Proposition 5.2. Let Γ be an effective divisor on X such that −Γ has no fixed

component. Then:

(1) OX(−nΓ) is generated by global sections for all n	 0.

(2) There exists s ∈ Z>0 such that h1(X,OX(−nΓ))< s for all n ∈ N.

Proof. The set of base points

Ω = {p ∈X | OX(−Γ)p is not generated by global sections}

of Γ(X,OX(−Γ)) is a finite set of closed points, which are necessarily contained in the

exceptional fiber of π. Let C ≥ 0 be an effective divisor on X such that −C is very ample

for π. There exists an integerm> 0 such that there exists an effective divisorH ∼−mC with

no exceptional components in its support and such that Ω is disjoint from its support (by

[20, Th. III.5.2]). After replacing C with this multiple mC, we may assume that H ∼−C.

Let f ∈K, the quotient field of R, be such that (f)−C =H. We may regard the effective

divisor H as a closed subscheme of X.

We have a short exact sequence

0→OX(C)
f→OX →OH → 0,
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and tensoring with OX(−iΓ− jC), we have short exact sequences

0→OX(−iΓ− (j−1)C)
f→OX(−iΓ− jC)→OX(−iΓ− jC)⊗OH → 0. (15)

For i, j ≥ 0, let Ai,j be the natural image of Γ(X,OX(−iΓ− jC)) in

Γ(H,OX(−iΓ− jC)⊗OH),

upon taking global sections of (15). Since the base points of Γ(X,OX(−iΓ−jC)) are a subset

of Ω and so are disjoint from H, we have that, for all i, j ≥ 0, Ai,jOH,q = OX(−iΓ− jC)q
for all q ∈H.

There exists n ∈ Z>0 such that there exists an effective divisor G on X such that G ∼
−nC, the support of G contains no exceptional components of π and sup(H)∩ sup(G)∩
sup(π−1(mR)) = ∅ (by [20, Th. III.5.2]). We may regard G as a closed subscheme of X. Thus,

H is a closed subscheme of the affine scheme X \G and so H is affine, say H =Spec(S). The

restriction of π to H is determined by a ring homomorphism R→ S. Now, S =Γ(H,OH) is

a finitely generated R-module since π is a projective morphism (by [20, Cor. II.5.20]). As

explained in [20, Cor. II.5.5], since S is Noetherian, the functor M → M̃ gives an equivalence

of categories between the category of finitely generated S -modules and the category of

coherent OSpec(S)-modules, with inverse F �→ Γ(Spec(S),F).

In particular, letting Bi,j =Γ(H,OX(−iΓ−jC)⊗OH) for i, j≥ 0, we have thatOX(−iΓ−
jC)⊗OH = B̃i,j . We also have that Bi,j is the tensor product over S of i copies of B1,0

and j copies of B0,1 (see [20, Prop. II.5.2]).

We have that the ring A0,0 is a quotient of Γ(X,OX) = R since π is proper birational

and R is normal. Let A0,0[t1, t2] be a polynomial ring over A0,0, which is bigraded by

specifying that deg(a) = (0,0) if a ∈ A0,0, deg(t1) = (1,0), and deg(t2) = (0,1). Let M be

the bigraded A0,0-subalgebra M :=
∑

i,j≥0Ai,jt
i
1t

j
2 of A0,0[t1, t2]. Similarly, let B be the

bigraded S -subalgebra B :=
⊕

i,j≥0Bi,jt
i
1t

j
2 of S[t1, t2].

We have a natural inclusion of graded rings M →B.

Since H is disjoint from Ω, we have that

Ai
1,0A

j
0,1Sq =AijSq =OX(−iΓ− jA)⊗OH,q = (Bi,j)q

for all q ∈H and i, j ≥ 0. Thus,

Ai
1,0A

j
0,1S =Bi,j for all i, j ≥ 0. (16)

Let A be the bigraded A0,0-subalgebra A :=A0,0[A1,0t1,A0,1t2] ofM. Now, we have a natural

surjection Ai
1,0A

j
0,1⊗R S → Bi,j for all i, j ≥ 0 by (16). Thus, the natural homomorphism

A⊗R S → B is surjective. Since S is a finitely generated R-module, we have that B is a

finitely generated bigraded A-module. Since A⊂M ⊂B and A is Noetherian, we have that

M is also a finitely generated A-module.

By [35, Lem. 4.3], since A is generated in bidegrees (1,0) and (0,1), and M is a finitely

generated bigraded R-module, there exists N ∈ Z>0 such that

Ai,j =Ai,j−1A0,1 whenever j ≥N and i≥ 0 is arbitrary (17)

and

Ai,j =Ai−1,jA1,0 whenever i≥N and j ≥ 0 is arbitrary. (18)
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Thus, taking global sections in the short exact sequences (15), and applying (18), we have

that if i≥N and j ≥ 0, then

Γ(X,OX(−iΓ− jC))

= Γ(X,OX(−iΓ− (j−1)C))f +Γ(X,OX(−(i−1)Γ− jC))Γ(X,OX(−Γ)). (19)

Since −C is ample, for fixed i, OX(−iΓ− jC) is generated by global sections for all j 	 0

(by [20, Th. II.5.17]). Let i be a fixed integer ≥N and let j > 0 be such that OX(−iΓ−jC)

is generated by global sections.

The only points q ∈X where it is possible for OX(−iΓ− (j−1)C)q to not be generated

by global sections are the points of Ω. Suppose that q ∈Ω. Thus, q is not in the support of

H = (f)−C, and so f =0 is a local equation of C at q and fOX,q =OX(−C)q. Furthermore,

since q ∈ Ω, Γ(X,OX(−Γ))OX,q ⊂ mqOX(−Γ) where mq is the maximal ideal of OX,q,

equation (19), and Nakayama’s lemma show that

OX(−iΓ− jC)q = Γ(X,OX(−iΓ− jC))OX,q

= Γ(X,OX(−iΓ− (j−1)C))fOX,q

+Γ(X,OX(−(i−1)Γ− jC)OX(−Γ)mq

= Γ(X,OX(−iΓ− (j−1)C))OX(−C)q.

Thus, Γ(X,OX(−iΓ− (j−1)C))OX,q =OX(−iΓ− (j−1)C)q, and since this is true for all

q ∈ Ω, OX(−iΓ− (j−1)C) is generated by global sections.

By descending induction on j, we obtain that OX(−iΓ) is generated by global sections

for all i≥N .

We now prove the second statement of the proposition. Let g0, . . . ,gr ∈ Γ(X,OX(−NΓ))

generate Γ(X,OX(−NΓ)) as an R-module. Then g0, . . . ,gr induce a proper R-morphism

φ :X → Pr
R such that φ∗OP

r
R
(1) ∼=OX(−NΓ) (by [20, Th. II.7.1 and Cor. II.4.8]). In fact,

φ is projective, by [17, Prop. II.5.5(v)] or [34, Lem. 29.43.15 and Tag 01W7] and [34, Lem.

29.43.16(1) and Tag 01W7]. Let Z be the image of φ in Pr
R (which is closed since φ is proper),

and let OZ(1) = OP
r
R
(1)⊗OZ . Let φ :X → Z be the induced projective R-morphism. By

[20, Cor. III.11.2], for s ∈ Z, the support of R1φ∗OX(−sΓ) is contained in the finite set of

closed points of Z which are the images of curves contracted by φ (the prime exceptional

divisors E of π such that (E · −Γ) = 0). By [20, Th. II.5.19], Γ(Z,R1φ ∗OX(−sΓ)) is a

finitely generated R-module. Since its support is the maximal ideal of R, the length of

Γ(Z,R1φ∗OX(−sΓ)) as an R-module is finite.

From the Leray spectral sequence, we obtain exact sequences (see [32, Th. 11.2]) for

m ∈ Z,

0→H1(Z,φ∗OX(−mΓ))→H1(X,OX(−mΓ))→H0(Z,R1φ∗OX(−mΓ)).

For m ∈ N, write m = nN + s with 0 ≤ s < N . Then OX(−mΓ) ∼= φ
∗OZ(n)⊗OX(−sΓ).

Then, by the projection formula (see [20, Exer. III.8.3]), we obtain exact sequences for

n,s ∈ Z

0→H1(Z,OZ(n)⊗φ∗OX(−sΓ))→H1(X,φ
∗OZ(n)⊗OX(−sΓ))

→H0(Z,(R1φ∗OX(−sΓ))⊗OZ(n)).
(20)

Let

s1 =max{λRΓ(Z,R
1φ∗OX(−sΓ)) | 0≤ s < N}.
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We have that H1(Z,OZ(n)⊗φ∗OX(−sΓ)) = 0 for all 0 ≤ s < N and n 	 0 (see [20, Th.

III.5.2]). Let

s2 =max{λRH
1(Z,OZ(n)⊗φ∗OX(−sΓ)) | 0≤ s < N and n ∈ N}

s2 is finite by [20, Prop. III.8.5, Th. III.8.8, and Cor. III.11.2]. By (20), we have that

λRH
1(X,OX(−mΓ))≤ s1+s2 for all m ∈ N.

Proposition 5.3. Let Δ be an effective anti-nef divisor on X. For n≥ 0, let Bn be the

fixed component of −nΔ. Then there exists an effective exceptional divisor G on X such

that Bn ≤G for all n ∈ Z>0.

Proof. To prove the proposition, it suffices to prove it for it for some positive multiple

d of Δ, since for n ∈ N, writing n=md+s with 0≤ s < d, we have Bn ≤Bmd+Bs.

Write −Δ=
∑t

i=1aiFi. Let

Mi = {n ∈ N | Fi is not a component of Bn}.

Mi is a numerical semigroup, so if Mi is nonzero, there exists hi ∈ Z>0 such that for n	 0,

n ∈Mi if and only if hi divides n. Let

B(D) = {Fi | Fi is a component of Bn for infinitely many n}.

By Proposition 5.1, Fi ∈B(D) implies (Fi ·Δ)= 0 and Fi is exceptional for π. After possibly

reindexing the Fi, we may assume that the support of B(D) is ∪s
i=1Fi, for some s≤ t. We

have that Mi = 0 or hi > 1 for 1 ≤ i ≤ s. Thus, the support of Bn is ∪s
i=1Fi if n	 0 and

hi � n for all i such that 1≤ i≤ s and Mi is nonzero.

If we replace Δ with n0Δ for some n0 	 0, we have that the support of B1 is B(D). By

Proposition 5.2, there exists s0 ∈ N such that the effective divisor Γ = Δ+B1 satisfies the

condition that h1(OX(−nΓ))≤ s0 for all n≥ 1 since −Γ has no fixed component.

For a given n ∈ Z>0, consider the following conditions on a divisor Zn.

(a) nΓ≥ Zn ≥ nΔ.

(b) −Zn has no fixed component.

(c) h1(OX(−Zn))≤ s0.

Let Cn be a minimal element in the set of divisors satisfying (a), (b), and (c). Let

B′
n =Cn−nΔ. Then nB1 ≥B′

n ≥Bn (since −nΔ=−nΓ+nB1 =−Cn+B′
n and Cn ≤ nΓ).

Thus, it suffices to show that the B′
n are bounded from above.

For 1≤ i≤ s, we have short exact sequences

0→OX(−Cn)→OX(−Cn+Fi)→OX(−Cn+Fi)⊗OFi → 0,

giving exact sequences

0→H0(X,OX(−Cn))→H0(X,OX(−Cn+Fi))→H0(Fi,OX(−Cn+Fi)⊗OFi)

→H1(X,OX(−Cn))→H1(X,OX(−Cn+Fi))→H1(Fi,OX(−Cn+Fi)⊗OFi)→ 0.

We will show that

−(Cn ·Fi)≤max{s0− (F 2
i )−1+pa(Fi),2pa(Fi)−2− (F 2

i ),0} (21)

for all n and 1≤ i≤ s.
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First assume that Fi is not a component of B′
n. Then (B′

n ·Fi)≥ 0. Since (Fi ·Δ) = 0 by

Proposition 5.1, we have that (Cn ·Fi)≥ 0 and so (21) holds.

Now, assume that Fi is a component of B′
n. We have that either

H0(X,OX(−Cn+Fi)) =H0(X,OX(−Cn)) (22)

or

h1(OX(−Cn+Fi))> s0. (23)

If (22) holds, then h0(OX(−Cn+Fi)⊗OFi)≤ s0. Thus,

s0 ≥ h0(OX(−Cn+Fi)⊗OFi)≥ ((−Cn+Fi) ·Fi)+1−pa(Fi)

by the Riemann–Roch formula (6), and so (21) holds.

Suppose that (23) holds. Then h1(Fi,OX(−Cn+Fi)⊗OFi)> 0, and so

((−Cn+Fi) ·Fi)< 2pa(Fi)−2

by (8). Thus, (21) holds.

For i with 1 ≤ i ≤ s, let σi = max{s0 − (F 2
i )− 1+ pa(Fi),2pa(Fi)− 2− (F 2

i ),0}. Since
(Fi ·Δ) = 0 for 1≤ i≤ s by Proposition 5.1, and by (21), we have that

(B′
n ·Fi) = ((Cn−nΔ) ·Fi) = (Cn ·Fi)≥−σi.

In particular, σi ≥−(B′
n ·Fi).

Since the intersection matrix ((Fi ·Fj)) for 1 ≤ i, j ≤ s is negative-definite, and thus

is nonsingular, there exists a Q-divisor E = c1F1 + · · ·+ csFs such that (E ·Fi) = −σi for

1≤ i≤ s. Then

((E −B′
n) ·Fi) =−σi− (B′

n ·Fi)≤ 0

for all i implies E ≥B′
n by [35, Lem. 7.1], since the intersection matrix is negative-definite.

Thus, the B′
n are bounded from above.

Corollary 5.4. Let Δ be an effective anti-nef Q-divisor on X. Let Bn be the fixed

component of −�nΔ; that is, the largest effective divisor on X such that

Γ(X,OX(−�nΔ)) = Γ(X,OX(−�nΔ−Bn)).

Then:

(1) The integral divisor Bn has exceptional support for all n ∈ N.

(2) There exists an effective integral divisor G with exceptional support such that Bn ≤G

for all n ∈ Z>0.

Proof. Statement (1) follows from Lemma 2.2. If Δ is an integral divisor, then Statement

(2) follows from Proposition 5.3.

Now, assume that Δ is a Q-divisor. Write Δ=
∑ bi

d Fi with d∈Z>0 and bi ∈N, where the

Fi are distinct prime divisors on X. Since dΔ is an integral divisor, there exists an effective

integral divisor C with exceptional support such that Bnd ≤ C for all n ∈ N. Let n ∈ N,

and write n=md− c with m ∈ N and 0≤ c < d. Then OX(−�nΔ) =OX(−mdΔ+ �cΔ�).
Thus, Bn ≤Bmd+ �cΔ ≤ C+dΔ.
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Lemma 5.5. Let {Dn} with n≥ 0 be an infinite sequence of divisors on X, and let Z be

an effective divisor on X. If the sequence h1(OX(Dn)) is bounded from above and if for each

prime exceptional component E of Z, (Dn ·E) is bounded from below, then h1(OX(Dn+Z))

is bounded from above.

Proof. By induction on the number of components of Z, we may assume that

h1(OX(Dn +Z −F )) is bounded where F is a prime component of Z. We have a short

exact sequence

0→OX(−F )→OX →OF → 0,

giving exact sequences

H1(X,OX(Dn+Z−F ))→H1(X,OX(Dn+Z))→H1(F,OX(Dn+Z)⊗OF ).

If F is exceptional, there exists s ∈ Z>0 such that h1(F,OX(Dn+Z)⊗OF )≤ s for all n≥ 0

by Lemma 3.1, so h1(OX(Dn+Z)) is bounded from above. If F is not exceptional, then

F is affine and so H1(F,OX(Dm+Z))⊗OF ) = 0 for all m, so again h1(OX(Dn+Z)) is

bounded from above.

Proposition 5.6. Let Δ be an effective anti-nef divisor on X. Then h1(OX(−nΔ)) is

bounded for n ∈ N.

Proof. Let Cn be the effective divisors of the proof of Proposition 5.3, so that B′
n =

Cn − nΔ are effective divisors and there exists an effective divisor G with exceptional

support such that B′
n ≤G for all n∈N. Since −Δ is nef, we have that (−Cn ·E) is bounded

from below for each prime exceptional component E of G. Furthermore, we have (by the

proof of Proposition 5.3) that h1(OX(−Cn)) ≤ s0 for all n ∈ N. For each effective divisor

Z ≤ G, Proposition 5.5 gives us an upper bound for h1(OX(−Cn +Z)) over n ∈ N. The

maximum of these bounds is an upper bound for h1(OX(−nΔ)) over n ∈ N.

Corollary 5.7. Let Δ be an effective anti-nef divisor on X, and let F be a coherent

sheaf on X. Then h1(OX(−nΔ)⊗F) is bounded for n ∈ N.

Proof. There exists an effective anti-ample divisor A on X with exceptional support

by Proposition 2.3. There exists n0 ∈ Z>0 such that F ⊗O(−n0A) is generated by global

sections, so there is a surjection Os
X → F ⊗OX(−n0A) for some s, giving a short exact

sequence of coherent sheaves

0→K→OX(n0A)
s →F → 0

and surjections

H1(X,OX(−nΔ+n0A))
s →H1(X,OX(−nΔ)⊗F).

Thus, h1(OX(−nΔ)⊗F) is bounded above for n ∈ N since −Δ is nef, and by Lemma 5.5

and Proposition 5.6.

§6. Asymptotic properties of divisors on a resolution of singularities

We continue with the notation introduced in the introduction and in §2. We assume that

R is a two-dimensional excellent normal local ring with quotient field K, maximal ideal mR,

and residue field k, and that π :X → Spec(R) is a resolution of singularities such that the

exceptional prime divisors E1, . . . ,Er of π are all nonsingular.
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As explained in the introduction, if F is prime divisor on X and α ∈ R≥0, then there

is a valuation ideal I(νF )α = {f ∈ R | νF (f) ≥ α} of R, where νF is the valuation of the

discrete (rank 1) valuation ring OX,F .

Proposition 6.1. Suppose that Δ1 ⊂Δ2 are effective anti-nef Q-divisors on X such that

Δ1 �= Δ2. Then there exists n0 ∈ Z>0 such that Γ(X,OX(−�nΔ2)) �= Γ(X,OX(−�nΔ1))
for all n≥ n0.

Proof. Write Δ1 =
∑

aiFi and Δ2 =
∑

biFi where the Fi are distinct prime divisors on

X. We have bi ≥ ai for all i and bj > aj for some j. If Fj is not exceptional, then certainly

Γ(X,OX(−�nΔ2)) �= Γ(X,OX(−�nΔ1)) for n sufficiently large by Lemma 2.2.

Now, suppose that Fj is exceptional. By (2) of Lemma 5.4, there exists an effective

exceptional divisor H =
∑

ciFi such that the fixed component Bn of Γ(X,OX(−�nΔ1))
satisfies Bn ≤H for all n∈N. Observe that g ∈Γ(X,OX(−�nΔ2)) implies νj(g)≥�nbj. By
definition of Bn, for n∈Z>0, there exists fn ∈Γ(X,OX(−�nΔ1)) such that (fn)−�nΔ1=
An+Bn where Fj is not a component of the effective divisor An. Thus, νj(fn) = �naj+ δ

with δ ≤ cj . We have that n>
cj+1
bj−aj

implies �naj+δ < �nbj. Thus, νj(fn)< �nbj so that

fn �∈ Γ(X,OX(−�nΔ2)).

Corollary 6.2. Suppose that Δ1 ⊂ Δ2 are effective anti-nef Q-divisors on X. Then

the following are equivalent.

(1) Γ(X,OX(−�nΔ1)) = Γ(X,OX(−�nΔ2)) for infinitely many n ∈ Z>0.

(2) Γ(X,OX(−�nΔ1)) = Γ(X,OX(−�nΔ2)) for all n	 0.

(3) Δ1 =Δ2.

Proof. Proposition 6.1 proves the essential implication (1) implies (3). The directions

(3) implies (2) and (2) implies (1) are immediate.

Proposition 6.3. Let Δ=
∑s

i=1aiFi be an effective anti-nef Q-divisor on X, and let

E be a prime exceptional divisor on X. Then E = Fj for some j with aj > 0. The following

are equivalent:

(1) There exists n ∈ Z>0 such that

I(nΔ) = ∩s
i=1I(νFi)nai �= ∩i �=jI(νFi)nai .

(2) There exists n0 ∈ Z>0 such that

I(nΔ) = ∩s
i=1I(νFi)nai �= ∩i �=jI(νFi)nai

for all n≥ n0.

(3) (Δ ·Fj)< 0.

Proof. It follows from Lemma 2.4 that E = Fj for some j with aj > 0.

Let D1 =
∑

i �=j aiFi, so that D1 ≤ Δ. Let Δ1 = D1+B1 be the Zariski decomposition

of D1. We have that Δ1 ≤ Δ by Remark 4.2, and so 0 ≤ Δ−Δ1 = ajFj −B1 so that

0≤B1 ≤ ajFj . Thus, Δ1 =Δ−λFj with 0≤ λ≤ aj .

If Δ1 �=Δ, then λ > 0, and so

(Fj ·Δ) = (Fj ·Δ1)+λ(F 2
j )< 0. (24)
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If Δ1 =Δ, then B1 = ajFj . Since aj > 0, we have that

0 = (Δ1 ·Fj) = (Δ ·Fj) (25)

by (2) of Lemma 4.1.

Suppose that (1) holds. Then Δ1 �=Δ so that (Fj ·Δ)< 0 by (24), so that (1) implies (3)

holds. Certainly, (2) implies (1) is true, so we are reduced to proving (3) implies (2). Now,

(3) implies Δ1 �=Δ by (24) and (25). If (2) does not hold, then there exist infinitely many n∈
Z>0 such that Γ(X,OX(−�nΔ)) = Γ(X,OX(−�nΔ1)) so that Δ1 =Δ2 by Corollary 6.2,

giving a contradiction.

Corollary 6.4. Let Δ=
∑s

i=1aiFi be an effective anti-nef Q-divisor on X, and let E

be a prime exceptional divisor on X so that E = Fj for some j with aj > 0. The following

are equivalent:

(1) I(nΔ) = ∩r
i=1I(νFi)nai = ∩i �=jI(νFi)nai for all n ∈ Z>0.

(2) (Δ ·Fj) = 0.

Corollary 6.5. Suppose that Δ is an effective anti-nef Q-divisor on X. Then the

following are equivalent.

(1) There exists n such that mR ∈Ass(R/I(nΔ)).

(2) There exists n0 such that mR ∈ Ass(R/I(nΔ)) for all n≥ n0.

(3) There exists a prime exceptional divisor E for π such that (Δ ·E)< 0.

Proof. Write Δ=
∑s

i=1aiFi, so that I(nΔ)=∩s
i=1I(νFi)nai . For a fixed n, we have that

mR ∈Ass(R/∩s
i=1 I(νFi)nai) if and only if

∩s
i=1I(νFi)nai �= ∩FiI(νFi)nai ,

where the second intersection is over the Fi which are not exceptional. This condition occurs

if and only if there exists j such that Fj is exceptional and

∩s
i=1I(νFi)nai �= ∩i �=jI(νFi)nai .

Thus, by Proposition 6.3, the three conditions of the corollary are equivalent.

Let Δ=
∑s

i=1a : iFi be an effective and anti-nef Q-divisor on X. By Lemma 2.4, all prime

exceptional divisors E1, . . . ,Er are in the support of Δ. After permuting the Fi, we may

assume that Fi = Ei and ai > 0 for 1≤ i≤ r. We have that

R[Δ] :=
⊕
n≥0

Γ(X,OX(−�nΔ)) =
⊕
n≥0

∩s
i=1I(νFi)nai .

Let Pj =
⊕

n≥0Γ(X,OX(−�nΔ−Ej)) for 1≤ j ≤ r. We have that

Γ(X,OX(−Ej)) = {f ∈R | νEj (f)> 0}=mR (26)

for 1≤ j ≤ r. Suppose that f ∈ Γ(X,OX(−�mΔ)) and g ∈ Γ(X,OX(−�nΔ)) are such that

fg ∈ Γ(X,OX(−�(m+n)Δ−Ej). Then

νEj (f)+νEj (g) = νEj (fg)≥ (m+n)aj +1
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implies νEj (f) ≥ maj +1 or νEj (g) ≥ naj +1 so that f ∈ Γ(X,OX(−�mΔ−Ej) or g ∈
Γ(X,OX(−�nΔ−Ej). Thus, Pj is a prime ideal in R[Δ].

If f ∈mR, then νEj (f)≥ 1 for 1≤ j ≤ r so that

mRR[Δ]⊂ Pj . (27)

We have exact sequences

0→ Pj →R[Δ]→
⊕
n≥0

Γ(Ej ,OX(−�nΔ)⊗OEj ).

Remark 6.6. Suppose that Δ is an effective anti-nef Q-divisor on X. Then

dimR[Δ]/Pj = 0 if and only if R[Δ]/Pj =R/mR.

Proof. Suppose that for some m> 0 there exists f ∈ Γ(X,OX(−�mΔ)) such that its

class f in Γ(X,OX(−�mΔ))/Γ(X,OX(−�mΔ−Ej)) is nonzero. Then

ftm ∈
∞∑

n=0

Γ(X,OX(−�nΔ))/Γ(X,OX(−�nΔ−Ej))t
n =R[Δ]/Pj

is nonzero. The element ftm is not a unit since it is homogeneous of positive degree and

it is not nilpotent since R[Δ]/Pj is an integral domain. Thus, dimR[Δ]/Pj > 0. Thus, by

(26), dimR[Δ]/Pj = 0 implies R[Δ]/Pj =R/mR.

Proposition 6.7. Suppose that Δ is an effective anti-nef Q-divisor on X. Then√
mRR[Δ] = ∩r

i=1Pi.

Proof. We have that
√
mRR[Δ]⊂ ∩r

i=1Pi by (27).

Let h ∈ ∩r
i=1Pi. We will show that hn ∈mRR[Δ] for some n ∈ Z>0, which will establish

the proposition. We may assume that h is homogeneous, so that

h ∈ ∩r
i=1Γ(X,OX(−�aΔ−Ei)) = Γ(X,OX(−�aΔ−E1−·· ·−Er)

for some a ∈ N. We must show that hn ∈mRΓ(X,OX(−�anΔ)) for some n ∈ Z>0.

First, suppose that a = 0. We have that Γ(X,OX(−E1−·· ·−Er) =mR, so we already

have that h ∈mRΓ(X,OX) =mR.

Now, suppose that a > 0. After replacing Δ with a positive multiple of Δ and h with

a power of h, we may assume that Δ is an integral divisor and that h ∈ Γ(X,OX(−Δ−∑r
i=1Ei)). By Lemma 2.5, there exists an mR-primary ideal I in R such that X is the

blowup of I, so that X =Proj(
⊕

n≥0 I
n) and IOX =OX(−C) is very ample, where C is an

effective divisor whose support is the union of all exceptional prime divisors E1, . . . ,Er. The

graded ring
⊕

n≥0Γ(X,InOX) is a finite
⊕

n≥0 I
n-module and there exists n0 ∈ Z>0 such

that the R-ideal Γ(X,InOX) = In for n ≥ n0 by Lemma 2.6. Since R and X are normal,

Γ(X,InOX) = In for all n≥ 0.

After possibly replacing I with a positive power of I, we may assume that Γ(X,InOX) =

In for all n ∈N and that there exists an effective divisor H ∼−C on X with no exceptional
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prime divisors in its support. Let f ∈ Γ(X,OX(−C)) = I be such that (f)−C = H. We

have a short exact sequence

0→OX(C)
f→OX →OH → 0.

There exists α ∈Q>0 such that F :=
∑r

i=1Ei−αC ≥ 0. There exists e∈Z>0 such that eαC

is an integral divisor and so eF is an integral divisor. Thus, for n ∈ Z>0, we have that

hn2e ∈ Γ(X,OX(−n2eΔ−n2e(
∑r

i=1Ei)) = Γ(X,OX(−n2eΔ−n2eαC−n2eF )

⊂ Γ(X,OX(−n2eΔ−n2eαC)) = Γ(X,OX(−n2e(Δ+ α
2C)−n2eα

2C)).

Now, the effective integral divisor 2e(Δ+ α
2C) is anti-ample by Proposition 2.3, since Δ is

anti-nef. Thus, there exists n0 ∈ Z>0 such that OX(−n2e(Δ+ α
2C)) is generated by global

sections for all n≥ n0. Let Γ = n02e(Δ+ α
2C). By the argument of the proof of Proposition

5.2, applying (17), there exists N > 0 such that

Γ(X,OX(−iΓ− jC))

= Γ(X,OX(−iΓ− (j−1)C)Γ(X,OX(−C))+fΓ(X,OX(−iΓ− (j−1)C)

whenever j ≥N and i≥ 0. Since f ∈ Γ(X,OX(−C)), we have that

Γ(X,OX(−iΓ− jC)) = Γ(X,OX(−iΓ− (j−1)C))Γ(X,OX(−C))

= IΓ(X,OX(−iΓ− (j−1)C))⊂ IΓ(X,OX(−in02eΔ)).

Thus,

hnn02e ∈ Γ(X,OX(−nΓ− nn02eα

2
C))⊂ IΓ(X,OX(−nn02eΔ))⊂mRΓ(X,OX(−nn02eΔ))

whenever n is so large that n≥ N
n0eα

.

Corollary 6.8. Suppose that Δ is an effective anti-nef Q-divisor on X. Then

dimR[Δ]/mRR[Δ] = 0

if and only if the image of Γ(X,OX(−�nΔ)) in Γ(Ej ,OX(−�nΔ)⊗OEj ) is zero for 1≤
j ≤ r and for all n > 0.

Proof. By Proposition 6.7, we have that dimR[Δ]/mRR[Δ] = 0 if and only if

dimR[Δ]/Pj = 0 for all j, and this second condition holds if and only if R[Δ]/Pj = R/mR

for all j by Remark 6.6.

Proposition 6.9. Suppose that Δ is an effective anti-nef Q-divisor on X and Ej is a

prime exceptional divisor for π :X → Spec(R). Then:

(1) dimR[Δ]/Pj = 2 if (Δ ·Ej)< 0.

(2) dimR[Δ]/Pj ≤ 1 if (Δ ·Ej) = 0.

Proof. Suppose that (Δ ·Ej)< 0. We have short exact sequences

0→OX(−�nΔ−Ej)→OX(−�nΔ)→OX(−�nΔ)⊗OEj → 0.

Taking global sections, we have short exact sequences

0→ Γ(X,OX(−�nΔ−Ej))→ Γ(X,OX(−�nΔ))
→ Γ(Ej ,OX(−�nΔ)⊗OEj )→H1(X,OX(−�nΔ−Ej)).
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There exists d ∈ Z>0 such that dΔ is an integral divisor. By Corollary 5.7, applied to dΔ

and the coherent sheaves OX(−�sΔ−Ej) for 0≤ s < d, we have that

h1(X,OX(−�nΔ−Ej))

is bounded for positive n. Since (−Δ ·Ej)> 0, we have (by the Riemann–Roch theorem (6))

that there exists c′ > 0 such that

h0(OX(−�nΔ)⊗OEj )> c′n

for n 	 0. Thus, there exists c > 0 such that the image An := Im(Γ(X,OX(−�nΔ)) in

Bn := Γ(Ej ,OX(−�nΔ)⊗OEj ) satisfies

λR(Γ(X,OX(−�nΔ))/Γ(X,OX(−�nΔ−Ej)) = λR(An) = dimkAn ≥ cn (28)

for n	 0.

Let A = ⊕n≥0An. We have that B0 is a finite field extension of k = R/mR = A0. Now,

OX(−dΔ)⊗OEj is ample on the projective curve Ej , so there exists e ∈ Z>0 which is

divisible by d such that OX(−eΔ)⊗OEj is very ample and B = ⊕m≥0Bme is a finitely

generated B0-algebra which is generated by its terms of the lowest positive degree me

(see [20, Th. II.5.19 and Exer. II.5.14]). Thus, B is the coordinate ring of a projective

embedding of the curve Ej in a projective space over B0, determined by a B0-basis of

Γ(Ej ,OX(−eΔ)⊗OEj ). Thus, B has dimension 2. Let A=
⊕

m≥0Ame.

By (28), for n	 0, there exists F ∈ Ane such that 0 �= F . The ring B(F ) of elements of

degree zero in the localization BF is such that Spec(B(F )) is the affine variety Ej \V (F ),

with maximal ideals in B(F ) corresponding to height 1 homogeneous prime ideals in Proj(B)

which do not contain F (by [20, Prop. II.2.5]). Thus, there exists a homogeneous height 1

prime ideal Q=⊕n>0Qne in B which does not contain F.

Let P = A ∩Q, where P = ⊕n>0Pne with Pne = Qne ∩ Ane. dimB/Q = 1 implies

that there exists d ∈ Z>0 such that dimk(Bne/Qne) < d for all n (by [5, Th. 4.1.3]).

Thus, by (28), we have that P �= 0. P is not the graded maximal ideal ⊕n≥0Ane of A

since F �∈ P .

We have constructed a chain of distinct homogeneous prime ideals 0⊂ P ⊂
⊕

n>0Ane in

A and thus A has dimension ≥ 2. The extension A→A is integral, so dimA≥ 2 by the going

up theorem (see [2, Th. 5.11]). We have that mRΓ(X,OX(−�nΔ)) ⊂ Γ(X,OX(−�nΔ−
Ej)) for all n ≥ 0 by (27). We thus have a surjection R[Δ]/mRR[Δ] → A and so

dimA ≤ dimR[Δ]/mRR[Δ]. However, dimR[Δ]/mRR[Δ] ≤ 2 by [14, Lem. 3.6], so that

dimA= 2.

Now, suppose that (Δ ·Ej) = 0. Let Bn = Γ(Ej ,OX(−�nΔ)⊗OEj ), and let An be the

natural image of Γ(X,OX(−�nΔ)) in Bn. We have that A0
∼= R/mR = k and B0 is a

finite field extension of k. Let A =
∑

n≥0Ant
n where t is an indeterminate. We have that

A∼=R[Δ]/Pj .

By the Riemann–Roch theorem (6) and Lemma 3.1, there exists d > 0 such that

dimk(Bn)< d for all n ∈ N.

For a ∈ Z>0, define aA =
∑

n≥0 aAnt
n to be the graded subring of A defined by aA =

k[A1t,A2t
2, . . . ,Aat

a]. The ring aA is a finitely generated graded k -algebra. For fixed a,

there exists e ∈ Z>0 such that aA
(e) =

∑
n≥0 aAent

en is generated in degree e (as follows

from [4, Props. III.3.2 and III.3.3 on pages 158 and 159]). Since aA is a finitely generated

https://doi.org/10.1017/nmj.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.35


264 S. D. CUTKOSKY

aA
(e)-module, we have that dimaA= dimaA

(e). Since dimk aA
(e)
n < d for all n ∈N, we have

that dimaA≤ 1 for all a∈Z>0 by [5, Th. 4.1.3]. Suppose that Q0 ⊂Q1 ⊂ ·· · ⊂Qs is a chain

of distinct prime ideals in A. Since ∪a≥0(aA) =A, for all a	 0, Q0∩ aA⊂Q1∩ aA⊂ ·· · ⊂
Qs∩ aA is a chain of distinct prime ideals in A. Thus, dimA≤ 1.

Corollary 6.10. Suppose that Δ is an effective anti-nef Q-divisor on X. Then

dimR[Δ]/mRR[Δ] = 2

if and only if there exists an exceptional prime divisor E of π such that (Δ ·E)< 0.

Proof. This follows from Propositions 6.7 and 6.9.

§7. Analytic spread of divisorial filtrations

Theorem 7.1 is a generalization to (not necessarily Noetherian) divisorial filtrations on

a two-dimensional normal local ring of a theorem of McAdam, for filtrations of powers of

ideals, in [27] and [33, Th. 5.4.6]. We recall the exact statement of McAdam’s theorem in

Theorem 1.3 of the introduction. The concept of a divisorial filtration I(D) = {I(nD)} is

defined in the introduction.

Theorem 7.1. Let R be a two-dimensional normal excellent local ring. The following

are equivalent for a Q-divisorial filtration I(D) on R.

(1) The analytic spread �(I(D)) = dimR[D]/mRR[D] = 2.

(2) mR ∈ Ass(R/I(nD)) for some n.

(3) There exists n0 ∈ Z>0 such that mR ∈Ass(R/I(nD)) for all n≥ n0.

Proof. Let π :X → Spec(R) be a resolution of singularities such that D =
∑s

i=1aiFi for

some prime divisors Fi on X and the exceptional divisors E1, . . . ,Er of π are nonsingular. Let

Δ=D+B be the Zariski decomposition of D on X, so that I(D) = I(Δ) and R[D] =R[Δ]

(by Lemma 4.3). Then this theorem follows from Corollaries 6.5 and 6.10.

Corollary 7.2. Let R be a two-dimensional normal excellent local ring, and let I(D)

be a Q-divisorial filtration on R. Then dimR[D]/mRR[D]≤ 1 if and only if there exist height

1 prime ideals Q1, . . . ,Qs in R and b1, . . . , bs ∈Q>0 such that I(nD) =Q
(�nb1�)
1 ∩· · ·∩Q

(�nbs�)
s

for all n ∈ N.

Proof. We have that I(nD) = Q
(�nb1�)
1 ∩ · · · ∩Q

(�nbs�)
s for all n ∈ N if and only if

mR �∈ Ass(R/I(nD)) for all n which holds if and only if dimR[D]/mRR[D] ≤ 1 by

Theorem 7.1.

Example 7.3. There exists a Q-divisorial filtration I(D) on a two-dimensional normal

excellent local ring R such that the analytic spread �(I(D)) = 0 and height

ht(I(D)) = ht(I(D)) = 1,

giving an example where ht(I(D)) > �(I(D)). The Rees algebra of the example is a Non-

Noetherian symbolic algebra R[D] =
∑

n≥0Q
(n)
1 ∩Q

(n)
2 ∩Q

(n)
3 where Q1,Q2,Q3 are height

1 prime ideals in R.

Proof. Let k be an algebraically closed field, and let F be an irreducible cubic form

in the polynomial ring k[x,y,z] such that E = Proj(k[x,y,z]/(F )) is an elliptic curve. Let

R = k[[x,y,z]]/(F ), a complete, normal excellent local ring of dimension 2 with maximal
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ideal mR = (x,y,z). Let π :X → Spec(R) be the blowup of the maximal ideal mR of R. X is

nonsingular with π−1(mR)∼=E,mROX =OX(−E),OX(−E)⊗OE
∼=OE(1) and (E2) =−3.

We have that OX(−E)⊗OE
∼= OE(q1 + q2 + q3) for some closed points q1, q2, q3 ∈ E.

Let p1,p2,p3 ∈ E be distinct closed points on E such that the degree 0 invertible sheaf

L = OE(q1+ q2+ q3− p1− p2− p3) has infinite order in Pic0(X). Then h0(Ln) = 0 for all

n ∈ Z. In each regular local ring OX,pi , let ui,vi be a regular system of parameters such

that ui = 0 is a local equation of E at pi. Let Fi be the Zariski closure of vi = 0 in X, which

is an integral curve. Let π(Fi) = Qi ∈ Spec(R). R/Qi is Henselian since it is complete,

so by [28, Th. 4.2, p. 32], we have that E intersects the integral curve Fi only at the

point pi. Fi intersects E transversally at pi so that (E ·Fi) = 1. Let D = F1 +F2 +F3.

The Zariski decomposition of D is Δ = D +E. We have that OX(−nΔ)⊗OE
∼= Ln

for all n. Thus, Γ(X,OX(−nΔ − E)) = Γ(X,OX(−nΔ)) for all n ∈ Z>0, and so by

Proposition 6.7,

R[Δ]/
√

mRR[Δ] =
⊕
n≥0

Γ(X,OX(−nΔ))/Γ(X,OX(−nΔ−E)) =R/mR = k.

Thus,

dimR[Δ]/mRR[Δ] = dimR[Δ]/
√
mRR[Δ] = 0.

Since 0 = �(I(D)) < 1 = ht(I(D)), we have that R[D] is Non-Noetherian (by

[12, Prop. 3.7]).

§8. The Hilbert function of R[D]/mRR[D]

Theorem 8.1. Suppose that R is a two-dimensional normal excellent local ring and

I(D) is a Q-divisorial filtration on R. Then there exist a nonnegative rational number α

and a bounded function σ : N→Q such that

λR(I(nD)/mRI(nD)) = λR((R[D]/mRR[D])n) = nα+σ(n)

for n ∈ N. The constant α is positive if and only if dim(R[D]/mRR[D]) = 2.

The function σ is bounded from both above and below. The proof gives an explicit

calculation of the constant α in terms of the intersection theory of a suitable resolution of

singularities in equation (35). The constant α is a nonnegative integer if Δ is an integral

divisor in the Zariski decomposition D =Δ+B.

Proof. There exists a resolution of singularities π : X → Spec(R) such that D is an

effective Q-divisor on X, mROX is invertible, and the prime exceptional divisors E1, . . . ,Er

of X are all nonsingular. Let G be the effective exceptional divisor such that mROX =

OX(−G). Let Δ = D+B be the Zariski decomposition of D on X. There exists d ∈ Z>0

such that dΔ is an integral divisor.

Suppose that the ideal mR is generated by f1, . . . ,fb. We have an induced short exact

sequence of coherent sheaves on X

0→K→Ob
X →mROX → 0.
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Tensoring with OX(−�nΔ) and taking global sections, we have short exact sequences

0→mRΓ(X,OX(−�nΔ)→ Γ(X,OX(−�nΔ−G))→H1(X,K⊗OX(−�nΔ)).

Thus, there exists c1 ∈ Z>0 such that

λR(Γ(X,OX(−�nΔ−G))/mRΓ(X,OX(−�nΔ))≤ c1 (29)

for all n ∈ N by Corollary 5.7, applied to the effective anti-nef divisor dΔ and the coherent

sheaves F =K⊗OX(−�sΔ) for 0≤ s < d. From the short exact sequences

0→OX(−�nΔ−G)→OX(−�nΔ)→OX(−�nΔ)⊗OG → 0,

we have inclusions for n ∈ N

Γ(X,OX(−�nΔ))/Γ(X,OX(−�nΔ−G))→ Γ(G,OX(−�nΔ)⊗OG),

and by Corollary 5.7, there exists c2 ∈ Z>0 such that

|λR(Γ(G,OX(−�nΔ)⊗OG))−λR(Γ(X,O)X(−�nΔ))/Γ(X,OX(−�nΔ)))| ≤ c2. (30)

We are reduced to computing h0(OX(−�nΔ)⊗OG) for n ∈ N. Write G=
∑r

i=1aiEi with

ai ∈ Z>0.

Let e=
∑r

i=1ai. There exists a function τ : {1, . . . , e}→ {1, . . . , r} such that letting C1 =

Eτ(1) and Cj+1 = Cj +Eτ(j+1) for 1 ≤ j < e, we have that Ce = G. We have short exact

sequences

0→OX(−Cj)⊗OEτ(j+1)
→OCj+1 →OCj → 0 (31)

for 1 ≤ j < e. The cohomology groups h1(OX(−�nΔ−mEj)⊗OEτ(j+1)
) are bounded for

1≤ j < e and n ∈ N by Lemma 3.1. Let

f =max{h1(OX(−�nΔ−mEj)⊗OEτ(j+1)
) | 1≤ j < e and n ∈ N}.

Tensoring the sequences (31) with OX(−�nΔ) and taking cohomology, we find that

|h0(OX(−�nΔ)⊗OCj+1)−h0(OX(−�nΔ)⊗OCj )−h0(OX(−�nΔ−Cj)⊗OEτ(j+1)
)| ≤ f

(32)

for 1≤ j < e and n ∈ N. Setting C0 = 0, we have that there exists λ ∈ Z>0 such that

|h0(X,OX(−�nΔ)⊗OG)−
e−1∑
i=0

h0(X,OX(−�nΔ−Ci)⊗OEτ(i+1)
)|< λ (33)

for all n ∈ N. Writing n=md+s with 0≤ s < d, we have

h0(OX(−�nΔ−Cj)⊗OEτ(j+1)
) = h0(OX(−mdΔ−�sΔ−Cj)⊗OEτ(j+1)

).

By Lemma 3.1 and the Riemann–Roch theorem (6), there exists g ∈ Z>0 such that

|h0(OX(−mdΔ−�sΔ−Cj)⊗OEτ(j+1)
)−md(−Δ ·Eτ(j+1))| ≤ g (34)

for 1≤ j < e and m ∈ N. Thus, the theorem holds with

α= (−Δ ·G). (35)
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