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Abstract

We define p-adic BPS or pBPS invariants for moduli spaces Mβ,χ of one-dimensional
sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean
local field F . Our definition relies on a canonical measure μcan on the F -analytic man-
ifold associated to Mβ,χ and the pBPS invariants are integrals of natural Gm gerbes
with respect to μcan. A similar construction can be done for meromorphic and usual
Higgs bundles on a curve. Our main theorem is a χ-independence result for these
pBPS invariants. For one-dimensional sheaves on del Pezzo surfaces and meromor-
phic Higgs bundles, we obtain as a corollary the agreement of pBPS with usual BPS
invariants through a result of Maulik and Shen [Cohomological χ-independence for mod-
uli of one-dimensional sheaves and moduli of Higgs bundles, Geom. Topol. 27 (2023),
1539–1586].

1. Introduction

Donaldson–Thomas (DT) invariants, first introduced in [Tho00], count stable sheaves with some
fixed Chern character γ ∈ H∗(X, Z) on a smooth Calabi–Yau 3-fold X. While with the orig-
inal machinery the invariants could only be defined for moduli of sheaves where no strictly
semi-stables occur, Joyce and Song [JS12] and Kontsevich and Soibelman [KS08] independently
developed a generalized theory allowing the definition of DT invariants for moduli of objects (in
CY3 categories) also in those cases where strictly semi-stables are present. The two approaches
have some differences and the resulting generalized numerical invariants, denoted in the above
references by D̄Tγ and D̂Tγ or Ω(γ) respectively do not coincide. The relation between the two
is however understood and explained for example in [JS12, § 6.2] or [DM15, § 6.7].

Both theories admit, at least in some specific geometries, refinements to motivic, cohomolog-
ical and sheaf theoretic invariants. Let Mγ(X) denote some moduli stack of semi-stable sheaves
on a smooth Calabi–Yau 3-fold; Joyce–Song theory is refined by the cohomology of a certain per-
verse sheaf DTγ on the moduli stack obtained (given an orientation data) gluing locally defined
vanishing cycle sheaves (see [BBBJ15, BBDJS15]). Kontsevich–Soibelman theory should instead
be refined by the cohomology H∗(Mγ(X), Φγ) for Φγ the so-called BPS sheaf, named after Bogo-
mol’nyi, Prasad and Sommerfield, defined on the moduli space Mγ(X) of S-equivalence classes.
For X a compact CY3 threefold the existence of the sheaf Φγ is still conjectural; see [Tod23]
for a conjectural definition inspired to the case of moduli spaces of quiver representation with
potential. In the latter situation, the BPS sheaf Φγ , the sheaf on the moduli stack DTγ as well
their relation are understood [DM20].
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Following [JS12] and [DM20] in this paper we call the generalized DT invariants of Kontsevich
and Soibelman BPS invariants, since as suggested by the authors themselves, their invariants
should count BPS states.

Particularly interesting from the perspective of enumerative geometry is the case of one-
dimensional sheaves on X, i.e. sheaves with Chern character γ = (0, 0, β, χ). In this case the
invariants arising from the moduli spaces of Gieseker semi-stable sheaves are (conjecturally)
related to Gopakumar–Vafa invariants [Kat08, MT18, Tod23].

Our main focus is the special case where the CY3-fold is a del Pezzo or a K3 local surface
X = Tot(S). In these cases the BPS sheaf is better understood. For a local del Pezzo case a result
of Meinhardt [Mei15] states that Φβ,χ exists and coincides with the intersection complex ICMβ,χ

of the moduli space of S-equivalence classes. For a local K3 the situation is more complicated
and an explicit description of the BPS sheaf has only recently been given in [DHM23].

The main result of the present paper gives a surprising relation between the BPS invariants
of local del Pezzo surfaces and certain non-archimedean (or p-adic) integrals. The relation is
indirect and relies on results of Maulik and Shen [MS23] which we explain next.

1.1 Cohomological χ independence and trace of Frobenius
Let S be a smooth surface over C and β an ample base point free class. We denote by Mβ,χ(S) the
moduli stack of Gieseker semi-stable (with respect to some fixed polarization H) one-dimensional
sheaves, and by Mβ,χ(S) the moduli space of S-equivalence classes. When S is del Pezzo, the
stack of semi-stables is smooth. Under this hypothesis Maulik and Shen [MS23] have recently
proved the independence of the intersection cohomology from the Euler characteristic:1

IH∗(Mβ,χ(S)) ∼= IH∗(Mβ,χ′(S)) ∀ χ, χ′.

In fact, they prove a stronger statement, namely that the pushforward of the intersection
complexes along the Hilbert–Chow morphisms hχ, hχ′ are isomorphic. We denote by hχ the
morphism

hχ : Mβ,χ(S) → B = PH0(S,OS(β)),

associating to a sheaf its Fitting support.
The result proves a refinement of a special case of a more general and long-standing conjecture

in the enumerative geometry of smooth CY3-fold, known as the Pandharipande–Thomas strong
rationality conjecture [PT10] and later reformulated by Toda [Tod14] as the multiple cover
formula conjecture for generalized DT invariants of moduli spaces of one dimensional sheaves.
Translated in the Kontsevich–Soibelmain theory, the conjecture predicts the independence of the
BPS invariants from the Euler characteristic.

The conjecture is expected to hold more in general at the refined level.
Now, choosing a spreading out, we can assume that the moduli spaces Mβ,χ(S) we are

considering are defined over some large finite field k = Fq and that χ independence of Φβ,χ holds
over k (see, for example, [BBDG18, § 6] for precise definitions and results on spreading out of
constructible complexes). We can then look at the function:

BPSβ,χ : Mβ,χ(k) → C, x �→ q− dimMβ,χ Tr(Fr, Φβ,χ,x).

We call a pair (β, χ) generic (with respect to H), if any Gieseker semi-stable sheaf in Mβ,χ is
stable. In this case Mβ,χ → Mβ,χ is a Gm gerbe and, in particular, Mβ,χ is smooth. Then the
function BPSβ,χ will have the following two properties:

1 Strictly speaking in [MS23] S is assumed to be toric, but with the recent results of [Yua23] this assumption can
be dropped, see [MS23, Remark 0.2] and Corollary 2.2.4.
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(i) BPSβ,χ ≡ q− dim Mβ,χ if (β, χ) is generic;
(ii) for all χ, χ′ ∈ Z and for all y ∈ B(k) we have∑

x∈h−1
χ (y)(k)

BPSβ,χ(x) =
∑

x∈h−1
χ′ (y)(k)

BPSβ,χ′(x),

the second being a consequence of [MS23].
The main content of the paper is the construction of a function pBPSβ,χ via non-archimedean

integration satisfying these two properties.

1.2 p-adic BPS function and its invariance
Consider S a smooth del Pezzo surface over Spec(O), where O denotes the ring of integers of a
non-archimedean local field F with residue field k ∼= Fq.

As recalled previously, the del Pezzo hypothesis ensures that the moduli stack is smooth,
which allows us to construct in § 3 a canonical measure μcan on the F -analytic manifold Mβ,χ(O)�

associated to Mβ,χ.
In fact, the construction of μcan works more generally for normal, generically stabilizer-free,

Artin stacks M admitting a universally closed morphism M π−→ M to a quasi-projective variety
M such that π is generically an isomorphism. The existence of a canonical measure in this context
should be of independent interest.

Importantly, these hypothesis are also satisfied by moduli stacks Mβ,χ of semi-stable sheaves
on S → Spec(O) a smooth projective K3 over O for many choices of (β, χ) (see § 3.2 for details),
as well as by moduli stacks of (usual) Higgs bundles.

Once defined the canonical measure on Mβ,χ(O)�, we then define the non-archimedean BPS
function pBPSβ,χ as follows: for any x ∈ Mβ,χ(k) denote by Mβ,χ(O)x ⊂ Mβ,χ(O)� the ball of
O-rational points specializing to x over k. Then

pBPSβ,χ : Mβ,χ(k) → C

is given by

pBPSβ,χ(x) = q− dim Mβ,χ

∫
Mβ,χ(O)x

ϕg
β,χ dμcan, (1.2.1)

where ϕβ,χ is a certain complex-valued function associated with the natural Gm gerbe coming
from the Gm-rigidification of Mβ,χ (see § 4 for the precise definition) and g is the arithmetic
genus of the curves in the linear system |β|.

Our main result says that the non-archimedean BPS function enjoys the two properties
above.

Theorem 1.2.2 (Theorem 5.0.2). Let S → Spec(O) be either a smooth projective del Pezzo sur-
face or a K3 surface satisfying Assumption 3.2.1. The function pBPSβ,χ : Mβ,χ(k) → C satisfies
the following two properties:

(i) pBPSβ,χ ≡ q− dim Mβ,χ if (β, χ) is generic;
(ii) for all χ, χ′ ∈ Z and for all y ∈ B(k) we have∑

x∈h−1
χ (y)(k)

pBPSβ,χ(x) =
∑

x∈h−1
χ′ (y)(k)

pBPSβ,χ′(x).
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1.3 Relation to previous works, consequences and final considerations
The original motivation for Theorem 1.2.2 is a degree-independence result for Higgs bundles of
rank coprime to the degree [GWZ20b, Theorem 7.15], which in turn is a special case of a conjec-
ture by Mozgovoy and Schiffmann [MS14].2 Thus, not surprisingly, the proof of Theorem 1.2.2
also relies on the same idea used in [GWZ20b, GWZ20a], which boils down to a Fubini argument
along the Hilbert–Chow morphism hχ and the fact that up to measure 0, the fibers of hχ over a
non-archimedean local field are Picard schemes of smooth curves.

As a corollary of Theorem 1.2.2, we obtain from [MS23] (combined with the results in [Yua23])
that after pushforward along hχ, the function pBPSβ,χ agrees with the trace of Frobenius on the
BPS sheaf for the case of del Pezzo surfaces. The χ-independence conjecture for BPS cohomology
suggests, that this continues to hold in the K3 case.

A more concrete application of Theorem 1.2.2, via the Weil conjectures, is the χ independence
of the Betti numbers for Mβ,χ as long as χ and β are coprime. For P2 this is also a consequence
of a more general result of Bousseau [Bou23, Conjecture 0.4.2, Theorem 0.4.5].

When Mβ,χ is smooth, the first part of Theorem 1.2.2 implies

pBPS(x) = BPS(x)

for all x ∈ Mβ,χ(k).
While for more general pairs (β, χ) Definition (1.2.1) has no obvious connection with the

definition of the BPS function as trace of Frobenius of some suitable cohomology, Theorem 1.2.2
suggests that the above equality still holds.

For the case of S del Pezzo, this intriguing identity is the subject of an ongoing project of
the third named author with Michael Groechenig and Paul Ziegler.

The refined χ independence for BPS invariants of moduli of sheaves on a K3 surface is instead
still conjectural (see [MT19] for a proof of the numerical version), so is the identification of pBPS
and BPS invariants.

We expect that a conceptual proof (not relying on the χ independence) for the equality
between pBPS and BPS invariants will be easier to obtain in the Fano case, due to the smoothness
of the moduli stacks.

Finally, as in [MS23], we can prove the same statements for moduli of (meromorphic or not)
Higgs bundles; that is, pairs of a vector bundle E on a curve C of genus g(C) ≥ 2 and a morphism
Θ: E → E(D) for D a fixed effective divisor of degree deg(D) ≥ 2g(C) − 2.

In this case, the Hilbert–Chow morphism is replaced by the Hitchin fibration

H : Mr,χ(C) →
r⊕

i=1

H0(C,OC(iD))

associating to (E , Θ) the characteristic polynomial of Θ. The χ independence for meromorphic
Higgs bundles was also proven combinatorially in [MO19]. Moreover, during the writing of this
article, χ independence for BPS invariants of Higgs bundles has been proved in [KK21]. This indi-
rectly implies that our non-archimedean pBPS function agrees with the geometric BPS function
beyond the Fano cases.

This is in sharp contrast with the intersection complex on the coarse moduli space,
which does depend on the Euler characteristic χ in the K3 and Higgs bundle case,
see [MS23, § 0.4].

2 There is an alternative proof by Yu [Yu23] and proofs of the complete conjecture by Mellit [Mel20] and Kinjo
and Koseki [KK21].
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2. Moduli spaces of sheaves and Higgs bundles

In this section we recall some properties of moduli spaces of sheaves on smooth surfaces and
moduli spaces of (meromorphic or not) Higgs bundles relative to a base scheme T.

The case T = Spec k with k algebraically closed of char(k) = 0 is classical and all the state-
ments can be found for example in [HL97, § 4] for moduli of sheaves on surfaces, and in [Nit91]
for moduli of Higgs bundles.

For T a field of positive or mixed characteristic, moduli spaces of sheaves were first con-
structed by Langer in [Lan04b, Lan04a]. More general moduli stacks and moduli spaces of sheaves
and complexes over a smooth projective family X/T were studied in [Lie06] and [HT10]. Recently
the study of moduli stacks in the relative context has been vastly generalized in [BLM+21].

We often cite the latter reference, even though the results of Langer, Lieblich and of
Huybrechts–Thomas would suffice for our purposes.

2.1 Relative moduli spaces of sheaves on surfaces
Let S

r−→ T be a smooth family of projective surfaces, i.e. r is smooth and projective. We are
mostly interested in the case where the relative anti-canonical bundle −KS/T is r-ample or trivial;
we then say that S is del Pezzo, respectively K3, over T .

For us T will be either Spec(O), or Spec F, or Spec k where F is a p-adic field, O its ring of
integers, and k a field, possibly of positive characteristic.

2.1.1 Construction of the moduli spaces. Let us fix β on S the class of an r-effective divisor,
ample and base point free, i.e. βt is ample and base point free for each t ∈ T . Given F a sheaf
on S, flat over T , we say that F is one-dimensional over T of class β if

Supp(F) := Fit0(F) = C

with C ∈ PT (g∗OS(β)). Since the Fitting support is compatible with pull-back [Sta, Tag 07Z6]
this means that Ft is supported on a curve of class βt on St for each t ∈ T .

Let OS(1) be a r-polarization. Given F a sheaf on S flat over T, the Hilbert polynomial

Pr(n) := χ(St,Ft ⊗OSt(n)) = (βt · Ht)n + χ(Ft)

for Ht ∈ |OSt(1)| is locally constant on T (see, for example, [Har77, Theorem 9.9]); in particular,
χ(Ft) is locally constant.

We denote by pr(n) the reduced relative Hilbert polynomial obtained from Pr(n) dividing by
the coefficient of the leading term.

Definition 2.1.1 (see [BLM+21, Definition 21.11]). Let β, χ and OS(1) be as above. We denote
by

Mβ,χ(S) : (Sch /T )op → Gpds

the functor whose value on W → T consist of sheaves F on S ×T W, flat over W such that for all
w ∈ W , Fw is a Gieseker semi-stable one-dimensional sheaf of class βw and Euler characteristic
χ ∈ Z. We recall that Fw is said Gieseker semi-stable if for all proper subsheaves G ∈ Fw we have

n +
χ(G)

[Supp(Fw)] · Hw
≤ pr(n), (2.1.2)

and Gieseker stable if the inequality is strict. Finally, we say that Fw is geometrically Gieseker
stable if its pull-back Fw to the algebraic closure is Gieseker stable.
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An object F ∈ Mβ,χ(S)(W ) is called a family of Gieseker semi-stable sheaves of class (β, χ)
over W .

Here Mst
β,χ(S) is the sub-functor of families of Gieseker geometrically stable objects.

Theorem 2.1.3 [Lan04b, Lan04a, BLM+21]. In the notation above:

(i) Mβ,χ(S) and Mst
β,χ(S) are algebraic stacks of finite type over T ; the same statement hold

for the Gm-rigidification Mβ,χ(S) of Mβ,χ(S);
(ii) there exists a projective T -scheme Mβ,χ(S) which uniformly represent the set valued functor

over T -schemes associating to W the set of S-equivalence classes of families of Gieseker
semi-stable sheaves on the fibers of S ×T W → W with Hilbert polynomial pr(n);

(iii) Mst
β,χ(S) is a Gm gerbe over its coarse moduli space Mst

β,χ(S), which is a quasi-projective
scheme over T representing isomorphism classes of Gieseker geometrically stable sheaves on
the fibers of S ×T W → W with Hilbert polynomial pr(n);

(iv) Mβ,χ(S) is universally closed over T and, thus, universally closed over Mβ,χ(S).

Proof. (i) A far more general version of this statement is proved in [BLM+21, Theorem 21.24]. For
the benefit of the reader, we recall the key steps of the proof in the special case of Langer [Lan04a],
which is the only one we need.

Let E be a coherent sheaf on S flat on T , and let QuotT,pr(n)(E) : (Sch /T )op → Sets be the
relative Quot functor, whose W → T valued points are quotients EW → Q → 0 with Q a coherent
sheaf on S ×T W , flat over W , with Hilbert polynomial pr(n) along the fibers of S ×T W

rW−−→ W .
As proved for example in [Sta, Tag 09TQ], QuotT,pr(n)(E) is represented by an algebraic space
over T locally of finite presentation.

By Langer’s results [Lan04a, § 3], families of Gieseker semi-stable sheaves on the fibers of
S

r−→ T with fixed Hilbert polynomial pr(n) are bounded, i.e. any F ∈ Mβ,χ(S) is a quotient of
E = OS(−N)⊕F (N) for some fixed N.

Furthermore, as shown in [Lan04a, § 4], the open subsets Rst ⊆ Rss ⊂ QuotT,pr(n)(E) of
Gieseker stable/semi-stable sheaves on the fibers of S

r−→ T , correspond to the opens of
stable/semi-stable points with respect to the natural action of the T -smooth group GL(F (N)).

It thus follows that Mβ,χ(S) ∼= [Rss/ GL(F (N))] and Mst
β,χ(S) ∼= [Rst/ GL(F (N))] as stacks

over Sch /T . The statement for the rigidification Mβ,χ(S) now follows immediately as the latter
is simply given by [Rss/ PGL(F (N))].

(ii) The projective T -scheme Mβ,χ(S) is the GIT quotient Rss// GL(F (N)) this exists and
has the claimed property by [Ses77, Theorem 4], as also argued by Langer in the proof of [Lan04a,
Theorem 4.1].

(iii) The statement follows by the construction explained in statement (i).
(iv) The universal closedness over T follows from a relative version of Langton’s theorem.

The reader can see [Lan75] or [HL97, Theorem 2.B.1] for the proof over an algebraic closed field,
and [BLM+21, Lemma 21.22] for the general case.

Given the GIT construction of the moduli space recalled above, the universal closedness of
Mβ,χ(S) → Mβ,χ(S) also follows from [AHH23, Theorem A.8]. �

2.1.2 Deformation theory. Let S
r−→ T be as in the previous section, and let F be a coher-

ent sheaf on S flat over T . We denote by Exti
S(F ,F) the T sheaf obtained by taking the ith

cohomology of the complex Rr∗ RHom(F ,F), i.e.

Exti
S(F ,F) := Hi(Rr∗ RHom(F ,F)).
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By [Lie06, § 3] (see also [HT10, § 4]) the sheaves Exti
S(F ,F) control the deformation theory of

F over T , namely:

(i) there is a natural isomorphism Ext0S(F ,F) ∼= End(F ,F);
(ii) the first-order deformations of F are given by Ext1S(F ,F);
(iii) the obstruction to deformations are contained in Ext2S(F ,F).

Lemma 2.1.4. Let S
r−→ T be a smooth family of del Pezzo surfaces. Then Mβ,χ(S) is smooth

over T .

Proof. It suffices to show that the obstruction Ext2S(F ,F) is zero. We argue that Ext2S(F ,F) ⊗
k(t̄) = 0 for any geometric point t̄ ∈ T . By [AK80, Theorem 1.9], the cohomology and base change
property for Ext sheaves implies

Ext2S(F ,F) ⊗ k(t̄) = Ext2St̄
(Ft̄,Ft̄),

where Ft̄ is, by definition, a Gieseker semi-stable sheaf of class βt̄ and Euler characteristic χ on St̄.
The vanishing of the right-hand side is then classical; see, for example, [MS23, Lemma 2.5]. �

2.1.3 Singularities in the K3 case. For S → T a K3 surface, it will never be the case
that Ext2S(F ,F) vanishes. Nonetheless, the following generalization of a classical result of
Mukai [Muk84] holds.

Theorem 2.1.5 [Ina11, Theorem 3.2]. Let S/k be a smooth projective K3 surface over an
algebraically closed field k and let F be a simple sheaf, i.e. HomS(F ,F) = k. Then the deforma-
tions of F are unobstructed. In particular, the open sub-stack Spl(S/k)(β,χ) ⊆ Mβ,χ(S) of simple
semi-stable sheaves is smooth over k.

Corollary 2.1.6. Let S → T be a smooth projective relative K3 surface and T a smooth base
with perfect residue fields. Then the moduli stack Spl(β,χ)(S/T ) of simple semi-stable sheaves is
smooth over T .

Proof. By Inaba’s result, Theorem 2.1.5, the closed fibers of Spl(β,χ)(S/T ) → T are smooth of
dimension β2

t̄ + 2, and since S → T is smooth this number is constant on T (see [Ful16, § 20.3]).
It then follows from [Sch10, Theorem 3.3.27] that Spl(β,χ)(S/T ) → T is flat and, thus, in fact
smooth since all of the closed fibers are. �

This immediately implies that Mst
β,χ(S) is smooth for S → T as in Corollary 2.1.6. Further-

more, for T = C, the singularities of the moduli stack Mβ,χ(S) have been studied intensively
[AS18, BZ19, Dav23, Cra01]. In the following theorem, we state, in a form convenient for our
purposes, some consequences of the results obtained in the quoted references.

Theorem 2.1.7. Let S/C be a smooth projective K3 surface and (β, χ) a dimension vector
such that the locus of Splssβ,χ(S) ⊆ Mβ,χ(S) of simple semi-stable sheaves has complement of
codimension at least two. Then Mβ,χ(S) is normal with local complete intersection singularities.

Proof. For a morphism Y → X he property of being local complete intersection is étale local on
source and target [Sta, Tag 06C3]. Thus, it is enough to argue that for any point q ∈ Mβ,χ(S)
there exist an étale neighborhood Uq with local complete intersection singularities.

By [Dav23, Theorem 5.11], an étale local model for Mβ,χ(S) → Mβ,χ(S) is given by the
moduli stack Md(ΠQ) = [μ−1

d (0)/ GLd] (see [Dav23, § 3] for notation) of representations of the
preprojective algebra of a certain explicit quiver, already considered in [AS18].

On the other hand, by [Cra01, Theorem 1.2], μ−1
d (0) is a local complete intersection as soon

as there exists a simple representation of the preprojective algebra with given dimension vector.
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By our assumptions, Splssβ,χ(S) is dense in Mβ,χ(S). This ensures the existence of a simple
representation in Uq for each q. Thus, since étale morphisms preserve the dimension of the
automorphism groups and automorphism groups for quiver representations are connected, there
exists a simple representation for ΠQ for each Q appearing in the local description.

Once we know that Mβ,χ(S) is local complete intersection, and thus Gorenstein, the normality
simply follows from the assumption on the codimension of the locus of simple sheaves and Mukai
and Inaba’s Theorem 2.1.5. �
Remark 2.1.8. We show in § 2.2 that the hypothesis on the codimension of the complement of
Splssβ,χ(S) is satisfied as soon as: β is ample and base point free, and the locus V of non-reduced
curves in the linear system |β| is of codimension at least 2.

For example, let S be the K3 surface obtained as the 2:1 cover of S
τ−→ P2 branched along a

general sextic Z. Consider β = τ∗[dL] for d ≥ 1. Then a curve C in |β| is the 2:1 cover of a curve
D ∈ |dL| branched over D ∩ Z. Then C can be non-reduced only if, either D itself is non-reduced
or there is a component of D contained in Z, i.e. Z is a component of D. Both loci have high
codimension in |dL|.

2.1.4 Hilbert–Chow map. We keep the notation of the previous section. Let us denote by
BT = PT (g∗OS(β)), and by C → BT the universal curve. As for the case T = Spec(C) there is a
morphism

hχ : Mβ,χ(S) → BT ,

which associate to F its fitting support and factors through the moduli space

hχ : Mβ,χ(S) → BT .

We call hχ the Hilbert–Chow morphism and hχ the stacky Hilbert–Chow morphism. Since both
Mβ,χ(S) and BT are projective over T, hχ is proper over T .

For b : T → BT a section such that Cb/T is smooth, the fiber h−1
χ (b) is the Picard stack

Picχ+g−1
Cb/T where g is the genus of the curve, and h−1

χ (b) the Picard space Picχ+g−1
Cb/T , i.e. the

Gm-rigidification.
For b : T → BT , such that Cb/T is integral, the fiber of the stacky Hilbert–Chow morphism

is some universally closed stack over T containing Picχ+g−1
Cb/T as an open sub-stack, and h−1

χ (b)

is the corresponding GIT quotient, which is the compactification of the Picard space Picχ+g−1
Cb/T

constructed by Altman and Kleiman [AK80].
In general, for Cb/T non-integral not all line bundles of total degree totdeg = χ + g − 1 are

Gieseker semi-stable and one cannot say much about the fiber, except that it is a moduli stack
of semi-stable sheaves of pure dimension 1. In the reduced case, moduli stacks and moduli spaces
of rank-one semi-stable torsion free sheaves on Cb/T have been studied, and in the following we
recall some known results.

2.2 The open sub-stack of invertible sheaves
We denote by

Uβ,χ ⊆ Picχ+g−1
C/BT

the open sub-stack corresponding to line bundles of total degree χ + g − 1, which are Gieseker
semi-stable on the fibers of C/BT .

The rigidification Uβ,χ ⊆ Mβ,χ(S) is stabilizer free, and Uβ,χ → Uβ,χ is simply a Gm gerbe.
It follows from Theorem 2.1.3, that if we further restrict to geometrically stable line bundles
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Ust
β,χ, the rigidification U st

β,χ is a good moduli space for the moduli stack and it is isomorphic to
an open in Mβ,χ(S).

The opens U st
β,χ ⊆ Uβ,χ will play a crucial role in the construction of the canonical measure.

To this end, we need to prove the following codimension estimate.

Proposition 2.2.1. (i) Let S
r−→ T be a relative del Pezzo surface and β a base point free

and ample curve class. Then the complement of Uβ,χ in Mβ,χ(S), or equivalently the
complement of Uβ,χ in Mβ,χ(S), has codimension at least two.

(ii) Let T = Spec(C) and S a smooth projective K3 surface. Suppose furthermore that β is
ample, base point free and the codimension of the non-reduced locus V ⊂ B is at least 2.
Then the complement of Uβ,χ in Mβ,χ(S) has codimension at least two.

The proof of this statement is somewhat involved and it will occupy the rest of the section.
The reader who wish to get to the core of the paper quickly may skip this in a first reading.

Proof of Proposition 2.2.1. In case (i), by Lemma 2.1.4, Mβ,χ(S) → T is smooth, so it is sufficient
to estimate the codimension of the locus of line bundles on each geometric fiber Mβt̄,χ(St̄) →
Spec(k̄). In case (ii) we are already by hypothesis working on an algebraically closed field. This
allows us to reduce to the following classical setting.

Setting 2.2.2. The surface S is a smooth del Pezzo or K3 surface over k̄ an algebraically closed
field; H is a polarization on S, β is a base point free and ample curve class and B = |β| the
linear system of curves in class β.

Working on T = Spec(k̄) allows us to appeal to the results of [MS23, Yua23]. It is proved
in [Yua23], with techniques inspired by [Sch16], that for smooth projective surfaces S over an
algebraically closed field k̄ with canonical KS ≤ 0 the stacky Hilbert–Chow morphism hχ (and,
thus, also hχ) is equidimensional.

Theorem 2.2.3 [Yua23, Theorem 1.2, Corollary 1.3]. Let S be a smooth projective surface and
β =

∑n
i=1 miβi an ample effective curve class with βi pairwise distinct. If KS · βi ≤ 0 for all i,

then

dim(h−1
χ (b)) ≤ g − 1

for any b ∈ |β|, where g = 1
2β · (β + KS) + 1.

Using the dimension estimate, Maulik and Shen proved the following.

Corollary 2.2.4 [MS23, Theorem 2.3]. For S del Pezzo, Hilbert–Chow morphisms hχ and hχ

are equidimensional. In particular, Mβ,χ(S) is irreducible.

Corollary 2.2.5. For S a K3 over an algebraically closed field, Hilbert–Chow morphisms hχ

and hχ are equidimensional. In particular, Mβ,χ(S) is irreducible.

Proof. This is a word-by-word repetition of the argument in [MS23, Theorem 2.3] given the
dimension estimate in Theorem 2.2.3. �
Remark 2.2.6. The dimension estimate dim(h−1

χ (b)) ≤ g − 1 had previously been proved in
[MS23, Proposition 2.6] under the additional hypothesis that S is a toric del Pezzo, by reducing
the estimate to curves with underlying support a union of possibly non-reduced toric divisors,
for which the results of [CL16] apply.

We use the equidimensionality of the (stacky) Hilbert–Chow as follows. First, by Bertini’s
theorem, since β is ample and base point free, there is a dense open Bsm ⊂ B such that for
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b ∈ Bsm the curve Cb is a non-singular, integral curve of genus g = 1
2β · (β + KS) + 1. In this

case, h−1
χ (b) ∼= Picχ+g−1

Cb
, which is simply a Gm gerbe over the degree χ + g − 1 component of

the Picard group.
In particular, h−1

χ (Bsm) is contained in the open sub-stack of (stable) line bundles. Note,
furthermore, that since the number of connected components is lower semi-continuous in a proper
flat family (see, for example, [DM69, Theorem 4.17]) all the curves in the linear system are
connected.

To prove the codimension estimate, we now look at the fibers of the Hilbert–Chow morphism
over the locus of singular curves.

The complement of Bsm in B has codimension 1, and by equidimensionality of hχ so does
h−1

χ (B \ Bsm).
Let us denote by V ⊆ B \ Bsm the locus of non-reduced curves. We prove in § 2.2.1 that this

has always codimension at least 2 in B for S del Pezzo, provided β is a base point free ample
class. For S a K3, the codimension of V is at least two by assumption; see Remark 2.1.8 for
examples where the assumption is verified. Then h−1

χ (V ) has codimension at least two, and it
can be discarded for the purposes of estimating the codimension of the complement of Uβ,χ.

Finally, we study the fibers over (B \ Bsm) \ V in § 2.2.2 and prove that the locus of line
bundles in h−1

χ (b) is dense for all b ∈ (B \ Bsm) \ V .
In conclusion, the complement of Uβ,χ is contained in the union of h−1

χ (V ) and a divisor
D ⊂ h−1

χ (B \ Bsm). These have both codimension at least two, which allows us to conclude.

2.2.1 Excluding the non-reduced locus. Consider the stratification of B given by

B =
⊔
β

Bβ ,

where β = {m1β1, . . . , msβs} with s ≥ 1, mi ≥ 1, and βi are distinct curve classes such that there
exists an integral curve in |βi| for each i; Bβ is the locally closed strata in B of curves of type β,
i.e.

Bβ =
{

C =
∑

i

miCi ∈ |β|, Ci ∈ |βi|
}

,

with Ci integral.
Let Z be an irreducible component in Bβ; we denote by δZ the dimension of the affine part

of the Jacobian of Cb for b ∈ Z◦ ⊆ Bβ generic, i.e.

δZ = dim(Pic0(Cb))Aff .

Lemma 2.2.7. Let β be a base point free ample class on a smooth del Pezzo surface. The locus
V ⊂ B of non-reduced curves has codimension at least two.

Proof. The locus V of non-reduced curves is the union of closed strata Bβ with β having at least
one mi ≥ 2. We want to show that the codimension of any irreducible component Z of such a
stratum Bβ is at least two in B. The proof follows from the following inequality which is proved
in [MS23, Proposition 4.3]:

codim(Z) ≥ −KS ·
( ∑

i

(mi − 1)βi

)
+ δZ ≥ 1 + δZ , (2.2.8)
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where the second inequality holds since −KS is ample, mi − 1 ≥ 0 for each i and mi − 1 ≥ 1 for
at least one i and, thus,

−KS ·
( ∑

i

(mi − 1)βi

)
≥ 1;

since −KS is ample, the equality can hold only if all but one mi are equal to 1.
If the latter inequality is strict, we are done; otherwise we can assume that m1 = 2 and

mi = 1 for any other i. Again, if δZ ≥ 1 we are done.
To complete the proof we only need to look the cases where m1 = 2, mi = 1 for any other i,

and δZ = 0.
Let us denote by C := Cb for b ∈ B{2β1,β2,...,βs} a generic point in this stratum, by C ′ ⊆ C

the reduced subcurve, and by β′ = β − β1 its class.
We have two short exact sequences:

0 → OC1(−β′ · β1) → OC → OC′ → 0

0 → OC′ → ⊕
s⊕

i=1

O
C̃i

→
⊕

p∈C′sing

Oδ(p)
p → 0.

The latter is simply the normalization sequence for C̃ ′ = �s
i=1C̃i → C ′ (see [Liu06, § 7.5]). We

denoted by

δ(p) = lengthk(OC̃′,p/OC′)

the so-called delta invariant of the singularity.
By [Liu06, Lemma 5.11], there is a surjective morphism of abelian groups

Pic0(C) → Pic0(C ′) → 0

with kernel an affine unipotent group of dimension dim H1(C1,OC1(−β′ · β1)). Moreover, by
[Liu06, Theorem 5.19], Pic0(C) is an extension of ×Pic0(C̃i) by an affine group of dimension( ∑

p∈C′sing

δ(p)
)
− s + 1, (2.2.9)

and, thus,

δZ =
( ∑

p∈C′sing

δ(p)
)
− s + 1 + dim H1(C1,OC1(−β′ · β1)).

One can prove by induction on the number s of irreducible components that
∑

p∈C′sing δ(p) − s +
1 ≥ 0 with equality holding only if the only singularities are nodes and C ′ is of compact type,
namely its dual graph is a tree. For the induction step look at the partial normalization of C ′

given by R � C ′ \ R for R an irreducible component.
Let us also analyze the degree of OC1(−β′ · β1). We can write β′ = β′′ + β1 with β′′ and

effective curve class, and we can assume that β′′ · β1 > 0 otherwise C ′ is not connected and we
can estimate δZ separately on each connected component. From 0 ≤ g(β1) = 1

2KS · β1 + 1
2β2

1 + 1
and the fact that KS is anti-ample, it follows that β2

1 ≥ −1. In particular, −β′ · β1 = −β′′ · β1 −
β2

1 ≤ 0 with equality holding only in the case β2
1 = −1, and β′′ · β1 = 1. However, if the equality

is verified, then β · β1 < 0, contradicting the ampleness of β.
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We can thus assume that OC1(−β′ · β1) has strictly negative degree d. By Riemann–Roch,

dim H1(C1,OC1(−β′ · β1)) = g(C1) − d − 1,

which is always positive unless g(C1) = 0 and d = −1. In particular, in this case we must have:
β′′ · β1 = 1, β2

1 = 0 and KS · β1 = −2. We can thus give a better estimate of the codimension of
the component Z in B corresponding to such curves. By [MS23, Lemma 2.1], given γ an effective
curve class, the dimension of the linear system |γ| is 1

2γ · (γ − KS). Thus, dimB = 1
2β · (β − KS),

whereas the dimension of Z is 1
2β′ · (β′ − KS). We compute

codim(Z) = 1
2β · (β − KS) − 1

2β′ · (β − KS)

= 1
2 [(β′ + β1)2 − KS · β − β′2 + KS · β′)

= 1
2 [2β′ · β1 − KS · β1] = 2. �

The assumption in case (ii) and Lemma 2.2.7 in case (i) of Proposition 2.2.1 allows us to
disregard completely the locus V of non-reduced curve.

2.2.2 Reduced curves. If Cb is integral, then any rank-one torsion free sheaf F is strictly
stable, independently from the choice of polarization. This is easily seen noting that for any
proper sub-sheaf G ↪→ F , the cokernel is supported on a dimension 0 sub-scheme, which imply
the strict inequality in (2.1.2). In particular, h−1

χ (b) is a Gm gerbe over the compactification

Picχ+g−1
Cb

of Picχ+g−1
Cb

of Altman and Kleiman [AK80]. It was proved in [Reg80, Theorem A] that

for an integral curve with only planar singularities Picχ+g−1
Cb

is irreducible and, thus, the open
of line bundles is dense.

We are left to study the fiber h−1
χ (b) for b ∈ |β| a reduced but possibly reducible curve.

Proposition 2.2.10. Let C be a reduced curve with planar singularities and polarization HC .
Let Mχ(C) be the moduli stack of Gieseker semi-stable rank-one torsion free sheaves on C. Then
the open substack Uχ of semi-stable invertible sheaves is dense in Mχ(C).

Proof. To show that Uχ ⊆ Mχ(C) is dense, we need to show that any point F in Mχ(C) is
the limit of a family of line bundles on C in a one-parameter family. This now follows from the
deformation theory of rank-one sheaves on planar curves. Let q1, . . . qk be the points (necessarily)
in the singular locus Csing where F fails to be a line bundle. We look at the forgetful morphism

DefF
l−→

∏
i=1,...k

DefFqi
,

where Fqi is the stalk of F at qi. Since we are looking at curves with planar singularities, the
forgetful morphism is smooth [FGV99]. Thus, it is sufficient to show that the generic element
in each local deformation space RFqi

corresponds to a invertible module. However, this follows
from the analogous statement for compactified Jacobians of integral planar curves [Reg80]. More
explicitly: in order to describe RFqi

, consider an integral curve Cqi with qi as unique singular
point. By [Reg80] the Picard is dense in the compactified Jacobian, which in particular implies
that the generic point in RFqi

parametrizes a line bundle. �

This concludes the proof of Proposition 2.2.1. �

Remark 2.2.11. When there are no strictly semi-stables, and thus Mχ(C) is a Gm gerbe on
h−1

χ (C) = Mχ(C), it is stated in [MRV17, Corollary 2.20] or also in [Lop05, Theorem 4.5] that
stable line bundles are dense in the moduli space.
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When there are strictly semi-stables (which is the most interesting case for us) the density
statement at the level of moduli spaces Mχ(C) is false; the description of the moduli space in
[Lop05, Theorem 4.5] explains this fact.

2.3 Moduli of Higgs bundles
Let C → T be a smooth projective curve. As for the case of sheaves on surfaces, there is an
adaptation of theory of moduli stack and moduli spaces of Higgs bundles relative to a base T .
The case where T is a field of positive characteristic is already considered in [Ngô06].

We refer to [GWZ20b, § 7.1] and references therein for the adaptation of the classical theory
to the case of smooth curves over T = Spec(OF ), Spec(F ).

We denote by Mr,χ(C) and Mr,χ(C) the moduli stack and moduli space of semi-stable Higgs
bundles (E , Θ: E → E ⊗OC(D)) of rank r and Euler characteristic χ on the fibers of C → T .
Here D is a relative effective divisor of degree d = deg(D) ≥ 2g − 2 on the fibers of C → T . If
equality holds, we assume that D is the canonical divisor and g ≥ 2.

The stability is the (fiber-wise) Gieseker stability for sub-bundles preserved by the Higgs
field, i.e. (E , Θ) is semi-stable if for any F ⊆ E such that Θ|F : F → F ⊗OC(D)

χ

r(F)
≤ χ

r
.

The Hitchin fibration is the morphism:

H : Mr,χ(C) → BT :=
r⊕

i=1

H0(C,OC(id))

associating to (E , Θ) the coefficients of its characteristic polynomial.
Via the spectral correspondence [Hit87], Mr,χ(C) can be interpreted as a moduli stack of

one-dimensional sheaves F on the non-compact surface

SC := Tot(OC(D)) π−→ C

with [Supp(F)] = r[C]. The hypothesis on the degree of D implies that SC is del Pezzo, which, in
turn, guarantees the smoothness of the moduli stack Mr,χ(C) and its Gm-rigidification Mr,χ(C)
for each (r, χ) similar to Lemma 2.1.4.

Moreover, via the correspondence we can identify the fibers of the Hitchin fibration H with
the Simpson compactified Jacobians of the spectral curve CP (t) ⊆ SC cut out by the polynomial
det(π∗Θ − tId).

In the following theorem we collect the analogous statements of Theorem 2.1.3 and
Proposition 2.2.1 for the moduli stack of meromorphic Higgs bundles. Since the proof is essentially
the same as in the previous section we do not repeat it here.

Theorem 2.3.1. (i) The moduli stack Mr,χ(C) and its Gm-rigidification Mr,χ(C) are
algebraic stacks of finite type over T .

(ii) If deg(D) > 2g − 2, then Mr,χ(C) is smooth over T .
(iii) If D = KC and T = Spec(C), then Mr,χ(C) is normal.
(iv) There exists a quasi-projective T -scheme Mr,χ(C), proper over BT which uniformly

represent the moduli functor of S-equivalence classes of Higgs bundles.
(v) We have that Mst

r,χ(C) is a Gm gerbe over the moduli space Mst
r,χ(C)

(vi) We have that Mst
r,χ(C) is universally closed over T and thus over Mst

r,χ(C)
(vii) The open Ur,χ ⊆ Mr,χ(C) of Higgs bundles whose associated spectral sheaf is a line bundle

is dense and its complement has codimension at least two in Mr,χ(C).
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Remark 2.3.2. In the case of Higgs bundle, no extra assumption is necessary to show normality
of the moduli stack. We can understand that from at least two points of view: in the language of
[DHM22], the moduli stack of Higgs bundles satisfies the totally negative CY2 property [DHM22,
§ 7]; under this additional property the normality follows from the results of [Ver22].

Otherwise, we note that the locus V corresponding to non-reduced spectral curves in the
Hitchin base V has always codimension at least two and, thus, as in Proposition 2.2.1, the locus
of Higgs bundle whose corresponding spectral sheaf is a line bundle has codimension at least two
in the stack, which allows us to argue as in Theorem 2.1.7.

The estimate on the codimension on V can be given by an explicit calculation:
By Riemann–Roch the base B of the Hitchin fibration has dimension

dim B = d
r(r + 1)

2
+ r(1 − g),

where r is the fixed rank and d = degOC(D) ≥ 2g − 2. The non-reduced locus is the (closure of)
the strata Vkr1,r2 ⊆ B whose points correspond to polynomials in t admitting a factorization of
the form

P (t) = P1(t)kP2(t), deg(P1(t)) = r1 ≥ 1, k ≥ 2, deg(P2(t)) = r2 ≥ 0, kr1 + r2 = r.
(2.3.3)

Thus, the codimension of the non-reduced locus is the minimum of the codimension of the strata
Vkr1,r2 . Now, the dimension of the strata is

dimVkr1,r2 = d
r1(r1 + 1)

2
+ r1(1 − g) + d

r2(r2 + 1)
2

+ r2(1 − g),

and it is easy to see by direct computation that

dim B − dim dimVkr1,r2 ≥ 4g + 1
2

,

for d ≥ 2g − 1 and

dimB − dim dimVkr1,r2 = 3(g − 1),

for d = 2g − 2.

3. p-adic integration

Let F be a non-archimedean local field F with ring of integers O and residue field k ∼= Fq. We
consider the normalized Haar measure μ on the locally compact group (F, +) so that μ(O) = 1.

Since F is a completely valued field there is a basic theory of differential geometry available.
In particular, one can define analytic manifolds and differential forms as over the reals, see [Igu00,
CNS18] for details. Given an n-dimensional analytic manifold M and a non-vanishing n-form ω
on M , one defines a Borel measure μω on M by writing in a local chart U ⊂ Fn of M

ω|U = f · dx1 ∧ · · · ∧ dxn,

and integrating |f | against the Haar measure on Fn.
We are interested in analytic manifolds that arise from algebraic geometry. Concretely, given

a smooth, separated and finite-type F -scheme, or more generally F -algebraic space X, its set of
F -points X(F ) carries naturally the structure of an analytic manifold by the inverse function
theorem.
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3.1 The measure on the moduli spaces
Let M be a normal algebraic stack with a finite-type morphism to Spec(O) of dimension n. We
assume that there exists a (quasi-)projective variety M and a morphism π : M → M satisfying
the following conditions: there exists a dense open substack U ′ ⊂ M, smooth over O, that is
stabilizer free, i.e. an algebraic space, and that the complement of U ′ has codimension at least 2 in
M; there exists a second dense open U ⊂ U ′ such that π restricted to U induces an isomorphism
onto its image in M which we also denote by U .

The goal of this section is to construct a canonical measure on the analytic manifold

M � = M(O) ∩ U(F ).

For this we need the following extra assumption.

Assumption 3.1.1. For any x ∈ M � = M(O) ∩ U(F ) there exists a finite extension L/F with
ring of integers OL such that the base change xL : Spec(OL) → ML = M ×O OL admits a lift
x′

L : Spec(OL) → ML.

Note that Assumption 3.1.1 is, in particular, satisfied if M → M is universally closed [Sta,
01KA].

We fix a Zariski-open cover U ′ =
⋃

i∈I U ′
i such that on each U ′

i the relative canonical bundle
Ωn

U ′/O is trivial and pick a trivializing (i.e. non-vanishing) n-form ωi on U ′
i . Let Ui = U ∩ U ′

i . We
have a decomposition

M � =
⋃
i

M �
i ,

with M �
i = M(O) ∩ Ui(F ) and we claim that the measures μωi on M �

i glue to a measure on M �

that is independent of the choice of (ωi)i.

Proposition 3.1.2 (The canonical measure on M �). For all i, j ∈ I and any measurable subset

A ⊂ M �
i ∩ M �

j we have

μωi(A) = μωj (A).

In particular, the family (μωi)i∈I glues to a Borel measure μcan,M on M �. Furthermore, μcan,M
is independent of the choice of (ωi)i∈I .

Proof. Since ωi and ωj are both non-vanishing sections of the same invertible sheaf over U ′ we
have ωj|U ′

i∩U ′
j

= f · ωi|U ′
i∩U ′

j
with f ∈ H0(U ′

i ∩ U ′
j ,O∗

U ′
i∩U ′

j
). We claim that for every x ∈ M �

i ∩
M �

j ⊂ (Ui ∩ Uj)(F ) we have that f(x) ∈ O∗
F . This implies the first part of the proposition, since

μωi and μωj are given by locally integrating the absolute value of ωi and ωj .
To prove the claim, let L/F be a finite extension such that xL lifts to an OL-point x′

L of
ML as in Assumption 3.1.1. Let p : X → M be a smooth atlas. By passing to an even bigger
finite extension of F if necessary, we may further assume that the closed point Spec(kL) → MkL

lifts to the atlas XkL
. Since XL → ML is smooth we can then lift the whole x′

L to a morphism
x̃L : Spec(OL) → XL by Hensel’s lemma. Since F ∗ ∩ OL = O∗ it is enough to show that f(xL) =
f ◦ π ◦ p(x̃L) ∈ O∗

L.
Write Vi = p−1(U ′

i). The point is now that f ◦ p|Vi∩Vj
is a regular non-vanishing function on

Vi ∩ Vj and the complement of Vi ∩ Vj in X has codimension at least 2 by assumption. Since X
is normal, Hartogs’ theorem applies and f thus extends to a regular function on X which is still
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non-vanishing, as the 0-locus would have codimension 1. Therefore,

f(xL) = f ◦ p(x̃L) ∈ O∗
L,

as claimed.
The proof of the independence of μcan,M from (ωi)i∈I is essentially the same. �
If the stack M is clear from the context we often write μcan instead of μcan,M.

Example 3.1.3. Consider the quotient stack M = [A2/Gm] where Gm acts linearly on A2 with
weights (1,−1). In the above notation we have

U ′ = [(A2 \ {0})/Gm], U = [(A2 \ {xy = 0})/Gm] ∼= Gm, M ∼= A1.

Then U ′ is isomorphic to the affine line with doubled origin, which admits an open cover by two
copies of A1. The standard 1-forms on these A1 glue to a global non-vanishing 1-form on U ′ and
μcan is given by integrating dx (i.e. the standard Haar measure) on M � = O ∩ F ∗ = O \ {0}.
Remark 3.1.4. If M = M is stabilizer-free we have M � = M(O) and the construction of μcan

goes back to Weil [Wei12]. The volume is related to the number of k-rational points by the
formula [Wei12, Theorem 2.2.5] ∫

M(O)
μcan =

|M(k)|
qn

.

Remark 3.1.5. If M is a Deligne–Mumford stack, then π : M → M is proper [KM97] and, thus,
Assumption 3.1.1 is automatically satisfied. In this case μcan agrees with the orbifold measure
constructed in [GWZ20a, § 2.3], although in [GWZ20a, § 2.3] there is no assumption on the
codimension of the complement of U ⊂ M. If M is tame, the total volume of M � can be expressed
as a weighted point count of the twisted inertia stack of M (see [GWZ20a, Theorem 2.21]).

Remark 3.1.6. Groechenig pointed out to us the following alternative construction: let M/O be
any finite-type Artin stack of relative dimension n with a morphism π : M → M to a scheme M .
Assume, furthermore, that there exists a smooth stabilizer-free open U ⊂ M such that π|U is an
isomorphism onto its image and that Assumption 3.1.1 is satisfied. Finally, suppose that there
exists a line bundle K̃ on M which restricts to a power of the canonical line bundle KU/O on U .
Then as in [Yas17, § 4.1], integrating a suitable root of the absolute value of local sections of K̃
against the Haar measure defines a measure μvir on M � by an argument as in Proposition 3.1.2.
By construction, if both μvir and μcan are defined they coincide.

Interestingly, in the context of moduli spaces M of sheaves on a surface S, such a line bundle
K̃ arises from the deformation theory as the determinant of RHomM(F ,F), where F is the
universal sheaf on S × M (see [BBBJ15] for the definition in the strictly semi-stable case, or
[HL97, § 8.3] for a simpler explanation on the locus of stables).

3.2 The canonical measure on moduli spaces of sheaves
Let S be a smooth projective relative surface over Spec(O) and Mβ,χ the Gm-rigidified moduli
stack of semi-stable one-dimensional sheaves on S with moduli space Mβ,χ as in § 2.

We take the open substacks Ust
β,χ ⊂ Uβ,χ ⊂ Mβ,χ of geometrically stable line bundles and

of line bundles, respectively, as substacks U ⊂ U ′ in the notation of § 3.1. From now on we
always assume that S → Spec(O) is either a smooth projective del Pezzo surface or a K3 surface
satisfying Assumption 3.2.1.

Assumption 3.2.1. Let S → Spec(O) be a smooth projective K3 surface and (β, χ) a dimension
vector such that the following hold.
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(i) The locus of Uβ,χ ⊆ Mβ,χ(S) of line bundles has complement of codimension at least two
and Ust

β,χ is non-empty.
(ii) The moduli stack Mβ,χ(S) is normal.

Remark 3.2.2. We have already commented on the restriction that Assumption 3.2.1(i) imposes
in Remark 2.1.8. Over C, it follows from Theorem 2.1.7 that Assumption 3.2.1(i) implies
Assumption 3.2.1(ii), but we do not know of a proof over more general bases. However, by
choosing a suitable spreading out S → Spec(B) of a complex K3 surface, satisfying Assump-
tion 3.2.1(i), over the spectrum of a finitely generated Z-algebra B we obtain finite-type moduli
stacks φ : Mβ,χ → Spec(B) by Theorem 2.1.3. Then Theorem 2.1.7 implies that the generic fiber
of φ is geometrically normal and, thus, by [Gro66, Theorem 12.1.6, Corollary 9.5.2], the fibers
of φ are normal on a non-empty open V ⊂ Spec(B). Thus, by pulling back S along regular
points Spec(O) → V , with O the ring of integers of a non-archimedean local field, we obtain
many examples of relative K3 surfaces over Spec(O) where Assumption 3.2.1 holds [Gro65,
Proposition 6.14.1].

By Theorem 2.1.3, Lemma 2.1.4 and Proposition 2.2.1 all the assumptions for
Proposition 3.1.2 to hold are satisfied and we obtain a canonical measure μcan on M�

β,χ.
Also, the smooth base B of the Hilbert–Chow morphism hχ : Mβ,χ → B admits a canonical

measure μcan,B and it will be useful later to have an explicit description of the relative measure
μcan/μcan,B on smooth fibers of hχ, as in [GWZ20b, § 6.3].

Lemma 3.2.3. Let b ∈ B(O) be such that the pullback of the universal curve Cb → Spec(O) is
generically smooth. Then under the identification of h−1

χ (b)(F ) with Picd
Cb

(F ), for d = χ + g − 1,
the relative measure μcan/μcan,B on h−1

χ (b)(F ) is given by integrating the absolute valued of a

translation-invariant gauge form ωb on the Pic0
Cb

-torsor Picd
Cb

.

Proof. Let π : Pictotdeg=0
C/B → B be the smooth group scheme of total degree-zero line bundles on a

flat family C → B of curves. By [BLR12, § 4.2] it admits, up to replacing B with a neighborhood
of b ∈ B, a global, translation-invariant, trivializing section ωrel of Ωg

Pictotdeg=0 /B
. In particular,

Pictotdeg=0
C/B /OF has a volume form ω = π∗ωB ∧ ωrel, where ωB is a volume form in a neighborhood

of b ∈ B inducing μcan,B.
By [GWZ20b, Lemma 6.13], since Pictotdeg=d

C/B is a torsor under the group scheme of total
degree-zero line bundles, the relative form ωrel induces a section ω̃rel of Ωg

Pictotdeg=d /B
; we thus

have a volume form ωd = π∗ωB ∧ ω̃rel on Pictotdeg=d
C/B .

Since Uβ,χ has complement of codimension at least two in Mβ,χ by Proposition 2.2.1, inte-
grating the absolute value of ωd computes μcan. Therefore, on h−1

χ (b)(F ) the relative measure
μcan/μcan,B is given by integrating the absolute value of ωb = ω̃rel,b. �

An analogous construction can be done for moduli spaces of Higgs bundles using
Theorem 2.3.1.

4. Gerbes and Tate duality

4.1 Gm gerbes
Let X → V be a stack for the fppf-topology. Then X is said to be a gerbe if:

(i) for every scheme T over V and objects x, y ∈ X(T ), there exists some fppf-cover f : U → T
and an isomorphism x|U ∼= y|U ;

(ii) there exists an fppf-cover U → V such that the groupoid X(U) is non-empty.
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For every T → V and isomorphism φ : x → y in X(T ), conjugation by φ induces an iso-
morphism AutT (x) → AutT (y). Suppose that every object of X has abelian automorphism group
in its fiber category; in this case we say that the gerbe X → V is abelian. Then for every
T → V and objects x, y ∈ X(T ), there is a canonical isomorphism AutT (x) ∼= AutT (y). These
isomorphisms determine a sheaf of groups Band(X/V ) over V .

We say that an abelian gerbe X → V is a Gm gerbe if there is an isomorphism Gm,V →
Band(X/V ).

By [Gir20] equivalence classes of Gm gerbes on V are in bijection with the group
H2(Vfppf , Gm), the Brauer group of V . A gerbe X/V is trivial if it is equivalent to [X/Gm,V ],
where Gm,V acts trivially on X.

We recall that for F a local field, the Brauer group H2(Ffppf , Gm) is isomorphic to Q/Z by
mean of the Hasse invariant; see, for example, [Ser68, Proposition XIII.6].

Given X/V a Gm gerbe, for any point F
s−→ V we get a Gm gerbe s∗X/F by pullback. This

defines a complex valued function:

ϕV : V (F ) → H2(Ffppf , Gm) ∼= Q/Z
e2πi−−→ C (4.1.1)

4.2 Picard stacks/schemes of curves
Let V be a scheme and c : X → V a smooth proper curve3 with fibers of genus g ≥ 0.

We denote by PicX/V the Picard stack of X/V ; in other words, for an V -scheme T , PicX/V (T )
is the groupoid of invertible sheaves on X ×V T . The group of isomorphism classes of objects of
PicX/V (T ) is therefore the classical Picard group Pic(X ×V T ). For each integer d, we denote
by Picd

X/V the substack of line bundles of degree d.
We denote by PicX/V the sheaf R1

fppfc∗Gm on V ; it can be equivalently defined as the
sheafification of the presheaf T �→ Pic(X ×V T ). The natural morphism

α : PicX/V → PicX/V (4.2.1)

is a gerbe [Sta, 0DME] banded by Gm.
The degree-map factors through α and we denote by Picd

X/V the corresponding compo-
nent of degree d line bundles. The degree-zero part Pic0

X/V is represented by an abelian
scheme of relative dimension g, the relative Jacobian, and each Picd

X/V is an V -torsor
under it.

In general, a T -point of PicX/V need not correspond to a line bundle on X ×V T ; this property
gets lost when the sheafification of T �→ Pic(X ×V T ) is taken.

Lemma 4.2.2 [BLR12, Proposition 8.4]. For every V -scheme T , there is a canonical exact
sequence of abelian groups, functorial in T ,

0 → Pic(T ) → Pic(X ×V T ) → PicX/V (T ) → H2(T, Gm) → H2(X ×V T, Gm).

Since in our case PicX/V is a V -scheme, we may look at the particular case T = PicX/V . Then
the identity in PicX/V (PicX/V ) gets mapped to the element of H2(PicX/V , Gm) corresponding
to the Gm gerbe α of (4.2.1). By Lemma 4.2.2, α is trivial if and only if there is a universal
Poincaré bundle L on X ×V PicX/V . For example, this is the case when X → V has a section,
since then the map

H2(PicX/V , Gm) → H2(X ×V PicX/V , Gm)

is injective.

3 That is, a smooth proper morphism flat and of finite presentation whose fibers are one-dimensional and connected.
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More generally, for an V -scheme T , the map cT : PicX/V (T ) → H2(T, Gm) sends x : T →
PicX/V to the equivalence class of the Gm gerbe on T obtained by pulling back α along x. Such
a gerbe is trivial if and only if x comes from a line bundle on X ×V T (that is, is in the essential
image of α).

4.3 Tate duality
We consider now the special case where the base V is the spectrum of a non-archimedean local
field F . As recalled above, the Brauer group H2(F, Gm) is identified with Q/Z via the Hasse
invariant. We denote by f : PicX/F (F ) → Q/Z the group homomorphism of Lemma 4.2.2, and
for each integer d ∈ Z, we call fd : Picd

X/F (F ) → Q/Z the restriction of f .
Note that any x ∈ Picd

X/F (F ) gives rise to an isomorphism sx : Pic0
X/F → Picd

X/F and since
f is a group homomorphism we have

fd ◦ sx = fd(x) + f0. (4.3.1)

The following proposition gives some control over f0 in terms of torsor instead of gerbes.

Proposition 4.3.2. The image of f0 is ((1/d0)Z)/Z, where d0 is the smallest positive integer
for which Picd0

X/F (F ) is non-empty.

In particular, f0 is constant if and only if Pic1
X/F (F ) is non-empty.

Similar statements have been used crucially in [GWZ20b, GWZ20a] and the following
discussion is essentially taken from there.

The proof of Proposition 4.3.2 relies on Tate duality over local fields. Let A be an abelian
variety over F and At its dual.

Theorem 4.3.3 [Mil86, Theorem 3.7.8]. There is a canonical perfect pairing

A(F ) ⊗ H1(F, At) → H2(F, Gm) = Q/Z.

The pairing admits the following geometric description, see [GWZ20b, Remark 3.11]. First
from [Mil86, Lemma 3.1] we have an isomorphism

H1(F, At) ∼= Ext2(A, Gm). (4.3.4)

Now, working in the category of commutative group stacks considered in [Bro21], elements of
Ext2(A, Gm) can be represented by Gm gerbes on A with a group structure.

Given x ∈ A(F ), τ ∈ H1(F, At) and ατ ∈ Ext2(A, Gm) the image of τ under (4.3.4), the paring
of x with τ from Theorem 4.3.3 equals the class of the Gm gerbe x∗ατ on Spec(F ) under the
Hasse invariant isomorphism H2(F, Gm) ∼= Q/Z.

Thus, for A = Pic0
X/F = At the homomorphism f0 is simply the Tate-duality pairing with

the Gm gerbe α0 : Pic0X/F → Pic0
X/F .

Proof of Proposition 4.3.2. To simplify the notation we drop the subscript X/F . By the previous
discussion and Theorem 4.3.3 we see that d0 · f0 ≡ 0 if and only if αd0

0 is equivalent to the trivial
Gm gerbe on Pic0. We thus need to show that the latter holds if and only if Picd0(F ) is non-empty.

We consider the category of dualizable commutative group stacks DCGSF over Spec(F );
see, for example, [Bro21] for a detailed account. The internal hom-functor D(·) = Hom(·, BGm)
induces an anti-equivalence on DCGSF satisfying D ◦ D = Id and extending the usual dual-
ity functor on abelian varieties. Furthermore, there is an auto-equivalence D(Pic) ∼= Pic
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(see [Tra16, § 3.2]). Thus, applying D to the short exact sequence

0 → BGm → Pic → Pic → 0,

we get the sequence

0 → D(Pic) → Pic
β−→ Z → 0.

Here exactness on the right follows from [Bro21, Proposition 3.18] and the fact that Ext2(Pic) = 0
(see [Bro21, Corollary 11.5]). Since β is an epimorphism with kernel Pic0 we get an equivalence
D(Pic) ∼= Pic0. From this we deduce that the sequences

0 → Pic0 → Pic → Z → 0 (4.3.5)

0 → BGm → Pic0 → Pic0 → 0 (4.3.6)

are exchanged by duality.
Now (4.3.5) is the extension of Z by Pic0 corresponding to the Pic0-torsor Pic1 under the

equivalence [Bro21, Proposition 5.8]. In particular, Pic1 has a rational point if and only (4.3.5)
splits. Dually (4.3.6) is the BGm-torsor on Pic0 corresponding to α0 under the equivalence
[Bro21, Proposition 5.11] and splits if and only if α0 is trivial. Since D(·) is an anti-equivalence,
we have thus shown that Pic1 has a rational point if and only if α0 is trivial.

To extend this to Picd0 and αd0
0 , we note that their associated short exact sequences are

given by the d0-fold Baer sum [Sta, 010I] of (4.3.5) and (4.3.6), respectively. By definition, D(·)
commutes with direct sums and exchanges the addition map with the diagonal, i.e. for every
G ∈ DCGSF

D(G ⊕ G
+−→ G) ∼= D(G) Δ−→ D(G) ⊕ D(G),

and, hence, also commutes with Baer sums. We thus deduce that Picd0 has a rational point if
and only if αd0

0 is trivial, which proves the proposition. �

5. Main theorem

We are now ready to state and prove our main theorem. Let S → Spec(O) be either a smooth
projective del Pezzo surface or a K3 surface satisfying Assumption 3.2.1 and consider the analytic
manifold M�

β,χ together with its canonical measure μ = μcan as constructed in § 3.2.
The restriction of the natural Gm gerbe α : Mst

β,χ → Mst
β,χ

∼= Mst
β,χ induces a function

ϕβ,χ : M�
β,χ(F ) → H2(F, Gm) ∼= Q/Z

e2πi·−−−→ C,

by pullback to the generic fiber as defined in (4.1.1).
Now for any x ∈ Mβ,χ(k) denote by Mβ,χ(O)x ⊂ Mβ,χ(O)� the ball of O-rational points spe-

cializing to x over k. Then define the non-archimedean BPS function pBPSβ,χ : Mβ,χ(k) → C to
be

pBPSβ,χ(x) = q− dim Mβ,χ

∫
Mβ,χ(O)x

ϕg
β,χ dμcan. (5.0.1)

Theorem 5.0.2. The function pBPSβ,χ : Mβ,χ(k) → C satisfies the following two properties:

(i) pBPSβ,χ ≡ q− dim Mβ,χ if (β, χ) is generic;4

4 Recall that a pair (β, χ) generic (with respect to H), if any Gieseker semi-stable sheaf in Mβ,χ is stable.
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(ii) for all χ, χ′ ∈ Z and for all y ∈ B(k) we have∑
x∈h−1

χ (y)(k)

pBPSβ,χ(x) =
∑

x∈h−1
χ′ (y)(k)

pBPSβ,χ′(x).

Note that, by definition, ∑
x∈h−1

χ (y)(k)

pBPSβ,χ(x) =
∫

h−1
χ (B(O)y)

ϕg
β,χ dμ.

To prove Theorem 5.0.2 we want to split up the integral using Fubini’s theorem.
First let Bsm ⊂ B be the open subscheme, where the universal curve C → B is smooth. Then

h−1
χ (B(O)y ∩ Bsm(F )) is contained in h−1

χ (B(O)y) and its complement has measure 0, since it
is contained in h−1

χ ((B \ Bsm)(F )), that is, the F -points of a closed subscheme of Mβ,χ (see
[GWZ20b, Proposition 4.4]).

Since hχ is proper, we can identify the fiber over a point b ∈ B(O) ∩ Bsm(F ) with h−1
χ (b)(F )

where we write h−1
χ (b) for the F -scheme h−1

χ (b)F . As in [GWZ20b, § 6.3] we therefore have an
equality:∑
x∈h−1

χ (y)(k)

pBPSβ,χ(x) =
∫

h−1
χ (B(O)y)

ϕg
β,χ dμ =

∫
b∈B(O)y∩Bsm(F )

(∫
h−1

χ (b)(F )
ϕg

β,χ dμωb

)
dμcan,B.

(5.0.3)

Here ωb is the gauge form on the Pic0
Cb

-torsor h−1
χ (b) = Picχ+g−1

Cb
from Lemma 3.2.3. As

the outer integral in (5.0.3) is independent of χ we only need to analyze the fiber integral∫
h−1

χ (b)(F ) ϕg
β,χ dμωb

.
First we note that the gerbe α : Mst

β,χ → Mst
β,χ restricted to the fiber over b gets identified

with Pic
χ+g−1
Cb

→ Picχ+g−1
Cb

. Therefore, the associated function ϕβ,χ gets identified with

ϕχ+g−1 = e2πifχ+g−1 ,

where fχ+g−1 is the degree d = χ + g − 1 component of the function f introduced in § 4.3. We
may rewrite the innermost integral in (5.0.3) as∫

h−1
χ (b)(F )

ϕg
β,χ dμωb

=
∫

Picχ+g−1
Cb

(F )
ϕg

χ+g−1 dμωb
. (5.0.4)

Now if Picχ+g−1
Cb

(F ) = ∅ this integral vanishes as we integrate over the empty manifold.
Otherwise any x ∈ Picχ+g−1

Cb
(F ) gives an isomorphism Pic0

Cb

∼−→ Picχ+g−1
Cb

and by (4.3.1) we have∫
h−1(b)(F )

ϕg
β,χ dμωb

= ϕg
χ+g−1(x)

∫
Pic0Cb

(F )
ϕg

0 dμωb
(5.0.5)

To complete the proof we need to further study the function f0 : Pic0
Cb

(F ) → Q/Z.

Lemma 5.0.6. The following are equivalent:

(i) f0 ≡ 0;
(ii) Pic1

Cb
(F ) is non-empty;

(iii) Picg
Cb

(F ) is non-empty.

In this case the image of f : PicCb
(F ) → Q/Z is contained in ((1/g)Z)/Z.
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Proof. The equivalence (i) ⇐⇒ (ii) follows from Proposition 4.3.2. Clearly part (ii) implies
part (iii) so we only need to prove that part (iii) implies part (i). Suppose then that Picg

Cb
(F ) is

non-empty. We claim that f(Picg
Cb

(F )) = 0, where

f : PicCb
(F ) → Q/Z

is as in § 4.3. Consider the moduli stack Mβ,1 of semi-stable sheaves with Euler characteristic
χ = 1. For this choice of χ there are no strictly semi-stable sheaves; hence every semi-stable sheaf
is geometrically stable and, in particular, simple. It follows that the coarse space Mβ,1 coincides
with the Gm-rigidification Mβ,1, hence the coarse moduli map Mβ,1 → Mβ,1 gives a Gm gerbe
α over SpecO. For every x ∈ Mβ,1(O), the pullback x∗α is a trivial gerbe, since Br(O) = 0. In
particular, the map

fβ,1 : Mβ,1(O) → Q/Z

vanishes. Now note that line bundles of degree g have Euler characteristic 1, i.e. Picg
Cb

(F ) ⊂
Mβ,1(O). This proves the claim. To conclude the proof, let x ∈ Picg

Cb
(F ). For every y ∈ Pic0

Cb
(F ),

f(y) = f(x) + f(y) = f(x + y) ∈ f(Picg(F )) = 0. Hence, f0 is zero.
The statement about the image of f follows from the observation f(Picg

Cb
(F )) = 0. �

Remark 5.0.7. The equivalence of parts (ii) and (iii) in Lemma 5.0.6 is true more generally. In
fact, for any geometrically integral, smooth projective curve C of genus g over a local field Picg−1

C

has a rational point by [Lic69] and [PS99, Corollary 4].

Proof of Theorem 5.0.2. By the previous discussion, in particular (5.0.3) and (5.0.4), χ indepen-
dence amounts to show for all d, d′ ∈ Z and b ∈ B(O) ∩ Bsm(F ) the equality∫

Picd
Cb

(F )
ϕg

d dμωb
=

∫
Picd′

Cb
(F )

ϕg
d′ dμωb

.

For simplicity take d′ = g. Consider first the case where Picg
Cb

(F ) = ∅. Then the right-hand side
is zero. If Picd

Cb
(F ) is also empty, we are done. Otherwise, let x ∈ Picd(F ). Then as in (5.0.5)∫

Picd
Cb

(F )
ϕg

d dμωb
= ϕg

d(x)
∫

Pic0Cb
(F )

ϕg
0 dμωb

. (5.0.8)

As Picg
Cb

(F ) is empty, so is Pic1
Cb

(F ) by Lemma 5.0.6, hence f0 is a non-trivial character, i.e.
a surjective homomorphism Pic0

Cb
(F ) → Z/d0Z for some d0 ≥ 2 by Lemma 4.3.2. Furthermore,

d0 is the smallest integer such that Picd0
Cb

(F ) �= ∅, hence d0 does not divide g. The function ϕg
0 is

therefore non-zero and by a character-sum argument the right-hand side of (5.0.8) vanishes, as
required.

Next we consider the case Picg
Cb

(F ) �= ∅. Then by Lemma 5.0.6 also Pic1
Cb

(F ) �= ∅ and,
thus, also Picd

Cb
(F ) �= ∅. Furthermore, the image of f is g-torsion and, thus, ϕg

d = ϕg
g ≡ 1. Since

Picd
Cb

(F ) ∼= Pic0
Cb

(F ) ∼= Picg
Cb

(F ) we are done with the proof of part (ii).
The proof of part (i) follows from the fact that for (β, χ) generic, the stable locus is everything,

thus the morphism Mβ,χ → Mβ,χ is a Gm gerbe. In this case fβ,χ ≡ 0, since the gerbe x∗α ∈
H2(F, Gm) is pulled back from H2(Spec(O), Gm) = 0 and, thus, trivial. �

Remark 5.0.9. It is straightforward to extend the definition of the pBPS-function and
the proof of Theorem 5.0.2 to the case of usual and meromorphic Higgs bundles using
Theorem 2.3.1.
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