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Abstract

Let (X � x, B) be an lc surface germ. If X � x is klt, we show that there exists a divisor com-
puting the minimal log discrepancy of (X � x, B) that is a Kollár component of X � x. If B �= 0
or X � x is not Du Val, we show that any divisor computing the minimal log discrepancy of
(X � x, B) is a potential lc place of X � x. This extends a result of Blum and Kawakita who
independently showed that any divisor computing the minimal log discrepancy on a smooth
surface is a potential lc place.

2020 Mathematics Subject Classification: 14E30 (Primary); 14B05 (Secondary)

1. Introduction

The minimal log discrepancy (mld) is an invariant that provides a sophisticated measure
of the singularities of an algebraic variety. It not only plays an important role in the study
of singularities but is also a central object in the minimal model program. Shokurov proved
that the ascending chain condition (ACC) conjecture for mlds and the lower-semicontinuity
(LSC) conjecture for mlds imply the termination of flips [40]. For papers related to these
conjectures, we refer the readers to [2, 8, 9, 11, 12, 14, 15, 18, 19, 20, 21, 23, 29, 30–34,
38–40].

Very recently, there has been studies on the mld from the perspective of K-stability the-
ory. In particular, in [13, 14], normalised volumes [27] and Kollár components (in some
references, called reduced components) have played essential roles to prove some important
cases of the ACC conjecture for mlds. Since the structure of the Kollár components are very
well-studied [26, 28, 35, 38, 41], we may propose the following natural folklore question:

Question 1·1. Let (X � x, B) be an lc germ of dimension ≥ 2 such that X � x is klt. Under
what conditions will there exist a divisor E over X � x such that a(E, X, B) = mld(X � x, B)
and E is a Kollár component of X � x?
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In the paper, we show that Question 1·1 always has a positive answer in dimension 2:

THEOREM 1·2. Let (X � x, B) be an lc surface germ such that X � x is klt. Then there
exists a divisor E over X � x such that a(E, X, B) = mld(X � x, B) and E is a Kollár
component of X � x.

Regrettably, Question 1·1 does not always have a positive answer in dimension ≥ 3 even
when B = 0 due to Example 6·1.

For smooth surfaces, a modified version of Question 1·1 was proved by Blum [5,
theorem 1·2] and Kawakita [22, remark 3], who show that any divisor computing the mld
is a potential lc place (see Definition 2·4 below) of the ambient variety, while Kawakita
additionally shows that any such divisor is achieved by a weighted blow-up [22, theorem 1].
With this in mind, we may ask the following folklore question:

Question 1·3. Let (X � x, B) be an lc germ. Under what conditions will every divisor that
computes the mld be a potential lc place?

In this paper, we also answer Question 1·3 for surfaces:

THEOREM 1·4. Let (X � x, B) be an lc surface germ. Then every divisor E over X � x
such that a(E, X, B) = mld(X � x, B) is a potential lc place of X � x if and only if (X � x, B)
is not of the following types:

(i) B = 0 and X � x is a Dm-type Du Val singularity for some integer m ≥ 5, or

(ii) B = 0 and X � x is an Em-type Du Val singularity for some integer m ∈ {6, 7, 8}.
We say a few words about the intuition of Questions 1·1 and 1·3. Roughly speaking, a

Kollár component always admits a log Fano structure that is compatible with the local sin-
gularity, and a potential lc place always admits a log Calabi–Yau structure that is compatible
with the local singularity. These structures allow us to use results in global birational geom-
etry to study the behaviour of the divisor and the local geometry of the singularity. On the
other hand, we usually do not know whether a divisor calculating the mld is admits those
good structures or not, and therefore, many powerful tools in global geometry are difficult
to apply to the study on the mlds of a singularity.

Therefore, getting a satisfactory answer for either Question 1·1 or Question 1·3 could
provide us with possibilities to apply global geometry results to tackle the ACC conjecture
or the LSC conjecture for mlds. In particular, since Kollár components are well-studied in
K-stability theory, with a satisfactory answer for Question 1·1, there is a strong potential for
K-stability theory results to be applied to the study on mlds.

THEOREM 1·2 and Theorem 1·4 follow from the following classification result on
divisors computing mlds on lc surfaces:

THEOREM 1·5. Let (X � x, B) be an lc surface germ and C the set of all prime divisors
over X � x which compute mld(X � x, B).

(i) if (X � x, B) is dlt, then:

(a) if X � x is smooth or an A-type singularity, then any element of C is a Kollár
component of X � x;
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(b) if X � x is a Dm-type singularity for some integer m ≥ 4 or an Em-type singularity
for some integer m ∈ {6, 7, 8}, let f :Y → X be the minimal resolution of X � x and
D(f ) the dual graph of f. Then;

(1) there exists a unique element E ∈ C that is a Kollár component of X � x, and E
is the unique fork of D(f );

(2) C ⊂ Exc(f );
(3) if B �= 0 or X � x is not Du Val, then:

(A) any element of C is a potential lc place of X � x;
(B) if X � x is an Em-type singularity, then C only contains the unique fork of

D(f ).
(4) if B = 0 and X � x is Du Val, then:

(A) C = Exc(f );
(B) if X � x is a Dm-type singularity, then an element F ∈ C is a potential lc

place of X � x if and only if either F is the fork of D(f ), or the two branches
which do contain F both have length 1;

(C) if X � x is an Em-type singularity, then an element F ∈ C is a potential lc
place of X � x if and only if F is the fork of D(f ).

(ii) If (X � x, B) is not dlt but X � x is klt, then:

(a) Any element of C is a potential lc place of X � x;
(b) There exists an element of C that is a Kollár component of X � x.
(c) If X � x is smooth, then any element of C is a Kollár component of mld(X � x, B)

(iii) If X � x is not klt, then any element of C is a potential lc place of X � x.

We hope that our results could inspire people to tackle Questions 1·1 and 1·3.

Remark 1·6. Some complementary examples of our main theorems are given in Section 6.

Remark 1·7. Although the study on minimal log discrepancies was traditionally considered
over C, recently there has been some studies on the structure of minimal log discrepancies
over fields of arbitrary characteristics (cf. [7, 17, 36]). In this paper, the results hold over
fields of arbitrary characteristics. This is because we only work on surfaces and we only
care about the local behavior of surfaces. In this case, the concepts of minimal resolution,
dual graphs, intersection numbers etc. will work in arbitrary characteristics. We emphasize
that the key references we cite [25, section 4] and [15] also work for arbitrary characteristics.

2. Preliminaries

We adopt the standard notation and definitions in [25].

Definition 2·1. A pair (X,B) consists of a normal quasi-projective variety X and an R-
divisor B ≥ 0 such that KX + B is R-Cartier. If B ∈ [0, 1], then B is called a boundary.

Let E be a prime divisor on X and D an R-divisor on X. We define multED to be the
multiplicity of E along D. Let φ:W → X be any log resolution of (X,B) and let

KW + BW := φ∗(KX + B).
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The log discrepancy of a prime divisor D on W with respect to (X,B) is 1 − multDBW and
it is denoted by a(D, X, B). We say that (X,B) is lc (resp. klt) if a(D, X, B) ≥ 0 (resp. > 0)
for every log resolution φ:W → X as above and every prime divisor D on W. We say that
(X,B) is dlt if a(D, X, B) > 0 for some log resolution φ:W → X as above and every prime
divisor D on W. We say that (X,B) is plt if a(D, X, B) > 0 for any exceptional prime divisor D
over X.

A germ (X � x, B) consists of a pair (X,B) and a closed point x ∈ X. If B = 0, the germ
(X � x, B) is usually represented by X � x. We say that (X � x, B) is lc (resp. klt, dlt, plt) if
(X,B) is lc (resp. klt, dlt, plt) near x. We say that (X � x, B) is smooth if X is smooth near x.
We say that (X � x, B) is log smooth if X is log smooth near x. A divisor E over X is called
over X � x if centerXE = x̄.

Definition 2·2. The minimal log discrepancy (mld) of an lc germ (X � x, B) is

mld(X � x, B) := min{a(E, X, B) | E is a prime divisor over X � x}.
Definition 2·3 (Plt blow-ups). Let (X � x, B) be a klt germ. A plt blow-up of (X � x, B)

is a blow-up f :Y → X with the exceptional divisor E over X � x, such that (Y , f −1∗ B + E) is
plt near E, and −E is ample over X. The divisor E is called a Kollár component (in some
references, reduced component) of (X � x, B).

Definition 2·4 (Potential lc place). Let (X � x, B) be an lc germ. A potential lc place of
(X � x, B) is a divisor E over X � x, such that there exists G ≥ 0 on X such that (X � x, B + G)
is lc and a(E, X, B + G) = 0.

Definition 2·5. A surface is a normal quasi-projective variety of dimension 2. A surface
germ X � x is called Du Val if mld(X � x, 0) = 1.

Let X � x be a klt surface germ of type A (resp. D,E) and m ≥ 1 (resp. m ≥ 4, m ∈ {6, 7, 8})
an integer. Let f be the minimal resolution of X � x. We say that X � x is an Am (resp.
Dm, Em)-type singularity if Exc(f ) contains exactly m prime divisors.

For surfaces, to check that an extraction is a plt blow-up, we only need to control the
singularity as the anti-ample requirement is automatically satisfied. The following lemma is
well-known and we will use it many times:

LEMMA 2·6. Let (X � x, B) be a klt surface germ, f :Y → X an extraction of a prime
divisor E, and BY := f −1∗ B. Then:

(i) if (Y , BY + E) is plt near E, then E is a Kollár component of (X � x, B);

(ii) if (Y , BY + E) is lc near E, then E is a potential lc place of (X � x, B).

In particular, any Kollár component of (X � x, B) is a potential lc place of (X � x, B).
Proof. Since (X � x, B) is a klt surface germ, X is Q-factorial, so there exists an f -

exceptional divisor F ≥ 0 such that −F is ample over X [4, lemma 3·6·2(3)]. Since f only
extracts E, −E is ample over X. This implies (ii).

Since −E is ample over X, −(KY + BY + E) is ample over X. We may pick a gen-
eral GY ∼R,X −(KY + BY + E) such that (Y , BY + E + GY ) is lc near E and KY + BY + E +
GY ∼R,X 0. Let G := f∗GY , then (X � x, B + G) is lc and E is a potential lc place of (X � x, B).
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Definition 2·7 (Dual graph). Let n be a non-negative integer, and C = ∪n
i=1Ci a collection

of irreducible curves on a smooth surface U. We define the dual graph D(C) of C as follows.

(i) The vertices vi = vi(Ci) of D(C) correspond to the curves Ci.

(ii) For i �= j,the vertices vi and vj are connected by Ci · Cj edges.

In addition,

(iii) if we label each vi by the integer ei := −C2
i , then D(C) is called the weighted dual

graph of C.

A fork of a dual graph is a curve Ci such that Ci · Cj ≥ 1 for exactly three different j �= i.
A tail of a dual graph is a curve Ci such that Ci · Cj ≥ 1 for at most one j �= i.

For any birational morphism f :Y → X between surfaces, let E = ∪n
i=1Ei be the reduced

exceptional divisor for some non-negative integer n. We define D(f ) := D(E).
When we have a dual graph, we sometimes label Ci near the vertex vi. We sometimes use

black dots in the dual graph to emphasise the corresponding curves that are not exceptional.

Definition 2·8. Let D be a dual graph. If D looks like the following

for some integers m > m2 > m1, then ∪m1
i=1Ci, ∪m2

i=m1+1Ci, and ∪m
i=m2+1Ci will be called the

branches of D. The length of a branch is the number of irreducible curves in this branch.

We will use the following lemmas many times in this paper:

LEMMA 2·9. Let X � x be a smooth germ, f :Y → X the smooth blow-up of X � x with
exceptional divisor E, and C and D two R-divisors on X without common irreducible
components. Then

(C · D)x =
∑

y∈f −1(x)

(f −1∗ C · f −1∗ D)y + (f −1∗ C · E)(f −1∗ D · E)

=
∑

y∈f −1(x)

(f −1∗ C · f −1∗ D)y + multxC · multxD.

Proof. Possibly shrinking X to a neighbourhood of x and shrinking Y to a neighbourhood
over x, we may assume that (C · D)x = C · D and

∑
y∈f −1(x) (f −1∗ C · f −1∗ D)y = f −1∗ C · f −1∗ D.

Thus

0 = f ∗C · E = (f −1∗ C + (multxC)E) · E = f −1∗ C · E − multxC

and

0 = f ∗D · E = (f −1∗ D + (multxC)E) · E = f −1∗ D · E − multxD.

By the projection formula,

C · D = f ∗C · f −1∗ D = f −1∗ C · f −1∗ D + (multxC)E · f −1∗ D = f −1∗ C · f −1∗ D + multxC · multxD.
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LEMMA 2·10 (cf. [25, lemma 3·41, corollary 4·2]). Let U be a smooth surface and C =
∪m

i=1Ci a connected proper curve on U. Assume that the intersection matrix {(Ci · Cj)}1≤i,j≤m

is negative definite. Let A =∑m
i=1 aiCi and H =∑m

i=1 biCi be R-linear combinations of the
curves Ci. Assume that H · Ci ≤ A · Ci for every i, then either ai = bi for each i or ai < bi for
each i.

3. Divisors computing mlds over smooth surface germs

In this section, we study the behavior of divisors computing mlds over a smooth surface
germ. The following Definition-Lemma greatly simplify the notation in the rest of the paper
and we will use it many times.

3·1. Definitions and lemmas

Definition-LEMMA 3·1. Let (X � x, B) be a smooth lc surface germ and E a divisor over
X � x. By [25, lemma 2·45], there exists a unique positive integer n = n(E) and a unique
sequence of smooth blow-ups

XE := Xn,E
fn,E−−→ Xn−1,E

fn−1,E−−−→ . . .
f1,E−−→ X0,E := X

such that E is on XE and each fi,E is the smooth blow-up at centerXi−1,E E. We define fE :=
f1,E ◦ f2,E · · · ◦ fn,E, Ei the exceptional divisor of fi,E for each i, and Ei

j the strict transform of

Ei on Xj,E for any i ≤ j. In particular, Ei
i = Ei for each i and E = En = En

n.

Remark 3·2. We need the following facts many times, which are elementary and we omit
the proof. Let (X � x, B) be a smooth lc surface germ, E a divisor over X � x, and n := n(E).
Then for any i ≤ j such that i, j ∈ {1, 2, . . . , n},

(i) Ei
j is a smooth rational curve,

(ii) ∪i
k=1Ek

i is simple normal crossing,

(iii) (Ei)2 = −1, and

(iv) (Ei
j)

2 ≤ −2 when i < j.

LEMMA 3·3. Let (X � x, B) be a smooth surface germ and f :Y → X the smooth blow-up
at x with exceptional divisor E. Then a(E, X, B) = 2 − multxB. In particular, mld(X � x, B) ≤
2 − multxB.

Proof. This immediately follows from [25, lemma 2·29].

LEMMA 3·4. Let X � x be a smooth surface germ, B ≥ 0 an R-divisor on X and C a prime
divisor on X. Then (B · C)x ≥ multxB · multxC.

Proof. It immediately follows from [16, excercise 5·4(a)].

LEMMA 3·5. Let a ∈ [0, 1] be a real number and (X � x, � := B + aC) a smooth surface
germ, where B ≥ 0 is an R-divisor and C is a prime divisor such that C �⊂ Supp B and C is
smooth at x. Assume that (B · C)x < 1, then mld(X � x, �) > 1 − a.

Proof. We only need to show that for any positive integer n and any sequence of smooth
blow-ups
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Xn
fn−→ Xn−1

fn−1−−→ · · · f1−→ X0 := X

over X � x with exceptional divisors Ek := Exc(fk) for each k, we have a(Ek, X, �) > 1 − a.
In the following, we show that a(Ek, X, �) > 1 − a for each k by applying induction on n.

When n = 1, by Lemmas 3·3 and 3·4,

a(E1, X, �) = 2 − multx(B + aC) = 2 − a − multxB ≥ 2 − a − (B · C)x > 1 − a.

Therefore, we may assume that n ≥ 2, and when we blow-up at most n − 1 times, each
divisor we have extracted has log discrepancy > 1 − a. In particular, a(Ek, X, �) > 1 − a for
any k ∈ {1, 2, . . . , n − 1}.

Let x1 := centerXEn, and B1, C1, �1 the strict transforms of B,C and � on X1 respectively.
Then x1 ∈ E1. There are three cases:

Case 1. a + multxB − 1 < 0. By Lemma 2·9,

(B1 · C1)x1 ≤ (B · C)x − B1 · E1 = (B · C)x − multxB < 1 − multxB ≤ 1.

By induction hypothesis for the germ (X1 � x1, �1) and blowing-up at most n − 1 times,
we have

a(En, X, �) = a(En, X1, �1 + (a + multxB − 1)E1) ≥ a(En, X1, �1) > 1 − a

and finish the proof for Case 1.

Case 2. a + multxB − 1 ≥ 0 and x1 ∈ E1 ∩ C1. Let B̃1 := B1 + (a + multxB − 1)E1. Then

KX1 + B̃1 + aC1 = f ∗
1 (KX + �).

We have

(B̃1 · C1)x1 = (B1 · C1)x1 + (a + multxB − 1)(E1 · C1)x1 .

Since C is smooth at x, E1 ∪ C1 is snc at x1, so (E1 · C1)x1 = 1. By Lemma 2·9,

(B1 · C1)x1 ≤ (B · C)x − B1 · E1 = (B · C)x − multxB < 1 − multxB.

Thus

(B̃1 · C1)x1 < 1 − multxB + (a + multxB − 1) = a ≤ 1.

By induction hypothesis for the germ (X1 � x1, B̃1 + aC1) and blowing-up at most n − 1
times,

a(En, X, �) = a(En, X1, B̃1 + aC1) > 1 − a,

and we finish the proof for Case 2.
Case 3. a + multxB − 1 ≥ 0, x1 ∈ E1, but x1 �∈ C1. By Lemma 2·9,

(B1 · E1)x1 ≤ B1 · E1 = multxB ≤ (B · C)x < 1.
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By induction hypothesis for the germ (X1 � x1, B1 + (a + multxB − 1)E1) and blowing-up
at most n − 1 times and apply Lemma 3·4,

a(En, X, �) = a(En, X1, B1 + (a + multxB − 1)E1) ≥ 1 − (a + multxB − 1) > 1 − a,

and we finish the proof for Case 3.

LEMMA 3·6. Let X � x be a smooth germ, B ≥ 0 an R-divisor on X and C a prime divisor
on X such that C �⊂ Supp B and C is smooth at x. Let g1:X1 → X be the smooth blow-up of
x with exceptional divisor E1, C1 := (g−1

1 )∗C, and B1 := (g−1
1 )∗B. Let g2:X2 → X1 be the

smooth blow-up at x1 := C1 ∩ E1 with exceptional divisor E2 and B2 := (g−1
2 )∗B1. Then

(B · C)x ≥ 2(B2 · E2).

Proof. Let C2 := (g−1
2 )∗C1 and E1

′ := (g−1
2 )∗E1. By Lemma 2·9,

B1 · E1 = B2 · E′
1 + (E′

1 · E2)(B2 · E2) ≥ B2 · E2

and

(B1 · C1)x1 =
∑

y∈g−1
2 (x1)

(B2 · C2)y + (B2 · E2)(C2 · E2) ≥ (B2 · E2)(C2 · E2) = B2 · E2.

Thus

(B · C)x =
∑

y∈g−1
1 (x)

(B1 · C1)y + B1 · E1 ≥ (B1 · C1)x1 + B1 · E1 ≥ 2(B2 · E2).

3·2. Dual graph of fE

Roughly speaking, this subsection shows that the dual graph of fE is almost always a chain
when E is a divisor which computes the mld. We remark that [15, lemma 3·18] shows that
there exists such an E such that the dual graph of fE is a chain, while we show that for any
such E, the dual graph of fE is a chain.

We need the following result of Kawakita. Notice that the “in particular” part of the
following theorem is immediate from the construction in [22, remark 3].

THEOREM 3·7 ([22, theorem 1, remark 3]). Let (X � x, B) be a smooth lc surface germ
and E a divisor over X � x such that a(E, X, B) = mld(X � x, B). Then there exists a weighted
blow-up of X � x which extracts E. In particular, E is a Kollár component of X � x.

LEMMA 3·8. Let (X � x, B) be a smooth lc surface germ and E a divisor over X � x such
that a(E, X, B) = mld(X � x, B). Then D(fE) is a chain.

Proof. By Theorem 3·7, there exists a weighted blow-up f :Y → X which extracts E. E
contains at most two singular points of Y which are cyclic quotient singularities, and locally
analytically, E is one coordinate line of each cyclic quotient singularity. Let g:W → Y be the
minimal resolution of Y near E, then f ◦ g = fE and D(fE) is a chain.

LEMMA 3·9. Let a ∈ [0, 1] be a real number. Assume that:
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(i) (X � x, � := B + aC) a smooth lc surface germ, where B ≥ 0 is an R-divisor and C
is a prime divisor;

(ii) C �⊂ Supp B and C is smooth at x; and

(iii) (B · C)x < 2.

Then any divisor E over X � x such that a(E, X, �) = mld(X � x, �) satisfies the following.
Let CE := (f −1

E )∗C, then CE ∪ Exc(fE) is a chain and CE is one tail of CE ∪ Exc(fE). In
particular, the dual graph of CE ∪ Exc(fE) is the following:

Here CE is denoted by the black circle.
Proof. By the construction of fE, if CE ∪ Exc(fE) is a chain, then CE is a tail of

CE ∪ Exc(fE). Let n := n(E) and let Ci be the strict transform of C on Xi,E for each
i ∈ {0, 1, . . . , n}. Since C is smooth at x, by the construction of fE, Ci ∪i

k=1 Ek
i is simple

normal crossing over a neighbourhood of x and its dual graph does not contain a circle for
each i ∈ {0, 1, . . . , n}. Since a(E, X, �) = mld(X � x, �), a(Ei, X, �) ≥ a(E, X, �) for every
i ∈ {1, 2, . . . , n}.

Suppose that the lemma does not hold, then there exists a positive integer m ∈
{1, 2, . . . , n}, such that Ci ∪i

k=1 Ek
i is a chain, Ci is a tail of Ci ∪i

k=1 Ek
i for any i ∈

{0, 1, . . . , m − 1}, and Cm ∪m
k=1 Ek

m is not a chain. Since any graph without a circle that is
not a chain contains at least 4 vertices, m ≥ 3.

By Lemma 2·8, ∪n
k=1Ek

n is a chain, hence ∪m
k=1Ek

m is a chain. Since Cm ∪m
k=1 Ek

m is not
a chain, xm−1 := centerXm−1,E Em ∈ Em−1\Cm−1, and for any integer i ∈ {1, 2, . . . , m − 1},
fi,E is the smooth blow-up of a point xi−1 ∈ Ci−1, and if i ∈ {2, 3, . . . , m − 1}, then fi,E is
the smooth blow-up of Ci−1 ∩ Ei−1. In particular, since m ≥ 3, xm−3 ∈ Cm−3 and xm−2 ∈
Cm−2 ∩ Em−2.

Claim 3·10. (Bm−1 · Em−1)xm−1 ≥ 1.
Proof. Let am−1 := max{0, 1 − a(Em−1, X, �)}. Since (X � x, �) is lc, am−1 ∈ [0, 1]. If

(Bm−1 · Em−1)xm−1 < 1, then by Lemma 3·5,

mld(X � x, �) = a(En, X, �) = a(En, Xm−1, Bm−1 + (1 − a(Em−1, X, �))Em−1)

≥ a(En, Xm−1, Bm−1 + am−1Em−1)

≥ mld(Xm−1 � xm−1, Bm−1 + am−1Em−1)

> 1 − am−1 = a(Em−1, X, �),

a contradiction.
Proof of Lemma 2·9 continued. Since m ≥ 3, by Lemmas 2·9, 3·6 and Claim 3·10,

(B · C)x ≥ (Bm−3 · Cm−3)xm−3 ≥ 2(Bm−1 · Em−1) ≥ 2(Bm−1 · Em−1)xm−1 ≥ 2,

which contradicts our assumptions.

LEMMA 3·11. Let l, r ∈ [0, 1] be two real numbers. Assume that:

(i) (X � x, � := B + lL + rR) is a smooth lc surface germ, where B ≥ 0 is an R-divisor
and L,R are two different prime divisors;

(ii) L �⊂ Supp B, R �⊂ Supp B, and (X � x, L + R) is log smooth; and

(iii) either (B · L)x < 1 or (B · R)x < 1.
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Then any divisor E over X � x such that a(E, X, �) = mld(X � x, �) satisfies the following.
Let LE := (f −1

E )∗L and RE := (f −1
E )∗R, then LE ∪ RE ∪ Exc(fE) is a chain and LE, RE are

the tails of LE ∪ RE ∪ Exc(fE). In particular, the dual graph of LE ∪ RE ∪ Exc(fE) is the
following:

.

Here LE and RE are denoted by the left black circle and the right black circle respectively.

Proof. By the construction of fE, if LE ∪ RE ∪ Exc(fE) is a chain, then LE, RE are the
tails of LE ∪ RE ∪ Exc(fE). Let n := n(E) and let Li, Ri be the strict transforms of Li, Ri on
Xi,E for each i ∈ {0, 1, . . . , n}. Since (X � x, L + R) is log smooth and by the construction
of fE, Li ∪ Ri ∪i

k=1 Ek
i is simple normal crossing over a neighbourhood of x and its dual

graph does not contain a circle for each i ∈ {0, 1, . . . , n}. Since a(E, X, �) = mld(X � x, �),
a(Ei, X, �) ≥ a(E, X, �) for every i ∈ {1, 2, . . . , n}.

Suppose that the lemma does not hold, then there exists a positive integer m ∈
{1, 2, . . . , n}, such that Li ∪ Ri ∪i

k=1 Ek
i is a chain and Li, Ri are the tails of Li ∪ Ri ∪i

k=1 Ek
i

for any i ∈ {0, 1, . . . , m − 1}, and Lm ∪ Rm ∪m
k=1 Ek

m is not a chain. Since any graph without
a circle that is not a chain contains at least 4 points, m ≥ 2.

By Theorem 3·7, ∪n
k=1Ek

n is a chain, hence ∪m
k=1Ek

m is a chain. By the construction of fE
and the choice of m, xm−1 := centerXm−1,E Em ∈ Em−1\(Lm−1 ∪ Rm−1).

Claim 3·12. (Bm−1 · Em−1)xm−1 ≥ 1.
Proof. Let am−1 := max{0, 1 − a(Em−1, X, �)}. Since (X � x, �) is lc, am−1 ∈ [0, 1]. If

(Bm−1 · Em−1)xm−1 < 1, then by Lemma 3·5,

mld(X � x, �) = a(En, X, �) = a(En, Xm−1, Bm−1 + (1 − a(Em−1, X, �))Em−1)

≥ a(En, Xm−1, Bm−1 + am−1Em−1)

≥ mld(Xm−1 � xm−1, Bm−1 + am−1Em−1)

> 1 − am−1 = a(Em−1, X, �),

a contradiction.
Proof of Lemma 3·11 continued. Since m ≥ 2, by Lemma 2·9 and Claim 3·12,

(B · L)x ≥ (Bm−2 · Lm−2)xm−2 ≥ (Bm−1 · Em−1)xm−1 ≥ 1

and

(B · R)x ≥ (Bm−2 · Rm−2)xm−2 ≥ (Bm−1 · Em−1)xm−1 ≥ 1

which contradict our assumptions.

4. Classification of divisors computing mlds
4·1. A key lemma

The following lemma is similar to [25, theorem 4·15] and plays an important role in the
proof of our main theorems.

LEMMA 4·1. Let m be a non-negative integer, (X � x, B) a plt surface germ, f :Y → X the
minimal resolution of X � x, and BY := f −1∗ B. Then:
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(i) for any prime divisor F ⊂ Exc(f ), BY · F < 2;

(ii) there exists at most one prime divisor F ⊂ Exc(f ) such that BY · F ≥ 1; and

(iii) if E ⊂ Exc(f ) is a prime divisor such that BY · E ≥ 1, then X � x is an A-type
singularity and E is a tail of D(f ).

.

Proof. Let F1, . . . , Fm be the prime exceptional divisors of h for some positive integer
m, and let v1, . . . , vm be the vertices corresponding to F1, . . . , Fm in D(f ) respectively. We
construct an extended graph D̄(f ) in the following way:

(i) the vertices of D̄(f ) are v0, v1, . . . , vm;

(ii) for any i, j ∈ {1, 2, . . . , m}, vi and vj are connected by a line if and only if vi and vj are
connected by a line in D(f );

(iii) for any i ∈ {1, 2, . . . , m}, v0 and vi are connected by �BY · Fi� lines.

Moreover, we may write

KY + BY −
m∑

i=1

aiFi = f ∗(KX + B),

where ai := a(Fi, X, B) − 1. Since (X � x, B) is plt and f is the minimal resolution of X � x,
0 ≥ ai > −1 for each i. Let A := ∑m

i=1 aiFi.
If D̄(f ) is not connected, then BY · Fi < 1 for each i and there is nothing left to prove.

Therefore, we may assume that D̄(f ) is connected.
Claim 4·2. D̄(f ) does not contain a circle.
Proof. Suppose that D̄(f ) contains a circle. We let vk0 := v0, vk1 , . . . , vkr be the vertices

of this circle for some positive r such that D̄(f ) contains one of the following sub-graphs:

Let H := −∑r
i=1 Fki . Then

H · Fki = −2 − F2
ki

= KY · Fki ≤ (KY + BY ) · Fki = A · Fki

for each i ∈ {2, 3, . . . , r − 1},
H · Fki = −1 − F2

ki
= KY · Fki + 1 ≤ (KY + BY ) · Fki = A · Fki

for each i ∈ {1, r} when r ≥ 2,

H · Fk1 = −F2
k1

= KY · Fki + 2 ≤ (KY + BY ) · Fki = A · Fki

when r = 1, and

H · Fi ≤ 0 ≤ (KY + BY ) · Fi = A · Fi

for each i �∈ {k1, . . . , kr}. By Lemma 2·10, aki ≤ −1 for each i, a contradiction.
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Claim 4·3. D̄(f ) does not contain a fork.
Proof. Assume that D̄(f ) contains a fork. By Claim 4·2, D̄(f ) does not contain a circle.

Therefore, v0 is not a fork of D̄(f ). In particular, there exist a positive integer r and vertices
vk0 := v0, vk1 , . . . , vkr , vl1 , vl2 such that D̄(f ) contains the following sub-graph:

Let H := −∑r
i=1 Fki − 1

2 Fl1 − 1
2 Fl2 . Then

H · Fli = −1 − 1

2
F2

li ≤ −2 − F2
li = KY · Fli ≤ (KY + BY ) · Fli = A · Fli

for each i ∈ {1, 2},
H · Fki = −2 − F2

ki
= KY · Fki ≤ (KY + BY ) · Fki = A · Fki

for each i ∈ {2, 3, . . . , r − 1},
H · Fki = −1 − F2

ki
= KY · Fki + 1 ≤ (KY + BY ) · Fki = A · Fki

for i = 1, and

H · Fi ≤ 0 ≤ (KY + BY ) · Fi = A · Fi

for each i �∈ {k1, . . . , kr, l1, l2}. By Lemma 2·10, akr ≤ −1, a contradiction.
Proof of Lemma 4·1 continued. By Claims 4·2 and 4·3, D̄(f ) does not contain a circle or a

fork. Therefore, D̄(f ) is a chain. Since D(f ) is connected and D̄(f ) has D(f ) as a sub-graph,
D(f ) is a chain and v0 is a tail of D̄(f ). The lemma immediately follows from the structure
of D̄(f ) and D(f ).

4·2. A-type singularities

LEMMA 4·4. Let X � x be a surface germ of A-type, E a prime divisor on X, f :Y → X the
minimal resolution of X � x, and EY := f −1∗ E. Let F1, . . . , Fm be the prime exceptional divi-
sors over X � x. Assume that EY ∪ ∪m

i=1Fi is simple normal crossing over a neighbourhood
of x and the dual graph of EY ∪ ∪m

i=1Fi is the following:

Then (X � x, E) is plt.

Proof. We may write

KY + EY −
m∑

i=1

aiFi = f ∗(KX + E),

where ai := a(Fi, X, E) − 1. Let H := −∑m
i=1 Fi and A := ∑m

i=1 aiFi. Then

H · F1 = −F2
1 = 2 + KY · F1 = 1 + (KY + EY ) · F1 = 1 + A · F1 > A · F1
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if m = 1,

H · F1 = −1 − F2
1 = 1 + KY · F1 = (KY + EY ) · F1 = A · F1

if m ≥ 2,

H · Fi = −2 − F2
i = KY · Fi = (KY + EY ) · Fi = A · Fi

if m ≥ 2 and 2 ≤ i ≤ m − 1, and

H · Fm = −1 − F2
m = 1 + KY · Fm = 1 + (KY + EY ) · Fm = 1 + A · Fi > A · Fm

if m ≥ 2. By Lemma 2·10, ai > −1 for each i, hence (X � x, E) is plt.

THEOREM 4·5. Let (X � x, B) be a plt surface germ such that X � x is an A-type singu-
larity. Then for any divisor E over X � x such that a(E, X, B) = mld(X � x, B), E is a Kollár
component of X � x.

Proof. For any model X’ of X such that centerX′E is a divisor, we let EX′ be the center of
E on X’. Let h:Y → X be the minimal resolution of X and F1, . . . , Fm the prime exceptional
divisors of h with the following dual graph:

Let BY := f −1∗ B and ai := 1 − a(Fi, X, B) for each i. Then ai ∈ [0, 1) for each i. There are
three cases:

Case 1. E is on Y . In this case, we let W := Y and g := h. Then D(g) is a chain. Moreover,
by the construction of g, for any prime divisor F �= EW in Exc(g), F2 ≤ −2.

Case 2. E is not on Y , centerYE := y ∈ Fi for some i, and centerYE �∈ Fj for any j �= i. In
this case, since a(E, X, B) = mld(X � x, B), a(E, X, B) ≤ 1 − ai. By Lemma 3·5, BY · Fi ≥ 1.
By Lemma 4·1(iii), i = 1 or m. We let fE:W → Y the sequence of smooth blow-ups as in
Definition-Lemma 3·1, and g := h ◦ fE. By Lemma 4·1(i), BY · Fi < 2, hence (BY · Fi)y < 2.
Since

KY + BY +
∑

aiFi = h∗(KX + B),

by Lemma 3·9, D(g) is a chain. Moreover, by the construction of g, for any prime divisor
F �= EW in Exc(g), F2 ≤ −2.

Case 3. E is not on Y and centerYE := y ∈ Fi ∩ Fi+1 for some i. In this case, we let fE:W →
Y the sequence of smooth blow-ups as in Definition-Lemma 3·1, and g := h ◦ fE. By Lemma
4·1(ii), either BY · Fi < 1 or BY · Fi+1 < 1, hence either (BY · Fi)y < 1 or (BY · Fi+1)y < 1.
Since

KY + BY +
∑

aiFi = h∗(KX + B),

by Lemma 3·11, D(g) is a chain. Moreover, by the construction of g, for any prime divisor
F �= EW in Exc(g), F2 ≤ −2.

By [25, remark 4·9(2)], there exists a contraction φ:W → Z over X of Supp Exc(g)\EW .
Since D(g) is a chain in all three cases, Exc(g) is snc. By Lemma 4·4, (Z � z, EZ) is plt for
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any singular point z of Z in EZ . Thus (Z, EZ) is plt near EZ , hence E is a Kollár component
of X � x.

4·3. D-type and E-type singularities

LEMMA 4·6. Let X � x be a surface germ of Dm-type for some integer m ≥ 3, E a prime
divisor on X, f :Y → X the minimal resolution of X � x, and EY := f −1∗ E. Let F1, . . . , Fm

be the prime exceptional divisors over X � x. Assume that EY ∪ ∪m
i=1Fi is simple normal

crossing over a neighbourhood of x, F2
m−1 = F2

m = −2, and the dual graph of EY ∪ ∪m
i=1Fi

is the following:

.

Then (X � x, E) is lc but not plt.
Proof. By computing intersections numbers,

KY + EY +
m−2∑
i=1

Fi + 1

2
(Fm−1 + Fm) = f ∗(KX + E).

Since (Y , EY +∑m−2
i=1 Fi + 1

2 (Fm−1 + Fm)) is log smooth over a neighbourhood of x, (X �
x, E) is lc but not plt.

LEMMA 4·7. Let 0 < m1 < m2 < m3 := m be integers, (X � x, B) a plt surface germ,
f :Y → X the minimal resolution of X � x with prime exceptional divisors F0, . . . , Fm with
the following dual graph D(f ):

.
Let ai := a(Fi, X, B) − 1 for each i. Then:

(i) a(F0, X, B) ≤ a(Fi, X, B) for any i ∈ {1, 2, . . . , m1}; and

(ii) if a(F0, X, B) = a(Fl, X, B) for some l ∈ {1, 2, . . . , m1}, then

(a) ai = a0 for every i ∈ {0, 1, . . . , l},
(b) am1+1 = am2+1 = 1

2 a0,
(c) F2

i = −2 for any i ∈ {0, 1, . . . , l − 1, m1 + 1, m2 + 1}, and
(d) either m = m2 + 1 = m1 + 2, or B = 0 and X � x Du Val.

Proof. Let BY := f −1∗ B. Then

KY + BY −
m∑

i=1

aiFi = f ∗(KX + B).

Since (X � x, B) is plt and f is the minimal resolution of X � x, −1 < ai ≤ 0 for each i.
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If a0 < ai for any i ∈ {1, 2, . . . , m1} there is nothing to prove. Otherwise, there exists k ∈
{1, 2, . . . , m1}, such that ak = min{ai | 0 ≤ i ≤ m1} ≤ a0. We define

A :=
k∑

i=0

aiFi + am1+1Fm1+1 + am2+1Fm2+1, and H := ak

(
k∑

i=0

Fi + 1

2
Fm1+1 + 1

2
Fm2+1

)
.

Then

H · Fi = ak(F2
i + 2) = −akKY · Fi ≤ KY · Fi ≤ (KY + BY ) · Fi = A · Fi,

when 0 ≤ i < k and if the equality holds then KY · Fi = 0,

H · Fk = ak(F2
k + 1) ≤ akF2

k + ak−1 = A · Fk

and if the equality holds then ak = ak−1, and

H · Fmi+1 = ak(1 + 1

2
F2

mi+1) = −ak

2
KY · Fmi+1 ≤ KY · Fmi+1

≤ (KY + BY ) · Fmi+1 ≤ A · Fmi+1

for i ∈ {1, 2}, and if the equality holds, then:

(i) KY · Fmi+1 = 0, and

(ii) either mi+1 = mi + 1, or mi+1 ≥ mi + 2 and ami+2 = 0.

Thus H · Fi ≤ A · Fi for any i ∈ {0, 1, . . . , k, m1 + 1, m2 + 1}. By Lemma 2·10, ai ≤ ak for
any i ∈ {0, 1, . . . , k} and am1+1 = am2+1 = 1/2ak. Since ak = min{ai | 0 ≤ i ≤ m1} ≤ a0, ai =
ak = min{ai | 0 ≤ i ≤ m1} for any i ∈ {0, 1, . . . , k}. Thus for any l ∈ {1, 2, . . . , m1} such that
a(F0, X, B) = a(Fl, X, B), we may pick k = l, which shows (i) and (ii)(a). Moreover, we have
that H · Fi = A · Fi for any i ∈ {0, 1, . . . , l, m1 + 1, m2 + 1}, which implies that:

(i) am1+1 = am2+1 = 1/2al, hence (ii)(b);

(ii) F2
i = KY · Fi = −2 for every i ∈ {0, 1, . . . , l − 1, m1 + 1, m2 + 1}, hence (ii)(c); and

(iii) either m = m2 + 1 = m1 + 2, or there exists i ∈ {1, 2} such that mi+1 ≥ mi + 2 and
ami+2 = 0.

If m = m2 + 1 = m1 + 2 then we get (ii)(d) and the proof is completed. Otherwise, there
exists i ∈ {1, 2} such that mi+1 ≥ mi + 2 and ami+2 = 0. Thus

1 = a(Fmi+2, X, B) ≤ a(Fmi+2, X, 0) ≤ 1,

which implies that a(Fi, X, B) = a(Fi, X, 0), hence B = 0. Moreover, since f is the minimal
resolution of X � x,

∑m
i=1 aiFi ∼X KY is nef over X. By Lemma 2·10, ai = 0 for every i, and

X � x is Du Val.

LEMMA 4·8. Let (X � x, B) be a plt surface germ such that X � x is a Dm-type singularity
for some integer m ≥ 4, or an Em-type singularity for some integer m ∈ {6, 7, 8}. Let f :Y → X
be the minimal resolution of X � x, and E a divisor over X � x such that a(E, X, B) = mld(X �
x, B). Then E ⊂ Exc(f ).
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Proof. Let F1, . . . , Fm be the prime exceptional divisors of f, ai := 1 − a(Fi, X, B) for
each i, and BY := f −1∗ B. Then

KY + BY +
m∑

j=1

ajFj = f ∗(KX + B).

Suppose that E �⊂ Exc(f ). Let y := centerYE.

Claim 4·9. y = Fi ∩ Fk for some i �= k.
Proof. Then there exists an integer i ∈ {1, 2, . . . , m} such that y ∈ Fi. Thus

mld(Y � y, BY +
m∑

j=1

ajFj) ≤ a

⎛
⎝E, Y , BY +

m∑
j=1

ajFj

⎞
⎠

= a(E, X, B) = mld(X � x, B) ≤ 1 − ai.

By Lemma 35,

(B +
∑
j �=i

ajFj) · Fi ≥
⎛
⎝
⎛
⎝B +

∑
j �=i

ajFj

⎞
⎠ · Fi

⎞
⎠

y

≥ 1.

By Lemma 4·1(iii), B · Fi < 1, which implies that there exists k �= i such that y ∈ Fk. In
particular, y = Fi ∩ Fk.

Proof of Lemma 4·8 continued. By Claim 4·9, y = Fi ∩ Fk for some i �= k. Possibly switch-
ing i and k, we may assume that Fi is closer to the fork of D(f ) than Fk. Since (X � x, B)
is plt and f is the minimal resolution of X � x, 0 ≤ ak < 1. Thus there exists an extraction
g:W → X of Fk with induced morphism h:Y → W. Let F̄k be the center of Fk on W and
w := centerWE. Then h is the minimal resolution of W � w. Moreover, if Fi is not the fork of
D(f ), then W � w is not an A-type singularity, and if Fi is the fork of D(f ), then W � w is an
A-type singularity but Fi is not a tail of D(h). Since (X � x, B) is plt, (W � w, g−1∗ B + akFk)
is plt. By Lemma 4·1(iii),⎛

⎝
⎛
⎝B +

∑
j �=i

ajFj

⎞
⎠ · Fi

⎞
⎠

y

= ((B + akFk) · Fi)y ≤ (B + akFk) · Fi < 1.

By Lemma 3·5,

mld(X � x, B) = a(E, X, B) = a(E, Y , BY +
m∑

j=1

ajFj)

≥ mld(Y � y, BY +
m∑

j=1

ajFj) > 1 − ai ≥ mld(X � x, B),

a contradiction.

THEOREM 4·10. Let (X � x, B) be a plt surface germ such that X � x is a Dm-type sin-
gularity for some integer m ≥ 4 or an Em-type singularity for some integer m ∈ {6, 7, 8}. Let
f :Y → X be the minimal resolution of X � x. Then there exists a unique divisor E over X � x,
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such that a(E, X, B) = mld(X � x, B), and E is a Kollár component of X � x. Moreover, E is
the unique fork of D(f ).

Proof. By Lemma 4·8, we may only consider divisors in Exc(f ). Let F1, . . . , Fm be
the prime exceptional divisors of f such that F1 is the unique fork. Since a(Fi, X, B) ≤
a(Fi, X, 0) ≤ 1 for each i, there exists an extraction g:Yi → X of Fi for each i, and we let
F̄i be the strict transform of Fi on Yi. By Lemmas 4·4 and 4·6, (Yi, F̄i) is not plt near F̄i for
any i ∈ {2, 3, . . . , m} and (Y1, F̄1) is plt near F1. By Lemma 4·7, a(F1, X, B) = mld(X � x, B).
So E = F1 is the unique divisor we want.

THEOREM 4·11. Let (X � x, B) be a plt surface germ such that X � x is a Dm-type sin-
gularity for some integer m ≥ 4 or an Em-type singularity for some integer m ∈ {6, 7, 8}.
Assume that either B �= 0 or X � x is not Du Val. Let E be a divisor over X � x such that
a(E, X, B) = mld(X � x, B), then E is a potential lc place of X � x.

Proof. Let f :Y → X be the minimal resolution of X � x. By Lemma 4·8, E ⊂ Exc(f ). By
Theorem 4·10, we may assume that E is not the fork of D(f ). Let L1, L2, L3 be the three
branches of D(f ) and assume that E belongs to L1. By Lemma 4·7(ii)(c),(ii)(d), X � x is
a Dm-type singularity, L2 contains a unique curve F2 and L3 contains a unique curve F3

respectively, such that F2
2 = F2

3 = −2. Since (X � x, B) is plt and f is the minimal resolution
of X � x, 0 < a(E, X, B) ≤ 1, so there exists an extraction g:W → X of E with the induced
morphism h:Y → W. Let EW be the strict transform of E on W. By Lemmas 4·4 and 4·6,
(W, EW ) is lc near EW , so E is a potential lc place of X � x.

THEOREM 4·12. Let X � x be a Du Val singularity of Dm-type for some integer m ≥ 4 or
of Em-type for some integer m ∈ {6, 7, 8}. Let f :Y → X be the minimal resolution of X � x,
and E be a divisor over X � x such that a(E, X, 0) = mld(X � x, 0), then E is a potential lc
place of X � x if and only if one of the following holds:

(i) E is the fork of the D(f );

(ii) X � x is of Dm-type, the dual graph of X � x looks like the following, and E ∈
{F1, . . . , Fm−2}.

.

Proof. Since a(E, X, 0) = mld(X � x, 0), E ⊂ Exc(f ). Since X � x is Du Val, for any prime
divisor F ⊂ Exc(f ), F2 = −2. The if part follows from Lemmas 4·4 and 4·6.

To prove the only if part, we may assume that E is not the fork of D(f ). Then E is a
potential lc place of X � x if and only if there exists an extraction g:W → X of E such that
(W, EW ) is lc near EW , where EW is the strict transform of E on W. The theorem follows
from [25, theorem 4·15].

4·4. Non-plt singularities

Definition-LEMMA 4·13 (25, theorem 4·7]). Let X � x be an lc but not klt surface germ
and f :Y → X the minimal resolution of X � x. Then exactly one of the following holds:
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(i) (B-type) Exc(f ) = F is a smooth elliptic curve.

(ii) (C-type) Exc(f ) = F is a nodal cubic curve;

(iii) (F-type) Exc(f ) is a circle of smooth rational curves;

(iv) (H-type) Exc(f ) has ≥ 5 rational curves and D(f ) has the following weighted dual
graph:

.

Let m ≥ 5 be an integer. For an lc singularity of H-type as above with m exceptional
divisors, we call it an Hm-type singularity.

Although the concept of Kollár component is not defined over an lc but not klt germ, the
classification of surface lc singularities tells us when there exists a divisor which “looks like
a Kollár component”.

THEOREM 4·14. Let (X � x, B) be an lc surface germ such that X � x is not klt, and E a
prime divisor over X such that a(E, X, B) = mld(X � x, B). Then:

(i) E is a potential lc place of (X � x, B). In particular, there exists a divisorial
contraction f :Y → X which extracts E;

(ii) KY + E is plt near E if and only if E is a B-type or an H5-type singularity.

Proof. E is an lc place of (X � x, B) which implies (i). Since (X � x, B) is lc and X � x is
not klt, B = 0. By the connectedness of lc places, KY + E is plt near E if and only if E is the
only lc place over X � x, and (ii) follows from Definition-Lemma 4·13.

Now we deal with the case when X � x is klt but (X � x, B) is not plt:

THEOREM 4·15. Let (X � x, B) be an lc surface germ such that X � x is klt but (X � x, B)
is not plt. Then any divisor E over X � x such that a(E, X, B) = mld(X � x, B) is a potential
lc place of (X � x, B).

Proof. Since (X � x, B) is not plt, a(E, X, B) = mld(X � x, B) = 0, so E is an lc place of
(X � x, B), hence a potential lc place of (X � x, B).

THEOREM 4·16. Let (X � x, B) be an lc surface germ such that X � x is klt but (X � x, B)
is not plt. Then there exists a divisor E over X � x such that a(E, X, B) = mld(X � x, B) = 0
and E is Kollár component of X � x.

Proof. Let

δ := min{a(E, X, B) | E is over X � x, a(E, X, B) > 0}.
Then there exists ε ∈ (0, 1) such that δ > mld(X � x, (1 − ε)B) > 0. By Theorems 4·5 and

4·10, there exists a divisor E over X � x such that a(E, X, (1 − ε)B) = mld(X � x, (1 − ε)B) <

δ and E is a Kollár component of X � x. Since

0 ≤ a(E, X, B) < a(E, X, (1 − ε)B) < δ,

a(E, X, B) = mld(X � x, B) = 0, so E satisfies our requirements.
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Finally, recall the following result:

THEOREM 4·17. Let (X � x, B) be a dlt surface germ that is not plt. Then (X � x, B) is log
smooth and B = �B� has exactly two irreducible components near x.

Proof. Since (X � x, B) is dlt but not plt, �B� contains at least 2 irreducible components
near x. Since X is a surface, B = �B� has exactly two irreducible components near x.

There exists a divisor E over X � x such that a(E, X, B) = 0. Since (X � x, B) is dlt, x :=
centerXE belongs to the log smooth strata of (X,B), so (X � x, B) is log smooth.

5. Proof of the main theorems

Proof of Theorem 1·5. (i)(a) follows from Theorems 3·7, 4·5 and 4·17. For (i)(b), by
Theorem 4·17, (X � x, B) is plt. (i)(b)(1) follows from Theorem 4·10. (i)(b)(2) follows from
Lemma 4·8. (i)(b)(3)(A) follows from Theorem 4·11. (i)(b)(3)(B) follows from Lemma 4·7
and (i)(b)(2). (i)(b)(4)(A) is the classification of surface Du Val singularities. (i)(b)(4)(B) and
(i)(b)(4)(C) follow from Theorem 4·12. (ii)(a) follows from Theorem 4·15. (ii)(b) follows
from Theorem 4·16. (ii)(c) follows from Theorem 3·7. (iii) follows from Theorem 4·14.

Proof of Theorem 1·2. It follows from Theorem 1·5(i)(a) (i)(b)(1), (ii)(b).
Proof of Theorem 1·4. It follows from Theorem 1·5(i)(a), (i)(b)(3)(A), (i)(b)(4)(B),

(i)(b)(4)(C), (ii)(a), (iii).

6. Examples

The following example is given by Zhuang which shows that Question 1·1 does not have a
general positive answer in dimension ≥ 3 even when B = 0. We are grateful for him sharing
the example with us.

EXAMPLE 6·1 (c.f. [24, excercise 41]). Consider the threefold singularity given by

(x3 + y3 + z3 + w4 = 0) ⊂ (C4 � 0).

This is a canonical singularity, and the only divisor E which computes the mld is attained at
the ordinary blow-up. However, E is a cone over an elliptic curve, so E is lc but not klt. In
particular, E is not a Kollár component of the ambient variety.

The following example of Kawakita shows that there may not exist a divisor computing
mld(X � x, B) that is also a potential place of (X � x, B) even when X is a smooth surface. We
remark that Theorem 1·2 shows that there always exists a divisor computing mld(X � x, B)
that is a Kollár component of (X � x, 0).

EXAMPLE 6·2 (cf. [22, example 2]). Let D := (x2
1 + x3

2 + rx1x2
2 = 0) ⊂A2 for some gen-

eral real number r, and B := 2/3D. Then there exists a unique divisor E over A2 � 0 such
that mld(A2 � 0, B) = a(E, X, B) = 2/3. However, E is not a potential place of (A2 � 0, B).

The following example is complementary to Theorem 4·5, which shows that the assump-
tion “(X � x, B) is plt” is necessary.

EXAMPLE 6·3. Let Z � z be a D4-type Du Val singularity with the following dual graph:
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.

Let g:X → Z be the extraction of C. Then X has a unique singularity x ∈ C such that X � x
is an A3-type Du Val singularity. Let f :Y → X be the minimal resolution of (X � x, C) and
CY := f −1∗ C. Then

KY + CY + F1 + 1

2
F2 + 1

2
F3 = f ∗(KX + C).

In particular, let h:W → Y be the smooth blow-up of CY ∩ F1 with the exceptional divisor
E. Then a(E, X, C) = mld(X � x, C) = 0, but by [25, Theorem 4·15(2)], E is not a Kollár
component of X � x.

The last example is complementary to Theorem 4·10 and 4·12, which shows that even
for non-Du Val singularities of D-type and B = 0, it is possible that some divisor which
computes the minimal log discrepancy is not a Kollár component.

EXAMPLE 6·4. Let G := BD12(5, 3) be a binary dihedral group in GL(2, C). By [10,
table 3·2], the quotient singularity X � x ∼=C2/G � 0 is a D4-type singularity and its minimal
resolution f :Y → X has the following dual graph:

.

where F2
1 = −3 and F2

i = −2 for i ∈ {2, 3, 4}. Thus a(F1, X, 0) = 1/2 = mld(X � x, 0), but by
Theorem 4·10, F1 is not a Kollár component of X � x.
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