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Abstract
In this paper, the notion of locally algebraic intersection structure is introduced for algebraic L-domains.
Essentially, every locally algebraic intersection structure is a family of sets, which forms an algebraic L-
domain ordered by inclusion. It is shown that there is a locally algebraic intersection structure which
is order-isomorphic to a given algebraic L-domain. This result extends the classic Stone’s representa-
tion theorem for Boolean algebras to the case of algebraic L-domains. In addition, it can be seen that
many well-known representations of algebraic L-domains, such as logical algebras, information systems,
closure spaces, and formal concept analysis, can be analyzed in the framework of locally algebraic intersec-
tion structures. Then, a set-theoretic uniformity across different representations of algebraic L-domains is
established.

Keywords: Stone’s representation theorem; domain theory; algebraic L-domain; algebraic intersection structure

1. Introduction
The development of re-framing algebraic structures and order structures within the theory of
sets can be traced back to Stone’s representation theorem for Boolean algebras (Stone, 1936) and
Birkhoff ’s representation theorem for finite distributive lattices (Birkhoff, 1937). Their results
show that every Boolean algebra or finite distributive lattice can be represented as a family of
sets. So far, many scholars have pointed out that more structures such as groups, rings, lattices,
and semilattices can be better understood through the theory of sets.

Algebraic L-domains, as a class of special order structures, are introduced by Jung (1989). The
category of algebraic L-domains with Scott continuous function as morphisms, denoted by AL,
is cartesian closed. So, it is a good candidates for denotational semantics of programming lan-
guages and has been widely applied in theoretical computer science, especially in domain theory.
Establishing concrete and comprehensible descriptions for various domain structures is an impor-
tant issue in domain theory research. In different developments, a large number of representations
of domain theory have been presented (He and Xu, 2019; Jung et al., 1999; Rounds, and Zhang,
2001; Vickers, 2004; Wang and Li, 2022).

Algebraic lattices are a proper subclass of algebraic L-domains, which have an elementary
set-theoretic representation as topped algebraic intersection structures. An algebraic intersection
structure L on a set X is a non-empty family of subsets of X which satisfies

∗Supported by Shandong Provincial Natural Science Foundation (ZR2023MA051, ZR2022MA022).

© The Author(s), 2024. Published by Cambridge University Press.

https://doi.org/10.1017/S0960129524000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000069
https://orcid.org/0000-0002-2382-936X
mailto:longchunw@163.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129524000069&domain=pdf
https://doi.org/10.1017/S0960129524000069


Mathematical Structures in Computer Science 245

(a)
⋂

i∈I Ai ∈L for every non-empty family {Ai}i∈I in L,
(b)

⋃
i∈I Ai ∈L for every directed family {Ai}i∈I in L.

If L also satisfies

(c) X ∈L,

then it is called a topped algebraic intersection structure. Moreover, algebraic intersection
structures can be used to characterize Scott domains, another important subclass of algebraic
L-domains.

As far as we know, algebraic lattices and Scott domains are the only two subclasses of domains
which have purely set-theoretic representations. The main purpose of this paper is to provide a
set-theoretic representation for algebraic L-domains. An algebraic domain L is called an algebraic
L-domain if it satisfies the local property that for all x in L, the principal ideals ↓x are algebraic
lattices. Motivated by this observation and the set-theoretic representation of algebraic lattices,
we define a locally algebraic intersection structure for every algebraic L-domain. The notion of
a locally algebraic intersection structure generalizes an algebraic intersection structure by simply
changing condition (a), within which the local property of an algebraic L-domain is easily char-
acterized. Although we illustrate that an algebraic L-domain consisting of a family of sets with set
inclusion may not be a locally algebraic intersection structure, we will prove that every algebraic
L-domain can be rewritten as a locally algebraic intersection structure. This enables us to perform
algebraic L-domain in a pure set-theoretic form.

We realize that there are at least four different representations for algebraic L-domains, ranging
from Chen and Jung’s disjunctive propositional logics (Chen and Jung, 2006), over Wu et al.’s
algebraic L-information systems (Wu et al., 2016) and algebraic L-closure spaces (Wu et al., 2021),
to Guo et al.’s LCF contexts (Guo et al., 2018). We will prove that all of the four representations
of algebraic domains are locally algebraic intersection structures. So these known representations
for algebraic L-domains have a unified set-theoretic form.

The paper is organized as follows. Section 2 focuses on preliminary of this paper. In Section 3,
we introduce the notion of a locally algebraic intersection structure and give the representation
theorem of algebraic L-domains. This section also establishes the category of locally algebraic
intersection structures with Scott continuous functions, which is not only a subcategory ofAL but
also is equivalent to AL. In Section 4, we give a brief review of the four existing representations of
algebraic L-domains and show that they are all of locally algebraic intersection structures.

2. Preliminaries
This section recalls some domain theoretical terminology that will be used in this paper, and we
refer to Davey and Priestly (2002) and Gierz et al. (2003) for the standard notions of domain
theory.

Let (P,≤ ) be a poset and let A be a subset of P. We denote by ↓A the set of all elements x ∈ P
with x≤ a for some a ∈A, that is,

↓A= {x ∈ P | (∃a ∈A)x≤ a}.
For the case that A is a singleton {a}, we write ↓a for ↓{a}. Note that the principal ideals are just
the sets ↓a for all a ∈ P. The supremum of A, if it exists, is the least element of the set of all upper
bounds of A in P. We denoted it by

∨
A. The infimum

∧
A of A is defined dually. In the case of

pairs of elements, it is customary to write x∧ y for the infimum
∧{x, y} when it exists.
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Definition 2.1. (Gierz et al. 2003) Let (P,≤ ) be a poset.

(1) The poset P is said to be a complete lattice if every subset of it has an infimum.
(2) If x∧ y exists for all x, y ∈ P, then P is called a semilattice.
(3) A non-empty subset D of P is said to be directed if for every x, y ∈D, there is some z ∈D

such that x≤ z and y≤ z.
(4) The poset P is said to be a dcpo if every directed subset of it has a supremum.
(5) An element k ∈ P is said to be compact, if whenever D⊆ P is directed for which

∨
D exists

and k≤ ∨
D, then k≤ d for some d ∈D.

(6) If P is a dcpo and every element in P is a directed supremum of compact elements, then P
is called an algebraic domain.

We denote by K(P) the set of all compact elements of a poset P.

Definition 2.2. (Jung 1989) An algebraic domain D is said to be an algebraic L-domain if for
every element x in D, the principal ideal

↓x= {y ∈D | y≤ x}
is a complete lattice.

Definition 2.3. (Gierz et al. 2003) Let P and Q be algebraic domains. A monotonic function
f : P →Q is called Scott continuous if it maps suprema of directed sets to the corresponding
suprema.

3. Representation Theorem of L-Domains
We begin our theory with the following definition.

Definition 3.1. A non-empty family C of subsets of a set X is said to be a locally algebraic
intersection structure provided that

(L1) for every directed family {Ci ∈ C | i ∈ I}, the directed union
⋃

i∈I Ci ∈ C,
(L2) for every C ∈ C and non-empty family {Cj ∈ C | Cj ⊆ C, j ∈ J}, the intersection

⋂
j∈J Cj

belongs to C.

Clearly, every algebraic intersection structure, especially every topped algebraic intersection
structure, is a locally algebraic intersection structure.

Example 3.2. Let X = {a, b, c, d, e} and C = {{a}, {a, b}, {a, c}, {a, b, c, d}, {a, b, c, e}}. Then C is a
locally algebraic intersection structure on X. However, C is not an algebraic intersection structure. In
addition, the poset (C,⊆ ) is defined as in Fig. 1.

Remark 3.3. Let C be a locally algebraic intersection structure on a set X.

(1) By condition (L1), C forms a dcpo with respect to inclusion, in which the supremum of
every directed family is given by set union.

(2) For every B ∈ C and every subset A of B, the set {C ∈ C |A⊆ C ⊆ B} is non-empty. We
denote by �B(A) the intersection of members of the set {C ∈ C |A⊆ C ⊆ B}, that is,
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Figure 1. The poset (C,⊆ ) in Example 3.2.

�B(A)=
⋂

{C ∈ C |A⊆ C ⊆ B}. (1)

Then �B(A) ∈ C, by condition (L2). Moreover, it is easy to see that �B(A)=A whenever
A ∈ C.

The following properties are simple but useful in our theory.

Proposition 3.4. Let C be a locally algebraic intersection structure on a set X, and let M be a finite
subset of X.

(1) If B ∈ C and M ⊆ B, then M ⊆ �B(M)⊆ B.
(2) If B1, B2 ∈ C and M ⊆ B1 ⊆ B2, then �B1 (M)= �B2 (M).
(3) If B, B1, B2 ∈ C, M ⊆ B⊆ B1 and M ⊆ B⊆ B2, then �B1 (M)= �B2 (M).

Proof. (1) It is straightforward by Equation (1).
(2) Suppose that B1, B2 ∈ C andM ⊆ B1 ⊆ B2. Then,

{C ∈ C |M ⊆ C ⊆ B1} ⊆ {C ∈ C |M ⊆ C ⊆ B2}.
Take

C′ ∈ {C ∈ C |M ⊆ C ⊆ B2} − {C ∈ C |M ⊆ C ⊆ B1}.
Noting that

{C ∈ C |M ⊆ C ⊆ B1} = {C ∈ C |M ⊆ C ⊆ B1 ⊆ B2},
it follows that

C ⊆ B1 ⊆ C′ ⊆ B2
for all C ∈ {C ∈ C |M ⊆ C ⊆ B1}. Therefore,

⋂
{C ∈ C |M ⊆ C ⊆ B1} =

⋂
{C ∈ C |M ⊆ C ⊆ B2}.

Thus by Equation (1), we have �B1 (M)= �B2 (M).
(3) Suppose that B, B1, B2 ∈ C. If M ⊆ B⊆ B1 and M ⊆ B⊆ B2, then �B(M)= �B1 (M) and

�B(M)= �B2 (M), using part (2) twice. Therefore, �B1 (M)= �B2 (M).

In what follows, we useM ⊆fin X to denote thatM is a finite subset of X.

Lemma 3.5. Let C be a locally algebraic intersection structure on a set X.

(1) For every C ∈ C, we write DC for the set {�C(M) |M ⊆fin C}. Then,
DC = {�C(M) |M ⊆fin C} (2)

is directed under set inclusion and C= ⋃DC .
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(2) The set of compact elements of the dcpo (C,⊆ ) is given by:
K(C)= {�C(M) | C ∈ C and M ⊆fin C}. (3)

Proof. (1) The familyDC is non-empty since ∅ ⊆fin C and�C(∅) ∈DC . Let�C(M1), �C(M2) ∈DC ,
whereM1 andM2 are finite subsets of C. Then,M1 ∪M2 is a finite subset of C and �C(M1 ∪M2) ∈
DC . By Equation (1), it is clear that �C(M1)⊆ �C(M1 ∪M2) and �C(M2)⊆ �C(M1 ∪M2). This
shows that the familyDC is directed.

By part (1) of Proposition 3.4, �C(M)⊆ C for every finite subset M ⊆ C. Thus,
⋃DC ⊆ C.

Conversely, for every x ∈ C, we have

x ∈ {x} ⊆ �C({x})⊆
⋃

DC ,

which implies that C ⊆ ⋃DC .
(2) Suppose that C ∈ C and M ⊆fin C. If �C(M)⊆ ⋃D for some directed subfamily of

D, then M ⊆ �C(M)⊆ C and M ⊆ �C(M)⊆ ⋃D. Thus, �⋃D(M)= �C(M), by part (3) of
Proposition 3.4. Because D is a directed set and M is a finite subset of

⋃D, there is some
D0 ∈D such that M ⊆D0. Hence, �⋃D(M)⊆ �⋃D(D0). But �⋃D(D0)=D0, since D0 ∈ C. So
�⋃D(M)⊆D0, which indicates that �C(M) is a compact element in (C,⊆ ).

Conversely, suppose that C is a compact element in (C,⊆ ). By part (1), we have

C =
⋃

{�C(M) |M ⊆fin C}
and the family {�C(M) |M ⊆fin C} is directed. Invoke the compactness of C in C to find a finite set
M0 ⊆ C such that C ⊆ �C(M0). Thus, C = �C(M0), since the reverse inclusion holds from part (1)
of Proposition 3.4.

Nowwe will see that every locally algebraic intersection structure forms an algebraic L-domain.

Theorem 3.6. Let C be a locally algebraic intersection structure on a set X. Then the dcpo (C,⊆ ) is
an algebraic L-domain.

Proof. By Lemma 3.5, the dcpo (C,⊆ ) is an algebraic domain in which the compact elements are
of the form �C(M), where C ∈ C andM is a finite subset of C. So it suffices to show that the family:

↓B= {C ∈ C | C ⊆ B}
with set inclusion is a complete lattice for every B ∈ C.

Condition (L2) implies that the family ↓B is closed under non-empty intersections, and B ∈ ↓B
guarantees that ↓B is closed under the empty intersection. Then, ↓B is a complete lattice in which
the infimum of every subfamily is given by set intersection.

The converse of Theorem 3.6 does not hold.

Example 3.7. Let X denote the setN∪ {−1}, whereN is the set of natural numbers. Define a family
{Ai | i ∈N} by:

A0 = {0},A1 = {0, 1},A2 = {0, 1, 2}, · · · ,An = {0, 1, 2, · · · , n}, · · · .
Then it is ready to see that (C,⊆ ) is an algebraic L-domain, where the family C is given by:

C = {Ai | i ∈N} ∪ {X}.
However, C is not a locally algebraic intersection structure, since the union of the directed family
{A0,A1,A2, · · · ,An, · · · } is equal to N, which is not an element of C.

Theorem 3.8. (Representation theorem). Let (L,≤ ) be an algebraic L-domain. Then there is a
locally algebraic intersection structure that is order-isomorphic to L.
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Proof. For every a ∈ L, we denote by Da the set of all compact elements k of L with k≤ a, that is

Da = {k ∈K(L) | k≤ a}. (4)

Define CL by
CL = {Da | a ∈ L}. (5)

We first verify that the family CL ordered by set inclusion is order-isomorphic to the algebraic
L-domain (L,≤ ).

Define a function f : L→ CL by
f (a)=Da. (6)

Obviously, the function f is well defined and surjective. Assume Da ⊆Db, where a, b ∈ L. As L is
an algebraic L-domain, it follows that a= ∨

Da for every a ∈ L. Thus,

a=
∨

Da ≤
∨

Db = b.

Conversely, suppose that a≤ b ∈ L. Then, it is clear that Da ⊆Db, by Equation (4). Therefore, the
function f is an order isomorphism.

We next show that CL is a locally algebraic intersection structure.
Let {Dai ∈ CL | i ∈ I} be a directed subfamily in CL, where Dai are defined by Equation (4). As

we have seen that the function f : L→ CL defined by Equation (6) is an order isomorphism, the
indexing set {ai ∈ L | i ∈ I} is a directed subset of L. Take a= ∨

i∈I ai. Then, we have

k ∈Da ⇔ k ∈K(L) and k≤ a=
∨

i∈Iai
⇔ k≤ ai for some i ∈ I

⇔ k ∈
⋃

i∈IDai .

This implies that
⋃

i∈IDai is equal to Da and hence is an element of CL.
Let Da ∈ CL, where a ∈ L. Suppose that {Daj ∈ CL | j ∈ J} is a subfamily of CL such that Daj ⊆Da

for every j ∈ J. Then {aj | j ∈ J} is a subset of L and aj ≤ a for every j ∈ J. Since (L,≤ ) is an algebraic
L-domain, the set ↓a= {x ∈ L | x≤ a} is a complete lattice in the induced ordering. This implies
that the set {aj | j ∈ J} has an infimum in ↓a, say a0. We claim that

⋂
j∈JDaj =Da0 . Indeed,

k ∈
⋂

j∈JDaj ⇔ k ∈K(L) and k ∈Daj for all j ∈ J

⇔ k ∈K(L) and k≤ aj for all j ∈ J
⇔ k ∈K(L) and k≤ a0
⇔ k ∈Da0 .

Therefore,
⋂

j∈JDaj ∈ CL.

In the rest of this section, we will extend the representation of algebraic L-domains to a cat-
egorical equivalence. We have seen that every locally algebraic intersection structure ordered by
set inclusion is an algebraic L-domain in which directed suprema are just directed unions. Let
LS denote the category of locally algebraic intersection structures with Scott continuous functions
between them. Then, LS is a full subcategory of AL (the category of algebraic L-domains with
Scott continuous functions between them).

Theorem 3.9. The categories LS and AL are equivalent.

Proof. Since the category LS is a full subcategory of AL, the inclusion functor F from LS to AL is
full and faithful. With Theorem 3.8, it follows that the category LS is equivalent to that of AL.
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4. Other Representations
In this section, we give an overview of representations of algebraic L-domains, relating locally alge-
braic intersection structures with some well-known formalisms from logic, information systems,
closure spaces, and formal concept analysis.

4.1 Logical algebras
Themost conspicuous of characterizing domains as logical theory includes the work of such schol-
ars as Abramsky, Zhang, Chen, and Jung (Abramsky, 1991; Chen and Jung, 2006; Zhang, 1991).
In Chen and Jung (2006), Chen and Jung built a framework of disjunctive propositional logic and
showed how to use its Lindenbaum algebras to represent algebraic L-domains.

Definition 4.1. (Chen and Jung 2006) Let (L,∧, 0L, 1L) be a semilattice with least element 0L and
greatest element 1L.

(1) x, y ∈ L are said to be disjoint if x∧ y= 0L.
(2) A subset A⊆ L is called disjoint provided that x∧ y= 0L for all distinct elements x, y in A.
(3) The semilattice is called a D-semilattice provided that every disjoint subset A⊆ L has a

supremum
∨̇
A, where we denote by

∨̇
A the supremum of a disjoint set A.

(4) The semilattice is called a dD-semilattice provided that it is a D-semilattice and satisfies

x∧ (
∨̇

A)=
∨̇

a∈A(x∧ a)

for all elements x in L and disjoint subsets A of L.

Definition 4.2. (Chen and Jung 2006) Consider a dD-semilattice (L,∧, 0L, 1L).
(1) An element a ∈ L is said to be coprime provided that, for every disjoint subset A of L, if

a≤ ∨̇
A then a≤ x for some x ∈A. We denote by Cp(L) the set of coprime elements.

(2) The dD-semilattice is said to be coprime-generated if for each x ∈ L, there is a unique
disjoint subset A⊆Cp(L) such that x= ∨̇

A.

Definition 4.3. (Chen and Jung 2006) Let L be a coprime-generated dD-semilattice. A proper
subset F of L is said to be a disjunctive completely prime filter provided that

(pt1) x ∈ F and x≤ y ∈ L implies that y ∈ F;
(pt2) x, y ∈ F implies that x∧ y ∈ F;
(pt3) if A is a disjoint subset of L with

∨̇
A ∈ F, then there is some a ∈A such that a ∈ F.

The family of disjunctive completely prime filters is denoted by pt(L).

Theorem 4.4. (Chen 1997; Chen and Jung 2006) Let L be a coprime-generated dD-semilattice.
Then pt(L) forms an algebraic L-domain ordered by inclusion. Moreover, every algebraic L-domain
can be generated in this way up to isomorphism.

In Chen and Jung (2006), the authors built a logical system that is logical complete with
respect to dD-semilattices. Theorem 4.4 therefore provides a logical characterization for alge-
braic L-domains. In their program, the family of disjunctive completely prime filters for a
coprime-generated dD-semilattice plays a central role. Now we show that the family of disjunctive
completely prime filters is a locally algebraic intersection structure.
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Theorem 4.5. Let (L,∧, 0L, 1L) be a coprime-generated dD-semilattice. Then pt(L) is a locally
algebraic intersection structure.

Proof. • pt(L) satisfies condition (L1).

For every directed family {Fi ∈ pt(L) | i ∈ I}, we have to prove that
⋃

i∈I Fi belongs to pt(L) by
verifying the conditions for a disjunctive completely prime filter. We illustrate this for condition
pt(3), because the others are similar. Suppose that

∨̇
A ∈ ⋃

i∈I Fi for some disjoint subset A of
L. Then there exists some i0 ∈ I such that

∨̇
A ∈ Fi0 . Using condition pt(3) for the disjunctive

completely prime filter Fi0 , it follows that a ∈ Fi0 ⊆ ⋃
i∈I Fi for some a ∈A.

• pt(L) satisfies condition (L2).

Let {Fj | j ∈ J} be a non-empty subfamily of pt(L) contained in another disjunctive completely
prime filter G. We denote by F for the intersection

⋂{Fj | j ∈ J}. It is clear that F satisfies con-
ditions pt(1) and pt(2). For condition pt(3), suppose that

∨̇
A ∈ F for some disjoint subset A of

L. Then
∨̇
A ∈ Fj for every j ∈ J, and hence

∨̇
A ∈G. This implies that there exists some a ∈A

such that a ∈G. We claim that a ∈ Fj for all j ∈ J. Indeed, fixing j ∈ J,
∨̇
A ∈ Fj implies that there

is some aj ∈A such that aj ∈ Fj, since Fj is a disjunctive completely prime filter. If aj �= a, then
aj ∧ a= 0L. Because both a and aj are in G, it follows by condition pt(2) that 0L ∈G. Thus, G= L,
a contradiction.

4.2 Information systems
In Scott (1982), D. Scott introduced information systems as a concrete representation for Scott
domains which turns out to be of remarkable significance for understanding the relationship
between program logic and denotational semantics. Since then, many similar information sys-
tems have been presented to capture other domains (Spreen et al., 2008; Spreen, 2021; Wang and
Li, 2021; Wang et al., 2022; Wu et al., 2016). The following information systems were proposed by
D. Spreen for algebraic domains.

Definition 4.6. (Spreen et al. 2008) Let A be a set, Con a family of finite subsets of A and �
a binary relation from Con to A. Then, (A, Con,�) is called an algebraic information system
provided that, for everyM,N ∈Con:

(I1) a ∈A⇒ {a} ∈Con,
(I2) M � a⇒M ∪ {a} ∈Con,
(I3) N ⊆M and N � a⇒M � a,
(I4) (M �N,N � a)⇒M � a,
(I5) M �N ⇒ (∃M1 ∈Con)M �M1 �M1 �N,
(I6) (∀F ⊆fin A)M � F ⇒ (∃N ∈Con)(M �N, F ⊆N),

whereM � F means thatM � b for all b ∈ F.

Let (A, Con,�) be an algebraic information system. For every subset X ⊆A, we define a subset
X ⊆A by:

X = {a ∈A | (∃M ∈Con)(M ⊆ X,M � a)}. (7)

Based on Spreen’s information systems, Wu et al. defined a kind of information systems for
algebraic L-domains.
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Definition 4.7. (Wu et al. 2016) An algebraic information system (A, Con,�) is said to be an
algebraic L-information system if, for everyM ∈Con and F ⊆fin M, there is N ∈Con such that

(IL1) F ⊆N and N ⊆M
(IL2) for everyM1 ∈ Con, F ⊆M1 ⊆M can always implies that N ⊆M1.

We call N anM-sup of F and denote the set of allM-sup of F by �(M, F).

Definition 4.8. (Wu et al. 2016) Let (A, Con,�) be an algebraic information system, a non-empty
subset S⊆A is called a state provided that the following conditions hold:

(S1) S⊆ S,
(S2) (∀F ⊆fin S)(∃M ∈Con)(M ⊆ S,M � F).

As usual, we denote by |A| the set of all states of an algebraic information system (A, Con,�).
Lemma 4.9. (Wu et al. 2016) Let S be a state of an algebraic L-information system (A, Con,�),
M1,M2 ∈Con and F ⊆fin A. If M1,M2 ⊆ S and F ⊆M1 ∩M2, then N1 =N2 for all N1 ∈ �(M1, F)
and N2 ∈ �(M2, F).

In Spreen et al. (2008, Proposition 32), Spreen et al. established a representation of algebraic
domains by algebraic information systems; and in Wu et al. (2016, Theorems 3.1 and 3.3), Wu et
al. provided a representation of continuous L-domains. As a direct consequence of these results,
we have

Corollary 4.10. If (A, Con,�) is an algebraic L-information system, then |A| ordered by inclusion
is an algebraic L-domain. Moreover, every algebraic L-domain can be generated in this way up to
isomorphism.

The following theorem tells us that this representation essentially defines a locally algebraic
intersection structure.

Theorem 4.11. Let (A, Con,�) be an algebraic L-information system. Then |A| is a locally algebraic
intersection structure.

Proof. • |A| satisfies condition (L1).
Suppose that the family {Si ∈ |A| | i ∈ I} is directed. For every a ∈ ⋃

i∈I Si, by Equation (7), there
is M ∈Con such that M ⊆fin

⋃
i∈I Si and M � a. Since {Si ∈ |A| | i ∈ I} is directed, M ⊆fin Si0 for

some i0 ∈ I. Thus, a ∈ Si0 ⊆ Si0 ⊆ ⋃
i∈I Si. This implies that

⋃
i∈I Si satisfies condition (S1). To

show that
⋃

i∈I Si belongs to |A|, it suffices to check that
⋃

i∈I Si also satisfies condition (S2). For
every F ⊆fin

⋃
i∈I Si, there is some i1 ∈ I such that F ⊆fin Si1 . Using condition (S2) for the state

Si1 , it follows that M ⊆ Si1 and M � F for some M ∈Con. We thus find M ∈Con that satisfies
M ⊆ ⋃

i∈I Si andM � F. Condition (S2) follows.

• |A| satisfies condition (L2).

Suppose that S ∈ |A| and the family {Sj ∈ |A| | Sj ⊆ S, j ∈ J} is non-empty. We show that⋂
j∈J Sj ∈ |A| by checking that ⋂j∈J Sj is non-empty and satisfies conditions (S1) and (S2).
Note that Sj is non-empty for every j ∈ J. Take aj ∈ Sj. Then {aj} ∈Con and ∅ ⊆fin {aj} ⊆ Sj ⊆ Sj.

By Definition 4.7, there is some N ∈ �({aj}, ∅) such that N ⊆ {aj}. Thus, N ⊆ {aj} ⊆ Sj ⊆ Sj. This
implies that N ⊆ ⋂

j∈J Sj, by Lemma 4.9. So
⋂

j∈J Sj is non-empty.
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If a ∈ ⋂
j∈J Sj, then there is some M ∈Con such that M � a and M ⊆ ⋂

j∈J Sj ⊆ Sj for every
j ∈ J. Thus, a ∈ Sj ⊆ Sj for every j ∈ J, and hence a ∈ ⋂

j∈J Sj. Condition (S1) follows. For condition
(S2), let F ⊆fin

⋂
j∈J Sj. Then, F ⊆fin Sj for every j ∈ J. Using condition (S2) for F ⊆fin Sj, there is

some Mj ∈Con such that Mj ⊆ Sj and Mj � F for every j ∈ J. Let us fix i ∈ J and Ni ∈ �(Mi, F).
By Lemma 4.9, Ni =Nj for all Nj ∈ �(Mj, F) and all j ∈ J. Note that Nj ⊆ Sj ⊆ Sj. It follows that
Ni ⊆ ⋂

j∈J Sj. Since Ni � F, there are M1,N1 ∈Con such that Ni �M1 �M1 �N1 and F ⊆N1 by
conditions (I6) and (I5). Therefore,M1 ∈Con,M1 ⊆ ⋂

j∈J Sj andM1 � F.

4.3 Closure spaces
Closure spaces are often used to restructure lattices. A classical result is that closure spaces gener-
ate exactly all of complete lattices, which becomes an inspiring source for many mathematicians.
The idea of representing other order structures in terms of closure spaces would be traced back
to Birkhoff ’s representation theorem for finite distributive lattices (Birkhoff, 1937). Recently, Wu
et al. (2021) developed the notion of an algebraic closure space to that of an algebraic L-closure
space and generalized the representation theorem of finite distributive lattices to that of algebraic
L-domains.

Definition 4.12. (Davey and Priestly 2002) LetX be a set. A function γ onP(X) is called a closure
operator on X provided that for every A, B⊆ X,

(C1) A⊆ γ (A),
(C2) A⊆ B⇒ γ (A)⊆ γ (B),
(C3) γ (A)= γ (γ (A)).

The set of all fixed points of γ is denoted as Xγ and the pair (X,Xγ ) is called a closure space.
Moreover, if for every A⊆ X,

γ (A)=
⋃

{γ (F) | F ⊆fin A}, (8)

then we call (X,Xγ ) is algebraic.

Definition 4.13. (Wu et al. 2021) Let (X,Xγ ) be an algebraic closure space. An element C ∈Xγ

is called Finset-bounded provide that, for everyM ⊆fin C, there is c ∈ C such thatM ⊆ γ (c)⊆ C.

We denote by S(Xγ ) the family of all FinSet-bounded subsets of (X,Xγ ).

Definition 4.14. (Wu et al. 2021) An algebraic closure space (X,Xγ ) is said to be an algebraic
L-closure space provided that, for every x ∈ X andM ⊆ γ (x), there is y ∈ γ (x) such that

(LC1) M ⊆ γ (y);
(LC2) z ∈ γ (x) andM ⊆ γ (z) implies that γ (y)⊆ γ (z).

Theorem 4.15. (Wu et al. 2021) Let (X,Xγ ) be an algebraic L-closure space. Then S(Xγ ) ordered
by inclusion forms an algebraic L-domain. Moreover, every algebraic L-domain can be generated in
this way up to isomorphism.

The above theorem demonstrates the capability of a closure space in representing algebraic
L-domains. In fact, the family of all FinSet-bounded subsets of an algebraic L-closure space is a
locally algebraic intersection structure.
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Theorem 4.16. Let (X,Xγ ) be an algebraic L-closure space. Then S(Xγ ) is a locally algebraic
intersection structure.

Proof. • S(Xγ ) satisfies condition (L1).
Suppose that {Ci ∈ S(Xγ ) | i ∈ I} is a directed set. Then

γ (
⋃

i∈ICi)=
⋃

{γ (M) |M ⊆fin
⋃

i∈ICi}
=

⋃
{γ (M) |M ⊆fin Ci for some i ∈ I}

⊆
⋃

i∈Iγ (Ci).

By condition (C2), it is clear that
⋃

i∈Iγ (Ci)⊆ γ (
⋃

i∈ICi). Thus,
⋃

i∈ICi ∈Xγ .
For everyM ⊆fin

⋃
i∈ICi, there is i ∈ I such thatM ⊆ γ (Ci) since the set {Ci ∈ S(Xγ ) | i ∈ I} is

directed. Noting that Ci is a Finset-bounded set, it follows thatM ⊆ γ (ci)⊆ Ci ⊆ ⋃
i∈ICi for some

ci ∈ Ci ⊆ ⋃
i∈ICi. Therefore,

⋃
i∈ICi ∈ S(Xγ ).

• S(Xγ ) satisfies condition (L2).

Suppose C ∈ S(Xγ ) and the set {Cj ∈ S(Xγ ) | Cj ⊆ C, j ∈ J} is non-empty. For every j ∈ J, we
have

⋂
j∈JCj ⊆ Cj,

thus

γ (
⋂

j∈JCj)⊆ γ (Cj)= Cj,

and hence γ (
⋂

j∈JCj)⊆ ⋂
j∈J Cj. By condition (C1), we have

⋂
j∈J Cj ⊆ γ (

⋂
j∈J Cj). Therefore,⋂

j∈J Cj = γ (
⋂

j∈J Cj), which means that
⋂

j∈J Cj ∈Xγ .
Now letM ⊆fin

⋂
j∈J Cj. ThenM ⊆fin Cj for all j ∈ J. Since Cj is a Finset-bounded set, it follows

thatM ⊆ γ (cj)⊆ Cj some cj ∈ Cj. Thus, there is yj ∈ γ (cj) such that

(1) M ⊆ γ (yj);
(2) γ (yj)⊆ γ (zj), whenever zj ∈ γ (cj) andM ⊆ γ (zj).

Take k ∈ J. Then γ (yk)⊆ Ck. We claim that γ (yi)= γ (yk) for every i ∈ I.
In fact, according to the fact that C is an Finset-bounded set and yi, yk ∈ C, there is c′ ∈ C such

that {yi, yk} ⊆ γ (c′)⊆ C. ThenM ⊆fin γ (c′), and this implies that there is y′ ∈ γ (c′) such that

(3) M ⊆ γ (y′);
(4) γ (y′)⊆ γ (z′), whenever z′ ∈ γ (c′) andM ⊆ γ (z′).

Noting that yk ∈ γ (c′) and M ⊆ γ (yk), by (4), we have γ (y′)⊆ γ (yk). Thus, y′ ∈ γ (yk)⊆ γ (ck).
It follows from M ⊆ γ (y′) that γ (yk)⊆ γ (y′) by (2). Therefore, γ (yk)= γ (y′). Similarly, γ (yi)=
γ (y′).

By the above claim, we have yk ∈ Ci for every i ∈ J, and so yk ∈ ⋂
j∈J Cj satisfying

M ⊆ γ (yk)⊆
⋂

j∈JCj.

As a result,
⋂

j∈JCj ∈ S(Xγ ).
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4.4 Formal concept analysis
Formal concept analysis was introduced by R. Wille in the 1980s as a mathematical theory for
the formalization of conceptual thinking (Ganter and Wille, 1999). A fundamental application of
formal concept analysis is to restructure lattice theory, which needs the notion of a formal context.

A formal context is a triple (Go,Ga, �P ), in which �P is a binary relation from the set Go to the
set Ga. In this case, two operators can be defined as follows:

α :P(Go)→P(Ga),A �→ {n ∈Ga | ∀m ∈A,m � n}, (9)

ω :P(Ga)→P(Go), B �→ {m ∈Go | ∀n ∈ B,m � n}. (10)

Definition 4.17. (Guo et al. 2018) Let (Go,Ga, �P ) be a formal context andF a non-empty family
of non-empty finite subset of Go. Then (Go,Ga, �P,F) is said to be a consistent F-augmented
context if, for every M ∈F , there is a directed family of {Mi ∈F | i ∈ I} such that ω ◦ α(M)=⋃

i∈I Mi.

For every A⊆Go, we denote by 〈A〉 the set ⋃{ω ◦ α(M) |M ∈F ,M ⊆fin A}.

Definition 4.18. (Guo et al. 2018) A consistent F-augmented context (Go,Ga, �P,F) is said to be
an LCF context if, for everyM ∈F and F ⊆fin ω ◦ α(M), there is Z ∈F such that

(CF1) 〈F〉 ⊆ ω ◦ α(Z)⊆ ω ◦ α(M);
(CF2) Y ∈F and 〈F〉 ⊆ ω ◦ α(Y)⊆ ω ◦ α(M) implies that ω ◦ α(Z)⊆ ω ◦ α(Y).

In this case, we call Z anM-cover of F.

Definition 4.19. (Guo et al. 2018) Let (Go,Ga, �P,F) be an LCF contexts. A subset X ofGo is said
to be an F-approximable extent if for every F ⊆fin X, there isM ∈F such that F ⊆ ω ◦ α(M)⊆ X.

We denote by C(G) the family of all F-approximable extents of (Go,Ga, �G,F).

Theorem 4.20. (Guo et al. 2018) If (Go,Ga, �G,F) is an LCF context, then C(G) ordered by set
inclusion forms an algebraic L-domain. Moreover, every algebraic L-domain can be generated in this
way up to isomorphism.

Theorem 4.20 restructures algebraic L-domains in terms of formal concept analysis. This
method can also be included into the framework of locally algebraic intersection structures.

Theorem 4.21. Let (Go,Ga, �G,F) be an LCF context. Then C(G) is a locally algebraic intersection
structure.

Proof. • C(G) satisfies condition (L1).
Suppose that the set {Xi ∈ C(G) | i ∈ I} is directed. If F ⊆fin

⋃
i∈I Xi, then F ⊆fin Xi for some

i ∈ I. Since Xi is an F-approximable extent, there isM ∈F such that

F ⊆fin ω ◦ α(M)⊆ Xi ⊆
⋃

i∈IXi.

Thus,
⋃

i∈I Xi is an F-approximable extent.

• C(G) satisfies condition (L2).

Suppose that X ∈ C(G) and the set {Xi ∈ C(G) | Xi ⊆ X, i ∈ I} is non-empty. If F ⊆fin
⋂

i∈I Xi,
then F ⊆fin Xi for all i ∈ I. Thus, there areMi ∈F such that F ⊆fin ω ◦ α(Mi)⊆ Xi. For every i ∈ I,

https://doi.org/10.1017/S0960129524000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000069


256 J. Zou et al.

let Zi be an Mj-cover of F. Pick k ∈ I. Clearly, F ⊆ 〈F〉 ⊆fin ω ◦ α(Mk). Setting M′
i =Mk ∪Mi, we

pick anM′
i-cover of F, say Z′

i . Since
〈F〉 ⊆ ω ◦ α(Zk)⊆ ω ◦ α(Mk)⊆ ω ◦ α(M′

i),
it follows that ω ◦ α(Z′

i)⊆ ω ◦ α(Zk). This implies that
〈F〉 ⊆ ω ◦ α(Z′

i)⊆ ω ◦ α(Zk)⊆ ω ◦ α(Mk).
Using condition (CF2) for Zk, we have ω ◦ α(Zk)⊆ ω ◦ α(Z′

i). Therefore, ω ◦ α(Z′
i)= ω ◦ α(Zk).

Similarly, ω ◦ α(Z′
i)= ω ◦ α(Zi). This implies that ω ◦ α(Zk)= ω ◦ α(Zi)⊆ Xi for all i ∈ I. To

sum up, we have found Mk ∈F such that F ⊆fin ω ◦ α(Mk)⊆
⋂

i∈I Xi. Thus,
⋂

i∈I Xi is an
F-approximable extent.

5. Conclusion
This paper generalizes the notion of (topped) algebraic intersection structures to that of locally
algebraic intersection structures. Just as topped algebraic intersection structures are set-theoretic
representations of algebraic lattices and algebraic intersection structures are set-theoretic rep-
resentations of Scott domains, locally algebraic intersection structures are set-theoretic repre-
sentations of algebraic L-domains. This gives a new insight into exposing the difference and
relationship among algebraic L-domains, Scott domains, and algebraic lattices. What is more
important, this makes the mathematical foundation for denotational semantics more compre-
hensible to a broad audience by showing how the abstract and complex domain theory can be
based on an elementary set-theoretic form.

This paper also establishes a uniformity across four existing well-known representations of
algebraic L-domains, including Chen and Jung’s logical algebras, Wu et al.’s information systems,
Wu et al.’s closure spaces, and Guo et al.’s formal concept analysis. Beyond these four represen-
tations, there are many approaches to representing algebraic L-domains, such as Wang and Li’s
locally continuous sequent calculi (Wang and Li, 2024), Spreen et al.’s generalized information
systems (Spreen, 2021), Wang and Li’s interpolative generalized closure spaces (Wang and Li,
2023), and Huang et al.’s formal contexts (Huang et al., 2014). Formally, there is a one-to-one
correspondence between the four different representations we discussed in Section 4 and those
we mentioned here, respectively. Then by an argument similar to that given in Section 4, it is not
difficult to see that all the representations that were mentioned here also have a close relation-
ship with locally algebraic intersection structures. So the four different representations have been
selected to investigate in Section 4 for the representativeness and typicalness they provided.

There are many representations of Scott domains and algebraic lattices by logical algebras,
formal concept analysis, information systems, and closure spaces, respectively (Abramsky, 1987;
Hitzler et al., 2006; Jung et al., 1991; Wang and Li, 2023). According to the discussion of Section 4,
it is natural to ask whether these representations are essentially an algebraic intersection structure.
This is an interesting topic for further study, and we think it has a huge possibility of being right.

To our knowledge, there are few results on purely set-theoretic representations of various
domain structures except for algebraic L-domains and Scott domains. The study of the paper now
opens a possibility that one could find more set-theoretic representations for other subclasses of
domains. For example, the case of Lawson compact algebraic L-domains may be solved by gener-
alizing the notions of algebraic intersection structures and locally algebraic intersection structures,
since they are a subclass of domains between algebraic L-domains and Scott domains.

References
Abramsky, S. (1987). Domain Theory and the Logic of Observable Properties. Phd thesis, University of London.
Abramsky, S. (1991). Domain theory in logical form. Annals of Pure and Applied Logic 51 1–77.

https://doi.org/10.1017/S0960129524000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000069


Mathematical Structures in Computer Science 257

Birkhoff, G. (1937). Rings of sets. Duke Mathematical Journal 3 (3) 443–454.
Chen, Y. (1997). Stone duality and representation of stable domain. Computers and Mathematics with Applications 34 (1)

27–41.
Chen, Y. and Jung, A. (2006). A logical approach to stable domains. Theoretical Computer Science 368 124–148.
Davey, B. A. and Priestly, H. A. (2002). Introduction to Lattices and Order, Cambridge, Cambridge University Press.
Ganter, B. and Wille, R. (1999). Formal Concept Analysis, Berlin, Springer-Verlag.
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003). Continuous Lattices and Domains,

Cambridge, Cambridge University Press.
Guo, L., Li, Q. and Yao, L. (2018). Locally complete consistent F-augmented contexts: A category-theoretic representation of

algebraic L-domains. Discrete Applied Mathematics 249 53–63.
He, Q. and Xu, L. (2019). Weak algebraic information systems and a new equivalent category of DOMof domains. Theoretical

Computer Science 763 1–19.
Hitzler, P., Kröetzsch, M. and Zhang, G. (2006). A categorical view on algebraic lattices in formal concept analysis.

Fundamenta Informaticae 74 1–29.
Huang, M., Li, Q. and Guo, L. (2014). Formal contexts for algebraic domains. Electronic Notes in Theoretical Computer

Science 301 79–90.
Jung, A. (1989). Cartesian Closed Categories of Domains, CWI Tracts, vol. 66, Amesterdam, Centrum voor Wiskunde en

Informatica.
Jung, A., Kegelmann, M. and Moshier, M. A. (1999). Multi lingual sequent calculus and coherent spaces. Fundamenta

Informaticae 37 369–412.
Larsen, K. G. andWinskel, G. (1991). Using information systems to solve recursive domain equations effectively. Information

and Computation 91 232–258.
Rounds, W. and Zhang, G. (2001). Clausal logic and logic programming in algebraic domains. Information and Computation

171 183–200.
Scott, D. S. (1982). Domains for denotational semantics. Lecture Notes in Computer Science 140 577–613.
Spreen, D., Xu, L. and Mao, X. (2008). Information systems revisited: The general continuous case. Theoretical Computer

Science 405 176–187.
Spreen, D. (2021). Generalised information systems capture L-domains. Theoretical Computer Science 869 1–28.
Stone, M. H. (1936). The theory of representations for Boolean algebras. Transactions of the American Mathematical Society

40 37–111.
Vickers, S. (2004). Entailment systems for stably locally compact locales. Theoretical Computer Science 316 259–296.
Wang, L. and Li, Q. (2021). Representations of stably continuous semi-lattices by information systems and abstract bases.

Information Processing Letters 165 106036.
Wang, L. and Li, Q. (2022). Bounded complete domains and their logical form. Information and Computation 289 104958.
Wang, L. and Li, Q. (2023). The categorical equivalence between domains and interpolative generalized closure spaces. Studia

Logica 111 187–215.
Wang, L. and Li, Q. (2024). L-domains as locally continuous sequent calculi. Archive for Mathematical Logic, http://doi.

org/10.1007/s00153-023-00903-4.
Wang, L., Zhou, X. and Li, Q. (2022). Information systems for continuous semi-lattices. Theoretical Computer Science 913

138–150.
Wu, M., Guo, L. and Li, Q. (2016). A representation of L-domains by information systems. Theoretical Computer Science 612

126–136.
Wu, M., Guo, L. and Li, Q. (2021). New representations of algebraic domains and algebraic L-domains via closure systems.

Semigroup Forum 103 700–712.
Zhang, G.-Q. (1991). Logic of Domains, Boston, Birkhauser.

Cite this article: Zou J, Zhao Y, Miao C and Wang L (2024). A set-theoretic approach to algebraic L-domains.Mathematical
Structures in Computer Science 34, 244–257. https://doi.org/10.1017/S0960129524000069

https://doi.org/10.1017/S0960129524000069 Published online by Cambridge University Press

http://doi.org/10.1007/s00153-023-00903-4
http://doi.org/10.1007/s00153-023-00903-4
https://doi.org/10.1017/S0960129524000069
https://doi.org/10.1017/S0960129524000069

	A set-theoretic approach to algebraic L-domains
	Introduction
	Preliminaries
	Representation Theorem of L-Domains
	Other Representations
	Logical algebras
	Information systems
	Closure spaces
	 Formal concept analysis

	 Conclusion


