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ON REPRESENTATIONS OF GROTHENDIECK 
TOPOSES 

MICHAEL BARR AND MICHAEL MAKKAI 

Introduction. Results of a representation-theoretic nature have played a 
major role in topos theory since the beginnings of the subject. For 
example, Deligne's theorem on coherent toposes, which says that every 
coherent topos has a continuous embedding into a topos of the form Set 
for a discrete set /, is a typical result in the representation theory of 
toposes. (A continuous functor between toposes is the left adjoint of a 
geometric morphism. For Grothendieck toposes, it is exactly the same as 
a continuous functor between them, considered as sites with their 
canonical topologies. By a continuous functor between sites on left exact 
categories, we mean a left exact functor taking covers to covers.) 

A representation-like result for toposes typically asserts that a topos 
that satisfies some abstract conditions is related to a topos of some 
concrete kind; the relation between them is usually an embedding of the 
first topos in the second (concrete) one, for which the embedding satisfies 
some additional properties (fullness, etc.). 

Freyd [8] gives important representation-like results for elementary 
toposes. Barr [4] shows that every Grothendieck topos has a continuous 
embedding in a Boolean Grothendieck topos. More recently, Joyal and 
Tierney [12] have developed representation-like theorems for toposes 
bounded over any topos, a context that is the proper generalization of the 
concept of Grothendieck topos. 

Several earlier workers in the subject knew from the beginning that 
results and techniques of model theory were closely related to representa­
tion-like results for toposes. For example, Freyd translated the "method of 
diagrams" in model theory into limit slices and exploited it to great effect 
in his 1972 paper. The work of Makkai and Reyes [18] was intended to 
make these connections explicit. That monograph used model-theoretic 
techniques to derive new results in topos theory. 

Nonetheless, model-theoretic methods as such remained foreign to the 
topos literature. Topos theorists tend to ignore results that are proved 
using model theory. For example, both Johnstone [10] and Joyal and 
Tierney [12] show that every S-bounded topos has an S-spatial open 
cover, but have ignored the fact that such a result appears for 
Grothendieck toposes in [18], Theorem 6.3.1. 
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The main results of the present paper are representation-like results for 
certain kinds of Grothendieck toposes. The methods and some of the 
results were inspired by model theory. However, in order to avoid 
the above-mentioned difficulties, we have taken care to translate all our 
arguments into category theoretic language. 

To describe the main results, we require a few definitions. We say that a 
Grothendieck topos (GT) is atomic if all its subobject lattices are complete 
atomic Boolean algebras [5] and that a GT is prime-generated if in every 
subobject lattice every object is the join of a set of join irreducible 
elements [14, 16]. Clearly, a GT is atomic if and only if it is prime 
generated and Boolean. We say that a site is separable if the underlying 
category is countable and if there is a countable base for the topology. A 
GT is separable if it has a separable site of definition. A site is coherent if 
every cover has a finite refinement. 

We say that a functor F:s/ —» & is powerful if it induces a bijection 
Sub(>4) —» Sub(ivl) on subobject lattices for each object A of srf. It is easy 
to prove that a powerful left exact embedding is full and faithful. Notice 
that if the GT stf has a continuous powerful embedding into an atomic, 
resp. prime-generated GT, then srf is itself atomic, resp. prime gener­
ated. 

The simplest kind of atomic GT is the category G-Set of G-sets for a 
group G. It is quite easy to see that a topos has a continuous powerful 
embedding into G-Set if and only if it is equivalent to the category G-Set 
for a topological group G with underlying group G. 

The following representation theorems for connected atomic GTs are 
well known from the point of view of model theory and were given 
explicitly in [16]: Any separable, or any coherent, connected atomic GT 
has a continuous powerful embedding into a category G-Set. Certainly not 
all atomic GTs can be so represented; the same paper gives an example of 
a connected atomic GT without any points. 

The simplest kind of prime-generated GT is any presheaf category SetK 

for a small category K. Thus any GT which has a continuous powerful 
embedding into a presheaf category is prime-generated. One of our main 
results is that for a separable GT the converse is true; a separable 
prime-generated GT has a continuous powerful embedding into a presheaf 
category. We also show that in the case of sheaves over a regular 
epimorphism site, the result holds without any size restriction. The fact 
that a regular epimorphism site has a full embedding into a presheaf 
category has long been known [3, 2]. 

In recent but well-established topos theoretic terminology, a geometric 
morphism whose inverse image is powerful is called hyperconnected. Thus 
the two above mentioned results can be paraphrased by saying that any 
separable prime-generated GT and any regular epimorphism sheaf topos 
has a hyperconnected cover by a presheaf topos. 
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Another result is that any S {-presentable prime-generated topos has 
enough points. Here Sj-presentable means that it is the category of 
sheaves on a site whose underlying category has cardinality =tf\ and for 
which the topology has a base of at most that cardinality. This result 
generalizes the corresponding result for atomic toposes which is essentially 
equivalent to an unpublished result of Leo Harrington's. The atomic topos 
with no points mentioned above is (2 °)+ presentable (thus S2-presentable 
if we assume the continuum hypothesis). Of course, the result mentioned 
above gives only a continuous conservative embedding into a discrete 
functor category. It is a very interesting question if any N,-presentable 
prime-generated (resp. atomic) topos has a powerful (or even full and 
faithful) embedding into a presheaf category (resp. into G-Set for some 
group G). 

We also prove a "conceptual completeness" result of which a weak 
version says that if a separable geometric morphism between separable 
atomic toposes induces an equivalence on the categories of points, then it 
is itself an equivalence. We say that a geometric morphism is separable 
if its left adjoint takes a-coherent objects into a-coherent objects. This 
result is analogous to the conceptual completeness for coherent toposes 
proved in [18], Theorem 9.2.9. It was, more directly, inspired by an 
unpublished theorem of Haim Gaifman (which is essentially equivalent to 
Theorem 3.1.4 of [15] ). 

We also give a very simple proof of the fact that a separable topos is 
connected atomic if and only if it has, up to isomorphism, exactly one 
countable point. This simply stated result generalizes the well-known (to 
model theorists) Ryll-Nardzewski Theorem, as well as its version given by 
Keisler [13] for countable fragments of Lœù3. 

Besides the results, we consider important the technical tools employed 
in proving them. Several of them are inspired by model theory, but they 
are worked out in the language of category theory. In this, we are 
following the lead of Peter Freyd who invented the technique of limit 
slices as a conscience translation of the method of diagrams employed in 
model theory. We hope that these techniques find other uses and that they 
will help bring category theory and logic closer to each other. 

Sections 1 and 2 of the paper contain general material, part of which 
may be folklore. Section 3 does not rely on Section 2. Sections 3 and 4 
contain the main results of the paper. 
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summer (winter?) of 1984, thanks to a grant from their research council 
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1. General concepts and results. In this paper a site always means a left 
exact category equipped with a Grothendieck topology. If 88 = (B, J) and 
# = (C, K) are sites, then a morphism 1.88 —» fé7 is a left exact functor 
between the underlying categories that takes covers to covers. Such an I is 
called J,K-continuous, or simply continuous, when J and K are 
understood. We denote the category of morphisms 88 —> %> by Con(^, #) . 
Any collection of families [As —> A:s e S) in a category B generates a 
unique topology J or equivalently a unique site 88 = (B, J). If 7:B —> C is 
left exact, then I is J,K-continuous if and only if I takes the generating 
sieves into K-covers. 

The category Set of sets will always be considered a site with its 
canonical topology: a cover is a surjective family. A morphism <€ —» Set is 
also called a model of # and the category of models is called Mod(^). 

If # is a site, we let Sh(^) denote the category of sheaves on # and 
€ : ^ —> Sh(^) the functor that associates to each object of C the sheaf 
associated to Hom( —, C). Unless another topology is explicitly men­
tioned, we will always consider a Grothendieck topos to be a site with its 
canonical topology, the one in which the universal effective epimorphic 
families are the covers, e is characterized by a universal mapping property: 
for every Grothendieck topos ê, the functor 

Con(Sh(«), <f) -> Con(^, g) 

induced by € is an equivalence of categories. In particular, every 
continuous functor # —» S has an extension, unique up to isomorphism, to 
a continuous functor Sh(^) —» S ( [6], Exercise UNIV of Section 7.3). In 
particular, taking S — Set, we conclude that e induces an equivalence 

Mod(Sh(*f) ) -> Mod(^). 

As a matter of fact, it is convenient to view continuous morphisms with 
arbitrary codomain as generalized models. 

A continuous functor from the GT S to the GT 8F is the same as the left 
adjoint part;?*:<^—> J*"of a geometric morphism/r.J^—><f (see [11] or [6] ). 
The universal property of e :^ —» Sh(^) mentioned above implies that 
there is an equivalence between Con(^, Sh(^) ) and the category of geo­
metric morphisms Sh(S) —» Sh(#). The geometric morphism induced by 
U: V -> ^ will be denoted 

Sh(f/):Sh(0) -> Sh(^). 

Let C be a category and D:T —» C be a diagram in C. There is associated 
to each such diagram a functor M:C —» Set defined as colim Hom(DT, — ). 
We will call M the functor represented by 2). It is well known that a 
set-valued functor on a left exact category is left exact if and only if it can 
be represented by a cofiltered diagram. The following variation is just as 
easy to prove and is left to the reader. 
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PROPOSITION 1.1. Let D:T —» ^ be a cofiltered diagram in the site ^ and 
J 0 be a base for the topology. Then the functor it represents is a model of ^ if 
and only if for every J0-sieve {Ct —» C} and every morphism g:DT —* C, 
there is at least one T' —» T in T and DT' —» C, SWC/J //za/ 

z>r • D r 

We remark that if J 0 is pullback invariant, in particular if it is a 
topology, this condition need be verified only when g is the identity 
morphism. 

The following proposition generalizes the "Lemme de comparaison", 
[1], Exposé III, p. 288. 

PROPOSITION 1.2. Let U:38 -^ ^ be a morphism of sites satisfying the 
following conditions. 

(i) U is cocontinuous: if the family {Bt —> 2?}, i e / in 38 is such that its 
U-image { UNl —» C/2?}, / e / w a cover in % then {Bt^> B}, i e / w a cover 
in 38. 

(ii) ^ generates %> via U: every object of *& has a cover by objects of the 
form UB, B an object of 38. 

(iii) U is locally full: whenever g: UB —» UB' is a morphism in % there is 
38-cover [f.Bj —> B}, i Œ I of38 such that all the composites g o Uf are of 
the form Uh/for hi:Bi —> B'. 

Then the geometric morphism Sh(U):Sh(38) —> Sh(^) induced by U is an 
equivalence. As a consequence, for every GT ë, the functor 

U*:Con(% <?) -> Con(^, S) 

induced by U, is an equivalence of categories. The quasi-inverse of U* is £/, 
for which U}(M) is the left Kan-extension of M along U9 for any 
M <= Con(^ ,>) . 

Sketch of proof Let us first note that for any site % the canonical 
continuous functor e:^7 —> Sh(^) satisfies the three conditions of the 
proposition; this is proved in [1], and the proof is reproduced in [18]; see 
Lemma 1.3.8 in [18]. 

By direct and routine arguments, one can prove two lemmas as follows. 
Let us say, temporarily, that a morphism of sites is "nice" if it satisfies the 
conditions of the proposition above. Suppose U.38 —> % V: %> —» 3) are 
morphisms of sites. Then, if U and V are both nice, so is V o U (first 
lemma), and if V o U and U are both nice, so is V (second lemma). Now, 
the diagram of functors 
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Sh(*7)* 

commutes up to isomorphism. Supposing that U is nice, it follows from 
the two lemmas stated above that Sh(£/)* is nice. Finally, the main 
assertion of the proposition will be proved by showing that a nice 
continuous functor between GTs is necessarily an equivalence. 

The verification of the last assertion can conveniently be broken up into 
two steps. First, one has 

LEMMA 1.3. Suppose the continuous functor U.S —> & between GTs 
satisfies the following conditions: 

(i) U is localic: for any X in J^ there is a diagram of the form 

mono 
7> • K * 

epi 

(ii) U is full on subobjects: U induces a surjection 

Sxxbê(A)-+ Sub^(UA) 

for every A in ê. 

(iii) U is conservative {reflects isomorphisms). 
Then U is an equivalence of categories. 

The last lemma is a direct consequence of Lemma 7.1.7 or Lemma 1.4.9 
of [18] which, in turn, are restatements of a lemma in [1]. (Lemma 1.3 will 
be used again in this section.) Finally, one should show that a nice functor 
between GTs satisfies the conditions in Lemma 1.3. This is a routine 
verification, and it is left to the reader. 

For the last assertion of Proposition 1.2, we have to show, first of 
all, that for any M e Con(^, ê), the Kan-extension M of M along 
U, M\^ —> $, is in Con(^, $). Suppose we have shown this. Then, since 
in 

U' 
Cat(C, F) « » TatrR E) 
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where if is defined by composition, U\N) = N o U, and U,(M) is the left 
Kan-extension of M, we have that 

£/, H U 

and both £/" and £/, take the full subcategories of the continuous functors 
into each other, the restrictions of U and £/, to the continuous functors 
are adjoint to each other. But we also know that the restriction of U , 
which is U*, is an equivalence. It follows that the restriction of U} to 
Con(^, S) is the quasi-inverse of U*. 

It remains to show that M, the left Kan-extension o f M e Con(^, <f ), 
A 

is in Con(^, <f). Recall that M is given by 

MC = colim MB. 
(BJB-+C) 

(The index category of this colimit is (7/C)op.) We need to show, first of 
all, that M is left exact. This turns out to be a surprisingly difficult task. 
For the case S = Set (the only one we need), it is easy: first of all, one 
verifies that the Kan-extension of the representable functor B(B, — ) is 
C(UB, — ); secondly, since M is left exact, it is a filtered colimit of 
representable functors; since taking left Kan-extension preserves colimits, 
it follows that M is a filtered colimit of representables, hence a left exact 
functor. Since we will need the last assertion of the proposition only for 
the case of S = Set, we will not give the proof for the general case; we 
remark only that one can use the case S = Set to handle the case of any S 
having enough points. The general case could be proved by a refinement 
of the argument used in [6], Proposition 7.3.1. 

Finally, we have to show that M takes a C-cover into a canonical cover 
in<£ 

Let {C, —> C} be a cover in % and let (2?, UB —> C) be an index of the 
colimit. Consider the following commutative diagram 

UB Xc C, 

• C 

in which the square is a pullback and, for each /, the family 

{UB^UBXcC;} 

is a ^-cover and, for all / and j , the vertical composite comes from a map 
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B —» By (conditions (ii) and (iii) in 1.2). Clearly, 

is a ^-cover, hence {Bf- —> B}t is a cover in â& (condition (i) in 1.2), 
hence 

{MBl}^MB\} 

is a cover in S. For any (B, £/l? —> C), we have constructed commutative 
diagrams 

MBU ^MB 

MCl ^MC 

in which the vertical arrows are given by the transition maps from the 
A A 

elements of the cone whose colimit is MCt, resp. MC. Since the colimit 
MC in the GT S is covered by the family of the canonical transition 
arrows, and for each (B, UB —» C), the arrows MB-- —» MB cover MB, it 

A A U 

follows that {MCt —> MC}t is a cover as desired. 
We are going to be constructing functors by constructing the 

representing diagrams and we must consider various kinds of restrictions 
on the diagram, some on its size and some on the objects that make it 
up. 

Let M: C —» Set be a left exact functor. We say that a family of elements 
{ {At, at e MA^.i e / } generates M if for all objects C of C and all 
elements c e MC there is an / e / and anf:Ai —> C such that 

Mf{at) = c. 

It is trivial to see that this is equivalent to the assertion that no proper 
subfunctor of M contains all the at. 

For a cardinal /i, we will say that M is ju-generated if there is a family of 
elements of cardinality at most JU, that generates M. 

Given a functor M:C —» Set and an element c G MC, the (y/?e of c, 
denoted t^(c), or more simply t(c), is the set of all subobjects X Q C such 
that c is in the image of MX —» MC. We will usually write, by abuse of 
notation, c e MX when X G t(c). 

For a cardinal /i we will say that M is /A-/?resented if it is ju-generated 
and for every element c e MC, t(c) has a filter base of cardinality at 
most fi. 

A class P of objects of <& is called dense if for every object C there is a 
cover {Pl; —» C} in which every JP7- G P. 

PROPOSITION 1.4. Suppose C w # / ^ ex#c/ category which has a 
factorization system of extremal epis followed by monos. Then 
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(i) Every represent able set-valued functor is ^-presentable. 
(ii) A colimit of a diagram of size at most /x of [x-generated (resp. 

fi-presented) set-valued functors is again fi-generated (resp. fi-presented). 
(iii) Conversely, every fi-presented left exact functor is a filtered colimit of 

a diagram of size at most [i of representable functors. 
(iv) More precisely, let P be a dense class of objects of the site <&. Then if 

M is a fi-presentable model of % it is the filtered colimit of a diagram of size 
at most n of representables, each represented by an object of P. 

(v) If /x = K0, then any colimit of a countable filtered diagram is a colimit 
of a chain of type co which can be taken to be a subdiagram of the given 
diagram. 

Proof (i) Hom(C, — ) is generated by a single element, the identity 
of C; if f:C -> A is an element of M (A) (for M = Hom(C, - ) ), then 
t(f) Q Sub(^4) is generated by the single element Im( / ) (defined by 
assumption). 

(ii) This is left to the reader. 
(iii) This is a special case of (iv). 
(iv) In this argument, we will use P, Pi9 etc. to denote objects from the 

set P. Begin by choosing, for each of the generators ct e Ci9 a morphism 
gi:Pi —> Ct and an element/?, e MPt such that 

Mgt{Pi) = ct. 

Let T0 be the discrete diagram with vertices (Pz, pt) and DQ\T0 —» <€ take 
(Pi9 p^ to Pt. For each pair of vertices (P,, px), (P2, p2) there i s a ? E P , a 
morphism 

g:P - ^ P , X P2 

and a p e MP for which 

Mg(p) = (pup2)-

For each such pair add the object (P,p) to T0 along with an arrow to each 
of (P\,p\) and (P2, p2). D0 is extended by letting its value on these arrows 
be the composites of the product projections and g. Do this for each pair 
of objects in T0 and call the resultant diagram 

At the next stage in the construction, for each object (P,p) in the diagram 
Z>1? choose a basis of t(/?) of cardinality at most JU and for each subobject 
in that basis, let (P',pf) and/ iP r —» P be chosen so that/factors through X 
and 

Mf(p') = p. 

Add these vertices and these arrows to the diagram and call the resultant 
diagram 
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D2:T2 -> « 

The third step in our process is similar to the first, except that we will 
suppose inductively that each object in the diagram has only a finite 
number of arrows out of it. Then replace the product in that construction 
by the finite limit of the diagram consisting of Px, P2 and all the arrows in 
the diagram out of them. The element (px, p2) must belong to that inverse 
limit. Continuing in this way, alternating these two processes, we build up 
a diagram D:T —» # which is filtered, is of size at most JU, and has the 
additional property that if (P,p) is a vertex and C Q P is a subobject with 
p e MC, then there is a (Pr, p') —» (P, p) in the diagram for which the 
image of P' —> P lands inside C. Let TV: fé7 —> Set be the functor represented 
by D. There is an obvious natural transformation N —> M, which takes the 
element of NC represented by the morphism 

f:(P,p)-*C 

to the element Mf(p). This is surjective since the image includes the 
generators. Suppose then that (Px, px) and (P2, P2) a r e t w o vertices in 
the diagram and that 

fx:Px~*C and / 2 : P 2 - > C 

are two morphisms with 

WiiPi) = Mf2{p2). 

Then we can find a vertex (P, p ) and arrows 

g /:(P, Jp)-^(P / , /7 /), i = 1,2. 

Then let C0 be the equalizer of fx o gx and f2 o g2- ^Y hypothesis, 
C0 G t(/?), so there is an h:(P\ p') —> (P, /?) whose image is contained in 
C0. But this means that 

fxo gxoh =f2og2oh 

which means that fx and f2 represent the same element of NC, whence 
N —> M is also injective. 

(v) is trivial. 

Remark. The restriction above that the category must have a 
factorization can be avoided by modifying the definition of filter base 
slightly. Simply say that a class of morphisms {Cz —> C} is a base for the 
filter if for any C0 ç C which belongs to the filter, there is an / such that 
Ct —> C factors through C0. However, we have no need here for such a 
modification as all our categories have factorization systems. 

Let a be an infinite regular cardinal and ê be a GT. An object E of S 
is called a-compact if every cover of E has a refinement with (strictly) 
fewer than a morphisms. The a-compact object E is called a-coherent if in 
any pullback square 
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•*-E2 

t t 
E3 • £ 

if E2 and E3 are «-compact, so is Ex. These notions generalize in an 
obvious way those of compact and coherent of [1] from S0 to an arbitrary 
regular cardinal. The following proposition is proved in the case a = S 0 in 
[1] and reproduced with some changes in [18], Chapter 9, Section 2. The 
proof given there for the countable case goes through in the general case 
without change. 

PROPOSITION 1.5. Suppose the topology on the left exact site ^ is 
generated by covering families of size <a. Then Coha(<f), the full 
subcategory of a-coherent objects of ê = Sh(^) is closed under finite limits, 
universal disjoint sums of families of fewer than a objects and coequalizers of 
universal effective equivalence relations. Moreover, c^ —» S factors through 
Coha(<f). 

We say that a site ^ = (C, J) has size at most \i if the underlying 
category has cardinality at most ju and if there is a J 0 Q J of cardinality at 
most JU, that generates J. The GT S is \i-presentable if it has a defining site 
of size at most /A. An S0-presentable GT is called separable. We also say 
"separable site" or "site of size at most S0". 

By a regular site we mean a site on a left exact category in which every 
cover is an extremal family (that is, every cover {At —» A } has the property 
that if B Q A is a subobject for which every At —» A factors through B, 
then B = A (as a subobject of A) ) and in which every morphism is of the 
form / o q with /' a monomorphism and q a cover (hence, in particular, an 
extremal epi). In a regular site, a single morphism is a cover if and only if 
it is an extremal epi. Also, the subcollection of the topology consisting of 
the single extremal epis and the covers by monomorphisms generate the 
topology. 

The covering families of subobjects are not supposed effective. The 
reason is that we will be dealing mainly with countable sites and an 
infinite effective family would likely lead to uncountably many 
morphisms. These families will become effective in the category of 
sheaves. 

If (% J) is a site, we will use the notation 

V^U- = A 

(read J-join) to indicate that {At} is a collection of subobjects of A which 
cover A in the topology. Similarly, if {At} is a collection of subobjects of 
A, all included in the subobject A0 and covering A0, we will write 
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PROPOSITION 1.6. Let /x be an infinite cardinal A fi-presentable GT has a 
regular site of definition of size at most ji. 

Proof Let ^ be a defining site of size at most fi and let 

factor f. We construct a (non-full) subcategory 

D ç C o h ^ ) 

such that the size of D is ^/x, and such that the following hold: 
(i) e' factors through D. 

(ii) D has finite limits and the inclusion 

D -> C o h ^ ) 

preserves and reflects them. 
(iii) For any object D of D, there is a covering family {eCz —* D} of 

size =JU. 
(iv) If fis a morphism of D a n d / = m o e with m a mono in ê and e a 

regular epi in <f, then up to isomorphism, both e and m lie in D. 
Since every object in D is ju-compact, and Coh^ ((f) is closed under 

finite limits, D is easy to construct as required. Let K be the topology on D 
generated by all the e' images of the covers in a base of J of size ^/x 
together with all single extremal epimorphisms in D. Then 3 = (D, K) is a 
site of size at most JLI. The functor U:C —» D given by (i) is left exact by (ii). 
By the definition of the topology K, U is continuous. We can apply 
Proposition 1.2 to U. The facts that U is continuous and locally full both 
follow from the respective properties of c. ¥> —> S. That 3) is generated by <$ 
via U is assured by condition (iii) of the construction. Thus by 1.2, 3) is 
a defining site for ê. Also every cover $ in 3 is a cover in é, hence an 
effective epi family in ê, which implies that O is an extremal family in D 
(although not that $ is an effective epi family in 3). Together with the 
factorization property (iv) of the construction, the last fact implies that 3 
is a regular site. 

An «-coherent geometric morphism/?:^ —» ê between GTs is one for 
which p* takes «-coherent objects of S into «-coherent objects of !F. 
Suppose that ^ is a defining site for ê and that fé7 satisfies the hypotheses 
of Proposition 1.5; hence S satisfies the conclusions of 1.5. Suppose 
also that the GT J^ satisfies the conclusions of 1.5. Then the continuous 
[/: # —> !F induces an «-coherent geometric morphism 

S h ( £ / ) : ^ ^ < f 

if and only if U factors through Coha(J^"); this is not hard to verify. 
Set is a coherent topos with the sets of cardinality < « being the 

«-coherent objects. 
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A countable model of S is one that corresponds to a a-coherent (/c = X j ) 
geometric morphism Set —> S\ that is to a continuous M\ê —» Set for 
which M(E) is a countable set for every E in Coh s ($). In particular, if ^ 
is a separable site, ê = Sh(^) , then a countable model M of S induces a 
countable model of <& in the sense that M(C) is a countable set for each C 
of <$. Writing Mod a(^) for the category of countable models of # and 
Moda(<f ) for the category of countable models of S, we conclude that 

Moda(<T) = Moda(Sh(^) ) 

for a separable site <€. 

PROPOSITION 1.6'. Suppose p\ïF —> é is a ^fi-coherent geometric 
morphism between [i-presentable GTs. Then there are regular defining 
sites *ë and 3) for S and JF respectively, both of size = ju, and a continuous 
[/: #' —> 3) such that U induces p. 

Proof. The proof is a straightforward variant of that of 1.6. 

A class K of models (points) of a GT S is sufficient if the induced 
continuous functor S —> Set^ is conservative (reflects isomorphisms). In 
[18], it was proved (see also [6], Theorem 13 of Section 7.6) that any 
separable GT has enough countable models (i.e., the class of countable 
models is sufficient). A proof of this result can be given that is very similar 
to that of Proposition 3.5 below. 

We now give a short account of the so-called Omitting Types Theorems 
(see [7], and [13] ) in our setting. It turns out to be a simple matter 
involving the double negation topology. 

Let # = (C, J) be an arbitrary site. An object A of C is called empty (or, 
more specifically, J-empty) if the empty family is a J-cover of A; 
otherwise, A is (J-)non-empty. A family {A • —> A }, i e I of morphisms is 
called (J-)dense if for all B —» A if At XA B is empty for all / Œ /, then B 
is empty. A family of subobjects of a given object is dense if the family of 
representing monomorphisms is dense. In a regular site, {Xt}, i G I is 
dense in Sub(^4) just in case for any Y e Sub(yl), Y A Ai being empty 
( = 0^ ) for all / G / implies that Y is empty. 

The collection of all J-dense sieves forms a topology, denoted J i n . Any 
J-nonempty object is J^-nonempty; in other words, J i n does not produce 
any more empty objects than J does. Thus we have: 

PROPOSITION 1.7. If the topology J on the left exact category C is 
consistent (1 is not J-empty), so is J-p. 

As a consequence, and by the fact that there are enough countable 
models for separable toposes, we have 

PROPOSITION 1.8 ("Omitting Types Theorem"). Suppose ^ is a consistent 
separable site, and <I> is a countable collection of J-dense sieves. Then ^ has 
a model that takes every sieve in <ï> into a surjective family in Set. 
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An inclusion of GTs (or, in general, of toposes) is a geometric morphism 
which (whose right adjoint part) is full and faithful. We are going to need 
a characterization of inclusions in terms of their left adjoint parts. 

PROPOSITION 1.9. A geometric morphism p\ê' —> S between GTs is an 
inclusion if and only if it satisfies the following two conditions: 

(i) p is localic\ i.e., for any object X of ê' there is a diagram of the 
form 

mono 
Y> +»P*(A) 

Cpi 1 
X 

(ii)/?* is full on subobjects, i.e. it induces a surjection 

S\xh,(A) -> SuV( />M) 

for every A in ê. 

Proof. If p is an inclusion, then for a (unique) topology j in <f, ê' is 
Shj(<f) and p is the canonical geometric morphism Shj(<f) —> ê (see [11], 
4.15 Proposition, or [6] ). It is easy to conclude that any inclusion satisfies 
(i) and (ii). 

Suppose, conversely, that/? satisfies the conditions. By [11], 4.14, or [6], 
p can be factored in the form p = q o z, where i is an inclusion, and q is 
surjection (i.e., q* is conservative). It is now routine to verify that the fact 
that p and /' satisfy the two conditions implies the same for q. Thus, by 
Lemma 1.3, q* is an equivalence of categories; therefore/? = q o / is an 
inclusion. 

Let (C, J) be a regular site, and suppose that 0 is a strict initial object of 
C (0 is initial and every morphism with codomain 0 is an isomorphism). 
Then, the unique morphism 0 —> A is a monomorphism, for any A 
and represents the least element, denoted 0A, of the set Sub(^4). Let 
X G Sub(^). X' f= Sub(v4) is a ^-complement oiXii 

X V(J) X' = lA and X A X' = 0A. 

Since the site is regular, X V(J) X' = \A implies that XM X' = \A in the 
subobject poset of A. (However, it is not necessarily true that V ^ or V are 
fully defined operations on Sub(yl).) Thus, a J-complement is, in 
particular, a Boolean complement in the subobject poset of A. Because of 
the pullback axiom on the topology J, it is easy to check that "we have 
enough distributivity" to have that the J-complement, if it exists, is 
unique. We call (C, J) Boolean if it is regular, has a strict initial object, and 
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every subobject has a J-complement. One realizes (exercise) that in a 
Boolean site, finite J-union, V^J), and hence also finite union, is a fully 
defined operation, and thus every subobject poset Sub(^4) is in fact a 
Boolean algebra. Moreover, a continuous functor takes a complement into 
a complement; thus a continuous functor between Boolean sites induces 
Boolean homomorphisms on the subobject lattices. 

A GT is Boolean if and only if every subobject lattice in it is a 
(necessarily complete) Boolean algebra. It is by no means true that Sh(^) 
for a Boolean site <€ is Boolean. However, we have 

PROPOSITION 1.10. A \x-presentable Boolean GT has a Boolean site of 
definition of size at most /A. Similarly, in 1.6', if S and IF are Boolean, 
then y> and & can be chosen to be Boolean too. 

Proof. The proof is a modification of that of Proposition 1.6. First of all, 
one readily verifies that the Boolean complement of a ^ju-coherent sub-
object of a ^/x-coherent object is again ^ju-coherent. Then, in the con­
struction of D, one adds another clause, namely that Boolean comple­
ments of subobjects represented by monomorphisms in D are represented 
by monomorphisms in D. The modified construction can obviously be 
carried out, and it clearly leads to the desired Boolean site. The version of 
1.6' is proved similarly. 

Finally, let us recall a well known fact concerning the double negation 
topology. For a GT ê, with J the canonical topology, we may form J-,-, as 
above; it is readily seen that 

Sh(< ,̂ J-|-|) = < |̂-| 

is a Boolean topos. Proposition 1.7 implies that if S is non-degenerate, so 
is ^ i n . Of course, the canonical geometric morphism $~y\ * $ is an 
inclusion, making ^ a subtopos of S. 

2. A categorical formulation of the method of diagrams of model theory. 
In model theory, the method of diagrams plays an important role. In a 
simple instance, the method appears as follows. Given a model M, one can 
produce a set of sentences, called Diag M, that axiomatizes the class of 
elementary extensions of M. Diag M uses the language of M plus a new 
individual constant for each element of M; Diag M is the set of all 
sentences in the extended language which are true in M, with the new 
constants interpreted in the obvious way. The models of Diag M are in an 
essentially one-to-one correspondence with arrows M -> N that are 
elementary embeddings. 

In applications of the construction, besides the "universal property" of 
Diag M of axiomatizing elementary extensions of M, the syntactical 
properties of the construction are also crucial. We will use the method 
of diagrams in a categorical context; the model will become a functor, 
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Diag M a category, and the syntactical properties of Diag M will be 
translated into a categorical language. 

The actual set-up we have to deal with is as follows. There are given a 
functor 7:B —> C and a functor M:C —> Set, both possibly with additional 
properties. The "d iagram" we are interested in will have models in an 
essentially one-to-one correspondence with pairs (N, M o I —> N) with 
N:C —> Set, with possibly additional conditions on N. The above simple 
situation is the special case when / is an identity functor. 

In the following proposition, we assert the existence of an appropriate 
"diagram". As it happens, the full universal property of the diagram 
(stated separately is the last clause) will not be used in our application. We 
will outline two proofs of the proposition the first ignoring the last clause, 
and giving, in fact, a different "d iagram" from the one given by the other 
proof. At the end of this section, we will return to the "universal proper ty" 
in the context of sites. 

P R O P O S I T I O N 2.1. Let 7:B —» C be a left exact functor between left exact 
categories and M.Q —> Set be a left exact functor. Then there exist a left 
exact category D and left exact functors F:C —> D and M : D —> Set such 
that 

(i) MF = M. 
(ii) For every object B of B, every element b G M(FIB) is "definable 

in M": i.e., there is a global section b\\ — > FIA such that M(b) is (picks 
out) b. 

(iii) For every object D of D, there is a monomorphism D >—• FC. 
(iv) For every morphismf.D —» FC in D, there are objects B of B and C 

of C and morphismsf':D -> FC, g:C -> C, h:C -> IB and 6:1 - » FIB such 
that 

f 
D- •^FC 

/ ' 

FC-
(Fg, Fh) 

id X b 

+FC X FIB 

is a pullback. Moreover, if fis mono, so is (g, h). 
(v) The category LEX(D, Set) is equivalent to the category A(M) whose 

objects are pairs (N, MI —» NI} with N:C —> Set left exact and for which a 
morphism 

(N, MI - » MI) - » (N', MI - » N'l) 

is a natural transformation N —> N' making the obvious diagram commute. 

Proof (of all except (v) ). We may and do replace C by an equivalent 
category in which pullbacks are uniquely determined by their factors; that 
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is, iffi'.Cj —* C are given for i = 1,2, then the pullback object Cx XCC2 is 
uniquely determined by fx and/ 2 - Begin by choosing a correspondence 
between the elements of the disjoint union of all the values of MI and an 
initial segment of ordinals. Let the ordinal a correspond to ba e MIBa. We 
now construct inductively categories Da and functors Fap\Dp —» Da for 
fi < a and Ma:Da -> Set such that Fafi o Fpy = FaT for y < fi < a and 
M* ° ^y8 = ^ 3 f° r P < a- We begin by letting D0 = C and M0 = M. 
If a is a limit ordinal, let Da be the colimit of the D^ and the Fpy for 
y < fi < a, let Fap be the transition map into the colimit and let Ma be the 
unique functor for which Ma o Fao = Mo for fi < a. Next consider a 
nonlimit ordinal, say a -b 1. Let 

where we write i^ for 

F„0:D0 = C -»• Da. 

Define 

to be the usual morphism of crossing with FaIBa and define 

Fa+\,fi = Fa+\,a ° Fafi f o r P < «• 

Since pullbacks in D a + 1 are pullbacks in Da, it is clear that we can show 
inductively that the supposition that pullbacks be uniquely determined by 
their arguments remains valid in Dft. Then we can define M a + 1 on an 
object 

f.D -> FJBa 

of Da so that 

Ma+,(D -> FJBJ ^MaD 

• b • 
1 ÏL^^MaFJBa 

is a pullback. Of course, we have freedom in choosing a pullback square in 
the category of sets. These choices can be made at will, except that in the 
case that D —> FaIBa is the projection of D{ X FaIBa, we choose MaDx 

which can easily be seen to make the square into a pullback. This is the 
reason for our making the hypothesis that pullbacks (and hence products) 
are uniquely determined by their factors. This choice forces the equation 

and the remaining identities are a simple calculation. When we exhaust the 
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supply of elements of MI, the category we have is D and the final Fa0 and 
Ma are F and M, resp. 

Now we want to verify the first four conclusions of the proposition. The 
first is clear (in fact, according to our construction, we get actual equality). 
The second is also easy for the element ba is definable in D a + 1 using the 
diagonal 

FJK -> FJBa X FJBa 

in Da. As for the third, we will suppose by induction that the 
corresponding property is valid in Da and prove it in Da + 1 (there is no 
problem at limit ordinals). An object D of D a + 1 corresponds to a 
morphism 

Dx -> FJBa 

in Da. Supposing a monomorphism Dx >-» FaC in Da, we get a 
monomorphism 

Z>, ~ FaC X FJBa 

in Da which corresponds to a monomorphism D >-• Fa+xC in D a + 1 . 
As for (iv), it is easily checked to be equivalent to the somewhat simpler 

statement that for any/:Z) —> FC, there are objects B of B and C of C and 
morphisms/'iZ) -> F C , g:C -» C, A:C' -> /B and 5":1 -> F / 5 such that 
Fg ° f = f a n d so that 

D 

is a pullback and that, moreover, if / i s mono, so is (g, h). We will show 
inductively that the corresponding statement is true in Da for every a. 
There is no problem at limit ordinals, so we can suppose it is valid in Da 

and show that it remains true i n D a + 1 . So consider 

f:D^Fa+]C 

in D a + 1 which corresponds to a morphism 

<A,f2y-D,^FaCXFaIBa 

in Da. By induction we can factor {f\9fi > as 

(*) Dx Il^FaC ^ g l ' Fa8ll Tjr x FJBa 

where we have used the fact that Fa preserves products to identify 
FaC X FJBa with Fa(C X IBa). Further, we can find an object Bx of B and 
arrows 
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bx:\^FJBx and hx:C -» IBX 

such that 

D, 

/,' 

£ C - % 
• * ^ « ™ i 

is a pullback. Moreover, if (f\,f2) is mono, so is (g l5 g2, hx). It follows 
from (*) that the left hand square of 

h 

n 
— FJBa. 

(F*K FaSl) 
'FJBX X FJB- +FJBX 

commutes (here and below fni denotes the projection on the z'th 
coordinate). Since the outer and right hand squares are pullbacks, so is the 
left hand square. A similar argument gives that the upper square of 

f2 
D, •FJBa 

<f{Ji) 
(Fah] O 77,, Fag2 O 77,, 7T2> 

FaC X FJBa FJBX 

(FaK Fag2) 
F„C-

(bx, id, id) 

FJBa X FaIBa 

<77, , 772> 

-F.IB, X FJB„ 

is a pullback. But in D a + , = Da/FaIBa, that upper square becomes 

D • ! 

/ ' (K b) 

Fa+iC <F^'F^\ Fa+XIBX X Fa+lIBa 

where b is the map in D a + ! whose underlying arrow in Da is the diagonal 
of FaIBa. It is easily seen that / factors as 

D, 
(f;j2) FaC{ X FaIBa 

(FaS\ O 77,, 7T2> 
FaC X FJBa 
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and that if / i s mono, so is (g1? g2, hx). The conditions are satisfied with 
/ ' = </l',/2>,A = </>„g2>andg = g l . 

Sketch of the proof of (v). In this proof we use some facts about locally 
finitely presentable (LFP) categories; although these are classical and 
mostly found in [9], we find it convenient to refer to [17]. This part of the 
Proposition characterizes D up to natural equivalence. The functor 

/*:Lex(C, Set) -> Lex(B, Set), 

defined by composing with /, has a left adjoint /, which is just the left Kan 
extension (see Proposition 1.2). Then for any functor N:C —> Set, the 
adjunction gives a natural bijection between 

Nat(M/, NI) = Nat(/*M, I*N) 

and Nat(/,0*M, N). Thus the category A(M) defined above, which is 
evidently the comma category (I*M, I*) is naturally equivalent to the 
comma category (M0, Lex(C, Set) ). We have a pair of adjoint functors, 
G, H G: 

G 
(M0, Lex(C, S e t ) ) ^ Z Z Z ^ L e x ( C , Set) 

for which 

G(M0 -> N) = N and G^N) = (i}:M0 -^ M0 ® TV). 

Since G, also preserves filtered colimits and is conservative, we conclude 
that (M0, Lex(C, Set) ) is LFP. In other words, if we let D be the full 
subcategory of (M0, Lex(C, Set) ) consisting of the LFP objects, then 

(M0, Lex(C, Set) ) = Lex(D, Set) 

and thus also 

A(M) = Lex(D, Set). 

Further, by the Gabriel-Ulmer duality (see [17] ), G is defined, up to 
equivalence, as 

F*:Lex(D, Set) -> Lex(C, Set) 

for some left exact F:C —> D. In other words, we have 
G 

(M0, Lex(C, Set) ) •Lex(C, Set) 

Lex(D, Set) 

https://doi.org/10.4153/CJM-1987-009-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-009-x


188 M. BARR AND M. MAKKAI 

commuting up to an isomorphism <p\F*H = G, where H is the canonical 
equivalence. If 

eM:IJ*M -> M 

is the counit of the adjunction, let M be the object H(eM) of 
Lex(D, Set); then 

<p(eM):MF -> M 

is an isomorphism. 
We are not going to give the detailed verification of the conditions the 

items we have introduced should satisfy, except to say that in this 
verification one uses the characterization of the finitely presented objects 
of (M0, Lex(C, Set) ). These are, up to isomorphism, the same as arrows 

for any pushout diagram 

p • e 

t t 
M • M ®P Q 

with P and Q finitely presented objects of Lex(C, Set). 

PROPOSITION 2.2. Under the same hypotheses as Proposition 2.1, we can 
draw the same conclusions, except that (v) is replaced by 

A 

(vi) M':D' —» Set is conservative. 

Proof. Using Proposition 2.1, construct a category D' and functors 
F':C —» Dr and M':D' —» Set with the properties given there. Factor 

A A A 

M':D' —> Set as M o Q where Q is a quotient functor and M is conser­
vative. Q is the universal solution, among left exact functors with domain 
D', to inverting morphisms inverted by Q. Then both Q and M are left 
exact, M is conservative and MQ = Mr (see [15] ). The following charac­
terization of left exact quotients is due to A. M. Pitts and a proof appears 
in [15], Proposition 2.3.2. 

A left exact functor Q:D' —» D is a quotient if and only if for any 
morphism D —> QD' in D, there is a morphism f:D\ —» Z>' in D' and 
an isomorphism D —» (XDj so that the triangle 

£> ^g/y 

QD\ 

https://doi.org/10.4153/CJM-1987-009-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-009-x


GROTHENDIECK TOPOSES 189 

commutes. 
A 

Then D, F = QFf and M are the required categories and functors. We 
have 

MF = MQF' = M'F' = M. 

Further, M is conservative by construction. As for the remaining 
conditions, condition (ii) is clearly inherited by M. In view of the charac­
terization of left exact quotients above, so is condition (iii). Condition (iv) 
in the original proposition, together with the left exactness of Q, implies 
that any arrow of the form 

Qf-QD\ -> QFC 

will satisfy condition (iv) in D. But the characterization says that any 
arrow of the form D —» FC is isomorphic to one of that special form. 
Clearly (iv) is invariant under isomorphisms. 

PROPOSITION 2.3. If 3 = (D, L) is a site and M:3 —> Set is continuous 
and conservative, then every cover in L is an extremal family. 

Proof. Suppose {f'.Di —» D}, i e / is a cover in L. Then the Mf form a 
surjective family. Suppose m.D' —» D is a monomorphism for which every 
f factors through m. Then Mm is a monomorphism such that every Mf 
factors through it. But in Set, every surjective family is extremal. Hence, 
Mf is an isomorphism. Since M is conservative, f is an isomorphism. 

PROPOSITION 2.4. Suppose, in addition to the hypotheses of Proposition 
2.2, that & = (B, J) and ^ = (C, K) are sites, that I is J,K-continuous and 
that M is continuous with respect to K and the canonical topology on Set. 
Then the category D constructed in 2.2 can be endowed with a topology 
L so that 3 = (D, L) is a regular site and both F and M are continuous. 
Moreover 

(vii) If & and %> are separable sites and M is a countable model, then 3 
can be taken to be separable. 

(viii) If ^ is Boolean, then 3 is Boolean. 
(ix) 3 is 2-valued: the terminal object 1 of 3 has just 2 subobjects. 

Proof. Let L be the smallest topology on D that makes F continuous 
with respect to K and L. L is generated by the F-images of generating 
covers of K. Since M = MF and M is K-continuous, it is clear that M is 
L-continuous. By 2.3, it follows that every cover in L is an extremal family. 
It remains to show that every morphism/:/) —> D' can be factored as a 
single cover followed by a mono. By (iii) there is a mono m.D' —» FC. If we 
can factor the composite mf in the desired way, this can easily be seen to 
imply such a factorization for / . Thus we may suppose without loss of 
generality that Df is of the form FC. But then we have from (iv) that there 
are objects C and C" of C and morphisms g:C -> C", D -* FC and 
FC -> FC such that 
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D-
f 

•FC 

(1) 

FC- •+-FC" 
Fg 

is a pullback. Upon factoring g as 

h 
C - » C" >-> C" 

with {h } e K, we conclude that [Fh } 

/ 
D ^ ^ *+ D'>— £ FC 

L. Construct the diagram 

(2) 

FC- ~FC">- •+~FC" 

Fg 
so that the right hand square is a pullback, whence the left hand square is 
one as well. Then D —* D' belongs to K which gives the required 
factorization. 

For the rest of the proposition, (vii) follows because when M is 
countable, the well ordering construction can be accomplished by a simple 
induction and a slice of a countable category is clearly countable, while 
the topology generated by K will have a countable base if K does, (viii) is 
an easy consequence of (hi) and (iv) while (ix) is immediate from the fact 
that M is conservative. 

Finally we deduce the universal property of the site 3) as constructed in 
2.4. Let A be the category whose objects are pairs (N:MI —» NI) with TV a 
model of C and in which a morphism 

(TV, MI -> NI) -> (N\ MI -> N'l) 

is a natural transformation a:N —» N' such that 

.NI 

MI a! 

N'l 

commutes. 
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PROPOSITION 2.5. The categories A and Mod(^) are equivalent, by a 
canonically defined functor G:Mod(<^) —» A. 

Proof. In the definition of A, we replace M by the isomorphic model 
MF. Of course, up to isomorphism of categories, A is unchanged. To 
define G, we first note that for any model P of @ and any object B of B, 
there is a unique morphism 

aA:M(FIA) 

such that 

M(FIA) 

P(FIA) 

OLA 
P(FIA) 

M(a) P(a) 

commutes for all â: 1 —> FIA in D. Indeed, this follows from Proposition 
2.1 (ii) and Proposition 2.2. The morphisms a A define a natural 
transformation 

a.MFI -

For any/:^4 

MFIA-

PFI. 

> B in B, we must show that the diagram 

«A 
+PFIA 

MFIf 

MFIB-

PFIF 

+PFIB 

commutes. This follows from the facts that the family of morphisms 
Ma, for all a~:\ —» FIA are jointly surjective (2.1 (ii) ) and that for every 
such a, each triangle in 

MFIA +PFIA 

MFIB *»PFIB 

commutes. (Here and in the diagram below, the unlabeled arrows are the 
respective functors applied to a.) The object function of the functor G is 
given by 

G(P) = (PF9 a.MFI -> PFI). 
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Given y.P —> Q in Mod(^), we have that yF:PF —» g i 7 determines an 
arrow 

G(y):G(P) -> G(ô) . 

This follows from the commutativity of 

PFIA*+ 

aP(A) Q(A) 

^QFIA 

yFIA 

for each a:\ —> FL4. It is clear that G is a functor 

Mod(^) -> A. 

To show that G is full and faithful, let P and Q be models of ^ and let 
fi:PF^ QFbe such that 

MFI 

«(G) 

i>F/. ^(XF7 
0/ 

commutes. We must show that there is a unique y:P 
/? = yT7. We begin with 

Q such that 

LEMMA 2.6. For tf/ry monomorphism D >—• FC, //?£re w # (necessarily 
unique) arrow l:PD —> QD making the following commute: 

PD- - • P F C 

QD- ~QFC 

Proof. Start with the data given by Proposition 2.1 (iv) for the 
monomorphism D >-• FC. Apply P and Q to the diagram of (iv) to 
obtain 
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QDy-

X. 
QFC 

X 

X. 
V 

\ PD> 

PFC 

QFC-

g(idFC X a) 

QFg ~QF(C X IA) 

The right hand trapezoid commutes as a consequence of the commutativ-
ity of 

1 

PFIA 

QFâ 

PIA 
QFIA 

which is, in turn, a consequence of the assumption on fi and the defini­
tions of a(P) and a(Q). The bottom trapezoid commutes by the naturality 
of ft. Both the inner and outer squares are pullbacks, from which the 
existence of a unique / making the whole diagram commute is assured. 

Now we define y:P —> Q as follows. For each object D of D, choose a 
monomorphism D >-> FC (2.1 (hi) ). The morphism /just constructed is 
taken to be yD. To show the naturality of y, we consider an arbitrary 
arrow f:D -» D'. With the graph of / , Tf Q D X U and the specific 
monomorphisms D >-• FC and Df >-• FC that give rise to yD and yD', 
resp., we obtain the diagram 

P(r / )> • /> ( / ) X £>')> 

/ 

eoyv 

YD X YD' 

- • ô ( i ) X £>> 

^PF(C X C) 

g(C X C ) 

•e^c x c) 
Lemma 2.5 assures the existence of / to make the outer rectangle commute. 
The right hand rectangle commutes by the definitions of yD and yD'. It 
follows that the left hand rectangle commutes which implies the naturality 
of y with respect t o / . It is clear that y is uniquely determined. 

We have shown that G is full and faithful. The proof that it is essentially 
surjective is left to the reader (that fact is not actually used in our 
application in Section 4). 
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3. Atomic and prime generated toposes. An object P of a site %> is called 
a prime if every cover of the object has a refinement by a singleton. In 
particular, every prime is non-empty, that is the empty sieve is not a cover. 
An object is called an atom if it is non-empty and if every morphism to it 
with non-empty domain is a cover. Clearly every atom is a prime. In a 
regular site, primes are characterized by the fact that if 

P = V|JUZ, 

then for some z, P = At, i.e., that P is J-join irreducible. In a Grothendieck 
topos, a prime is an object which is join irreducible in the usual sense. 
Similarly, in a regular site, an atom is characterized by being non­
empty and having at most two subobjects (exactly two if there is an empty 
object). 

A site is prime-generated (resp. atomic) if every object has a cover by 
primes (resp. atoms). Thus a regular site is prime-generated (resp. atomic) 
if every object is a J-join of primes (resp. atoms). It is easy to see that in a 
prime-generated (resp. atomic) regular site the J-unions of primes 
(resp. J-sums of atoms), together with covering epis between primes (resp. 
atoms) form a base for the topology. It is interesting to note that a regular 
category has at most one regular atomic topology; there is such a topology 
if and only if each object is a universal disjoint union (in its own subobject 
lattice) of atoms and then these, together with the covering epis between 
atoms are a base for the topology. 

Note that in a Boolean (regular) site, every prime is necessarily an atom; 
thus a Boolean prime-generated site is atomic. 

The above terminology applied to a GT with its canonical topology 
gives us the notions of & prime-generated GT and an atomic GT. It is easy 
to see that for e: tf —•» Sh(^) the canonical continuous functor, P is a prime 
(atom) in % if and only if e(P) is a prime (atom) in Sh(^) ; it follows that 
the category of sheaves over a prime-generated (atomic) site is prime-
generated (atomic). 

It is easily seen that a GT is atomic if and only if it is prime-generated 
and Boolean. The following proposition is verified directly; we state it 
explicitly for its importance. 

PROPOSITION 3.1. In any (left exact) site, if P —» A is a (singleton) cover 
(A is a quotient of P) then if P is a prime, A is a prime and if P is an atom, A 
is an atom. 

PROPOSITION 3.2. Let ^ be a regular site and ê the category of sheaves 
on S and e:^ —> ê be the canonical continuous functor. Then S is 
prime-generated (resp. atomic) if and only if ^ is and in that case the primes 
(resp. atoms) oj S are exactly the quotients of the eP for P a prime (resp. an 
atom ) of <&. 
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Proof. Assume that ê is prime-generated (resp. atomic). Let C be an 
object of ^, and let {Et >-> eC), /' e / be a covering family of 
monomorphisms with each Et being a prime (resp. an atom). Since # 
generates ê via e, and e is locally full (see Proposition 1.2), we may find 
objects Ctj of # and covers {cQ- —» 2s,}y such that each composite 

eCtJ -> 2?f. « €C 

is of the form e(g-•). Since £, is a prime, (resp. an atom), for each / there 
is y such that eC- —» £"• is a cover; let us now denote Ctj as Ci and g- as gz. 
Let 

ft 
^ 

q—*^c;>—•c 
be the regular epi/mono factorization of gf, comparing it with 

€<:,. — * • £ , > — • c c 

we see that cC- = Et. It follows that each C\ is a prime (resp. an atom), 
and that we have a cover {C- —» C} of C with primes (resp. atoms), 
showing that ^ is prime generated (resp. atomic). 

Finally, suppose # is prime-generated (resp., atomic) and £ is a prime 
(resp. an atom) in S. Then E has a cover with objects cC, hence a cover 
with objects cP with each P a prime, (resp. an atom), hence E is a quotient 
of an eP as desired. 

COROLLARY 3.3. A [i-presentableprime-generated, resp. atomic, GT has a 
defining site of size at most fi which is regular and prime-generated, resp. 
Boolean and atomic. 

Proof. This follows from 3.2, 1.6, and 1.10. 

Atomic sites and toposes were introduced (in slightly different form) in 
[5]. Prime-generated ones were introduced in [14] and [16]. It is easy to see 
that a Grothendieck topos is an atomic topos if and only if the subobject 
lattice of each object is a complete atomic Boolean algebra. There is 
a similar characterization for a prime-generated Grothendieck topos. 
Call a lattice prime-generated if each element is the join of join 
irreducibles. Then a Grothendieck topos is prime-generated if and only if 
the subobject lattice of each object is prime-generated. Since these 
properties depend only on the subobject lattices, it follows that a topos 
which has a powerful embedding into a category in one of these classes 
also belongs to the class. 

Recall that a model of a regular site # = (C, J) is a Set-valued functor 
on # that is left exact and J-continuous, i.e., that preserves J-joins and 

https://doi.org/10.4153/CJM-1987-009-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-009-x


196 M. BARR AND M. MAKKAI 

images. We will say that a premodel is a left exact functor that preserves 
J-joins. 

PROPOSITION 3.4. (i) A filtered colimit of premodels is a premodel. 
(ii) Suppose ^ is prime-generated. A premodel M is a model if and only if 

for every covering epif.B —» A between primes and every element a e MA, 
there is a commutative diagram 

Proof, (i) This is clear. 
(ii) Since <$ is prime-generated, its topology is generated by families of 

monomorphisms and single covers of primes by primes. The first kind 
of covers are preserved by all premodels. Preserving the second kind of 
cover is equivalently restated in the condition under (ii) (compare 1.1). 

For M:C —> Set a left exact functor, and X a subobject of C in C, M(X) 
is a subobject of C, hence determines a definite subset of M(C). Hence­
forth, in this situation, by M(X) we will mean this subset of M(C). Thus, 
if c G M(C), it is meaningful to ask if c e M(X). 

If M is a pre-model of the site ^ and A is an object of % the type of 
an element a e MA, denoted t(a), consists of the set of all subobjects 
A0 Q A, for which a <E M(A0). It is clear that t(a) is a filter in the 
subobject lattice of A. If M is a model, then each t(a) is a J-prime filter, 
i.e., it satisfies the following additional condition (we write t for t(a) ): 

(*) Whenever Xt e Sub(>4) (i e / ) , X = V%Xt e Sub(^), and 
l e t , then for some /', Xi e t. 

The following proposition shows that, in the case of separable sites, 
being a J-prime filter is the same as being a type of an element of a 
model. 

PROPOSITION 3.5. Suppose (C, J) is a separable site. Suppose A is an 
object of C and t is a J-prime filter on S\xh{A). Then there is a countable 
model M, having an element a e M (A) whose type tM(a) is equal to t. 

Proof Assume first that A = 1 is the terminal object of C. Let J 0 be a 
countable base for J. Recall that the support, denoted supp(v4), of an 
object A is the smallest subobject of 1 that the terminal map of A factors 
through. It is constructed as the regular image of the terminal map of A. 
Enumerate in a sequence (rk)k<0) all triples 

T = (i,D-+A,A) 
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where i G <o, D —» 4̂ is a morphism in C, and A is a J0-cover of A, in such a 
way that each individual r is repeated infinitely often, which is clearly 
possible. Also, let (Un)9 n G <o be an enumeration of t. Now, we are going 
to construct a sequence of arrows 

such that, among other things, D0 = 1 and supp(D„) G t for all « < <o. 
Suppose we have constructed the sequence up to and including Dn. 
Case 1. n = 2k is even. Consider 

rfc = < i , Z ) - M , A > . 

If either / > n or Z) ^ D/5 put Z>„ + 1 = Z>„, and extend the sequence by 

id:D„ + x^D„. 

If, however, / ^ n and Z) = Z)/5 consider the composite 

£„->...-> A - ^ -
Denote the composite by Z)w —> A, and with A = {As —> A }, s G 5, 

consider the pullbacks, one for each s G S: 

Ds
n = As X A, ^D„ 

Y T 
^ • ^ 

Since {^5 —> A }, s G 5 is a J-cover of A, we have that {Ds
n —> Dw}, 

5 G 5 is a J-cover of Dn. Hence 

supp(Z)J = V<i>5 supp(i)*). 

Since supp(Z>„) G t, and t is a J filter, 

supp(D^) G t for some 5 G S. 

Choose such an s G S and let Dn + l —» Z>w be D^ —» Dw. 
Case 2. « = 2A; + 1 is odd. We now look at Uk, the &th member of t, and 

put Dn + ] = Dn X Uk. We have 

supp(£>w + 1) = supp(Z)„) A Un G t, 

so the induction hypothesis is satisfied. We take Z>M + 1 —» Z>„ to be 

ff|.:Z)„ X [4 -> D„. 

This completes the construction of the sequence (2). Consider 

M = colimw<w hD\ 

The condition of Proposition 1.1 holds in our case: given any A, a 
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J0-cover of A, any / G CO and any Dt —> A, we may find n = 2k ^ i such 
that 

T* = ( / ,A-»« ,A) ; 
the construction at stage « 4- 1 will ensure that the condition holds. Thus, 
M is a model. 

Let M(\) = { * } ( = l i n Set). Then we define the type of M, denoted 
t(Af), to be 

M*) = iu G Subd) |M(t/) # 0} 
= {u G Sub(l) |f/ ^ supp(D„) for some « G W}. 

If £/ G t(M), let n G co be such that supp(Z)„) â £/. Since supp(Z>„) G t 
by the construction, we have [ / e t . We have shown that t(M) Q t. 

Conversely, if [/ G t, then U = Uk for some k < co. Let « = 2/c + 1 ; by 
the construction, 

supp(Dw + 1) ç [/,. 

It follows that U = Uk G t(M). 
We have proved that t(M) = t; this completes the proof for the case 

when A = 1. 
In the general case, we pass to the slice category CM, and the induced 

topology J/A (in more detail, see the proof of Theorem 3.8 below). The set 
t G Subc(^4) gives rise to a set t/A Q SubCA4 (1) defined as 

{(f.X^A) Q ( i d : ^ ^ ^ ) } , 

i.e., just the subobjects in t(A), but considered in C/A. 
We can now show that t/A is a J/A -filter on SubCA4 (1), and that 

applying the case A = 1 to (C/A, J /A) we obtain the desired result. 

Let M be a premodel and a be an element of M. If the type of a is a 
principal filter, we will say that a is & principal element of M. If the type of 
a is principal, generated by the subobject AQofA, we will often say that A0 

itself is the type of a. If every element of M is principal, we will call M a 
principal premodel. 

If a is a principal element of M and M is a model, then the subobject 
generating the type of a is a prime; this follows from the fact that the type 
is a J-prime filter. If A is a prime, M is a model, then a G M (A ) is generic 
for A if t(tf) consists exactly of id^. 

PROPOSITION 3.6. Let ^ be a site and M be a model of <&. 
(i) M is principal if and only if it is a filtered colimit of representables in 

which the transition arrows are regular epis. 
(ii) A principal model preserves intersections of arbitrary power. 

(iii) If *& has complete subobject lattices and M preserves arbitrary 
intersection, then M is principal. 
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(iv) M is principal if and only if its extension to Sh(^) preserves arbitrary 
intersection. 

Proof The first three parts are just Theorem 16 of [3]. The direct part of 
(iv) follows from the fact that the extension of M to Sh(^) is represented 
by the same diagram that represents M. The converse is trivial. 

The following is a fundamental observation. 

PROPOSITION 3.7. Let (C, J) be a regular site, and P a prime object of C. 
Then the horn-functor 

^(P, - ) : C -> Set 

takes J-unions into ordinary unions. 

Proof The assertion says, in other words, that if Xs e Sub(/1 ) for s e S; 
U[^SXS = A and P is a prime, then for any/ iP —> A, there is s e S and a 
factorization 

Xs> *»A 

P 

Indeed, {is:Xs XA P —» P}, s e S is a J-cover of P; also each /5 is 
a monomorphism. Since P is a prime, there is an s G S such that /5 is a 
singleton cover, hence, since fé7 is regular, an extremal epi. It follows that zv 

is an isomorphism. The assertion follows. 

PROPOSITION 3.8. Let & be a regular site and let D:l —> <e be a cofiltered 
diagram and M be the corresponding functor, i.e., 

MC = colim HomCDJT, - ) , 

the colimit taken over I. Then 
(i) If D(I) is prime for every object I of I, then M is a pre-model. 

(ii) If in addition, D(a):D(J) —» D(I) is a regular epi for every morphism 
a:J—>Iofl, then M is principal. 

(iii) If in addition to (i),for any object I of I, any morphism D(J)—> A in 
%> and any covering epif.B —> A in % there is a morphism a: J —> / in I and a 

factorization 

D(J) D&> , D ( 7 ) 

t • 
B • / ! 

Then M is a model. 
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Proof, (i) This is a direct consequence of 3.7. 
(ii) This follows from 3.6 (i). One notes that this also may be verified 

directly as follows. 
Suppose M = colim Z), with D having the properties described. Let 

c e M(C). Then c is represented by an arrow y A —» C, with A an object in 
the diagram D. Consider the factorization of y 

into an effective epi followed by a mono. Then for the subobject X 
represented by z, we certainly have c <E M(X) Q M(C). On the other 
hand, if Y e Sub(C), and c Œ M(Y), then for some arrow B —» A in Z), we 
have a commutative diagram 

Since, by hypothesis, / is an effective epi, ef and / provide an effective 
epi/mono factorization of af; hence X ^ Y. This shows that the type of c 
is generated by X. 

(iii) This follows from 3.4 (ii). 

THEOREM 3.9. An ^^-presentableprime-generated Grothendieck topos has 
enough points. 

THEOREM 3.10. A consistent regular prime-generated site of size = S j has 
a model. 

We begin by showing how Theorem 3.9 follows from Theorem 3.10. By 
3.3, we have a regular prime-generated site fé7 of size ^ S j for the given 
Nj-presentable prime-generated GT. To demonstrate Theorem 3.9, we 
must show that given an object A and a sieve {At —» A } of subobjects of A 
which does not cover, there is a model M:^ —> Set for which \/^MAl ¥= 
A. The first reduction is that we may consider the case A = 1, the terminal 
object. The reason is that we may form the slice category WA in which ^ 
has a canonical model AX—. The topology on fé7 can be easily seen to 
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induce a topology on mi A in which a sieve is a cover in mi A if and only if it 
is when the forgetful functor to ^ i s applied. It is immediately verified that 
for a prime B in m the object B —> A of CIA is a prime in mi A and that mi A 
is regular and prime-generated. Thus the task is reduced to a similar task 
for mi A where the codomain of the sieve, A above, is 1. Thus we are 
reduced to showing that if { Ui —» 1} is a non-covering sieve in C, there is a 
model of m whose value at each Ut is empty. This is done by extending the 
topology J to a topology J ' by making each of the Ui empty. That is, we 
add to the topology the empty sieve over each Ut. This is done by saying 
that a sieve [C —» C} is a J'-cover if and only if 

{CJ^C)JU {CX U^C), 

is a J-cover. This topology is consistent for the empty sieve is not a 
J'-cover of 1. It is easily checked that the new site is regular (resp. 
Sj-presentable, resp. prime-generated) if the original one was. In 
particular, every prime for J that is non-empty for J ' is a prime for J'. 

By Theorem 3.9, the new site (C, / ' ) has a model; this is a model of m 
that makes every Ut empty as desired. 

"Countably presented" for left exact functors was defined before 
Proposition 1.4. We will abbreviate "countably presented premodel" as 
CPPM. We assume throughout this proof that m is a regular prime-
generated site of size ë N j . For the proof of 3.10, we need the following in 
which we denote the horn functor Hom(^4, — ) by h . 

L E M M A 3.10'. Let F be a CPPM and B —» A be a covering epi. Then the 
diagram in Lex(^, Set) 

hA> ^hB 

l 
F 

can be completed to a diagram 

F>-

in which G is a CPPM. 

Note. The fact that B - » A implies that hA >-* hB. 

Proof. By applying Proposition 1.4 (iv) to the site on C whose topology 
is generated by the J-families consisting of monomorphisms (so that F is a 
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model for this site), we conclude that F is a countable filtered colimit of 
représentâmes, each represented by a prime; by 1.4 (v), this means that F 
is represented by an co-chain of primes Pn, n < co. Thus the given diagram 
in the lemma is equivalent to a diagram in % 

which we will embed in the diagram 

P^ p\* •••*—?« 

/ 
A^—B^ F„~* F„+l* . . . 

defined as follows. Since A —» B, we have also that 

B*APn^> P,r 

It follows that for at least one prime subobject of B XA Pn, call it P^9 the 
composite 

K ~* B XA Pn ~* Pn 

is a regular epi. Similarly, let P„ + 1 be a prime subobject of Pn + X Xp P^ 
that maps by a regular epi ioPn + x.ln this way, we inductively build up the 
desired sequence. Then G is the functor represented by the diagram 

p < p < z P' * pf < 
M) M • • • rn rn +1 • • • • 

The map F —> G is induced by epis and is easily seen to be a mono. 

Proof of theorem 3.10. For Set-valued functors F a n d F' we write F Q Ff 

to indicate that F is a subfunctor of Ff. We will define an ordinal chain of 
CPPMs 

0 — x \ — • • • — xco — • • • — x « — . . . 

indexed by all the countable ordinals and whose union will be the model 
we want. If F is a CPPM, let $(F) denote the set of all pairs (/, a) where 

f:B —» A is a covering epi of <€ and a e FA. It is clear that the cardinality 
of 0(F) is at most K,. Moreover, if F c F\ then ®(F) Q $(F'). Begin by 
dividing the set Sj into a set of Xj disjoint subsets Xa, a e S b each of size 
S j . Along with the /£, we will construct a surjective indexing 

ga-V^aXa-^<t>(Fa) 

such that for every element of 0(i£) there are 8j many distinct indices i 
that map to the element by ga, and such that for /? < a, we have that ga 

extends g^. We will define the Fa and ga simultaneously by an induction on 

XX 

https://doi.org/10.4153/CJM-1987-009-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-009-x


GROTHENDIECK TOPOSES 203 

the ordinals a < Kj. 
We begin by letting F0 be the functor represented by the terminal ob­

ject 1. For the indexing g0, simply choose any suitable correspondence 
between XQ and the set of object of JX? (which is what <&(F0) is). 

Next suppose that Fa and ga have been chosen. There are two cases 
to consider. If a is not in dom ga, let Fa+X = Fa and g a + 1 any func­
tion extending ga with the right domain and codomain. Otherwise, let 
a <= FJA) and / :B —> A be such that 

ga(a) = (f, a). 

In this case, apply Lemma 3.10' to get a diagram 

It is easy to see that the monomorphism Fa Fa+\ can be chosen, by a 
To obtain 

g a + 1 , we extend ga by choosing a suitable correspondence between the 
elements of 0 ( i^ + 1 ) — i^ + 1 and the set A^+1. If oc is a limit ordinal, let 

suitable choice of i £ + 1 , to be an inclusion; thus i^ ç i £ + 1 

^ - colimy8<ai^ - UP<aFp 

and 

oa = u }/3<ag/3-

Then i£ is a CPPM by 1.4 (ii) and 3.4 (i). 
Finally, 

F co l im t t < t t £ «.. 
is the required model. Indeed, by 3.4 (i), it is a premodel. We may verify 
the condition in 3.4 (ii) as follows. Suppose/:^ —> A is a covering epi, and 
a e F(^4 ). Then « e Ẑ (v4 ) for some /? < <0j. Then for some a e dom(g)8), 
a i^ /?, we have g^a) = (/, a); therefore ga(oc) = (f, a). Now, the 
construction of Fa+X gives us the commutative diagram 

hf 
hA 

Fa>-

*hc 

Fa + i £ F 
that shows what we want. 

Problem. Can we force the model in 3.10 to be a principal one? We can 
in the separable case. 
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THEOREM 3.11. Suppose %? is a separable, prime-generated site. Then for 
any prime P, there is a principal model M of ^ which contains a generic 
element for P. 

Proof. The proof is similar to, and simpler than, that of 3.10. The 
to j -sequence of CPPMs is replaced by an co-sequence of representable 
premodels, each represented by a prime. In this situation, we are able to 
make the morphisms in the diagram to be covering epis which is the key 
to the principalness. 

To start, let us enumerate all triples 

T = </, D->A, B-^> A) 

such that i < <o, D —» A is an arrow in C and B —» A is a covering epi, in a 
sequence (rn)9 k < co in which every T appears infinitely often. We 
construct a sequence 

(3) Z>0 « - Z), « - . . . « - Z>„ « - Z>„ + 1 «-. . . 

for n e o) such that each Dn is a prime, D0 = P, and each Dn + x —» Dn is a 
covering epi, as follows. Suppose we have constructed all items, up to and 
including Dn. Consider 

rn = (i,D^A,B^>A). 

If either i > n, or D # Dt, put Dn + X -> Dn to be equal to id\Dn -> Dn. If 
/' §̂ « and D = Dh let /)„ —» 4̂ be the composite 

Z>„ -> . . . ->£ , . -> .4, 

and consider the pullback: 

C = BXA Dn * • / ) „ 

t t 
B +**A 

Of course, C —» Z>w is a covering epi. Let £)„ + ] be the underlying object 
of a prime subobject X of C such that Jf —» Dn is a covering epi (such X 
exists since C = \Z^XS for prime Â  e Sub(C), and since £>„ is prime). 
Thus we have the commutative diagram 

A,+i *-A, 

t t 
5 *m»A 

and we have obtained Dn + X —» Z> as wanted. 
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This completes the construction of the sequence (3). Let 

M = co\imnh
Dn. 

By 3.8 (i) and (ii), M is a principal premodel, and by 3.8 (iii), and the 
construction, M is a model. For if Dk —» A and a covering epi / :P —» A are 
given, let n ^ k be such that 

T„ = (k,Dk^A,f); 

then in the construction of Dn + h we make sure that the condition in 3.8 
(iii) holds. 

The identity arrow of P = D0 to itself represents an element d e M(P) 
which is a generic element of M(P): if X e Sub(P), and d e M(X), then 
we have a factorization 

X> ^D0 

4 J 

AT 
with Z>„ —» D0 coming from the diagram (3). But then, of course, X must 
be the identity subobject of P. 

We say that a model M of a site ^ is prime if for any model M', any 
object A of <& and any elements a e AL4 and 0' G À / M , if t(a) ç t(a'), 
then there is a morphism a: M --» M such that a A (a) = a'. (This 
terminology derives from an analogous, although not identical, model 
theoretical terminology.) 

PROPOSITION 3.11'. Let % be a regular site, ê = Sh(#), and e: #' -> ê the 
canonical functor. If the model M of ^ is principal, respectively principal 
prime, then so is the corresponding model N of ê {for which Ne = M). 

Proof Suppose M is principal. Then M is represented by a cofiltered 
diagram of primes of ^ with transition morphisms covering epis, by 3.6 (i). 
Note that if P is a prime in % then eP is a prime in S\ and the left Kan 
extension of ^(P, — ) along c is é>(tP, — ). Therefore, by the last assertion 
of 1.2, we obtain that N is represented by a cofiltered diagram of primes in 
ê with transition morphisms epis and hence, by 3.6 (i), N is principal. 

Now let M be a principal prime model of # and TV be its extension to S. 
Suppose M' is another model of # and TV' its extension to S. Suppose 
e e NE and <?' e TV'E with t(e) ç t(e'). The type of e is a prime subobject 
P0 of E which is the quotient of some prime P belonging to #. There is an 
element p e MP that maps to £ under the morphism P —> E. The type ofp 
is P', a prime subobject of P. The image of P' under P —» E is P0, since e is 
in this image and the type of e is generated by P0. Thus we have a covering 
epi P ' —» P0. Since e' G N'P0 and P ' - » P0, it follows that there is an 
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element p' e MP' that maps to ë. From the fact that M is prime, it 
follows that there is a morphism a. M —> M' such that aP'(p) = p'. a 
corresponds to a morphism fi:N —» TV7. The fact that aP'(p) = p' and the 
evident commutativity imply that /?P0(e) = ë'. 

THEOREM 3.12. Let ^ be a separable site and M be a countable principal 
model of <$. Then M is prime. 

In the next two lemmas, M is principal. 

LEMMA 3.13. Suppose a G MA is generic for A and a' e M'A, b e MB 
are arbitrary. Then there is an element b' Œ MB such that 

t(a, b) ç t(a', b'). 

Proof Let C Q A X B be the generator of t(a, b). The image of the 
composite 

C-+A X B->A 

belongs to the type of a which is A, i.e., the composite is an epi. Hence the 
composite 

M'C -> MA X MB -» MA 

is surjective, which means there is a c' e M'C that maps to #'. Let b' be its 
other coordinate. Clearly, C e t(fl', 6'). 

COROLLARY 3.14. Suppose 

(a]9 a2,...9 a„ + i> e M4 , X AL42 X . . . XMAn + x 

and 

(a\9 a'2,...9 a'„) e M',4, X M'v42 X . . . XM'An 

are such that 

t(a]9 a2, . . . 9 an) Q t(a\, a'l9 . . . , a'n)9 

//zeji there is an a'n+l e M'An + x such that 

t(al9 02,... 9 an + x) Q t(a\9 a'l9 . . . , < + 1 > . 

Proof. Take 4̂ to be the type of (al9 al9 . . . , aw> and B = An + X in the 
previous lemma. 

PROPOSITION 3.15. L^/ M and M be two models of %>. If (a9 b) e 
M(A X B) and (a'9 b') <= M r(^ X B) are such that 

t(a9 b) c t<*', Z/>, 

then t(a) Q t(a'). 

Proof Let A0 Q A such that a e M4 0 . Then Z? G MJ5, SO that 
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(a, b) e M(A0 X B), 

whence 

<*', V) G M ' ^ o X * ) , 

whence a' G M'AQ. 

Proof of the theorem. Enumerate the elements of M and find a sequence 
(a\, a'2, . . - , a'n,. . . ) of elements of M such that for all n, 

t(al9029 . . . , a w > Ç t<fli, ^ , . . . , < > . 

We define the function/:M —» M' by letting w(an) = Û£. To see that <p 
is a morphism, we must show that if f.A —» 2? is a morphism of #, then 
for any « G AL4, 

<pB o Mf(a) = M ' /o <M(a). 

Let Z> = Mf(a). Then by applying 3.15 to a string (<2l5 a2, . . ., an) long 
enough to include both a and 6, we may conclude that 

t(a, b) Q t<<p(a), <p(Z>) >. 

But the type of the latter is evidently included in the graph of/which is 
the image of 

(id,f):A ->A X B. 

But then the graph of / is also contained in the type of {a!, b') which 
implies that M'f(a') = V. 

Recall the terminology "sufficient class of models", "enough models" 
from Section 1. A sufficient category of models is one whose class of 
objects is sufficient. 

COROLLARY 3.16. A separable, prime-generated site has enough princi­
pal, prime models. As a consequence, a prime-generated separable GT has 
enough principal prime models. 

Proof. This follows readily by 3.11, 3.12 and 3.3. 

A principal model of a site is called atomic if the type of every element is 
generated by an atom. 

THEOREM 3.17. Let ^ be a separable site and M and M any two countable 
atomic models of *$. Then for any elements a G MA and a' G M'A with 
t(a) Q t(a'), there is an isomorphism f:M —> M' with f (a) = a'. 

Proof. We begin by observing that for any two elements a G MA and 
a! G MA, if Ma) Q t(a'), then they are actually equal for there can be no 
proper inclusions among atoms. The argument proceeds much like that of 
3.12 above except that the construction goes back and forth to insure that 
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all elements are captured. To be precise, begin by enumerating the 
elements of the union of the models. Suppose that at stage n, we have 
sequences ax, a2,. . . , an of elements of M and a\, a'2, . . . , a'n of elements of 
M so that when at e MAt, then a\ e M'At and furthermore that 

t(al9 02, . . ., an) = t(a\, <%,... 9a'n). 

The «H- 1st element in the enumeration is either an element of M or of 
M'. Suppose it belongs to MAn + x. Then call it an + l. We know from 3.14 
and the remark at the beginning of the proof that there is an element 
a'n+x G M'An + x such that 

t<fl„02, . . . ,<!„ + ,> = t(a\,a'2,...,a'n+x). 

It is possible that a'n + x appeared earlier on the list, say a'n+x = a'm. We 
have, by Proposition 3.15, 

*«!><+1> == K ^ ^ + i>-
But then Am = An + X and the type of (a'm, a'n+x) is included in the diagonal 
of Am X Am, whence so is the type of (am, an + x). But this means that 
an + x = am. Then the function f.M —> M given by f(an) = a'n is well 
defined. It is evidently a bijection and the proof that it is a morphism of 
models is the same as that of 3.12. 

Call a site a regular epimorphism site if it has finite limits and has a basis 
of covers consisting of regular epimorphisms. We do not require the site to 
be regular. 

THEOREM 3.18. The category of sheaves for a regular epimorphism site has 
enough principal prime models. 

Proof. The conclusion follows from the results of [3]. See Theorem 17 of 
that paper for the proof that there are enough principal models and 
Proposition 8 for their primeness. Also see [16], Corollary 4.3. 

The same result is true for presheaf categories. We could actually infer it 
from results we already have by observing that our hypothesis that a site 
have finite limits is actually too strong. Only pullbacks along covers need 
exist and in a presheaf topos that is no restriction. Thus a presheaf topos is 
a regular epimorphism site. Nonetheless, it seems useful to actually 
describe the principal prime models; they are the evaluation functors. 
They are principal from Proposition 3.6 (hi) since the category has, and 
they preserve, arbitrary intersections (indeed all limits). To see that the 
evaluation functors are prime, let ê = Set* and for K an object of K, let 
K* denote the model of S which is evaluation at K. 

PROPOSITION 3.19. Let E be an object of é, K be an object of K and 
k e E(K). Let E,k^ denote the intersection of all subfunctors of E0 Q E for 
which k G E0(K). Then E^ is prime; conversely, every prime of E is of the 
form E^for some K in K and k G E(K). 
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Proof. To see that E^k) is prime, it is sufficient to observe that limits 
and colimits in a functor category are computed "pointwise". Hence 
if E(k^ = \ZEt, then we must have k e Et(K) for at least one z, 
whence Et = E0 by minimality of the latter. Conversely, if E is any 
functor, it is evident that if E = VE(k) as k ranges over all elements of E 
and if E is prime, then E must be one of the E^ky 

PROPOSITION 3.20. The evaluation functors are prime. 

Proof. To show that the model K* is prime, we must show that for 
any prime E, any generator k0 e K*(E) = E(K), any model M and any 
x <E M(E), there is an a:K* —> M such that 

aE(k0) = x. 

To say that k0 generates E means that the corresponding morphism 

k0:Hom(K, - ) -> E 

is epi, which implies that 

M(k0):M(Hom(K, - ) ) -> M(E) 

is surjective. This means that there is an element y G M(Hom(K, — ) ) 
such that 

M(k0)(y) = x. 

Then define a function 

aF:E(K) -> M(F), 

for each object i7 of ê by letting 

aF(£) = M(k)(y). 

Here we identify elements of F(K) with natural transformations of 
Hom(X, — ) to F. To show that this is natural, let ft:F —* G be a natural 
transformation of functors. We must show that 

F(K) &K » G(K) 

aF aG 

^ M ft >M 

1 

(G) 

commutes. Let 

£:Hom(X, - ) -> F. 

Then 

aG o ftK(k) = aGQ 3K(k)) -= M(ftK(k))(y) 
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= M(f3 o k)(y) = M/3 o Mk(y) = M/3 o ccF(k). 

The fact that @K(k) = (3 o k is just part of the identification of elements 
of a functor with a natural transformation. Thus aF is the component at 
F of a natural transformation a:K* —» M. Since 

aE(k0) = M(k0)(y) = x, 

we have verified the necessary condition. 

COROLLARY 3.21. A presheaf category has enough principal prime 
models. 

Proof. This is immediate from 3.19 and 3.20. 

It is easy to see that a GT with enough principal models is prime-
generated. Below, we will show (Corollary 3.25) that a GT with enough 
principal prime models has a continuous powerful embedding into a 
presheaf category. In fact, we formulate a condition, weaker than having 
enough principal prime models, which is necessary and sufficient for such 
an embedding to exist. 

Let M be a subcategory of Mod(^). We say that the model M in M is 
prime relative to M if the condition defining " M is p r ime" above holds 
with M' and a constrained to lie in M. 

THEOREM 3.22. A Grothendieck topos has a continuous powerful 
embedding into a presheaf category if and only if it has a sufficient category 
of principal models which are all prime relative to that category. 

Proof Let ê have a powerful embedding into a functor category Set1^. 
The evaluation functors K* are principal models of Set^ and are prime as 
models of that category. They are prime as models of S relative only 
to models of that category that extend to models of SerS In particular, 
they are prime relative to the class of all models of the form K* and hence 
form a sufficient class of principal models prime relative to that class. This 
proves one direction. 

Now suppose that ê is a Grothendieck topos with a sufficient category 
M of principal models prime relative to that category. We have the 
evaluation functor 

Ev:<f -» Set™ 

It is continuous since all objects of M are continuous functors. Since the 
class Ob(M) of models is sufficient, Ev is conservative, hence also faithful. 
Next we wish to show that Ev is surjective on subobject lattices. Let 
T Q Ev(A ). This means that for each model M of M, we have the subset 
T(M) ç MA and that when a:M —» N is a natural transformation in M, 

aA(T(M)) Q T(N). 
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Form the subobject of A, 

C = V{P G Sub(v4) \M(B) Q T(M) for all M in M}. 

It is clear from the fact that models preserve arbitrary sups that 
M(C) Q T(M) for all M in M. So we want to show the converse. We 
require: 

PROPOSITION 3.23. Let P Q A be a prime subobject and M a model in M 
that contains a generic element p e M(P)for P. Then P Q C if and only if 
p G T(M). 

Proof The necessity is obvious. Suppose p e T(M); we wish to show 
that P ^ C in Sub(^4). By the definition of C, it suffices to show that 
N(P) Q T(N) for all N in M. So let N be a model in M and a e N(P). 
Since M is prime relative to M and p is generic for P, there is a natural 
transformation a:M —» TV with aP(p) = a. By the naturality of the 
inclusion T in Ev(A) and since p e T(M), we have a G T(N) as 
desired. 

We now return to the proof of the theorem. Let p be an arbitrary 
element of T(M) and let P generate t(p). Then clearly/? is generic for P 
and it follows from the preceding that P ^ C, whence p G M(C). 

We have shown that Ev(C) = T, proving the surjectivity of Ev on 
subobjects. 

The proof of 3.22 gives 

PROPOSITION 3.24. If K is a sufficient category of principal models of a 
GT ê, all prime relative to K, then the evaluation functor 

Ev:«? -» S e ^ 

is a powerful embedding. 

COROLLARY 3.25. Any Grothendieck topos with enough principal prime 
models has a powerful continuous embedding into a presheaf category. In 
particular, any separable prime-generated Grothendieck topos, and the topos 
of sheaves over any regular epimorphism site have such embeddings. In the 
separable prime-generated case, the presheaf category can be chosen to be 
Set^ with K a countable category. 

Proof. If ê has enough principal prime models, then the full subcategory 
K of Mod(<f) with objects the principal prime models will be sufficient, 
and every model in K will be prime relative to K. Therefore, ê has a 
powerful continuous embedding into Set1^ by 3.24. The particular cases 
follow from 3.16 and 3.18. It is clear that, in the separable prime-
generated case, we may choose K (a non full subcategory of Mod(^) ) to be 
countable. 
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Question. Does every prime-generated coherent GT have a powerful 
continuous embedding into a presheaf category? 

In [14] and [16], the weaker result is shown that such a GT has 
continuous full embedding into a presheaf category. 

PROPOSITION 3.26. Suppose the GT S has enough principal prime models. 
Then the evaluation functor 

e\S -> (Mod S, Set) 

is continuous, full and faithful 

Proof Only the fullness requires proof. Suppose 

g'.eA —•> eB 

is a morphism in (Mod <f, Set). Consider the graph of g:$ e 
Suh(e(A X B)). With K the full subcategory of Mod ê consisting of the 
principal prime models, we have that the composite 

ë\ê -» (Mod g, Set) -> (K, Set), 

with the second arrow induced by the inclusion of K into mod S, is 
powerful; namely, ë is the same as the evaluation functor Ev considered in 
Proposition 3.24. Therefore, there i s l e Sub(^4 X B) such that 

M(X) = (ëX)M = $(M) for all M e K. 

Also, since ë is conservative, X is the graph of some f.A —> 5 and 
M(f) = gM for all M e K. 

To see that TV(/) = g^ for all TV e Mod(<f) (which will complete 
the proof), it suffices to see that if g, g'\eA —» ei? coincide on all M in 
K:gM = gj^, then they coincide (on all TV in Mod $). But this follows from 
the fact that "maps from elements of K to any given TV in Mod(<^) are 
jointly surjective". More precisely, given any TV in Mod (<f ) and a e N(A ), 
there are M e K, a e M (A), and an h.M —» TV such that 

/^(O = a. 

(Namely, A is the J-union of some prime subobjects; so there is 
X G Sub(v4), X prime, such that a e TV(JQ; let M e K be such that there 
is a generic element a! Œ M(X); then since M is prime, there is h as 
required.) To show that gN = g'N, consider the diagram of sets 
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and the corresponding diagram of elements of those respective sets 

*»a = hA(a!) 

t t t t 
£ A / 0 ' ) = SA/teOi •£#(«) = gh(a) 

from which we conclude that gN(a) = g#(fl) for all a G Ar(F). 

Remark. It is easy to see by an example that e is not powerful in 
general. 

We now turn to a discussion of atomic toposes. 
Let # = (C, J) be a regular atomic site. Then every model of # is clearly 

principal; every object is a J-union of atoms and the model preserves 
J-unions so the type of each element is generated by a unique atom in the 
respective subobject lattice. In particular, the type of the unique element 
of M(l) , for a model M is a unique atom of Sub(l), which we will call the 
type of M and denote t(M). Clearly, if t(M) ¥= t(M'), then there is no 
morphism M —> M'. 

Let us now suppose, in addition, that # (and hence é>) is separable. It 
follows from Theorem 3.17 that two countable models are isomorphic if 
and only if they have the same type. Moreover, the category of countable 
models and the isomorphisms between them satisfies the hypotheses of 
Proposition 3.24 and we have that S has a powerful embedding into a 
category of G-Set for a countable groupoid G. In case S is connected, we 
can take G to be a group. Note the easily verified fact that a GT having 
a powerful continuous embedding into G-Set is equivalent to G-Set, 
the category of continuous G-actions (on discrete sets) for a topolog­
ical group G with underlying discrete group G. 

COROLLARY 3.27. A separable atomic GT has a continuous powerful 
embedding into G-Set for a countable groupoid G A connected separable 

A A 

atomic GT is equivalent to G-Set Jor a countable topological group G. 
This conclusion is well known; it was stated explicitly in [16] as 

Theorem 3.8. Let us note that a similar characterization holds for coherent 
atomic toposes; see Corollary 3.3 in [16]. A related theorem, actually a 
generalization, appears in [12], referring to an arbitrary connected topos 
with a point and characterizing such a topos as the category of "discrete 
G-spaces for an (open) spatial group G" (here, however, the "spatial 
group" means something more general than a topological group). 

THEOREM 3.28. A Boolean Grothendieck topos with enough points is 
atomic. 

Proof. Let ê be such a topos. Then we have a set {Mt} of models of S 
which are collectively faithful. Each Mt induces a morphism 
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Hom(£, 2) -> Hom(Mz£, Mt2) = HomiMfi, 2) 

and these morphisms preserve union since M preserves colimits. But they 
are also Boolean homomorphisms and hence preserve all the infinite 
Boolean operations. They are also collectively faithful, so that we have an 
embedding 

Hom(£, 2) -> I I Hom(M,£, 2). 

But the latter is a complete atomic Boolean algebra and it is standard (and 
easy) to see that a complete subalgebra of a complete atomic Boolean 
algebra is again one. 

THEOREM 3.29. Let ê be a separable Grothendieck topos. The following 
are equivalent: 

(i) S is connected atomic. 
(ii) S is connected and Boolean. 

(iii) ê has exactly two distinct subtoposes. 
(iv) S has exactly one countable model up to isomorphism. 
In fact, the implications (i) =» (ii) <̂> (iii) are true without the separability 

assumption. 

Proof, (i) => (ii) is clear. To see (ii) =̂> (iii), note the following 
consequence of Giraud's theorem for Grothendieck toposes. Any sub topos 
is the category of sheaves over ê with a topology extending the canonical 
topology, and any such topology is generated by the canonical covers plus 
covers each consisting of monomorphisms; if ê is Boolean, then the latter 
monomorphisms can all be taken to have codomain 1. So, if S is 
connected, the subtopos is determined by whether 1 is covered by 0 or 
not. 

Conversely, for every non-degenerate GT <f, < în is a non-degenerate 
subtopos of S. So, if (iii) holds, we must have ê = <fni, hence ê is 
Boolean. 

In the case ê is separable, it has enough points, and therefore (ii) implies 
(i) by 3.28. 

Assume (iv). Let (C, J) be a separable regular defining site for «f, and 
let c:(C, J) —> ê be the canonical functor. Suppose {Xs}, s e S is a 
J-dense family of subobjects of A in C; i.e., if 7 G Sub(^4), and Y n S is 
empty for all s G S, then Y is empty. We claim that 

V(ÂSXS = A. 

If not, there is a model M of (C, J) in which \/s^sM(Xs) is a proper 
subobject of M (A). On the other hand, consider the topology J ' on C 
generated by J together with the single family 

{XS~A}, s G S. 

The site (C, Jr) is non-degenerate (1 is not empty) since the composite 
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is J'-continuous, and < l̂n is non-degenerate. Also, (C, J') is separable, so 
there is a countable model M of (C, J'); this is a model of (C, J) for 
which 

VseSM'(Xs) = M'(A), 

hence M and M' are not isomorphic, contrary to (iv). 
What we have shown is that for any object A of C, the subobject lattice 

of eA is a Boolean algebra. Since every object of ê has a cover by objects of 
the form eA, it is easy to see that it follows that Sub(E) is a Boolean 
algebra for every object E of <̂ , i.e., S is Boolean. 

It is easy to see that it also follows that S is connected. We have shown 
that (iv) implies (ii). 

Peter Freyd has pointed out an example of a connected Boolean topos 
which is not atomic (equivalently, it does not have a point). Let C be the 
monoid freely generated by generators x and y, and let ê be (Set ) i n . S is 
connected Boolean. Consider the geometric morphism p \ê —> Set : 

p* 

P* 

in which p* is the inclusion. For the unit 

rç:id(Setc) -^>p* op* 

of the adjunction 77* H p* and for a C-set X, 

j)X\X-*p*p*X 

is a dense map (a covering in the "I "I-topology). 
Let C be the C-set whose underlying set is C, and in which the action of 

an element c of C is multiplication by c on the left. p*C is a non-zero 
object of S\ we claim then there is no subobject of p*C which is an 
atom. 

Note that for any w G C, the sub-C-set of C generated by 
w:{w'w|u/ e C}, is isomorphic to C itself, by the map 

wf 1—> w'w. 
A 

It follows that any non-empty sub-C-set of C contains a sub-C-set which, 
as a C-set, is isomorphic to C itself. Also, the sub-C-sets of C generated 
by JC and y are disjoint and isomorphic to C itself; so, for any non-empty 
sub-C-set B of C, we can find two monomorphisms C Z> B with an 
empty equalizer. Let A be any subobject of p*C, and consider the 
following diagram in Setc. 
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in which B is defined so that the right hand square is a pullback. B is 
non-empty since TJ£ is dense. l:p*B —> A exists because of the adjunction 
p* H /?*, and it makes the two triangles in which it takes part commutative 
for the same reason. It follows that / is a monomorphism. The left exact 
functor p* produces two disjoint non-empty subobjects (represented by 
/ o (p*j) and / o (p*k) ) of A, hence A is not an atom, as claimed. 

4. A conceptual completeness result. In this section, Mod a(^) denotes 
the category of countable models of <€ and M o d a ( ^ ) = denotes the 
category of countable models with isomorphisms as morphisms. Any 
continuous T.& —» %> induces a functor 

/ = : M o d a ( ^ ) = -> Mod a (^ ) = . 

It also induces a geometric morphism 

Sh(/ ) :Sh(^) ->. Sh(^) 

that has a right-adjoint part (Sh(7) )* as well as a left-adjoint part. 

THEOREM 4.1. Suppose I\£% —> ^ is a continuous functor between 
separable Boolean sites such that the induced functor 

/ = : M o d a ( ^ ) = Mod a (^ ) = 

on countable models and isomorphisms is full and faithful Then Sh(7) is an 
inclusion of Grothendieck toposes, i.e., (Sh(7) )* is full and faithful. 

COROLLARY 4.2. Suppose p\^ —> ê is a separable geometric morphism 
between separable Boolean {that is atomic} toposes which induces a full inclu­
sion between the categories of points. Then the right adjoint p* is full and 
faithful 

Proof of 4.2 from 4.1. We remarked in Section 1 that countable models 
of fé7 and those of Sh(^) are essentially the same, for a separable site fé7. 
Therefore, the corollary follows from the theorem and Proposition 1.10. 

COROLLARY 4.3. In both 4.1 and 4.2, if the functor assumed to be full and 
faithful is actually an equivalence, then the geometric morphism asserted to 
be an inclusion is in fact an equivalence. 
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Proof. The conservativeness of (Sh(7) )* follows from 7 = being 
essentially surjective on objects; if p is an inclusion such that p* is 
conservative then p is an equivalence. 

The theorem and the corollaries are conceptual completeness results. 
The first conceptual completeness result was proved in [18]; see Theorems 
7.1.9, 9.2.9 and 9.2.10 for various formulations for the same result 
concerning coherent toposes. (Theorem 4.1 in the present paper neither 
implies, nor is implied by the result just mentioned.) 

Theorem 4.1 with the added hypothesis that the sites involved should 
also be coherent was proved and used in [15]. It was pointed out in the 
same paper that the "coherent" special case of Theorem 4.1 is essentially 
equivalent to an unpublished theorem of Haim Gaifman (stated without 
category theory). The proof of Theorem 4.1 given below is, despite 
appearances, quite similar to the one given for the coherent case in [15]. 

The proof of 4.1 will be accomplished by the following two 
propositions. 

PROPOSITION 4.4. Under the hypothesis of '4.1, in fact with I= assumed 
only to be full, (Sh(7) )* is full on subobjects {see 1.9). 

The proposition is contained in Theorem 7.3.3 in [18]. The proof of 
7.3.3, using the Craig interpolation theorem for Lw w, is only sketched 
there, but similar proofs are given in more detail. 

PROPOSITION 4.5. Under the hypotheses of4.\, Sh(7) is localic (see 1.9). 

Before we turn to the proof of 4.5, let us point out that 4.1 follows from 
4.4 and 4.5 by 1.9. 

Proof of Proposition 4.5. Assume the hypotheses of 4.5. Let us fix a 
countable model M of #. We have the "diagram" Q) of M as constructed in 
Section 2, especially Propositions 2.4 and 2.5, with the accompanying 
data 

F M 
% <r- S) -> Set 

A 

Henceforth, we write N for M. 

PROPOSITION 4.6.7V is a principal model of S (see Section 3 for the notion 
of "principal model"). 

Proof Since 2 = (D, L) is Boolean, N being principal is the same as its 
being atomic (see before 3.17). Suppose the conclusion fails, and D is an 
object of Si, and d e M(D) is such that t(d) is not principal. t(d) is 
an L-prime filter, hence, in particular, an ultrafilter in the Boolean algebra 
Sub(D). The complement lt(d) of t(d) in Sub(Z>) is (L)-dense: if 
X <E Sub(D), and X A Y = 0 for all Y e 1t(d), then X ^ Z for all 
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Z e t(d); since t(d) is not principal, X £ t(d); hence ~\X, the complement 
is in t(d), and s o l ^ IX, hence X = 0 as desired. 

Next we claim that for any object B of ^ , the set of global sections 
OP of FIB is dense. For if D is a subobject of FIB that misses every 
global section, then, since every element of NFIB is determined by a 
global section (see 2.1 (ii) ), it follows that ND = 0. But in a 2-valued 
category (see 2.4 (ix) ), either D —» 1 in which case 7VD ¥= 0 or Z) = 0. 

By Proposition 1.8, there is a model P of Q) such that P takes ~\(d) and 
each OP into surjective families. Since P takes the complement of t(d) to a 
cover, there can be no element of PD whose type is t(J), so that P cannot 
be isomorphic to N. 

Using the hypotheses of the proposition, and the other properties of P, 
we will deduce that P is isomorphic to TV; the resulting contradiction will 
establish the claim. 

Consider the functor G defined in the proof of Proposition 2.5, and let 
us consider G(P) = (PF, a) with 

a.NFI -> PFI 

defined there. Because of the definition of a and because P takes each OP 
into a surjective family, each component of a is a surjection; by the 
two-valuedness of Q), it must be injective. We have that a is an 
isomorphism. Since I= is full, there is an isomorphism 

/3:NF -> PF 

such that fij = a. Notice that the last fact means that ft represents a 
morphism from the object 

GN = (NF, id:NFI -> NFI) 

of the category A of 2.5 to the object GP. Thus, since G is full and faithful 
(see 2.5), there is a (unique) isomorphism g:N —» P (for which G(g) = p) 
as promised. 

PROPOSITION 4.7. The only automorphism of N is the identity. 

Proof. Let a be an automorphism of N. For an object B of ^ , it is 
evident from 2.1 (ii) that aFIB is the identity. Thus aFI is the identity 
automorphism. The faithfulness of Sh(/)* guarantees that aF is the 
identity. Finally, we conclude from the diagram (see 2.1 (iii) ) 

ND> •JVFC 

aFC 

-NFC 

that a is the identity on all of Q). 
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PROPOSITION 4.8. The type of every element of ND has as underlying 
object the object 1. 

Proof. Let d e ND. Its type is principal, hence generated by an atom 
A Q D. If NA has another element d\ there is, by 3.17, an automorphism 
of N that maps d on d!. Thus the map A —»• 1 induces an isomorphism NA 
—» AH. But this means that if B is the complement of the diagonal of 
A —» A X A, then NB = 0. But the site is 2-valued, so either B = 0, 
whence v4 = 1, or B has global support, a contradiction. 

PROPOSITION 4.9. JV w representable by 1. 

Given any morphism / : X —> Y in #, there is a largest subobject of 
0 / ç X with the following property: if in the diagram 

g f 

h 

g factors through O / a n d / o g = f o h, then g = h. 
$/exists because C is Boolean. Using the "internal logic" of C, we can 

express $ as follows: 

$ / = [ * < = AI VJC' <E X,fx = fx' => x = x']. 

A more direct description of O/is as the universal image under the first 
projection of kerp(/) =^> diag(X). 

PROPOSITION 4.10. For each object C of% the set of all Cz —» C9for which 
Ct can be embedded into an object of the form IB, covers C. 

Proof. If not, there will be a model M for which {MCt —> MC} fails to 
cover. Now let D be the "diagram" of M; let F: # -» 9> and JV:^ —> Set 
have the properties described in Section 2 and 4.6-4.9. We may replace M 
by the isomorphic model NF (see 2.1 (i) ); that is, we may suppose that 
M = NF. Let c e MC an element not in the image of the {MCt}. For the 
morphism c :1 >-* FC picking out c (see 4.8), there are objects C of 
# and 5 of ^ , morphism 

< / , g > : C ' ^ C X 75 

and elements c' e MC" and b <E M/J5 such that 

c# 

1> • F C 

c' W X Z># 

Fr,
 F(L g) Fr x FIB 
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is a pullback. It follows that 

1> *~l 

\b# 

T 
FC • FIB 

Fg 

is also a pullback. But then it follows that for any arrow h:D —> FC, if 

Fg o h = Fg o c' o ( ) 

(( ) represents the terminal map of any object; it is the empty tuple), 
then 

Fg o h = Fg o c' o ( > - b# o ( >, 

and the universal mapping property of the pullback gives a unique map, 
necessarily ( ):D —> 1 such that h = d o ( ) . This shows that 

J Q <!>(Fg) = F(Qg), 

the latter equality because a regular functor between Boolean regular 
categories preserves the construction of <I>. Thus we see that the composite 
arrow 

$g -> C -> C 

is a map from a subobject of IB to C whose image under M contains c, a 
contradiction. 

This completes the proofs of Proposition 4.5 and of Theorem 4.1. 
The following will be stated without proof. 

THEOREM 4.11. Suppose I:& —> %> is a continuous functor between 
Boolean {not necessarily separable) sites. Suppose that for all com­
plete Boolean algebras B, the induced functor 

I*:Con(% Sh(B) ) -> Con(^, Sh(B) ) 

is full and faithful. Then (Sh(7) )* is full and faithful. 

COROLLARY 4.12. Suppose p\^ —> ê is a geometric morphism between 
Boolean GTs which induces a full inclusion between the categories of 
B-valued points, for all complete Boolean algebras B. Then p* is full and 
faithful. 
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