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Abstract. We propose a strategy to attack the problems of orbit determination arising from
the large number of short arcs. The method uses a solution of the linkage problem depending
on the first integrals of the Keplerian motion.
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1. Introduction

This brief note is devoted to a discussion on one of the problems arising in orbit
determination of asteroids. The identification problem consists of finding among a set
of detections of celestial bodies, those belonging to the same object. The problem is of
crucial importance nowadays, due to the large amount of data coming from the asteroid
surveys. The Catalina Sky Survey and the Pan-STARRS project, in particular, search
for moving objects in the sky every night collecting many new detections. Due to the
improvements of the technology, these telescopes are able to observe many small objects,
that in general are visible only during a small span of time. The AstDys website monthly
computes the orbits of numbered and multiopposition asteroids whose observations are
provided by the Minor Planet Center. Anyway, if the described arc is too short and the
observations that are collected are few, then a single apparition orbit determination is
not possible. Even if the least squares algorithm succeeded, the uncertainty would be very
large. It means that the predicted portion of the sky where the next apparition should
take place is larger than the field of view of the telescope and the recovery may fail. In
this case we would have a lost asteroid. Hence there exists a database of designations
without a good orbit that deserves investigation and we are going to concentrate on it.

Since a single arc is not enough to have a good orbit, the usual procedure is to try
to find the couples of arcs that can be joined to produce a better orbit. This problem
is known as linkage problem and has been considered by several authors (Granvik et al.
(2005), Granvik & Muinonen (2008), Milani et al. (2004), Milani et al. (2005), Taff &
Hall (1977)). The problem is complicated as one has to join the information on two
different arcs that, in principle, may not belong to the same orbit.

There is not just one accepted method, as every proposal has some strength and
weakness. In particular, the case in which the time distance between the two arcs is large
is the most challenging. In Gronchi et al. (2010) a method based on the first integrals
of Kepler’s motion is proposed. It was tested on simulated data, giving good results.
Subsequently, in Gronchi et al. (2011) the method has been improved but it has not
been tested for the asteroid case.

In the following we are going to concentrate on the application of the improved method
to real data. Generally, the orbit coming from a linkage procedure is not good enough
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to be considered reliable. Hence some work has to be done in order to test and improve
it. In the next section we will recall the Keplerian integrals method and briefly describe
the procedure that we are going to use in order to improve the results coming from the
linkage. We will apply the procedure to a reduced database of real data and show some
partial results.

2. The strategy

An observed arc is a set of observations («a;, d;) of an object at time ¢;. Here we indicate
with « the right ascension and with § the declination. If the arc is too short and the
observations are few, the least squares algorithm (if it converges) generally gives orbits
with very large uncertainty. The only information that one can get through interpolation
corresponds to the values of right ascension, declination and their corresponding rates at
a mean epoch of observations. The vector formed by these quantities is called attributable
and is denoted as

A= (a,é,d,(g).

The linkage problem can be formalized as the problem of finding an orbit compatible
with two given attributables A; and Ay at time ¢; and ¢ respectively. This means to
find the missing range (indicated with p) and range rate (indicated with p) either at time
t1 or to. Among the various methods we concentrate on the method based on the Keple-
rian integrals. The basic idea is the following. If we suppose that A; and Ay correspond
to the same object and that the motion between times ¢; and t, is Keplerian, then the
integrals of the two body problem must be preserved. Expressing position and velocity in
spherical coordinates (p, a, §) we can equate respectively the values that energy, angular
momentum and Lenz vector take at t; and ty. In this way we get a system of seven
equations in the four unknowns (p1, g1, p2, p2). The system is over-determined, and just
four equations are enough. In Gronchi et al. (2010) the authors consider the angular mo-
mentum and the energy. By squaring, a polynomial system of total degree 48 is obtained.
Having polynomial equations allows to compute the solutions in an efficient way. At this
point we have two cases. If the system has no solutions, then the assumption that the
two attributables belong to the same object is false and we discard the couple. If we have
solutions, then they are tested with some compatibility conditions. These conditions are
also based on the equations that we are not using to solve the system. If this control is
passed we have a preliminary orbit that can act as a starting guess for the differential
corrections. Note that the output orbits are endowed with covariance matrices. A test on
simulated data has been performed, giving good results. Anyway, the high degree of the
system could represent a problem when handling large databases. Therefore, in Gronchi
et al. (2011), the method was improved choosing a suitable projection of the Lenz vector
instead of the energy. By squaring, a polynomial system of total degree 20 was obtained.

We are going to consider a database of 80140 arcs of type 2. According to the definition
given in Milani et al. (2007) these arcs show a significant curvature and can be split in
at least two disjoint arcs, each without a significant curvature. A single apparition orbit
determination with this kind of arcs does not give reliable results. Hence we split every
arc in order to have tracklets that do not show curvature and from them we derive the
corresponding attributable. In the end we are left with a database of 198947 attributables.

A brute force approach would lead to a N? computational complexity, where N is the
total number of attributables. This implies a very long computational time. With some
algorithm of sorting the complexity can be reduced to N log N. Anyway as N is large,
the computational time still remains too large. In order to have a reduced database we
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set some filters as described in Gronchi et al. (2010). In particular we set the minimum
time span between the attributables at 100 days and the maximum at 365 days. In this
way, we are not considering the identifications given by the reassembling of the previously
splitted arcs.

A proposed orbit, to be considered reliable, needs to be compared with the observa-
tions. Only if we have enough observations and the residuals are sufficiently low, the orbit
can be considered reliable. Hence, after the linkage, we try and find new observations
that can fit the proposed orbit. Once we have more observations, the differential cor-
rections can be performed and new residuals appear. This procedure is generally called
attribution and is described in Milani et al. (2001).

From a list of attributables, the linkage procedure gives a new list of orbits and a left-
over database of attributables. The attribution procedure will try to match orbits and
attributables, improving the first ones. This latter list cannot be considered as a final
result. Indeed duplicates and contradictions can be created. A method to deal with this
problem has been introduced in Milani et al. (2005). A list is considered complete when
there is no couple of identifications sharing the same attributable. The way to treat discor-
dant identifications is crucial. We remember that two identifications are called discordant
if they share some tracklets and not all the tracklets constituting one identification are
contained in the other. On one side we can choose the one that, according to some quality
parameters, is the best. On the other hand, we can try to merge two discordant identifi-
cations into a longer one. In this latter case we would have a new identification composed
by more observations than the previous ones. The merging process could introduce new
duplicates and contradictions, hence a new control has to be done, without merging, in
order to have a normalized list and conclude the identification procedure.

3. Results and conclusion

The results of the application to the reduced database is a set of 580 identifications
that can be summarized in the following table.

| number of attributables | 2 3 4 56 7|
| number of identifications | 228 136 119 42 4 3|

The identifications are cataloged according to the number of joined tracklets, e.g. we
have 42 identifications with 5 tracklets. Those constituted by 5 or more tracklets can be
considered good candidate orbits and should be submitted to a more stringent control
on the residuals. The results of this control, together with an application to a larger
database of tracklets will be presented in a forthcoming paper.
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