Acknowledgement

The author would like to thank the anonymous referee for their useful comments in improving this proof.

 10.1017/mag.2024.128 © The Authors, 2024
 KARL BUSHNELL

 Published by Cambridge University Press
 Ribston Hall High School,

 on behalf of The Mathematical Association
 Stroud Road,

 Gloucester
 GL1 5LE

email: kbu@ribstonhall.gloucs.sch.uk

108.45 The golden section from three congruent semicircles

Let *R* be a positive real number and let A_1B_1 be a line segment with length 2*R*. Two rays ℓ , ℓ' with origins at A_1 , B_1 , respectively, are perpendicular to A_1B_1 . We show how to obtain the following configuration where $A_2B_2 = A_3B_3 = 2R$, points A_3 , B_3 are on ℓ , B_2 is on ℓ' , and the semicircles $\omega_1, \omega_2, \omega_3$ with respective diameters A_1B_1, A_2B_2, A_3B_3 satisfy:

- A_2B_2 is tangent to ω_1 at A_2
- ω_2 is tangent to ω_3 .

FIGURE 1

As a by-product, the construction will provide the following proposition:

Proposition 1: The semicircle ω with centre B_2 externally tangent to ω_1 is also tangent to ω_3 . In addition, if it intersects the line segment B_1B_2 in A, then $\frac{AB_2}{AB_1} = \phi$, the golden ratio $(\phi = \frac{1}{2}(\sqrt{5} + 1))$.

Constructing Figure 1

The construction of ω_2 is easy: since the tangents to ω_1 from B_2 are of equal length, we must have $B_2B_1 = B_2A_2 = 2R$. Thus, we first locate B_2 on ℓ such that $B_1B_2 = 2R$, then draw the tangent B_2A_2 to ω_1 and ω_2 follows.

FIGURE 2

To conclude the first part of the construction, we introduce the centre U of ω_1 and the point D of intersection of the line B_2A_2 and ℓ (Figure 2). Since A_1A_2 is perpendicular to A_2B_1 , the line segment DU is perpendicular to B_2U . It follows that UA_2 is the altitude on the hypotenuse of the right triangle DUB_2 . As a result, we have $A_2D \times A_2B_2 = A_2U^2$ and so $DA_2 = \frac{1}{2}R$.

To proceed, we consider the orthogonal projection H of B_2 onto ℓ and the perpendicular bisector of A_2B_2 , which intersects ω_2 at K, ℓ at W, and A_2B_2 at its midpoint V (Figure 2). We show that $A_3 = H$ and that W is the centre of the desired semicircle ω_3 .

The points V and H, which are on the circle γ with diameter B_2W (since $\angle B_2HW = \angle B_2VW = 90^\circ$), satisfy $DV = DA_2 + A_2V = \frac{1}{2}R + R = \frac{3}{2}R$ and $DH^2 = DB_2^2 - B_2H^2 = (\frac{5}{2}R)^2 - 4R^2 = \frac{9}{4}R^2$, hence HD = VD. Since the power of D with respect to γ is $DH \times DW$ as well as $DV \times DB_2$, it follows that $DW = DB_2 = \frac{5}{2}R$ and so HW = R. We deduce that $VW^2 = B_2W^2 - VB_2^2 = B_2H^2 + HW^2 - R^2 = 4R^2 + R^2 - R^2 = 4R^2$, that is, VW = 2R. Since VK = R, we obtain WK = R and the semicircle with centre W and radius R passes through H and is tangent to ω_2 at K. This semicircle is ω_3 .

Proof of Proposition 1

We observe that $B_2U^2 = B_2A_2^2 + A_2U^2 = 5R^2 = B_2H^2 + HW^2 = B_2W^2$ so that the radius *r* of ω is $B_2U - R = R(\sqrt{5} - 1)$. Since $B_2W - R = R(\sqrt{5} - 1)$ as well, the semicircle ω is also tangent to ω_3 . Note the relation $\frac{2R}{r} = \phi$.

There just remains to calculate

$$\frac{AB_2}{AB_1} = \frac{r}{2R - r} = \frac{1}{\phi - 1} = \phi.$$

In passing, we can extract the following quick construction of G dividing a given line segment XY in the golden ratio.

First locate Z with ZX perpendicular to XY and $XZ = \frac{1}{2}XY$ and then F on the line segment ZY with ZF = ZX. Lastly, let G on XY be such that YG = YF. This point G satisfies $\frac{GY}{GX} = \phi$.

10.1017/mag.2024.129 © The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association

a, 2024 TRAN QUANG HUNG High School for Gifted Students, Hanoi University of Science, Hanoi National University, Hanoi, Vietnam e-mail: analgeomatica@gmail.com MICHEL BATAILLE 6 square des Boulots, 76520 Franqueville-Saint-Pierre, France e-mail: michelbataille@wanadoo.fr

108.46 A generalisation of Fuss' theorem

Introduction

Fuss' theorem for bicentric quadrilaterals is a classic theorem of plane geometry that appeared in the 18th century in the works of Nikolai Fuss, an assistant of the great Leonhard Euler, see [1, 2, 3]. In [3], Juan Carlos Salazar gave a very simple and elegant solution to this theorem using only classical tools. This is an interesting idea, and we have exploited this idea to give a generalisation of Fuss' theorem. Here we shall propose a 'weaker' condition that only the inscribed quadrilateral is enough. The theorem is as follows:

532