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108.45 The golden section from three congruent semicircles

Let  be a positive real number and let  be a line segment with
length . Two rays  with origins at , , respectively, are
perpendicular to . We show how to obtain the following configuration
where , points ,  are on ,  is on , and the
semicircles , ,  with respective diameters , ,  satisfy:

R A1B1
2R 	 , 	 ′ A1 B1

A1B1
A2B2 = A3B3 = 2R A3 B3 	 B2 	 ′

ω1 ω2 ω3 A1B1 A2B2 A3B3

•  is tangent to  at A2B2 ω1 A2

•  is tangent to .ω2 ω3

A

A3 B3 	

B2

	 ′

ω2

ω3

B1

1ω

ω

A2

1A

FIGURE 1

As a by-product, the construction will provide the following
proposition:

Proposition 1: The semicircle  with centre  externally tangent to  is
also tangent to . In addition, if it intersects the line segment  in ,
then , the golden ratio .
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Constructing Figure 1
The construction of  is easy: since the tangents to  from  are of

equal length, we must have . Thus, we first locate  on
 such that , then draw the tangent  to  and  follows.
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FIGURE 2

To conclude the first part of the construction, we introduce the centre
of  and the point  of intersection of the line  and  (Figure 2). Since

 is perpendicular to , the line segment  is perpendicular to .
It follows that  is the altitude on the hypotenuse of the right triangle

. As a result, we have  and so .
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To proceed, we consider the orthogonal projection  of  onto  and
the perpendicular bisector of , which intersects  at ,  at , and

 at its midpoint  (Figure 2). We show that  and that  is the
centre of the desired semicircle .
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The points  and , which are on the circle  with diameter  (since
), satisfy

and , hence . Since the
power of  with respect to  is  as well as , it follows
that  and so . We deduce that

, that is,
. Since , we obtain  and the semicircle with

centre  and radius  passes through  and is tangent to  at . This
semicircle is .
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Proof of Proposition 1
We observe that  so

that the radius  of  is . Since  as
well, the semicircle  is also tangent to . Note the relation .

B2U 2 = B2A2
2 + A2U 2 = 5R2 = B2H2 + HW2 = B2W2

r ω B2U − R = R( 5 − 1) B2W − R = R( 5 − 1)
ω ω3
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There just remains to calculate
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r
2R − r

=
1

φ − 1
= φ.

In passing, we can extract the following quick construction of  dividing a
given line segment  in the golden ratio.
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FIGURE 3

First locate  with  perpendicular to  and  and then
on the line segment  with . Lastly, let  on  be such that

. This point G satisfies .
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108.46 A generalisation of Fuss' theorem

Introduction
Fuss' theorem for bicentric quadrilaterals is a classic theorem of plane

geometry that appeared in the 18th century in the works of Nikolai Fuss, an
assistant of the great Leonhard Euler, see [1, 2, 3]. In [3], Juan Carlos
Salazar gave a very simple and elegant solution to this theorem using only
classical tools. This is an interesting idea, and we have exploited this idea to
give a generalisation of Fuss' theorem. Here we shall propose a ‘weaker’
condition that only the inscribed quadrilateral is enough. The theorem is as
follows:
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