Journal of Glaciology

e

IGS

Article

Cite this article: Lleshi K, Jouvet G,
Kamleitner S, Leger T, Herman F, Cook SJ
(2025) Retrieving climatic insights from the
Last Glacial Maximum in the Alps using an
inverted glacier model. Journal of Glaciology
71, €103, 1-11. https://doi.org/10.1017/
j0g.2025.10083

Received: 22 November 2024
Revised: 25 July 2025
Accepted: 21 August 2025

Keywords:
Paleoclimate; Last glacier maximum; Glacier
modelling; Inversion; Machine learning

Corresponding author: Kejdi Lleshi;
Email: kejdi.lleshi@unil.ch

© The Author(s), 2025. Published by
Cambridge University Press on behalf of
International Glaciological Society. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

cambridge.org/jog

Retrieving climatic insights from the Last
Glacial Maximum in the Alps using an
inverted glacier model

Kejdi Lleshit
Frédéric Herman! and Samuel James Cook?!:3

, Guillaume Jouvet! (%, Sarah Kamleitner!?, Tancrede Leger?,

YInstitute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland; 2Department of
Geography, University of Zurich, Zurich, Switzerland and ®Institute of Geography, FAU, Erlangen, Germany

Abstract

The climatic conditions, particularly the sources of precipitation that enabled extensive glacial
growth during the Last Glacial Maximum (LGM) in the European Alps, remain poorly con-
strained. Here, we apply an inversion method to reconstruct equilibrium line altitude (ELA) fields
using glacier footprints, such as the moraines deposited by Alpine glaciers during the LGM. By
employing a machine-learning emulator trained on outputs from a glacier-evolution model, we
predict glacier maximal thickness. The emulator is integrated into a gradient-based inversion
scheme to derive ELA fields consistent with LGM footprints. The results show that the recon-
structed ELA fields align with those from previous studies, validating the robustness of our
approach. Unlike existing inversion methods, our approach is more general and avoids restrictive
assumptions. Notably, by incorporating the transient response of glaciers to climate variability
(we do not assume steady state), we show that the cold spell period is crucial for interpreting
the reconstructed climate patterns—an aspect previously overlooked. Our findings provide new
insights into climatic variability during the LGM, particularly concerning the interaction between
precipitation patterns and the cold spell period. Furthermore, the computational efficiency of our
method makes it applicable to large-scale paleoclimate reconstructions based on glacier footprints.

1. Introduction

Understanding past natural climate variations during the Quaternary is crucial for understand-
ing current and future climate change. Specifically, the period of the Last Glacial Maximum
(LGM), around 24-25 ka BP, remains a topic of debate regarding the changes in the sources
and directions of moisture supply over the European Alps. The Alps are positioned as a bar-
rier to meridional moisture transport, recording shifts in the North Atlantic storm track, which
significantly influenced regional climate dynamics (Florineth and Schliichter, 2000; Luetscher
and others, 2015; Monegato and others, 2017). Geomorphic evidence from the LGM, such
as moraines and trimlines, is utilized to reconstruct the paleo-glacier’s extent and thickness
(Bini and others, 2009; Ehlers and others, 2011). The reconstructed paleo-glacier can, in turn,
be used to extract paleo-climate information (Ohmura and others, 1992; Heyman and others,
2013; Albrecht and others, 2020; Martin and others, 2020; Vi$nevi¢ and others, 2020; Rettig and
others, 2023).

1.1. State-of-the-art

One simple inversion method to retrieve climate information from paleo-glacier reconstruc-
tions is to seek the glacier equilibrium line altitude (ELA), the altitude where accumulation and
ablation of ice due to precipitation and melt are zero, assuming a constant accumulation area
ratio (Pellitero and others, 2015; Martin and others, 2020). The accumulation area ratio is the
ratio of the area above the equilibrium line to the total area of the glacier (Porter, 1970). The ELA
is a fundamental parameter, primarily controlled by the temperature and precipitation regimes
of the climate. However, the accumulation area ratio approach to finding the ELA is too sim-
plistic, as it does not account for glacier dynamics and assumes a stationary state of glaciers.
In fact, it is well established that glaciers are rarely stationary due to the inherent variability of
the climate and the presence of internal glacial processes (e.g. surges) (Jéhannesson and others,
1989; Liithi, 2009).

Another approach is manually searching for a climate solution consistent with glacier
footprints (Heyman and others, 2013; Albrecht and others, 2020). This involves sampling
an ensemble of plausible past climate scenarios and performing simulations with a glacier-
evolution model. The output of each glacier-evolution model (predicted glacier extent) is
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then compared with the reconstructed palaeo-glacier extent. The
climate scenarios that yield results most compatible with observa-
tions are retained. Given the computational expense of the glacier-
evolution model, an iterative strategy is advisable. This method
systematically updates the climate inputs to converge to a climate
scenario compatible with the reconstructed paleo-glacier extent.
An alternative approach was introduced by Vi$nevi¢ and others
(2018), who proposed an automatic, iterative inversion method
powered by graphics processing units.

Using this method, Visnevi¢ and others (2020) were able to
reconstruct a spatially varying ELA field compatible with the
reconstructed palaeo-glacier extent. Although promising, this
method yields high computational costs and employs a heuristic
descent approach rather than the more efficient steepest descent
method for minimizing the cost function. The cost function is
the misfit between the predicted and observed glacier extents.
Additionally, Vi$nevi¢ and others (2020) assume that glaciers are
in a steady state at the time of maximum extent, a condition
rarely met in the dynamic nature of real-world glaciers that fre-
quently respond to climatic changes with a level of delay and inertia
that depends on the ice mass and the duration/magnitude of cli-
matic change (Jéhannesson and others, 1989; Liithi, 2009). They
also employ the shallow ice approximation (Hughes, 1984), sim-
plifying the ice mechanics, which is particularly problematic in
steep mountainous regions where vertical shearing predominantly
influences ice flow (Le Meur and others, 2004).

One promising way to reduce the high computational costs
of glacier-evolution models—such as that of Vis$nevi¢ and oth-
ers (2020)—and to address their inherent limitations is through
machine learning-based emulation. The latter consists of using
a machine learning model to replicate the outputs of a complex
model with high fidelity but at a fraction of the computational
cost. Based on this approach, Jouvet (2022) was able to speed up
significantly an ice flow model. Additionally, using automatic dif-
ferentiation in conjunction with the emulator enables gradients to
be computed, providing an efficient and precise method for solving
complex inverse problems (Paszke and others, 2017; Jouvet, 2022).
To the best of our knowledge, combining machine learning-based
emulators and automatic differentiation for paleo-glacier recon-
structions has never been attempted, despite its potential for both
accuracy and lower computational costs.

A further difficulty in paleo-climate reconstruction is the non-
uniqueness of solutions: the same glacier extent can be explained
by multiple combinations of temperature, precipitation and model
parameters. This uncertainty underscores the importance of run-
ning multiple inversions to thoroughly explore the parameter space
and refine our understanding of the climate-glacier interaction.
By dramatically lowering computational costs, machine learning-
based emulators pave the way for extensive modelling for param-
eter exploration, thereby helping constrain solutions more effec-
tively than is possible with traditional, more expensive simulation
frameworks.

1.2. Proposed solution

In this paper, we address the limitations mentioned earlier by
applying a gradient descent inversion method that uses a machine
learning-based emulator to efficiently reconstruct paleo-climate
from glacier footprints and apply it to reconstruct spatially varying
ELA fields across the European Alps during the LGM. While the
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ELA is conventionally represented as a single value characterizing
an entire glacier (Braithwaite and Raper, 2009), we aim to anal-
yse its spatial variability as a climate proxy. Furthermore, to ensure
consistency with the methodology adopted by Visnevi¢ and others
(2018, 2020), we retain the term ELA field to denote the spatially
varying equilibrium altitudes at which the climatic mass balance is
zero.

In the following, we outline the construction of the machine
learning emulator, beginning with data generation using a glacier-
evolution model and progressing to the training of the emulator.
We then elaborate on the inversion scheme. Finally, we present our
results that assess the quality of both the emulator and the inver-
sion scheme, as well as our outcomes for the climate prevailing at
LGM in the Alps.

2. Methods
2.1. Data generation with a glacier-evolution model

Examining a range of climate forcings, glaciation durations and
other glacier-related physical parameters is essential for building
the dataset used to train our emulator. To accomplish this, we
employ the instructed glacier model (IGM) (Jouvet and others,
2022) as the glacier-evolution model that couples ice flow, surface
mass balance (SMB) and mass conservation. The specificity of IGM
is that it uses an emulator informed by model realization runs to
model the ice dynamics, offering a significant speed-up compared
to traditional solvers with fairly limited loss of accuracy (Jouvet and
others, 2022). In our study, we required 4200 simulations of the
Alps, with each simulation covering an average of 2500 years. Given
these high computational demands, IGM’s efficiency is essential for
feasibility while still capturing the key physical processes governing
glacier evolution.

Each IGM simulation is initialized with ice-free conditions over
the present-day Alpine bedrock b(x, y). The decision to initialize
the simulations as ice-free was made due to the lack of data con-
cerning glacier extents in the Alps prior to the LGM. The bedrock
is defined by a 451 by 301 raster grid, using a 2 x 2 km resolution.

We use the Python package FyeldGenerator to generate two-
dimensional Gaussian random ELA fields (Fig. 3) for investigating
various climate forcings, represented as zp, (x,y). These fields
exhibit a mean altitude ranging between 1000 and 2000 m. By sys-
tematically generating new fields, we obtain glaciers with diverse
geometries, thereby enhancing the emulator’s ability to accurately
capture the relationship between ELA variations and glacier mor-
phology.

Luetscher and others (2015) document oscillatory climatic
behaviour during the LGM (27-21ka BP; Fig.1). To mimic a
transient cooling and warming of the climate, we designed the sim-
ulations such that the ELA field follows one period of a cosine
function (T') as shown in Figure 1 and :

Zpra(X, 5 ) = zZgpa (%, ¥, tg) + 500 X cos(2m x t/T), (1)

where zp; 4 (x,y,t) is the ELA that evolves with time, zg 4, (x, y)
is the ELA at the initial time (# = 0), 500 is the amplitude of the
cosine function in meters, ¢ is the time index and T is the period
of the cosine.

We model the climate’s impact on glacier dynamics through a
spatially and temporally varying SMB function, expressed as:
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Figure 1. The ELA field constantly changes during the simulations following a cosine
with a period of 5000 years (black line). The blue line is the Oxygen isotope ratio from
Luetscher and others (2015). Red lines are at 21500 and 27 000 years BP.

Smb(%}’v t) = min ('Y ' (S(XJ% t) 7ZELA(x7ya t)) ) C) s

Y= {/Babl
Bacc

where (3, is the mass balance gradient for the ablation area,
Bace is the mass balance gradient for the accumulation area =
0.0005 a~, s(x, y,t) is the surface elevation, zg4(x, y,t) is the
spatially and temporally variable ELA defined in Eqn (1) and
c is the maximum ice accumulation rate = 2 ma~! (Meier,
1962).

This approach enables the emulator to learn the dynamic rela-
tionship between climate variations and glacier morphology. It has
been established that glaciers of varying sizes react differently to a
given climate scenario (Zekollari and Huybrechts, 2015). Smaller
glaciers generally respond more quickly to climate change, while
larger glaciers require more time to react.

We have carried out 4200 simulations, each with a unique initial
ELA field (zg14, (%, y)). In addition, simulations have different run
periods (T), ranging from 1000 to 5000 years and physical param-
eters whose values are shown in Table 2. The physical parameters
include the rate factor in Glen’s flow law (Glen, 1955) that controls
the ice shearing from the cold-ice case (low A) to the temperate
ice case (A), the sliding coefficient (s) that controls the strength of
basal motion and mass balance gradient /3, from Eqn (2). After
each simulation, we define the glacier maximal thickness (GMT)
F(x,y) as the maximal ice thickness h(x, y,t) over the run time
from t =0to t = T for each pixel. We calculated the GMT because,
in cases where paleo-glacier thickness can be reconstructed
from trimlines, it typically represents the glacier's maximal
thickness.

ifs(x7y7 t) - ZELA(xvya t) < 07 (2)
ifs(x,y, t) - ZELA(x7y7 t) >0,

H(x,y) = mtax h(x,y,t) 3)

Having described the data generation process through IGM
simulations, we now detail how these data form the basis for
constructing the emulator.

2.2. Emulator

Our emulator is a machine learning model that aims to replicate
the behaviour of a glacier-evolution model with high accuracy
and a minimized computational cost. We build the emulator (E)
to map an input to an output, Eqn (4). The input data to train
the emulator are the bedrock topography b(x, y), the initial ELA
field (zg4,(x, ), the period (T) and physical parameters such as
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the sliding coefficient s, the mass balance gradient 3, from Eqn
(2) and the rate factor from Glen’s law (A). On the other hand,
the output data for the emulator is F(x, y). The input and output
are two-dimensional fields defined by raster grids with the same
dimensions, as shown in Eqn (4).

E: {b(x7y)7ZELA[)<x7y)7 TvAvﬁablvs} — {_’]{(x,)/)}
[RNXXI\I),X6 — |RNX><N},><1.

(4)

Our emulator is based on a convolutional neural network, a
specialized neural network architecture particularly effective for
processing grid-like data, such as images. This makes convolutional
neural networks well-suited for analysing two-dimensional fields
representing glaciers, topography and climatic conditions. Further
details on convolutional neural networks are provided in and in the
following references O’Shea and Nash (2015); Jouvet (2022); Cong
and Zhou (2023).

We allocate 80% of our data collection for training, allowing
the emulator to learn the complex spatial relationships between cli-
mate conditions and glacier attributes. The remaining 20% is used
to validate the model’s predictive accuracy and generalizability. To
optimize performance, we train multiple emulators with varying
parameters, including the number of hidden layers, kernel size,
batch size and overall architecture (Appendix A). We monitor each
model’s performance across different parameter configurations
using TensorBoard’s hparams plug-in (Abadi and others, 2016).
The best-performing emulator, requiring no further training, is
selected as our final emulator E.

Finally, we assess the emulator’s generalization ability using
a previously unseen dataset. This dataset is generated indepen-
dently using the same data-generation pipeline, ensuring a robust
evaluation of the emulator’s predictive capabilities.

2.3. Inversion

This subsection presents an inversion method that utilizes a two-
dimensional reconstruction of the Alpine ice field mask M, (x, y)
(it equals 1 in ice-covered regions, and 0 in ice-free regions) during
the LGM (Ehlers and others, 2011) to infer a compatible ELA field.

The task of finding ELA fields that can explain the
observations(M,;,) can be framed as an optimization problem.
The goal is to seek an ELA field that minimizes C:

e(ELA) :H Mobs(x7y) _M(E{b(xvy)szLAo(xay)7 TaAvﬁablvs})
13+ R(zpralx,p))- (5)

Here, C represents the cost function, and M ,(x, y) denotes the
observed glacier mask extent (Ehlers and others, 2011). The term
E{b(x,y),zELAy(x,y), T, A, Ba1, S} represents the glacier maxi-
mal ice thickness predicted by the emulator (E), and the function
M keeps its sole mask (i.e. equal to 1 in ice-covered regions,
and 0 elsewhere) to be compared with observations. Additionally,
R(zgra(x,y)) is a regularization term for the inferred ELA field.
This term plays a crucial role in mitigating overfitting and ensuring
the physical plausibility of our solution by preventing extreme vari-
ations (Tikhonov, 1963). The regularization term is mathematically
defined as follows:

R(zsualx.9)) = A [ (Vzaroy)Pasdy, (©)
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Figure 2. Schematic representation of our iterative optimization approach. The emu-
lator is provided with input variables from Table 2. The initial ELA field follows a
gradient from northwest to southeast, ranging from 1300 to 2000 m. The emulator
then predicts the GMT, which is subsequently compared to the observations. Based
on the cost function, gradients are computed, and the ELA field is iteratively updated
to find the optimal solution.

Table 1. Comparison of computational times for the IGM (Jouvet and oth-
ers, 2022) and the emulator (E), highlighting the efficiency of the emulator E.
Computations are done with a GPU NVIDIA RTX A3000 12GB.

Time [yrs] IGM run time [s] E run time [s]
5000 169.31 0.06
4000 128.01 0.06
3000 106.63 0.06
2000 53.85 0.06
1000 26.04 0.06

where ) is the regularization coefficient dictating the scale of
smoothness enforced on the ELA field. We minimize the func-
tional (5) within its parameter space using an iterative gradient-
based approach. The optimization scheme selected for this study
is the Adaptive Moment Estimation (ADAM) algorithm (Kingma
and Ba, 2014).

As illustrated in Fig. 2, we start with an initial estimate of the
ELA field (zg;4,(x, y)) while keeping the other input variables of
the emulator unchanged during the inversion process. Given all the
input variables, the emulator E predicts a glacier extent four orders
of magnitude faster than a glacier-evolution model would (Table 1).
We then compute the ‘misfit’ between the predicted glacier extent
and the ‘observed’ glacier extent using the cost function € defined
by Eqn (5).

We obtain the gradient (g;) of the cost function (5) with respect
to its parameters, using AD. The gradient, g; = Vg 4C,(ELA),
is used by the ADAM optimizer to identify the descent direction
(p;) and the step length (a;) that minimizes the function (5). The
descent direction (p;) ensures that the cost function is reduced
after each iteration, facilitating the algorithm’s convergence to a
minimum. The step length («;) is a positive scalar scaled by the
gradient.

In summary, the ELA field is updated as follows:

- . .
Zpra = Zppa +A'p' (7)
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In the subsequent iteration, the updated ELA field (zfgﬂ) is
given to the emulator to predict the new glacier extent (E{zj1 4 }),
which should be closer to the observed glacier extent (M ,(x, ¥)).
This process is repeated until the cost function converges or shows
insufficient improvement. Upon completion, the final ELA field is
considered the solution of the inversion scheme.

3. Results

This section delineates the findings in two main segments. Initially,
we explore the emulator, assessing its precision in emulating a
glacier-evolution model. Subsequently, we present the inversion
results to extract palaeoclimate information from reconstructed
glacier extent in the Alps during the LGM. The inversion method
is employed multiple times to explore combinations of ELA fields
with the period T, rate factor (A) and f3,,. A sensitivity analysis is
then conducted to test the impact of climatic or glacial parameters
on the results.

3.1. Emulation capabilities

We assess the emulator’s proficiency using data that were not used
during training. The capability to generate results comparable to
those produced by the IGM (Jouvet and others, 2022) is then eval-
uated. These assessments, aimed at understanding the emulator’s
capability, are reported in Figs 3 and A2. Moreover, Table 1 delin-
eates the computational efficiency of the emulator compared to a
glacier-evolution model such as the IGM.

As detailed in the Methods section, the test dataset was gen-
erated by IGM simulations. The input data are then fed to the
emulator, and the predicted GMT is compared to the GMT in the
dataset, which the IGM generated. The “True-Predicted’ subfig-
ure in Fig. 3 illustrates a close alignment between the emulator’s
outputs and the IGM-simulated GMT. Nevertheless, minor dis-
crepancies are observed in the glacier lobes, particularly where
the glacier extends into lowland areas. These regions are known to
be highly sensitive to small parameter variations and are particu-
larly challenging for palaeo-glacier reconstructions (Seguinot and
others, 2018; Jouvet and others, 2023).

Table 1 compares the computational time required to derive
GMT using both the IGM and the emulator, executed on the same
computational platform, an NVIDIA RTX A3000 12GB GPU. The
results indicate that the emulator operates at three to four orders of
magnitude faster than the IGM. This efficiency is particularly cru-
cial during the inversion process, where numerous forward mod-
elling predictions are needed. Such performance underscores the
substantial computational advantages of employing the emulator
over conventional glacier-evolution models.

3.2. Inverting paleo-glaciers from the LGM

The inversion scheme applied here derives a two-dimensional ELA
field for the Alps during the LGM by inverting the observed glacier
extent (Fig.4). To facilitate the interpretation of inferred ELA
results, we delineated 11 regions within the Alps. These regions
are thought to represent interconnected glacier systems during the
LGM. We calculate the mean ELA value for each region from the
inverted ELA field, as shown in Fig. 5.

To fully harness the capabilities of our inversion scheme, we
applied it to the observed glacier extent under three distinct
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Figure 3. Emulator evaluation at two distinct run times (4 and 5 ka) to illustrate its predictive capabilities. (a) ELA field used as input for the IGM and the emulator. (b)
Emulator-predicted GMT. (c) GMT from the IGM. (d) Difference between true and predicted GMT (blue: overestimation; red: underestimation). Overall, the emulator closely

replicates the IGM outputs.
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Figure 4. Reconstructed glacier extent from observations (Ehlers
and others, 2011), delineated by black lines with a dotted pattern

inside the boundaries. The regions shaded in light blue and white
are defined based on current hydrological catchment maps.

periods T: 3000, 4000 and 5000 years, while keeping other phys-
ical parameters fixed. The physical parameters, denoted in bold
in Table 2, are selected based on a literature review (Cohen and
others, 2018; Visnevi¢ and others, 2020; Jouvet, 2022). All results
were compiled into Fig. 6.

Figure 6 illustrates two main findings. Firstly, the delineated
regions are clustered into two groups: regions north of the Alpine
divide, with lower ELA values, and southern regions with higher
ELA values. The glacier footprints indicate the presence of large
glacier lobes in the northern Alps foreland, corresponding with
lower ELA values. In contrast, the higher ELA values in the south-
ern Alps resulted in smaller glacier lobes. Secondly, there is a clear
relationship between the climate and the period T. The Alpine ice
field could have formed under lower ELAs, indicating a cold cli-
mate or high precipitation, during a short period T (i.e. 3000 years).
Conversely, it could have been built under higher ELAs during an
extended period T (i.e. 5000 years).
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Table 2. List of input parameters for the emulator, where b(x, y) is bedrock
topography, zg 4, (%, y) is the initial ELA map, T is the period of the cosine (Fig. 1)
and time of simulation, A is Glen’s law rate factor, 3, is the mass balance
gradient and S is the sliding coefficient. Bold values are selected as default
parameters.

Parameter Tested values Units

b(x,y) Alps topography m

Zgrag (%, ¥) Initial ELA field m

T 3000, 4000, 5000 a

A 39, 78, 156 MPa=3 a7t
Babl 0.004, 0.008, 0.016 al

S 2.1 km MPa~3 a!

2000

===+ Durance

—— Rhone

—=- Toce-Ticino-Adda
-=- Adige

—— Salzach-Traun-Enns
===+ Tagliamento-Piave
===+ Western-Italian-Alps
===+ Mur-Drau

—— Reuss-Aare

— Inn-lIsar-Loisach
—— Rhine-Linth

1800 A

1600 -

1400

Mean ELA values [m]

1200 -

3.0 3.5 4.0 4.5 5.0
Mean time values [k years]

Figure 6. ELA values averaged over region-of-interest (Fig.4) plotted against the
period T. The figure illustrates the automatic spatial clustering of the ELA values
into two primary groups and the correlation between the period T and the climate
scenario. Each line in the figure, represented by a unique colour, corresponds to a
specific region. The solid lines represent the northern regions, while the dashed lines
represent the southern regions.

3.3. Sensitivity analysis

Due to the inherent uncertainties and our assumptions in the
rate factor in Glens flow law (A) and the mass balance gradient
(Bap1)> we have conducted a sensitivity analysis to investigate the
robustness of our results concerning these two parameters.

We investigate the role of the mass balance gradient (3,,) by
halving and doubling the standard reference value 0.008 a(™')
(Table 2) while maintaining all other input parameters at their stan-
dard values as detailed in the Methods section. For each (3, value,
we perform the inversion three times, each with a different period
T, as specified in Table 2. This process results in nine distinct ELA
fields (3 x 3 =9).

The corresponding results are presented in Fig. 7a, where the
mean ELA values obtained using the standard parameters are
shown in bold colours while those derived from the halved and
doubled f3,, are depicted with reduced opacity. Figure 7a illustrates
the sensitivity of our method to variations in [,,. A greater
separation between plots of the same colour indicates increased
sensitivity of the inversion to changes in [,

Subsequently, we examine the sensitivity to Glen’s law rate fac-
tor (A), by halving and doubling the standard reference value
78 MPa=3a~! (Table 2), again holding all other input parameters
constant. The same methodology applied to 3, is used to assess
the sensitivity of our method to variations in Glen’s law rate factor,
as depicted in Fig. 7b.
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Figure 7 reveals that the inversion scheme exhibits greater sensi-
tivity to changes in the mass balance gradient (5,,)). These findings
underscore the importance of carefully interpreting our results
concerning 3. At maximum, the 3, parameter alone can, within
the tested values, modify the ELA by up to 100 m (Western Italian
Alps region, 5 ka T period). In contrast, the method demonstrates
less sensitivity to the rate factor A variations. Regardless of the
parameter selected, our method consistently delineates regions
into two distinct clusters, north and south of the Alpine divide.
Additionally, a strong positive correlation between ELAs and the
period T remains.

4. Discussion
4.1. LGM climate reconstruction

A key open question concerning the Alpine ice field during
the LGM is the prevailing precipitation patterns. Florineth and
Schliichter (2000) and Luetscher and others (2015) proposed that
during the LGM, weather patterns in the Alps were dominated by
southerly airflow. The hypothesized mechanism is a southward dis-
placement of the oceanic polar front and associated storm tracks
to the latitude of Spain and Italy, making the North Atlantic Ocean
play a smaller role in moisture sourcing during this time. Moreover,
meridional temperature gradients reconstructed by Haeberli and
Penz (1985) suggest cold and arid conditions in the northern Alps
during the peak of the LGM, while the southern Alps experienced
relatively warmer and more humid conditions.

On the other hand, inverting a glacier-evolution model,
Vi$nevi¢ and others (2020) found an increasing ELA from West
to East and from North to South of the mountain range, which
suggests a westerly dominated moisture advection pattern origi-
nating from the North Atlantic, thus relatively similar to today.
These findings challenged earlier studies (Florineth and Schliichter,
2000; Luetscher and others, 2015) and aligned more closely with
recent Regional-Climate-Model-derived climate reconstructions
(Russo and others, 2024). However, it is important to note that
Russo and others (2024) reported higher uncertainties in recon-
structing LGM precipitation patterns compared to temperatures.
When using LGM climate snapshots produced by Jouvet and others
(2023); Russo and others (2024) found a clear improvement in the
agreement between their model and empirical data on the former
LGM extent of the Alpine ice field.

In agreement with Visnevi¢ and others (2020), the resulting
ELA fields from our study (Fig.6) show a clear north-to-south
gradient, with the northern catchments showing lower ELAs.
However, one must note that numerous factors influence the ELA.
While temperature and precipitation are the primary determi-
nants of the ELA, other factors such as ice surface slope, debris
cover, glacier orientation (whether southern or northern expo-
sure), avalanching and shielding effects from surrounding topog-
raphy also play significant roles (Anderson and Mackintosh, 2012;
Kneib and others, 2024). These factors can lead to variations in
ELA that are not solely attributable to direct climate conditions,
making it a complex indicator to interpret in paleoclimate
reconstructions.

Even when all these factors are meticulously accounted for,
identifying a precise paleoclimate state from the reconstructed
glacier footprints remains difficult. For instance, we could theoreti-
cally reconstruct the Alpine ice field by simulating a scenario with a
cold climate and high precipitation, resulting in a lower ELA, over a
short period T. Alternatively, a milder climate with lower precipita-
tion, leading to a higher ELA, could produce similar glacier extents
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Figure 7. (a) Sensitivity of mean ELA values to variations in the mass balance gradient j3,,,. (b) Sensitivity of mean ELA values to variations in the rate factor in Glen’s flow law
(A). Mean values from standard parameters are in bold colours, while halved and doubled parameters are shown with reduced opacity. Solid lines indicate northern regions;

dashed lines represent southern regions.

if the period T was longer. The actual climate conditions during the
LGM could have been intermediate between these two extremes,
further complicating the reconstruction process. This underscores
the inherent complexity and the need for a cautious interpretation
of our results, particularly considering the period T.

4.2. Temporal and spatial climate variability during the LGM

Studies on the LGM climate often decouple spatial (Russo and oth-
ers, 2024) and temporal (Luetscher and others, 2015) climate vari-
ability. On the one hand, climate modelling studies (e.g. Russo and
others, 2024) can hardly afford to obtain multiple snapshots of spa-
tially variable climate using regional climate models due to compu-
tational expenses. Moreover, the sparse and non-uniform distribu-
tion of proxies (e.g. Luetscher and others, 2015) reconstruct tem-
porally variable climate proxies commonly referred to as climate
signals but they provide limited spatial information. Glacier mod-
elling studies by Jouvet and others (2023) or Seguinot and others
(2018) applied global climate signals (i.e. Antarctic and Greenland
ice core records) as forcing, disregarding local variations of the cold
spell that can significantly impact glacier behaviour. In revisiting
earlier hypotheses (Florineth and Schliichter, 2000; Luetscher and
others, 2015), our results could suggest a spatially heterogeneous
period T across the Alps. The primary driver of such heterogene-
ity was likely variations in precipitation patterns during the LGM
rather than temperature changes.

In the Tagliamento morainic amphitheatre, Monegato and oth-
ers (2007) found a two-phased glacial maximum. The older, more
extensive advance was dated to 26.5 and 23 ka, while the younger
advance was between 24 and 21 ka. This formation could be a
combination of shorter, repeated cold spells and variable alpine
catchment geomorphologies. The southern Alps have narrower
and shorter valleys, allowing for the development of smaller
glaciers, which react more to short-term changes in climate con-
ditions. We illustrated this in Appendix B by modelling a spatially
constant ELA, therefore analysing the effects of the Alps’s geomor-
phology on glacier formation. Even if the ELA was constant across
the Alps, using the signal from Luetscher and others (2015) indi-
cates that the glaciers in the North will grow larger than those in
the South (see Appendix B).
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As a result, the ELA values in our study (Fig.6) could be
interpreted in different ways: for the northern regions, the ELA
values correspond to those on the longer periods T, while in the
southern catchments, they align with the shorter, more episodic
periods T. This interpretation suggests that differences in abso-
lute climatic conditions (temperature, precipitation) between the
northern and southern Alps, may not have been as pronounced as
previously thought (Visnevi¢ and others, 2020; Jouvet and others,
2023). Instead, an alternative hypothesis would be that the larger
glaciers in the north result from differences in valley and catchment
geomorphology and longer cold spells.

4.3. Method limitations and future improvements

Inversion methods, including glacier dynamics for deriving past
climate insights from observed glacier footprints, represent a sig-
nificant advancement over the Accumulation Area Ratio approach
(Martin and Monnier, 2014). Although Visnevi¢ and others (2018)
pioneered this method, their approach required considerable
assumptions, which are essential for its effectiveness. Firstly, they
assume glaciers are in a steady state at the time of the glacier
footprint formation, a condition rarely met in the dynamic nature
of glacier-climate interactions. Secondly, they employ the SIA
(Hughes, 1984), simplifying the ice mechanics, which is particu-
larly problematic in mountainous regions where vertical shearing
predominantly influences ice flow (Le Meur and others, 2004).
Lastly, they use a heuristic descent direction not based on the
gradient of the cost function, a limitation that results in slower
convergence of the inversion process and restricts the method to
a simplistic SMB.

Our new approach overcomes these assumptions. However,
it is important to acknowledge certain limitations in the cur-
rent study, many of which can nonetheless be addressed using
the same methodology. Firstly, the current approach uses a rel-
atively simplistic parameterization of SMB, which may not fully
capture the complexity of SMB processes effectively as more
sophisticated models, such as the positive degree day (Braithwaite,
1984; Harding, 1989) or energy SMB (Gardner and others, 2023).
Furthermore, the bedrock topography, the resolution of our model,
and other parameters governing glacier mechanics are fixed once
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the emulator is trained. This current rigidity limits the capability
of the emulator, and therefore the possibility of exploring other
settings in the search for solutions.

This study demonstrated the capacity of our new method to
reconstruct a plausible ELA pattern that explains the Alpine ice
field geometry during the LGM. This proof of concept has the
potential to be applied to other formerly glaciated regions, though
it may not be suitable for the largest ice sheets due to the complex
two-way coupling between climate and glaciation. Future research
will aim to develop a more generic emulator that is not limited
by a specific topography, SMB, or resolution. The computational
efficiency of the emulator holds significant promise for broader
regional applications. We plan to apply our inversion method to
reconstructed glacial maximum extents from the LGM to wider
areas, such as the Euro-Asian continent. Such efforts could pro-
vide new insights into the climatic dynamics that have shaped the
Earth’s history, contributing to a more nuanced understanding of
global climate evolution during the Quaternary period.

5. Conclusion

We introduced a new inversion scheme designed to reconstruct
the spatially and temporally variable ELA across the Alps during
the LGM from glacier footprints. In agreement with earlier stud-
ies (Vi$nevié and others, 2020; Russo and others, 2024), our results
show a distinct spatial pattern: ELAs in northern catchments are
consistently lower than those in southern catchments. However,
our new method permits us to explore the duration of the cold
spell period T, in addition to ELAs. We found a clear relationship
between the period T and ELA across all catchments, with longer
periods T correlating with higher ELAs. Building on our primary
results, in agreement with paleoclimate modelling studies, incor-
porating the cold spell period T into our analysis allowed us to
revisit the hypothesis that LGM weather patterns were dominated
by southerly airflow (Florineth and Schliichter, 2000; Ivy-Ochs and
others, 2008; Luetscher and others, 2015). For this hypothesis to be
consistent with glacier models, it suggests that the northern Alps
would have experienced a more stable climate, while more episodic
climatic conditions would have characterized the southern Alps.
These nuanced interpretations underscore the complexity of glacial
dynamics and highlight the importance of considering temporal
variability in paleoclimate reconstructions. Our computationally
efficient method has a high potential for being applied at a larger
scale.
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Appendix A.

Hyperparameters are variables set before the training process that govern the
behaviour and performance of machine learning models. Unlike model param-
eters, which are learned during training, hyperparameters must be manually
tuned. Examples include the number of epochs, batch size and learning rate.
Finding optimal hyperparameter values is crucial as they directly influence the
convergence speed, model accuracy and generalization to new data.

In this study, we conducted a grid search to explore the hyperparame-
ter space, aiming to improve training efficiency and model performance. The
model was trained for 100 epochs, with 80% of the dataset used for training
and 20% for validation.

Each hidden layer in our CNN consists of a convolutional layer, ReLU
activation and a pooling layer:
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Figure Al. Geographical representation of the nine regions over the Alps used for
evaluating the emulator’s probable systematic bias.
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Figure A2. Mean and standard deviation of residuals for each region. The mean
values are close to zero, indicating no systematic bias in the emulator’s predictions.
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o The convolutional layer uses a kernel (filter) to scan the input, creating feature
maps. Smaller kernels capture finer details, while larger kernels capture more
abstract, global features. The kernel size affects the computational cost and
the network’ ability to capture patterns.

Batch size defines the number of samples processed in each training iteration.

Smaller batch sizes allow the model to update weights more frequently, which

can accelerate learning but introduce noise, making training less stable.

Larger batch sizes produce more stable gradient estimates but require more

memory and result in slower convergence (Ogundokun and others, 2022).

« The learning rate controls the step size in updating model weights. A large
learning rate may cause the model to overshoot the optimal solution, while
a small learning rate can slow down convergence or cause the model to get
stuck in local minima.

o The CNN architecture determines its complexity. Simpler models may not
capture complex patterns, while deeper networks, such as U-Net, have higher
learning capacity but are prone to overfitting, especially when the data is
limited (Khan and others, 2020) and are computationally more expensive.

To assess whether the emulator exhibits systematic bias that could influence our
version scheme—specifically, by consistently overestimating or underestimat-
ing glacier thickness in a particular region—we design a controlled experiment.
Figure Al delineates nine regions across the Alps, within which we evalu-
ate the emulator’s performance by computing the residual between the true
and predicted GMT. For each region (1-9), we determine the mean residual.
Subsequently, across all data points in the test dataset, we calculate both the
mean and the standard deviation (Fig. A2). The results indicate that, for all
regions, the mean residual is centered near zero, suggesting that the emulator
does not introduce systematic spatial bias.

Appendix B.

As an experiment to demonstrate the importance of climate-forcing signals,
we designed three simulations over the Alps. Each simulation was initiated
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Figure B1l. Panel a shows the GMT across the domain, while panel b illustrates
the temporal evolution of the spatially uniform ELA, which follows the shift pattern
described by Luetscher and others (2015). Despite the ELA being spatially constant,
glaciers in the northern regions grow larger over time.
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Figure B2. Evaluation of glacier response to periodic ELA forcing using a cosine sig-
nal with different periods (T =2000, 4000 and 8000 years). Although all ELA values
oscillate between 1000 and 2000 m, the resulting GMT fields (panel a in each sub-
figure) vary significantly depending on the cosine period. Longer periods allow more
time for glaciers to grow and adjust, leading to a larger GMT.
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with ice-free topography and a constant ELA. During the simulations, dif-
ferent ELA signals were applied (bottom panels in FigsB1 and B2), and the
glacier maximum thickness was computed for each scenario. Despite all exper-
iments having a minimum ELA of 1000 m, the resulting glacier maximum
thickness varied significantly. We observed that when climate follows the sig-
nal from Luetscher and others (2015), glaciers in the northern Alps grow
larger than those in the south (Fig.B1). Conversely, when climate transi-
tions are slower, glaciers expand uniformly across the region. This varia-
tion is attributed to the geomorphology of the Alps, where the northern
valleys are wider and longer, while the southern valleys are narrower and
steeper.

Appendix C.

To determine the optimal regularization coefficient (A) in Eqn (6), we evalu-
ated six different values and constructed an L-curve (Fig. C1). Based on this
analysis, we selected A = 10000 as it provides an optimal trade-off between
ensuring a smooth Equilibrium Line Altitude (ELA) field and maintaining good
convergence in the inversion scheme.

https://doi.org/10.1017/jog.2025.10083 Published online by Cambridge University Press

11

L-Curve

(P
1.4 x 10?

1.3 x 102

1.2 x10?

1.1 x10?

Data fit

1024

9x 10} :0.001) (A:0.0001)

102 107! 10° 10!
Regularization Parameter

Figure C1. L-curve used to determine the optimal regularization parameter A. The
point of maximum curvature, corresponding to the optimal trade-off between model
fit and regularization, is identified at A = 0.05.
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