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Abstract

Let (M, g) be a closed Riemannian 4-manifold and let E be a vector bundle over M with structure group
G, where G is a compact Lie group. We consider a new higher order Yang–Mills–Higgs functional, in
which the Higgs field is a section of Ω0(adE). We show that, under suitable conditions, solutions to the
gradient flow do not hit any finite time singularities. In the case that E is a line bundle, we are able to use a
different blow-up procedure and obtain an improvement of the long-time result of Zhang [‘Gradient flows
of higher order Yang–Mills–Higgs functionals’, J. Aust. Math. Soc. 113 (2022), 257–287]. The proof relies
on properties of the Green function, which is very different from the previous techniques.
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1. Introduction

Let (M, g) be a closed Riemannian manifold of real dimension 4 and let E be a
vector bundle over M with structure group G, where G is a compact Lie group. The
Yang–Mills functional, defined on the space of connections of E, is given by

YM(∇) =
1
2

∫
M
|F∇|2 dvolg,

where ∇ is a metric compatible connection, F∇ denotes the curvature, and the
pointwise norm | · | is given by g and the Killing form of Lie(G). The connection ∇
is called a Yang–Mills connection of E if it satisfies the Yang–Mills equation:

D∗∇F∇ = 0.
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A solution of the Yang–Mills flow is given by a family of connections ∇t := ∇(x, t)
such that

∂∇t

∂t
= −D∗∇t

F∇t in M × [0, T).

The Yang–Mills flow was initially studied by Atiyah–Bott [2] to understand the
topology of the space of connections by infinite dimensional Morse theory.

We consider the Yang–Mills–Higgs k-functional (or Yang–Mills–Higgs k-energy):

YMHk(∇, u) =
1
2

∫
M

[|∇(k)F∇|2 + |∇(k+1)u|2] dvolg, (1.1)

where k ∈ N ∪ {0}, ∇ is a connection on E and u is a section of Ω0(adE). In
[13], we considered the case when u is a section of Ω0(E). When k = 0, (1.1)
is the Yang–Mills–Higgs functional studied in [4, 5]. In [4], Hassell proved the
global existence of the Yang–Mills–Higgs flow in 3-dimensional Euclidean space.
In [5], Hong–Tian studied the global existence of the Yang–Mills–Higgs flow in
3-dimensional hyperbolic space. Their results yield non-self-dual Yang–Mills connec-
tions on S4. The Yang–Mills–Higgs flow has aroused much attention. For example,
Li–Zhang [8] and Song–Wang [10] studied the asymptotic behaviour at time infinity
of some Yang–Mills–Higgs flows.

The Yang–Mills–Higgs k-system, that is, the corresponding Euler–Lagrange equa-
tions of (1.1), is
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−1)kD∗∇Δ
(k)
∇ F∇ +

2k−1∑
v=0

P(v)
1 [F∇] + P(2k−1)

2 [F∇] +
k∑

i=0

∇∗(i)(∇(k+1)u ∗ ∇(k−i)u) = 0,

∇∗(k+1)∇(k+1)u = 0,

where Δ(k)
∇ denotes k iterations of the Bochner Laplacian −∇∗∇ and the notation P is

defined in (2.1). A solution of the Yang–Mills–Higgs k-flow is given by a family of
pairs (∇(x, t), u(x, t)) := (∇t, ut) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂∇t

∂t
= (−1)(k+1)D∗∇t

Δ
(k)
∇t

F∇t +

2k−1∑
v=0

P(v)
1 [F∇t ]

+ P(2k−1)
2 [F∇t ] +

k∑
i=0

∇∗(i)t (∇(k+1)
t ut ∗ ∇(k−i)

t ut),

∂ut

∂t
= − ∇∗(k+1)

t ∇(k+1)
t ut, in M × [0, T).

(1.2)

When k = 0, the flow (1.2) is a Yang–Mills–Higgs flow [5].
From an analytic point of view, the Yang–Mills–Higgs k-flow (1.2) admits similar

properties to the case in which the Higgs field takes values in Ω0(E). In fact, by the
approach in [13], we can prove the following theorem.
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THEOREM 1.1. Let E be a vector bundle over a closed Riemannian 4-manifold (M, g)
and k be an integer with k > 1. For every smooth initial data (∇0, u0), there exists a
unique smooth solution (∇t, ut) to the Yang–Mills–Higgs k-flow (1.2) in M × [0,+∞).

Our motivation for considering such flows comes from recent work of Waldron
who proved long-time existence for the Yang–Mills flow [12], thereby settling a long
standing conjecture. In the context of the Yang–Mills–Higgs flow, it is still unknown
whether the flow exists for all times on a Riemannian 4-manifold. The above theorem
shows that provided k > 1, the Yang–Mills–Higgs k flow does obey long time existence
on a 4-manifold. A question that arises at this point is to understand what is the
optimum value for k. By assuming our bundle E is a line bundle, we are able to make
progress on this question and show that long-time existence holds for all positive k.

THEOREM 1.2. Let E be a line bundle over a closed Riemannian 4-manifold (M, g)
and k be an integer with k > 0. For every smooth initial data (∇0, u0), there exists a
unique smooth solution (∇t, ut) to the Yang–Mills–Higgs k-flow (1.2) in M × [0,+∞).

At present, we do not know if this theorem is optimal, meaning that we cannot rule
out long-time existence occurring for k = 0.

The proof of Theorem 1.1 involves local L2 derivative estimates, energy estimates
and blow-up analysis. An interesting aspect of this work is that by using a different
blow-up procedure, we are able to obtain a proof of Theorem 1.2, which may be of
independent interest. Another interesting aspect is that the proof of long-time existence
obstruction (see Theorem 3.7) relies on properties of the Green function, which is very
different from the previous techniques in [6, 9, 13].

2. Preliminaries

In this section, we introduce the basic setup and notation that will be used
throughout the paper. We follow the notation of [6, 9, 13].

Let E be a vector bundle over a smooth closed manifold (M, g) of real dimension n.
The set of all smooth unitary connections on E will be denoted by AE. A given
connection ∇ ∈ AE can be extended to other tensor bundles by coupling with the
corresponding Levi–Civita connection ∇M on (M, g).

Let D∇ be the exterior derivative, or skew symmetrisation of∇. The curvature tensor
of E is denoted by

F∇ = D∇ ◦ D∇.

We set ∇∗, D∗∇ to be the formal L2-adjoints of ∇, D∇, respectively. The Bochner and
Hodge Laplacians are given respectively by

Δ∇ = −∇∗∇, ΔD∇ = D∇D∗∇ + D∗∇D∇.

Let ξ, η be p-forms valued in E or End(E). Let ξ ∗ η denote any multilinear form
obtained from a tensor product ξ ⊗ η in a universal way. That is to say, ξ ∗ η is obtained
by starting with ξ ⊗ η, taking any linear combination of this tensor, taking any number
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of metric contractions and switching any number of factors in the product. We then
have

|ξ ∗ η| ≤ C|ξ||η|.

Denote

∇(i) = ∇ · · · ∇︸�︷︷�︸
i times

.

We will also use the P notation, as introduced in [7]. Given a tensor ξ, we denote

P(k)
v [ξ] :=

∑
w1+···+wv=k

(∇(w1)ξ) ∗ · · · ∗ (∇(wv)ξ) ∗ T , (2.1)

where k, v ∈ N and T is a generic background tensor dependent only on g.

3. Long-time existence obstruction

We can use De Turck’s trick to establish the local existence of the Yang–Mills–Higgs
k-flow. We refer to [6, 9, 13] for more details. As the proof is standard, we will omit
the details.

THEOREM 3.1 (Local existence). Let E be a vector bundle over a closed
Riemannian manifold (M, g). There exists a unique smooth solution (∇t, ut) to the
Yang–Mills–Higgs k-flow (1.2) in M × [0, ε) with smooth initial value (∇0, u0).

Following [6, 9], we can derive estimates of Bernstein–Bando–Shi type, similar to
[13, Proposition 4.10].

PROPOSITION 3.2. Let q ∈ N, γ ∈ C∞c (M) (0 ≤ γ ≤ 1) and (∇t, ut) be a solution to
the Yang–Mills–Higgs k-flow (1.2) defined on M × I. Suppose Q = max{1, supt∈I |F∇t |},
K = max{1, supt∈I |ut |} and s ≥ (k + 1)(q + 1). For t ∈ [0, T) ⊂ I with T < 1/(QK)4,
there exists a positive constant Cq := Cq(dim(M), rk(E), G, q, k, s, g, γ) ∈ R>0 such that

‖γs∇(q)
t F∇t‖2L2 + ‖γs∇(q)

t ut‖2L2 ≤ Cqt−q/(k+1) sup
t∈[0,T)

(‖F∇t‖2L2 + ‖ut‖2L2 ).

The following corollary is a direct consequence of the above proposition and will be
used in the blow-up analysis. The proof relies on the Sobolev embedding, W p,2 ⊂ C0

provided p > n/2, and Kato’s inequality |d|ut || ≤ |∇tut |. More details can be found in
Kelleher’s paper [6, Corollary 3.14].

COROLLARY 3.3. Suppose (∇t, ut) solves the Yang–Mills–Higgs k-flow (1.2)
defined on M × [0, τ]. Set τ̄ := min{τ, 1}. Suppose Q = max{1, supt∈[0,τ̄] |F∇t |},
K = max{1, supt∈[0,τ̄] |ut |}. Assume γ ∈ C∞c (M) (0 ≤ γ ≤ 1). For s, l ∈ N with s ≥
(k + 1)(l + 1), there exists Cl := Cl(dim(M), rk(E), K, Q, G, s, k, l, τ, g, γ) ∈ R>0 such
that

sup
M

(|γs∇(l)
τ̄ F∇τ̄ |2 + |γs∇(l)

τ̄ uτ̄|2) ≤ Cl sup
M×[0,τ̄)

(‖F∇t‖2L2 + ‖ut‖2L2 ).
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From Corollary 3.3, we deduce the following corollary, which can be used for
finding obstructions to long-time existence.

COROLLARY 3.4. Suppose (∇t, ut) solves the Yang–Mills–Higgs k-flow (1.2) defined
on M × [0, T) for T ∈ [0,+∞). Suppose

Q = max{1, sup
t∈[0,T)

|F∇t |, sup
t∈[0,T)

‖F∇t‖L2}

and

K = max{1, sup
t∈[0,T)

|ut |, sup
t∈[0,T)

‖ut‖L2}

are finite. Assume γ ∈ C∞c (M) (0 ≤ γ ≤ 1). Then, for t ∈ [0, T) and s, l ∈ N with
s ≥ (k + 1)(l + 1), there exists Cl := Cl(∇0, u0, dim(M), rk(E), K, Q, G, s, k, l, g, γ) ∈
R>0 such that

sup
M×[0,T)

(|γs∇(l)
t F∇t |2 + |γs∇(l)

t ut |2) ≤ Cl.

We will use Corollary 3.4 to show that the only obstruction to long-time existence
of the Yang–Mills–Higgs k-flow (1.2) is a lack of a supremal bound on |F∇t | + |∇tut |.
Before doing so, we need the following proposition, which is similar to [13, Proposition
4.15].

PROPOSITION 3.5. Suppose (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1.2)
defined on M × [0, T) for T ∈ [0,+∞). Suppose that for all l ∈ N ∪ {0}, there exists
Cl ∈ R>0 such that

max
{

sup
M×[0,T)

∣∣∣∣∣∇(l)
t

[
∂∇t

∂t

]∣∣∣∣∣, sup
M×[0,T)

∣∣∣∣∣∇(l)
t

[
∂ut

∂t

]∣∣∣∣∣
}
≤ Cl.

Then limt→T (∇t, ut) = (∇T , uT ) exists and is smooth.

The following proposition is straightforward.

PROPOSITION 3.6. Suppose (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1.2)
defined on M × [0, T). We have

sup
t∈[0,T)

‖ut‖L2 < +∞.

Using Propositions 3.5 and 3.6, we are ready to prove the main result in this section.

THEOREM 3.7. Assume E is a line bundle. Suppose (∇t, ut) is a solution to the
Yang–Mills–Higgs k-flow (1.2) for some maximal T < +∞. Then,

sup
M×[0,T)

(|F∇t | + |∇tut |) = +∞.

PROOF. Suppose to the contrary that

sup
M×[0,T)

(|F∇t | + |∇tut |) < +∞,
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which means that

sup
M×[0,T)

|F∇t | < +∞, sup
M×[0,T)

|∇tut | < +∞.

Denote by Gt(x, y) the Green function associated to the operator Δ∇t . Then for any
fixed x ∈ M, ‖∇0Gt(x, ·)‖L∞(M) ≤ CG for a constant CG from [1, Appendix A]. Note that
∇tGt − ∇0Gt = [∇t − ∇0, Gt] = 0. We conclude that ‖∇tGt‖L∞(M) is also uniformly
bounded. Therefore, using the properties of the Green function in [1, Appendix A],

∣∣∣∣∣ut(x) − 1
Vol(M)

∫
M

ut(y) dy
∣∣∣∣∣ =
∣∣∣∣∣
∫

M
Δ∇t Gt(x, y)ut(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫

M
∇tGt(x, y)∇tut(y) dy

∣∣∣∣∣
< +∞,

which together with Proposition 3.6 implies

sup
M×[0,T)

|ut | < +∞.

For all t ∈ [0, T) and l ∈ N ∪ {0}, by Corollary 3.4, supM(|∇(l)
t F∇t |2 + |∇

(l)
t ut |2) is

uniformly bounded and so by Proposition 3.5, limt→T (∇t, ut) = (∇T , uT ) exists and is
smooth. However, by local existence (Theorem 3.1), there exists ε > 0 such that (∇t, ut)
exists over the extended domain [0, T + ε), which contradicts the assumption that T is
maximal. Thus, we prove the theorem. �

4. Blow-up analysis

In this section, we will address the possibility that the Yang–Mills–Higgs k-flow
admits a singularity given no bound on |F∇t | + |∇tut |. To begin with, we first establish
some preliminary scaling laws for the Yang–Mills–Higgs k-flow.

PROPOSITION 4.1. Suppose (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1.2)
defined on M × [0, T). Define the 1-parameter family ∇ρt with local coefficient matrices
given by

Γ
ρ
t (x) := ρΓρ2(k+1)t( ρx),

where Γt(x) is the local coefficient matrix of ∇t. Define the ρ-scaled Higgs field uρt by

uρt (x) := ρuρ2(k+1)t( ρx).

Then (∇ρt , uρt ) is also a solution to the Yang–Mills–Higgs k-flow (1.2) defined on
[0, T/ρ2(k+1)).

Next we will show that if the curvature coupled with a Higgs field is blowing up as
one approaches the maximal time, then one can extract a blow-up limit. The proof will
closely follow the arguments in [6, Proposition 3.25] and [13, Theorem 5.2].
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THEOREM 4.2. Assume E is a line bundle. Suppose (∇t, ut) is a solution to the
Yang–Mills–Higgs k-flow (1.2) defined on some maximal time interval [0, T) with
T < +∞. Then there exists a blow-up sequence (∇i

t, ui
t) which converges pointwise to a

smooth solution (∇∞t , u∞t ) to the Yang–Mills–Higgs k-flow (1.2) defined on the domain
R

n × R<0.

PROOF. From Theorem 3.7,

lim
t→T

sup
M

(|F∇t | + |∇tut |) = +∞.

Therefore, we can choose a sequence of times ti ↗ T within [0, T) and a sequence of
points xi, such that

|F∇ti
(xi)| + |∇ti uti (xi)| = sup

M×[0,ti]
(|F∇t | + |∇tut |).

Let {ρi} ⊂ R>0 be constants to be determined. Define ∇i
t(x) by

Γi
t(x) = ρ1/2(k+1)

i Γρit+ti ( ρ
1/2(k+1)
i x + xi)

and

ui
t(x) = ρ1/2(k+1)

i uρit+ti ( ρ
1/2(k+1)
i x + xi).

By Proposition 4.1, (∇i
t, ui

t) are also solutions to the Yang–Mills–Higgs k-flow (1.2) and
the domain for each (∇i

t, ui
t) is B0( ρ−1/2(k+1)

i ) × [−ti/ρi, (T − ti)/ρi). We observe that

Fi
t(x) := F∇i

t
(x) = ρ1/(k+1)

i F∇ρi t+ti
( ρ1/2(k+1)

i x + xi),

which means that

sup
t∈[−ti/ρi,T−ti/ρi)

(|Fi
t(x)| + |∇i

tu
i
t(x)|)

= ρ1/(k+1)
i sup

t∈[−ti/ρi,T−ti/ρi)
(|F∇ρi t+ti

( ρ1/2(k+1)
i x + xi)| + |∇ρit+ti uρit+ti ( ρ

1/2(k+1)
i x + xi)|)

= ρ1/(k+1)
i sup

t∈[0,ti]
(|F∇t (x)| + |∇tut(x)|)

= ρ1/(k+1)
i (|F∇ti

(xi)| + |∇ti uti (xi)|).
Therefore, setting

ρi = (|F∇ti
(xi)| + |∇ti uti (xi)|)−(k+1)

gives

1 = |Fi
0(0)| + |∇i

0ui
0(0)| = sup

t∈[−ti/ρi,0]
(|Fi

t(x)| + |∇i
tu

i
t(x)|). (4.1)

Now, we are ready to construct smoothing estimates for the sequence (∇i
t, ui

t). Let
y ∈ Rn, τ ∈ R≤0. For any s ∈ N,

sup
t∈[τ−1,τ]

(|γs
yFi

t(x)| + |γs
y∇i

tu
i
t(x)|) ≤ 1.
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Note that E is a line bundle and, similar to the proof of Theorem 3.7, it suffices to
use Corollary 3.3. Then for all q ∈ N, one may choose s ≥ (k + 1)(q + 1) so that there
exists a positive constant Cq such that

sup
x∈By(1/2)

(|(∇i
τ)

(q)Fi
τ(x)| + |(∇i

τ)
(q)ui
τ(x)|)

≤ sup
x∈By(1)

(|γs
y(∇i
τ)

(q)Fi
τ(x)| + |γs

y(∇i
τ)

(q)ui
τ(x)|) ≤ Cq.

Then by the Coulomb gauge theorem of Uhlenbeck [11, Theorem 1.3] (see also [5])
and the gauge patching theorem [3, Corollary 4.4.8], passing to a subsequence (without
changing notation) and in an appropriate gauge, (∇i

t, ui
t)→ (∇∞t , u∞t ) in C∞. �

5. Proof of Theorem 1.2

The following energy estimates are similar to the ones in [13, Section 6].

PROPOSITION 5.1. Suppose (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1.2)
defined on M × [0, T). Then the Yang–Mills–Higgs k-energy (1.1) is decreasing along
the flow (1.2).

PROPOSITION 5.2. Suppose (∇t, ut) is a solution to the Yang–Mills–Higgs k-flow (1.2)
defined on M4 × [0, T) with T < +∞. Then the Yang–Mills–Higgs energy

YMH(∇t, ut) =
1
2

∫
M

[|F∇t |2 + |∇tut |2] dvolg

is bounded along the flow (1.2).

Next, we will complete the proof of Theorem 1.2. To accomplish this, we first show
that the Lp-norm controls the L∞-norm by blow-up analysis.

PROPOSITION 5.3. Assume E is a line bundle. Suppose (∇t, ut) is a solution to the
Yang–Mills–Higgs k-flow (1.2) defined on M4 × [0, T) and

sup
t∈[0,T)

(‖F∇t‖Lp + ‖∇tut‖Lp ) < +∞.

If p > 2, then

sup
t∈[0,T)

(‖F∇t‖L∞ + ‖∇tut‖L∞) < +∞.

PROOF. To obtain a contradiction, assume

sup
t∈[0,T)

(‖F∇t‖L∞ + ‖∇tut‖L∞) = +∞.
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As we did in Theorem 4.2, we can construct a blow-up sequence (∇i
t, ui

t), with blow-up
limit (∇∞t , u∞t ). Noting (4.1), by Fatou’s lemma and the natural scaling law,

‖F∇∞t ‖
p
Lp + ‖∇∞t u∞t ‖

p
Lp ≤ lim

i→+∞
inf(‖F∇i

t
‖pLp + ‖∇i

tu
i
t‖

p
Lp )

≤ lim
i→+∞

ρ
(2p−4)/(2k+2)
i (‖F∇t‖

p
Lp + ‖∇tut‖pLp ).

Since limi→+∞ ρ
(2p−4)/(2k+2)
i = 0 when p > 2, the right-hand side of the above inequality

tends to zero, which is a contradiction since the blow-up limit has nonvanishing
curvature. �

Now we are ready to give the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. By the Sobolev embedding theorem, we can solve
for p such that Wk,2 ⊂ Lp, when k > 0. Using the interpolation inequalities [7,
Corollary 5.5]:

‖F∇t‖Lp + ‖∇tut‖Lp ≤ CSk,p

k∑
j=0

(‖∇(j)
t F∇t‖2L2 + ‖∇(j)

t ut‖2L2 + 1)

≤ CSk,p(‖∇(k)
t F∇t‖2L2 + ‖F∇t‖2L2 + ‖∇(k+1)

t ut‖2L2 + ‖ut‖2L2 + 1)

≤ CSk,p(YMHk(∇t, ut) +YMH(∇t, ut) + ‖ut‖2L2 + 1),

then using Propositions 5.1, 3.6 and 5.2, we conclude that the flow exists smoothly for
all time. �
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