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Abstract

We consider the split common null point problem in Hilbert space. We introduce and study a shrinking
projection method for finding a solution using the resolvent of a maximal monotone operator and prove a
strong convergence theorem for the algorithm.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces and T : H1 → H2 a bounded linear operator.
Suppose that C and D are nonempty, closed and convex subsets of H1 and H2,
respectively. The split feasibility problem is to find z ∈ H1 such that z ∈ C ∩ T−1D.
Censor and Elfving [7] introduced the split feasibility problem in finite-dimensional
Hilbert space to study problems which arise from signal detection and image recovery.
The split feasibility problem has many practical applications such as image restoration,
computer tomography and radiation therapy treatment planning [3, 6, 8, 10]. It is
known that if C ∩ T−1D , ∅, the problem is equivalent to z = PC(I − rT ∗(I − PD)T )z,
where T ∗ is the adjoint operator of T , PC and PD are the metric projections from H1
onto C and from H2 onto D, respectively, and r > 0 is a positive constant (see [2]
for more details). Byrne [3, 4] developed the so-called CQ algorithm as an iterative
method to solve the split feasibility problem in infinite-dimensional Hilbert space:

xn+1 = PC(xn − γT ∗(xn − PDT xn)),

where γ ∈ (0, 1/λ), with λ being the spectral radius of the operator A∗A. Xu [16]
studied the convergence of the CQ algorithm and a refinement involving Mann’s
algorithm. Strong convergence has been established for a number of algorithms
(see, for example, [1, 13, 16]). The author recently proved the following result
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(in ‘Shrinking projection algorithms for split common null point problem in Hilbert
spaces’, submitted for publication).

Theorem 1.1. Let X be a uniformly convex and smooth Banach space with duality
mapping JX . Suppose that H is a Hilbert space and T : H → X is a bounded linear
operator such that T , 0 and let T ∗ denote the adjoint operator of T . Let C and D be
nonempty, closed and convex subsets of H and X, such that C ∩ T−1D , ∅. Let PC and
PD denote the metric projections of H onto C and of X onto D, respectively. Let {xn}

be the sequence generated by the algorithm
zn = PC(xn − rT ∗JX(T xn − PDT xn))
yn = αnxn + (1 − αn)zn

Cn+1 = {z ∈ Cn : 〈yn − z, xn − yn〉 ≥ 0}
xn+1 = PCn+1 (x1),

where C1 = C and x1 ∈ H. If 0 < 1
2‖T‖ ≤ αn ≤ a < 1 and r < 1, then {xn} converges

strongly to a point z0 ∈ C ∩ T−1D and z0 = PC∩T−1Dx1.

Using the metric resolvents of maximal monotone operators and metric projections,
Byrne et al. [5] proved a strong convergence theorem for the related split common null
point problem. Takahashi and Yao [14] recently proved the following extension.

Theorem 1.2 [14]. Let H be a Hilbert space and let X be a uniformly convex and
smooth Banach space. Let JX be the duality mapping on X. Let A and B be maximal
monotone operators of H into 2H and of X into 2X∗ , respectively, such that A−10 , ∅
and B−10 , ∅. Let Jλ be the resolvent of A for λ > 0 and let Qµ be the metric resolvent
of B for µ > 0. Let T : H → X be a bounded linear operator such that T , 0 and let
T ∗ denote the adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) , ∅. Take x1 ∈ H
and let {xn} be a sequence generated by the algorithm

zn = Jλn (xn − λnT ∗JX(T xn − Qµn T xn))
yn = αnxn + (1 − αn)zn

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖}
Dn = {z ∈ H : 〈xn − z, x1 − xn〉 ≥ 0}
xn+1 = PCn∩Dn (x1),

where {αn} ⊂ [0, 1] and {λn}, {µn} ⊂ (0,∞) satisfy the conditions

0 ≤ αn ≤ a < 1, 0 < b ≤ µn and 0 < c ≤ λn‖T‖2 ≤ d < 2

for some a, b, c, d ∈ R. Then {xn} converges strongly to z0 ∈ A−10 ∩ T−1(B−10), where
z0 = PA−10∩T−1(B−10)x1.

Motivated by these theorems, we use the resolvent of a maximal monotone operator
to introduce and study a new hybrid algorithm for solving the split feasibility problem
in Hilbert space.
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2. Preliminaries

Throughout the paper, X is a real Banach space. We write xn → x to indicate that
the sequence {xn} converges strongly to x. As in [9], the normalised duality mapping
J from X into the family of nonempty w∗-compact subsets of its dual X∗ is defined by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2} for x ∈ E.

Lemma 2.1 [12]. Let X be a real Banach space and J the duality mapping. Then, for
each x, y ∈ X,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉.

The norm of X is said to be Gâteaux differentiable (and X is said to be smooth) if

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ U := {z ∈ X : ‖z‖ = 1}. The norm is said to be uniformly Gâteaux
differentiable if for y ∈ U, the limit is attained uniformly for x ∈ U. The space X is
said to have a Fréchet differentiable norm if for each x ∈ X the limit in (2.1) is attained
uniformly for y ∈ U. The space X is said to have a uniformly Fréchet differentiable
norm (and X is said to be uniformly smooth) if the limit in (2.1) is attained uniformly
for (x, y) ∈ U × U. It is known that X is smooth if and only if each duality mapping J
is single-valued. It is also well known that if X has a uniformly Gâteaux differentiable
norm, J is uniformly norm-to-weak∗ continuous on each bounded subset of X.

The normed space X is called uniformly convex if for any ε ∈ (0, 2] there exists
δ = δ(ε) > 0 such that for any x, y ∈ X satisfying ‖x‖ = 1, ‖y‖ = 1 and ‖x − y‖ ≥ ε, then
‖ 1

2 (x + y)‖ ≤ 1 − δ.

Definition 2.2. The multifunction A : X → 2X∗ is called a monotone operator if for
every x, y ∈ X,

〈x∗ − y∗, x − y〉 ≥ 0 for all x∗ ∈ A(x) and y∗ ∈ A(y).

A monotone operator A : X → 2X∗ is said to be maximal monotone when its graph is
not properly included in the graph of any other monotone operator on the same space
and its effective domain is defined by D(A) = {x ∈ X : A(x) , ∅}.

Let C be a closed convex subset of X. The operator PC is called a metric projection
operator if it assigns to each x ∈ X its nearest point y ∈ C such that

‖x − y‖ = min{‖x − z‖ : z ∈ C}.

It is known that the metric projection operator PC is continuous in a uniformly convex
Banach space X and uniformly continuous on each bounded subset of X if, in addition,
X is uniformly smooth. The element y is called the metric projection of X onto C and
denoted by PC x. It exists and is unique at any point of a reflexive strictly convex space.
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Lemma 2.3. Let H be a Hilbert space and C a nonempty, closed and convex subset of
H. Then, for x ∈ H, the element z satisfies z = PC x if and only if

〈x − z, z − y〉 ≥ 0 for all y ∈ C.

Let C be a closed convex subset in a Hilbert space H. The metric projection has the
property

‖PC x − PCy‖2 ≤ 〈PC x − PCy, x − y〉 for all x, y ∈ H.

Therefore, the metric projection is a firmly nonexpansive operator in H.
For a sequence {Cn} of nonempty, closed and convex subsets of a Banach space

X, define s-LimCn and w-LimCn as follows: x ∈ s-LimCn if and only if there exists
{xn} ⊂ X such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N. Similarly,
y ∈ w-LimCn if and only if there exist a subsequence {Cni} of {Cn} and a sequence
{yi} ⊂ X such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N. We say that
{Cn} converges to C0 in the sense of Mosco [11] if C0 = s-LimCn = w-LimCn, and we
write C0 = M-limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect
to inclusion, then {Cn} converges to ∩∞n=1Cn in the sense of Mosco. For more details,
see [11]. The following lemma was proved by Tsukada [15].

Lemma 2.4 [15]. Let X be a reflexive and strictly convex Banach space and {Cn} a
sequence of nonempty, closed and convex subsets of X. If C0 = M-limn→∞ Cn exists
and is nonempty, then for each x ∈ X, PCn x converges weakly to PC0 x, where PCn and
PC0 are the metric projections of X onto Cn and C0, respectively. Moreover, if X has
the Kadec–Klee property, the convergence is strong.

Definition 2.5. Let X be a reflexive Banach space and A : X → 2X∗ be a maximal
monotone operator. By [9, Ch. 5, Theorem 3.4], the relation 0 ∈ λAx̃ + J(x̃ − x)
has a unique solution x̃ = xλ ∈ D(A) for every x ∈ X. The operator JA

λ : X → D(A)
defined by JA

λ (x) = xλ is called the metric resolvent of A of order λ and xλ satisfies
λ−1J(x − xλ) ∈ A(xλ). In the following, we denote the metric resolvent JA

λ by Jλ.

In a Hilbert space, the metric resolvent is also a firmly nonexpansive operator.

3. Main results

In this section, using a shrinking projection method, we prove a strong convergence
theorem for the solution of the split common null point problem in Hilbert space.

Theorem 3.1. Let X be a uniformly convex Banach space with a Gâteaux differentiable
norm and duality mapping JX . Let H be a Hilbert space and T : H → X be a bounded
linear operator such that T , 0 and let T ∗ be the adjoint operator of T . Let A and B
be maximal monotone operators of H into 2H and of X into 2X∗ , respectively, such that
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F := A−10 ∩ T−1(B−10) , ∅. Let Jλ be the resolvent of A for λ > 0 and Qµ the metric
resolvent of B for µ > 0. Generate the sequence {xn} by the algorithm

zn = Jλn (xn − λnT ∗JX(T xn − Qµn T xn))
yn = αnxn + (1 − αn)zn,
Cn = {z ∈ Cn−1 : 〈yn − z, xn − yn〉 ≥ 0},
xn+1 = PCn (x1),

(3.1)

where C1 = H and x1 ∈ H. If 0 < ‖T‖ ≤ 2αn ≤ a < 2, 0 < b ≤ µn and 0 < c ≤ λn < 1,
then {xn} converges strongly to a point z0 ∈ F, where z0 = PF x1.

Proof. We first prove that the sequence {xn} generated by algorithm (3.1) is well
defined. It is easy to check that Cn is closed and convex for each n ∈ N. We claim
that F ⊂ Cn for each n ∈ N. Clearly, F ⊂ C1. Assume that F ⊂ Cn−1 for some n ∈ N. If
p ∈ F, then 0 ∈ A(p) and 0 ∈ B(T p). Since Qµn is the metric resolvent of B,

1
µn

JX(T xn − Qµn T xn) ∈ B(Qµn T xn), (3.2)

and hence, by the monotonicity of B,

0 ≤ 〈Qµn T xn − T p, JX(T xn − Qµn T xn)〉.

From the definition of zn,

xn − zn − λnT ∗JX(T xn − Qµn T xn) ∈ λnAzn. (3.3)

From the monotonicity of A,

0 ≤ 〈xn − zn − λnT ∗JX(T xn − Qµn T xn), zn − p〉,

and hence

〈xn − zn, zn − p〉 ≥ λn〈T ∗JX(T xn − Qµn T xn), zn − p〉
= λn〈JX(T xn − Qµn T xn),Tzn − T p〉
= λn〈JX(T xn − Qµn T xn),Tzn − T xn〉

+ λn〈JX(T xn − Qµn T xn),T xn − Qµn T xn〉

+ λn〈JX(T xn − Qµn T xn),Qµn T xn − T p〉
≥ λn〈JX(T xn − Qµn T xn),Tzn − T xn〉 + λn‖T xn − Qµn T xn‖

2. (3.4)

From the definition of yn,

〈yn − p, xn − yn〉

= 〈αn(xn − p) + (1 − αn)(zn − p), (1 − αn)(xn − zn)〉
= αn(1 − αn)〈xn − zn + zn − p, xn − zn〉 + (1 − αn)2〈zn − p, xn − zn〉

= αn(1 − αn)‖xn − zn‖
2 + αn(1 − αn)〈zn − p, xn − zn〉 + (1 − αn)2〈zn − p, xn − zn〉

= αn(1 − αn)‖xn − zn‖
2 + (1 − αn)〈zn − p, xn − zn〉. (3.5)
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By (3.4), (3.5) and the assumptions of the theorem,

〈yn − p, xn − yn〉 ≥ α
2
n(1 − αn)‖xn − zn‖

2 + λn(1 − αn)〈JX(T xn − Qµn T xn),Tzn − T xn〉

+ λn(1 − αn)‖T xn − Qµn T xn‖
2

≥ (1 − αn)[α2
n‖xn − zn‖

2 − λn‖T‖ ‖T xn − Qµn T xn‖ ‖zn − xn‖

+ λn‖T xn − Qµn T xn‖
2]

≥ (1 − αn)[α2
n‖xn − zn‖

2 − 2αnλn‖T xn − Qµn T xn‖ ‖zn − xn‖

+ λ2
n‖T xn − Qµn T xn‖

2]
= (1 − αn)(αn‖xn − zn‖ − λn‖T xn − Qµn T xn‖)2 ≥ 0, (3.6)

which implies that p ∈ Cn. By mathematical induction, we see that F ⊂ Cn for every
n ∈ N. Therefore, {xn} is well defined.

Since F is nonempty, closed and convex, there exists a unique element z0 ∈ F ⊂ Cn

such that z0 = PF x1. Since xn+1 = PCn (x1),

‖xn+1 − x1‖ ≤ ‖x1 − z0‖, (3.7)

for every n ∈ N, and hence the sequence {xn} is bounded.
Let D = ∩∞n=1Cn. Since F ⊂ Cn for every n ∈ N, we see that D , ∅. By Lemma 2.4,

xn = PCn x1 → PDx1 = w0. We claim that w0 ∈ F. Since w0 ∈ Cn,

0 ≤ 〈yn − w0, xn − yn〉 = −‖xn − yn‖
2 + 〈xn − w0, xn − yn〉,

therefore,

‖xn − yn‖
2 ≤ 〈xn − w0, xn − yn〉 ≤ ‖xn − w0‖ ‖xn − yn‖.

Consequently, ‖xn − yn‖ → 0. Hence, yn → w0 and

‖xn − zn‖ =
1

1 − αn
‖xn − yn‖ → 0. (3.8)

From (3.6),

0 ≤ (1 − αn)(αn‖xn − zn‖ − λn‖T xn − Qµn T xn‖)2 ≤ 〈yn − w0, xn − yn〉 → 0,

so that

‖T xn − Qµn T xn‖ → 0, (3.9)

and hence

‖JX(T xn − Qµn T xn)‖ → 0. (3.10)

Therefore,

‖T ∗JX(T xn − Qµn T xn)‖ ≤ ‖T‖ ‖T xn − Qµn T xn‖ → 0. (3.11)
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Since {xn} converges strongly to w0 and T is a bounded linear operator, {T xn} converges
strongly to Tw0. From (3.9), {Qµn T xn} converges strongly to Tw0. By (3.2) and the
monotonicity of B,

0 ≤
〈
v − Qµn T xn,w −

1
µn

JX(T xn − Qµn T xn)
〉
, (3.12)

for each (v,w) ∈ B. Taking the limit in (3.12) as n→∞ and using (3.10) shows that
〈v − Tw0,w − 0〉 ≥ 0, and the maximal monotonicity of B implies that w0 ∈ T−1(B−10).
Similarly, by (3.3) and monotonicity of A,

0 ≤ 〈xn − zn − λnT ∗JX(T xn − Qµn T xn) − w, zn − v〉, (3.13)

for each (v,w) ∈ A. Taking the limit in (3.13) as n→∞ and using (3.8) and (3.11)
shows that 〈0 − w, w0 − v〉 ≥ 0, and the maximal monotonicity of A implies that
w0 ∈ A−10. Therefore, w0 ∈ A−10 ∩ T−1(B−10) = F.

We now show that w0 = PF(x1). From (3.7), limn→∞ ‖xn − x1‖ ≤ ‖x1 − z0‖.
Therefore, from z0 = PF(x1), w0 ∈ F and

‖x1 − z0‖ ≤ ‖w0 − x1‖ = lim
n→∞
‖xn − x1‖ ≤ ‖x1 − z0‖.

This, together with the uniqueness of PF(x), implies that w0 = z0 = PF(x) and hence
{xn} converges strongly to PF(x). This completes the proof. �

Corollary 3.2. Suppose that H is a Hilbert space and A and B are maximal monotone
operators of H into 2H such that A−10 ∩ B−10 , ∅. Let Jλ be the resolvent of A for λ > 0
and let Qµ be the resolvent of B for µ > 0. Generate the sequence {xn} by the algorithm

zn = Jλn ((1 − λn)xn + λnQµn xn)
yn = αnxn + (1 − αn)zn,
Cn = {z ∈ Cn−1 : 〈yn − z, xn − yn〉 ≥ 0},
xn+1 = PCn (x1),

where C1 = H and x1 ∈ H. If 1
2 ≤ αn ≤ a < 1, 0 < b ≤ µn and 0 < c ≤ λn < 1, then {xn}

converges strongly to a point z0 ∈ A−10 ∩ B−10, where z0 = PA−10∩B−10x1.
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