SOME UNIQUENESS THEOREMS
FOR FUNCTIONAL EQUATIONS

T. D. HOWROYD
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The generalized Pexider equation

(1) g(F(x, y)) = H(f(), {(¥), =, y)

where f and g are unknown and #, y, are real, has been discussed by J. Aczél
[1] and J. Aczél and M. Hosszu [2]. In [2] it is shown that if F is continuous
and F and H are strictly increasing in their first variables and strictly de-
creasing in their second variables, then two initial conditions suffice to
determine at most one continuous solution f of (1). We extend these results
to strictly increasing and strictly decreasing functions F and derive results
for strictly monotonic F and H.

As in [2] we call F reflexive at a if F(a, a) = a, i.e. if x = a is a fixed-
point of F(z, ). We sometimes omit parentheses where the meaning is clear,
e.g. fx = f(x). We use the standard notation for iterates, e.g. «%z =z,
"ty = qatz, n =0,1, -,

THEOREM 1. Let I be an interval. Let F be continuous and strictly in-
creasing (or decreasing) in I XI. Let N be a Hausdorff space. Let H be defined

in N XN XIXI such that
9] H(uy, uy, x, x) = H(uy, uy, x, x) implies u, = uy;
and either
(I1) H(u, uy, %, y) = H(u, uy, z, y) implies u, = u,,
or
(11I1) H(uy, u, %, y) = H(uy, u, z, y) implies u, = u,.

Let g=g,and f = f,, also g = g, and | = [,, satisfy (1) in I XI. Let
fr and f, be continuous maps of I into N, and a,bel such that a b,
f1(a) = fa(a), £,(b) = f2(8). Then f, =f, in I and g, = g, in the range of
FonlIXxlI.
Let g =f in (1). If F 1s reflexive everywhere tn I the condition (1) s
redundant. If F(a, a) € I and F s not reflexive at a the condition f,(b) = f,(b)
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is redundant. If I is the interval 0 = x < d and F(z,y) = x+y the condi-
tions (II) and (III) are redundant; and provided a > O the condition
f1(0) = f5(b) is redundant.

Proor. Let px = F(z,z),rel. Then p is continuous and strictly
monotonic and has a unique inverse p~1. We may define G = p~1F. Then
G has domain I XI and range I, and is continuous, strictly increasing in
both variables, and reflexive in I.

Let (IT) hold. We may suppose a < b. Let ax = G(a, z), fr = G(b, =),
z el. Then « and g are continuous, strictly increasing, and have unique
inverses. Also aa = a, fb = b, ax < z for x > a, fx > z for x < b.

We may substitute G(z, y) for z and y in (1), then f, and f, satisfy
the functional equation

@) H(fz, fy, 2, y) = H({G(, y), Gz, y), Gz, y), Gz, y))
in I xI. Substitute x = a and y = b, ab, «®b, - - -, successively in (2), then
(I) implies f,a*b = foa"b (n = 1,2, - ).

Let I’ be the interval @ =< « < b. Assume that f; # f, in I’. Then it
is not true that f, =/, in a set which is dense in I’. Hence there exist
ay, b, e I’ such that £, and f, intersect at @, and b, but are different every-
where in a; <z <b,. Let ¢, = G(«"b, a;). Then (I) and (2) imply
fi6n = [2¢,- But «"b —a,c, > aa,, and since these sequences strictly
decrease, there exists an integer m such that

ady < ¢, < aby, ay < alc, < by.

But (II) and (2) with  =a and y = a~'¢c, imply fjalc,, = fyatc,,
which contradicts our assumption. Hence f;, = f, in I'.

If xel, x = a, then a’zel’ for some positive integer ¢; hence
fiefx = fye?z, and (II) and (2) with * =a and {y =a«" 2, a? 22, -, 2,
successively, imply f,z = fox. If x €I, x < b, then g7z € I’ for some positive
integer 7; hence f,7z = f,f72, and (II) and (2) with = b and

y=p"z 32z,

successively, imply f,# = f,x. Hence f; = f;in I.

If instead of (II), (III) holds, the above process may be repeated with
G(a, z) and G(b, ) replaced by G(z, a) and G(z, b), respectively.

Letg = fin (1). If F(z, ) = x, x € I, then f, and f, satisfy the equation
fx = H(fz, fx, z, z) in I, which is sufficient for the proof of the theorem,
instead of (I). If F(a,a)el and F(a, a) #a then fa = f,a implies
f1F(a, a) = f,F(a, a), and we may take b = F(a, a).

Let g =/ in (1), I be the interval 0 < < d, and F(z, y) = x+y.
If tel such that f;¢ = f,o¢ then ft = H(f, 41, f, 42, 3¢, 4t) (k= 1, 2), and
(I) implies f, 4t = f,4¢. If also st eI for some positive integer #, then
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het = H(fhe, fit, 2 t) = fo2¢,
f13t = H(f,2¢, /18, 2t, t) = [, 3¢,

and by induction f,nt = f,nt. Now, either 2 > 0 or & > 0, and if 2 >0
the points m2—"a ( and » positive integers) are dense in I. But f,a = f,a
implies f,m2"a = f,m2"a, hence f, = f, in I.

THEOREM 2. Let g = f in (1). Let F be reflexive at a, continuous and
strictly monotonic in each variable in a neighbourhood of (a, a). For (z,y)
in a neighbourhood of (a,a) and (u,v) in a neighbourhood of (c,c) let
H(u,v,z,y) be strictly monotonic in w and v. Let f, and f, be continuous
solutions of (1) in a neighbourhood of (a, a), and f,(a) = f,(a) = c. Then there
exists a neighbourhood of a in which either f, and f, have only the one point in
common or are identical.

Proor. f, and f, will satisfy
@) 1E(, y) = J(fx, fy, =, y)

for (z, ¥) in a neighbourhood of (a, ), where

E(z,y) = F{F(z, a), F(a, y)}
and
Jw,v, 2, y) = H{H(u,c, z,a), Hc, v, a, y), F(z, a), F(a, y)}.

But E(a, a) = a and E is continuous and strictly increasing in a neigh-
bourhood of (a, a). Also for (z, ) in a neighbourhood of (2, ) and («, v)
in a neighbourhood of (c, ¢), J(%, v, %, y) is strictly increasing in % and v.
Hence there exists a neighbourhood N of ¢ and a neighbourhood I of a such
that f, and f,, E and J satisfy the hypotheses of Theorem 1. Then I is the
required neighbourhood of a.

ExaMPLE. The equation

(4) [(Vlzyl) = Vi@)i )

illustrates both theorems. The function F(z, y) = V |ay| is not strictly
monotonic in either variable in any region including the origin; indeed there
is an infinite number of continuous solutions of (4) of the form A|z|®
which pass through the origin and any other point with positive y coordinate.
If we consider (4) only for negative x and y we may apply Theorem 1.
However although F is then not reflexive anywhere both initial conditions
are necessary; in this case the condition F(a, a) €I in Theorem 1 is not
fulfilled for any a eI.
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NotE. The reflexive case in Theorem 1 is already contained in [1] as
a special case.
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