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numbers and the Fibonacci numbers is: ,  (see [1,
p. 117, Ex. 5.44]). Combining this relation with the result given in (1) leads
to a relatively simple integral representation of the Lucas numbers. It is

Ln = Fn + 2Fn − 1 n ≥ 1

Ln =
n
2n ∫

 1

−1
(5 + x 5 −

4
n) (1 + x 5)n − 2

dx,

and is valid for . Many other integral representations of the Lucas
numbers can be found by employing other known relations between the two
numbers  and  which the reader may care to find.

n ≥ 1

Ln Fn
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107.02 Collatz conjecture: coalescing orbits and conditions
on a minimum counterexample

Introduction
Originally proposed by Lothar Collatz in the 1930s, the Collatz

Conjecture, also known as the Collatz Problem, Syracuse Problem, and
 Conjecture, has become a notoriously difficult unsolved problem in

mathematics. Much of its appeal is in the simplicity of the problem
statement. The conjecture states that for every positive integer , iterating

3n + 1

n
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over the function below will eventually yield the number 1:

C (n) =
⎧

⎩
⎨
⎪
⎪

n
2 if n is even,

3n + 1 if n is odd.

The sequence of numbers generated by iterating over the Collatz
Function is known as a Collatz Orbit. For example, the numbers 7 and 15
generate the following Collatz Orbits, respectively:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, …
15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

The length of Collatz Orbits can be very erratic. For example, the
number 27 goes through 111 iterations before returning to 1 while no
number prior to 27 takes more than 23 iterations to return to 1. At time of
writing, the Collatz Conjecture has been verified for all starting numbers up
to . Numerous attempts have been made to tackle this problem as can be
seen in Jeffrey Lagarias' surveys over the years. These attempts include
heuristic arguments as well as efforts to bound a number within a Collatz
Orbit below the starting number, suggesting that only a low percentage of
numbers could be minimum counterexamples [1, 2, 3, 4]. In many cases, it
is not obvious why different starting numbers (like 7 and 15 shown above)
have orbits that eventually reach the same number, at which point the
ensuing sub-sequences will obviously be identical. In this Note, we show
why certain orbits coalesce in this way, a phenomenon which may help us
more directly understand the dynamics of this problem. We also use these
orbital relationships to establish specific conditions on a minimum
counterexample.

268

Accelerated Collatz Function
     Note that every positive odd integer can be written in the form

, where , ,
and  is a positive odd integer not divisible by 3. Consider the orbit
generated by iterating over an arbitrary positive odd integer written in this
form:

2a3bk − 1 a ∈ �1 = {0,  1,  2,  … } b ∈ �0 = {1,  2,  3, … }
k

C (n) = 3 (2a3bk − 1) + 1 = 3 (2a) (3b) k − 3 + 1 = 2
a
3

b + 1k − 2

C2 (n) =
2a3b + 1k − 2

2
= 2

a − 1
3

b + 1k − 1

·

·

·

C2a (n) =
2 (3a + b) − 2

2
= 3

a + bk − 1.

In fact, every positive odd integer, written in the form , will
go to  after  iterations. Additionally,  is always even.

2a3bk − 1
3a + bk − 1 2a 3a + bk − 1
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As such, we can define the following Accelerated Collatz Function:

A(n) =
⎧

⎩
⎨
⎪
⎪

n
2 if n is even,

3a + bk − 1
2 if n is odd and written in the form2a3bk − 1 given above.

Define each iteration of this function as an accelerated iteration, and
define the corresponding orbit as the accelerated orbit. Then, the numbers 7
and 15, which can be written as  and , respectively,
generate the accelerated orbits below. These are notably more condensed
than the standard Collatz Orbits shown above:

2330 − 1 2430 − 1

7, 13, 10, 5, 4, 2, 1, 1, 1, …
15, 40, 20, 10, 5, 4, 2, 1, 1, 1, .…

Coalescing Orbits
When using the Accelerated Collatz Function defined above, it becomes

apparent why seemingly unrelated numbers may have orbits that coalesce.
The lemmas and theorem below summarise these relationships. If you apply
the lemmas and theorem below to our example numbers of 7 and 15, we can
see, prior to iterating, why the orbits of these two numbers coalesce and why
15 cannot be a minimum counterexample.

Lemma 1: Let  be a positive odd integer written in the form ,
and let  be a positive odd integer written in the form  such that

, , and  is a positive odd integer not divisible by 3.
The orbit beginning with  will coalesce with that of  if .

n 2an3bnk − 1
m 2am3bmk − 1

an, am ∈ �1 bn, bm ∈ �0 k
n m an + bn = am + bm

Proof: The proof is trivial when considering the Accelerated Collatz
Function above. After one accelerated iteration,  and  will go ton m

3an + bnk − 1
2

 and  
3am + bmk − 1

2
,

respectively. Since we assumed that , we can see that
these two numbers are equal.

an + bn = am + bm

Lemma 2: For , if  is odd, then the orbits of
 and  will coalesce.

a ∈ �1
1
2 (3a − 1k − 1)

n = 2ak − 1 m = 2a − 1k − 1

Proof: After one accelerated iteration,  will go to . If this is
odd, another regular iteration takes it to ,
which coincides with the first accelerated iteration of .

m 1
2 (3a − 1k − 1)

1
2 [3(3a− 1k − 1) + 2] = 1

2 (3ak − 1)
n
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Conditions on a Minimum Counterexample

Theorem: Any minimum counterexample  to the Collatz Conjecture must
be of the form  where  is a positive integer strictly greater than 1,
is a positive odd integer not divisible by 3,  if  is odd, and

 if  is even.

n
2ak − 1 a k

k ≡ 1 mod 4 a
k ≡ −1 mod 4 a

Proof: Trivially,  must be odd, so it can be written in the form
 described further above. If , then after one accelerated

iteration,  will go to a number smaller than , so  must be strictly greater
than 1. From Lemma 1, we can see that if , there is a smaller number
whose orbit will coalesce with that of  after one accelerated iteration, so we
must have . From Lemma 2, we can see that if  is odd,
then , which is smaller than , will have an orbit that coalesces
with that of . It follows that a minimum counterexample must have

 as even, which implies that . Since
 if  is odd and  if  is even, it follows

that  if  is odd and  if  is even.

n
n = 2a3bk − 1 a = 1

n n a
b > 0

n
b = 0 1

2 (3a − 1k − 1)
2a − 1k − 1 n

n
1
2 (3a − 1k − 1) 3a − 1k ≡ 1 mod 4
3a − 1 ≡ 1 mod 4 a 3a − 1 ≡ −1 mod 4 a

k ≡ 1 mod 4 a k ≡ −1 mod 4 a

The above theorem allows us to immediately eliminate many non-trivial
minimum counterexample candidates. The reader may care to check that
after applying the theorem, the following would be the only remaining
counterexample candidates below 100 (supposing that they had not already
been verified as non-counterexamples):

7, 27, 31, 39, 43, 75, 91.
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