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The properties of multiphase flows are challenging to measure, and yet effective
properties are fundamental to modelling and predicting flow behaviour. The current
study is motivated by rheometric measurements of a gas-fluidized bed using a coaxial
rheometer in which the fluidization rate and the rotational speed can be varied
independently. The measured torque displays a range of rheological states: quasistatic,
dense granular flow behaviour at low fluidization rates and low-to-moderate shear rates;
turbulent toroidal-vortex flow at high shear rates and moderate-to-high fluidization rates;
and viscous-like behaviour with rate-dependent torque at high shear rates and low
fluidization or at low shear rates and high fluidization. To understand the solid-like
to fluid-like transitions, additional experiments were performed in the same rheometer
using single-phase liquid and liquid–solid suspensions. The fluidized bed experiments
are modelled as a Bingham plastic for low fluidization rates, and as a shear-thinning
Carreau liquid at high fluidization rates. The suspensions are modelled using the
Krieger–Dougherty effective viscosity. The results demonstrate that, by using the
effective properties, the inverse Bingham number marks the transition from solid-like
to viscous-flow behaviour; a modified gap Reynolds number based on the thickness of
the shear layer specifies the transition from solid-like to turbulent vortical flow; and a
gap Reynolds number distinguishes viscous behaviour from turbulent vortical flow. The
results further demonstrate that these different multiphase flows undergo analogous flow
transitions at similar Bingham or Reynolds numbers and the corresponding dimensionless
torques show comparable scaling in response to annular shear.
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1. Introduction

Since the early studies by Couette (1890) and Mallock (1896), concentric cylinder
rheometers have been used to determine the viscosity or effective viscosity of Newtonian
and non-Newtonian fluids, suspensions and multiphase flows (Larson 1999; Coussot
2005). For Newtonian fluids, the dynamic viscosity, μ, is determined from the ratio of the
shear stress, τ , and the shear rate, γ̇ . However, the flow Reynolds number, Reb, must be
below the critical value, Reb,c, associated with the development of Taylor vortices (Taylor
1923). For the rotation of the inner cylinder, the gap Reynolds number is defined as

Reb = ρωiri(ro − ri)

μ
= ρωirib

μ
, (1.1)

where ρ is the fluid density, ri and ωi denote the radius and angular velocity of a
rotating inner cylinder and the characteristic length, b, is the gap width between the inner
cylinder and the stationary outer wall. In rheological measurements of suspensions, the
Reynolds number based on the particle diameter, D, is given as ReD = ργ̇ D2/μ, and
is typically several orders smaller than the corresponding gap Reynolds number. Like
Newtonian fluids, the apparent viscosity of non-Brownian neutrally buoyant suspensions,
μapp, can be determined from the ratio of the measured shear stress to the Newtonian
shear rate (Acrivos, Mauri & Fan 1993). Studies have successfully modelled the apparent
viscosity of such suspensions as a function of the volumetric solid fraction, 0 ≤ φ < φm,
and the maximum random packing factor, 0 < φm < 1 (Krieger & Dougherty 1959;
Krieger 1972).

Rheometers are also used to study sheared granular materials and powders (Nedderman
1992; Larson 1999). The Savage number and the inertia number establish regimes in
sheared granular flows with a confining normal stress. The Savage number is the ratio of
particle inertia to the normal consolidating stress and is defined as Sa = ρbD2γ̇ 2/σ , where
ρb = ρsφ + ρf (1 − φ) denotes the bulk density of the mixture, ρs is the density of the
solid phase and σ is the consolidating stress (Lu, Brodsky & Kavehpour 2007). The inertial
number, I, is defined similarly with I = Dγ̇ /(P/ρb)

1/2, using P as an imposed normal
pressure (Forterre & Pouliquen 2008). When subjected to weak shearing, particles remain
in physical contact with their neighbours, and stresses are transmitted through frictional
stress chains that span the bed. The stress measurements are quasistatic and independent
of the shear rate for Sa < 1 × 10−6. Without a confining stress, particles may lose
contact with their neighbours and become entrained within the flow. In the intermediate
values of 1 × 10−6 < Sa < 1, the stresses depend on a non-trivial combination of
both frictional and collisional interactions (Lu et al. 2007; Gutam, Mehandia &
Nott 2013).

For viscous flows beyond a critical Reynolds numbers, Rec, axisymmetric and
three-dimensional Taylor-vortex structures arise in pure fluids due to centrifugal
instabilities (Taylor 1923). Hence, a key consideration in using concentric cylinder
rheometers is to determine Rec, which varies with the rheometer geometry, to ensure
a linear relation between the shear stress and the shear rate. For suspensions,
unconfined granular flows and fluidized beds, it is important to establish similar flow
criteria, especially when making rheological measurements. Toroidal vortices have been
observed in gaseous fluidized beds (Conway, Shinbrot & Glasser 2004), unfluidized
granular media (Krishnaraj & Nott 2016) and neutrally buoyant particle suspensions
(Linares-Guerrero, Hunt & Zenit 2017; Majji, Banerjee & Morris 2018; Ramesh,
Bharadwaj & Alam 2019; Dash, Anantharaman & Poelma 2020; Alam & Ghosh 2022;
Singh, Ghosh & Alam 2022). Despite their similar appearance, these vortical flows differ
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Multiphase Taylor–Couette flow transitions

in their structure as well as in their inciting mechanisms. Few prior studies, however,
have compared the rheological nature of these phenomena across various multiphase
flows.

The current research focuses on torque measurements collected on Newtonian liquids,
particle suspensions, and gas-fluidized powders sheared in a unique concentric cylinder
rheometer accommodating all three sample types. The rheometer has a low aspect ratio,
ζ = L/(ro − ri) = 2.8, where L denotes the length of the rotating and measuring inner
cylinder, and therefore end effects impact the measurements. Using this rheometer,
benchmark measurements of the torque, Tz, using Newtonian liquids were performed
over a range of gap Reynolds numbers spanning four orders of magnitude. Additional
experiments on particle suspensions provide insight into the effect of particle density on
the torque measurements and the critical shearing velocity associated with the onset of
linear instability.

The suspension experiments provide context for the regime transitions and flow states
observed in the sheared gas-fluidized beds. The fluidized bed experiments were taken
over a range of fluidization rates, q, where q is defined as the ratio of the upward
fluidization velocity to that for incipient fluidization, as well as using two sizes of
glass beads, D = 49 and 113 μm, which exhibit different fluidization behaviour. As the
fluidization and shear rates are increased for both sizes of particles, the flows transition
from quasistatic, rate-independent solid-like behaviour to fully turbulent fluid-like toroidal
vortical behaviour at high shear rates and moderate-to-high fluidization velocities. Hence,
the experiments using fluidized glass beads span from granular flow behaviour to turbulent
vortex flow. A goal of this research is to measure the dependence of the torque on ωi
and q and determine the critical dimensionless parameters using the effective properties.
The current work uses both the Bingham plastic and Carreau fluid models to define and
compute effective properties, which are used to compare the results of all experiments on
common dimensionless axes.

This work describes a process for the definition of effective properties and dimensionless
parameters that illustrates transitions in rheological behaviour found throughout many
geophysical and industrially relevant flows. Recent rheological measurements of soils
in areas that experience debris flows show a transition from rate-independent behaviour
to fluid-like behaviour (Kostynick et al. 2022), similar to that found in the current
experiments. The current results are also relevant to the rheological modelling of flows that
combine fluidization and shear, such as in the feeding of additive manufacturing powders
(Iams et al. 2022), in flow enhancement of sand for mould and coremaking processes
(Bakhtiyarov, Overfelt & Siginerm 2002), handling of fine cohesive powders (Mishra et al.
2020, 2022), aeration effects in vibratory powder conveyer (Hartig et al. 2022) and in
clinical grade manufacturing of 3D printed devices in personalized medicine (Ramaraju
et al. 2022).

2. Prior studies

Measurements of the apparent viscosity using a concentric cylinder rheometer can be
affected by the dimensions of annular geometry as well as the fluid dynamic transitions that
occur as the shear rate is increased. This section reviews prior studies that have investigated
flow transitions, especially for wide gaps and for short columns, as found in the current
experiments. Additional background is provided on inertial suspensions and fluidized beds
in annular rheometers.
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2.1. Taylor–Couette flows for a Newtonian fluid
For an idealized annular flow, the torque is constant and independent of radial position, r.
The momentum balance for the circumferential direction, θ , is given by

1
r2

d
dr

[r2τrθ (r)] = 0, (2.1)

where τrθ (r) is the shear stress at r in the θ direction acting on the surface with normal in
the r direction. By integrating (2.1) and evaluating at either the inner radius, ri, or outer
radius, ro, the product of the shear stress and the square of the radial position is constant
across the annulus

r2τrθ = r2
i τi = r2

oτo,

=⇒ Tz = 2πLr2τrθ = 2πLr2
i τi = 2πLr2

oτo,

}
(2.2)

denoting τi, τo as the wall stress at the inner and outer cylinder, and Tz as the torque about
the axis, z, of the concentric cylinders. For a Newtonian fluid at low shear rates, the steady,
laminar flow between concentric cylinders with inner cylinder rotation is unidirectional
with azimuthal velocity, uθ (r), dependent on the radial coordinate (Couette 1890). The
shear stress is evaluated as

τrθ (r) = μ

∣∣∣∣r d
dr

(
uθ (r)

r

)∣∣∣∣ = μ|γ̇N(r)|, (2.3)

where γ̇N(r) is the Newtonian shear rate. Neglecting end effects and applying no-slip
conditions at the inner and outer walls, uθ (ri) = riωi and uθ (ro) = 0, the velocity
distribution for a Newtonian fluid in circular Couette flow is

uθ (r) = ωiriro

r2
o − r2

i

(
riro

r
− rir

ro

)
, (2.4)

and the shear rate follows as

γ̇N(r) = r
d
dr

(
uθ (r)

r

)
= −2

(
ωir2

i r2
o

r2
o − r2

i

)
1
r2 ≤ 0, (2.5)

where uθ (r)/r is the angular velocity of the fluid at a position r; ωi is the angular speed
of the inner cylinder. The torque for a Newtonian fluid in circular Couette flow, TN , is
therefore

TN = 4πr2
i r2

oLμωi/(r2
o − r2

i ). (2.6)

At a critical rotational speed, the flow field departs from the solution given by (2.4)
and develops steady, counter-rotating axisymmetric vortices that span the length of the
annulus. Taylor (1923) predicted the onset of the vortices at a critical value of the inner
cylinder rotational speed by assuming that the flow can be idealized as being sheared
between infinitely long concentric cylinders, L → ∞, with a narrow gap such that the
radius radio, η = ri/ro, approaches η → 1.

Since Taylor’s (1923) work, studies have examined different geometries with either
the inner cylinder rotating, the outer rotating or both (Chandrasekhar 1960; Coles 1965;
Snyder 1969; Lewis & Swinney 1999; Racina & Kind 2006; Ravelet, Delfos & Westerweel
2010). The work by Dubrulle et al. (2005) introduced a parameterization that aids
the general stability analysis of Newtonian Taylor–Couette flows with differing rotation
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scenarios. Using this approach, the typical shear rate for Newtonian fluid flow is defined
as

S̃ = γ̇N(r̃) = 2ωiriro

r2
o − r2

i
= ηγ̇N(ri), (2.7)

where the typical radius r̃ = √
riro is the geometric average of the system’s radial

dimensions. Dubrulle et al. (2005) defined a shear Reynolds number as

Res = ρU(ro − ri)

μ
, (2.8)

which uses a characteristic velocity that is defined using S̃ as U = S̃ × (ro − ri), and
is related to the gap Reynolds number by Res = [2ro/(ri + ro)]Reb for systems with a
rotating inner cylinder and stationary outer cylinder.

More recent evidence suggests that the values of Res associated with the transition
to Taylor vortices, as well as supercritical flow transitions at even higher shear rates,
are related to the annular geometry and the axial boundaries of the flow volume. The
early study by Cole (1976) concludes that for aspect ratios 6 < ζ < 60 and radius ratios
0.89 < η < 0.95, the annulus length has negligible impact on the critical speed for the
development of Taylor vortices. However, close inspection of Cole’s (1976) results for the
visual onset of vortical flow shows a gradual decrease in the critical speed as ζ → 6. The
stability analysis by Esser & Grossman (1996) provides an analytical expression for critical
Reynolds numbers as a function of η, which compares well with experiments found in the
literature (Taylor 1923; Donnelly & Fultz 1960; Coles 1965; Snyder 1968a).

For a wide gap, such as that in the experiments by Donnelly & Fultz (1960) with η = 0.5,
the critical Reynolds number is lower than found for systems of η → 1 or η → 0 (Snyder
1968b; Cole 1976; Deng et al. 2009). Numerical and experimental studies by Czarny et al.
(2003) and Deng et al. (2009) conducted using short-aspect-ratio annular cells investigate
the influence of end effects on the flow field. The simulation results by Czarny et al.
(2003) showed that Ekman vortices, which emerge due to radial flow within the boundary
layer at the axial constraints and not due to centrifugal instability, can develop and impact
the bulk flow within a concentric cylinder system of ζ = 6 and η = 0.75 at Reynolds
numbers below those associated with Taylor vortices. The experimental and numerical
work by Deng et al. (2009) investigated an annular geometry of 2.6 < ζ < 5.2, η = 0.61
and reported a critical Reynolds number of Res,c ≈ 77 for the development of Taylor
vortices, which is lower than the value of 91.9 predicted by Esser & Grossman (1996)
for η = 0.61. Deng et al. (2009) found using Particle Image Velocimetry (PIV) that Taylor
vortices underwent super-critical transition to wavy vortices at Reynolds numbers much
higher than that according to the L → ∞ assumption, and speculated that the formation
of Ekman vortices in their short-aspect-ratio system may have influenced the developing
flow field.

Table 1 presents reported values from the literature of critical Reynolds numbers
alongside associated values of ζ and η. The selected results include those by Lewis &
Swinney (1999), Racina & Kind (2006) and Ravelet et al. (2010); torque measurements
from these studies are used in later comparisons. As found in table 1, the boundary
conditions at the end of the annulus, either stationary, rotating or free surface, also
impact the flow transitions (Czarny et al. 2003). The table also includes the data for the
rheometer used in the current experiments along with the values of Res,c and Reb,c; these
measurements are described in detail in § 4.
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Author(s) ζ η BC’s Method Res,c Reb,c

Cole (1976) 12 0.89 FS, SS visual 129 122
20–50 — — visual 135 128
6–60 0.91 — rheometric 143 137

1.4, 3.7 — — rheometric <143 <137
Czarny et al. (2003) 6 0.75 FS, SS numerical 85.7 75.0
Deng et al. (2009) 5.2 0.61 FS, SS numerical, PIV 76.9 61.9
Donnelly & Fultz (1960) 30 0.5 SS, SS visual 93.7 70.3
Lewis & Swinney (1999) 9.8–11 0.72 SS, SS rheological 92.8 79.8
Racina & Kind (2006) 21 0.63 SS, SS PIV, rheometric 93.3 76.0

32 0.76 — — 101 88.9
68 0.89 — — 133 126

Ramesh et al. (2019) (pure liquid) 11.0 0.91 SS, SS PIV 127 122
(φ = 0.1) 5.5 — FS, SS — 99.3 94.8
(φ = 0.2) — — — — 109 104

Ravelet et al. (2010) 22 0.92 SS, SS rheometric 140 134
Current study (pure liquid) 2.8 0.48 FS, SS rheometric 70 52.0

(φ = 0.3) — — — — 62.2 46.0
(φ = 0.4) — — — — 65.0 48.1

Table 1. Critical shear Reynolds numbers (Res,c) and gap Reynolds numbers (Reb,c) from investigations into
Taylor–Couette flow for systems with a rotating inner cylinder and stationary outer cylinder. The aspect ratio,
ζ = L/(ro − ri), and the radius ratio, η = ri/ro, shift the critical Reynolds numbers in Taylor–Couette flow
(Chandrasekhar 1960; Donnelly & Fultz 1960; Deng et al. 2010). The axial boundary conditions (BC) are
known to have distinct effects on the development of Ekman vortices in short annular columns (Czarny et al.
2003) as indicated in the table using free surface (FS) and stationary surface (SS). Also included are the results
of experiments on neutrally buoyant particles by Ramesh et al. (2019) and this study.

2.2. Neutrally buoyant suspensions and the Krieger–Dougherty effective viscosity model
Particle suspension rheology was studied by Einstein (1926) in the context of Brownian
motion. At the dilute limit, where the solid-particle volumetric fraction, φ, approaches
0, Einstein (1926) analytically characterized the relative viscosity, μr, around an isolated
sphere suspended in fluid to be given by

μr = μeff

μf
= 1 + [μ]φ, (2.9)

where μeff is the effective viscosity, μf is the dynamic viscosity of the suspending fluid
and [μ] is the intrinsic viscosity, which is a property of the particle shape with [μ] = 2.5
for spheres (Einstein 1906).

Following Einstein’s (1926) study at the dilute limit, many studies have been conducted
over broader flow conditions to measure and model the effective viscosity. Krieger
& Dougherty (1959) developed an analytical prediction of the relative viscosity of
suspended spherical particles based on two parameters: the volumetric solid fraction, φ,
and the maximum random packing fraction, φm. Their model accounts for the interaction
between adjacent particles in a ‘crowded’ state and incorporates Brownian motion. The
Krieger–Dougherty relative viscosity is given as

μeff

μf
=
(

1 − φ

φm

)−[μ]φm

, (2.10)

where [μ] is Einstein’s intrinsic viscosity. Krieger (1972) substituted the quantity [μ]φm
with 1.82 to obtain an optimal fit with experimental data, yielding the form of the
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Krieger–Dougherty (KD) model widely used today

μeff

μf
=
(

1 − φ

φm

)−1.82

. (2.11)

The KD effective viscosity model, sometimes with minor modifications, has been
applied in a variety of flow scenarios (Phillips et al. 1992; Matas, Morris & Guazzelli
2003; Mueller, Llewellin & Mader 2010; Mahbubul, Saidur & Amalina 2012; Mendoza
2017; Baroudi, Majji & Morris 2020; Singh et al. 2022). Using an annular rheometer
with a stationary inner cylinder and rotating outer cylinder, Hunt et al. (2002) used a
variation of (2.10) to explain prior experiments by Bagnold (1954). By accounting for
the contribution of the vortices formed by the end walls and using the KD model, the
torque measurements reported by Bagnold (1954) were accurately predicted, suggesting
that the increase in torque with shear rate was not a result of particle–particle collisions,
as posited by Bagnold (1954), but rather from the transition to toroidal flow. Using
the KD viscosity for their experimental measurements, Linares-Guerrero et al. (2017)
showed that neutrally buoyant suspensions transition to turbulent flow at Reynolds
numbers slightly below that of Newtonian fluids in equivalent shear scenarios, which they
attribute to velocity fluctuations resulting from particle motions that enhance the bulk-flow
momentum transport.

Recent investigations by Majji et al. (2018) and Ramesh et al. (2019) and the review by
Baroudi et al. (2023) provide detailed insight into the characteristics of Taylor–Couette
flow for neutrally buoyant suspensions. In a concentric cylinder cell of 5.5 ≤ ζ ≤ 11 and
0.84 ≤ η ≤ 0.914, Ramesh et al. (2019) collected simultaneous measurements of torque
and PIV observations, and discovered a variety of flow regimes developing in response to
several variables, including ζ , η, solid fraction (which varied in the range 0.1 < φ < 0.25)
and rotational acceleration (increasing from rest or decreasing from maximum speed).
Their findings agree with and expand upon the research of Majji et al. (2018). Experiments
by Ramesh et al. (2019) are included in table 1 and the results are compared with this study.
More recent works by Dash et al. (2020), Singh et al. (2022) and Alam & Ghosh (2022)
document the flow bifurcation sequence that leads to turbulence and the variations in the
corresponding torque for inner-rotating and counter-rotating rheometers.

2.3. Suspensions with particles of unmatched density and gas-fluidized beds
For multiphase flows in which the densities are not matched between the phases, there have
been a range of approaches using modifications to the KD model or using a non-Newtonian
model to define the effective viscosity. Investigations by Leighton & Acrivos (1986) on
liquid–solid mixtures with particles that are denser than the surrounding fluid have treated
the relative viscosity as a function of the local volumetric solid fraction, which is in turn
related to shear-induced particulate migration effects (Leighton & Acrivos 1986, 1987;
Acrivos et al. 1993; Acrivos, Fan & Mauri 1994). In the case of liquid-fluidized beds, the
apparent viscosity is modelled using expressions similar to the KD model based on the
solid fraction (Gibilaro et al. 2007). For gas-fluidized beds, a simple solid-fraction-based
effective viscosity model is insufficient to capture the complex flow conditions. Prior
studies have found a range of apparent viscosities that depend on particulate size, density
and shape at different fluidization rates (Davidson, Cliff & Harrison 1985; Rees et al.
2005). Modelling the stresses in a gaseous fluidized bed has involved various approaches,
including dense gas kinetic theory, in which the shear viscosity depends on the square root
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of the granular temperature, the particle density and the particle diameter (Gu, Chialvo &
Sundaresan 2014).

Concentric cylinder rheometers have been previously used to determine an effective
viscosity in gas-fluidized beds. Anjaneyulu & Khakhar (1995) performed measurements
on particle beds sheared at fluidization rates using a short-aspect-ratio annular cell of ζ =
3.02 and 3.72. They modelled the gas-fluidized bed as a Bingham plastic, and presented
fitted results of the yield stress, τy, and plastic viscosity, μp, at fluidization velocities within
±20 % of the incipient fluidization velocity. Their results suggest that τy and μp were
independent of particle size and shear rate, but varied with the upward fluidization velocity,
uz, at and below uinc. Using tracer particles, they observed a plug region near the stationary
outer wall that is consistent with the assumptions of the Bingham model.

The gas-fluidized bed work by Conway et al. (2004) found Taylor-vortex-like structures
in an apparatus of aspect ratio ζ = 4.46 and radius ratio η = 0.70. The primary flow
bifurcation resembled that of Taylor vortices, but at higher shear rates, secondary vortices
spawned from the primary bifurcations in a manner previously unobserved in either
Newtonian or granular flows. Through further experimentation, Conway et al. (2004)
concluded that centrifugal instability incites the observed vortical flow state. Unlike
experiments in liquids, in which the torque increases due to flow transitions, their torque
measurements are mostly independent of rotational speed, but markedly decreased with
increasing fluidization rate. Their experiments used a binary mixture of glass beads,
D = 140 and 460 μm, and the authors observed a segregation between the particle types.
The fluidization rates presented in their study are estimated to be below uinc. Similar
experiments were conducted by Colafigli et al. (2009) using a longer apparatus with aspect
ratio ζ = 17.6 and radius ratio η = 0.75 for a small range of rotational speeds. Their
experiments used silica powder of D = 26 μm, and examined different solid fractions
by varying the fluidization rate. Similar to Conway et al.’s (2004) results, the torque
measurements were nearly independent of rotational speed; from the torque, both studies
computed the apparent viscosity, which showed decreasing values with increasing speed.

In unfluidized granular material subjected to annular shear, Krishnaraj & Nott (2016)
observed through experiments and discrete element simulations a single vortical structure.
Unlike the findings of Conway et al. (2004), Krishnaraj & Nott (2016) determined
that their observed vortex did not develop due to centrifugal instability, but instead
due to a combination of shear-induced particulate dilation and gravitational forces.
Their experiments used a concentric cylinder geometry of ζ = 16.7, η = 0.8, while their
simulations varied the column height so that 1.9 ≤ ζ ≤ 5.6 for fixed radius ratio η = 0.70.
In all configurations, the vortex manifested as a singular torus with downward flow along
the inner cylinder spanning the full annular gap when sheared at a fixed rotational speed
equivalent to Sa = 3.3 × 10−6. Similar experiments by Gutam et al. (2013) showed a
change in the direction of the vertical shear stress with shearing of the inner cylinder
as compared with the local stress measurements for an unsheared granular material.

3. Rheometer and overview of experiments

The concentric cylinder rheometer (Anton Paar MCR-302) is equipped with a powder cell
accessory for measurements on gas-fluidized beds (Mishra et al. 2020; Iams et al. 2022)
and is detailed in figure 1. The design has a wide gap and a low aspect ratio (ζ = 2.79;
η = 0.48). The rheometer measures resistance torque using a ‘smooth-wall’ inner cylinder
suitable for pure fluid experiments, and a ‘rough-wall’ profiled cylinder for experiments
on granular materials to reduce particle–wall slippage (Koos et al. 2012). These two
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h0

L

ri ro

Smooth cylinder (sc)

Profiled cylinder (pc)

ri,pc �∼ 1.208 cm

ri,sc = 1.208 cm

ro = 2.5 cm

L = 3.6 cm

h0 = 1.0 cm

η : = ri/ro = 0.48 

ζ : = L/(ro − ri) = 2.79

17.9 cm
15.25 cm

2
1
.9

 c
m

19.8 cm
47.05 cm

Figure 1. Schematic of the Anton Paar MCR-302 rheometer with two different concentric cylinder
experimental configurations. The powder cell configuration is equipped with a ‘smooth cylinder’ (sc)
measuring tool and a ‘profile cylinder’ (‘pc’, or ‘rough’) measuring tool.

inner cylinders have equivalent effective radii. Following calibration, the resistance torque
measured on the inner cylinder varies in the range 1 × 10−8 ≤ Tz ≤ 2 × 10−1 Nm with
rotational speeds in the range 1 × 10−3 ≤ ṅ ≤ 1.2 × 103 rpm. To perform the liquid and
suspension experiments, the powder cell was outfitted with two aluminium disks to replace
the powder frit that forms the floor of the annulus and the diffuser that interfaces with
a detachable volumetric flow controller, which can be swapped for other controllers with
alternative flow-rate specifications. The flow controller used in this work delivers fluidizing
air at volumetric flow rates in the range 5 × 10−2 ≤ Q ≤ 5 l min−1.

Table 2 lists the specifications for the samples studied in this work. As found in
the table, the experiments include gas-fluidized beds for two different sizes of particles
(FB1 and FB2), pure liquids (PL), neutrally buoyant particles (NB), negatively buoyant
particles (UB) and positively buoyant particles (XB). The FB1 and FB2 experiments used
monodispersed glass particles with equivalent density ρs = 2500 kg m−3 and particle
diameters of D = 113 and 49 μm, respectively. Prior to measuring periods for the FB
experiments, the air flow controller was cycled on and off so that the particles were initially
uniformly settled. For the pure fluid and suspension experiments, table 2 provides the
fluid and solid properties, as well as the bulk density of the glycerine–water–particulate
mixtures, and the KD effective viscosity based on the solid fraction and φm = 0.61.
Polystyrene particles of mean diameter D = 900 μm and density ρp = 1040 kg m−3 were
used to create the liquid–solid mixtures. The samples were prepared gravimetrically using
measured densities, and all experimentation and sample preparation was conducted at the
laboratory temperature of 21 ◦C.
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Exp. ID Description SR φ % D μm ρf kg m−3 ρs kg m−3 ρb kg m−3 μf Pa s KD μeff Pa s

FB1 gas-fluidized rough 51–58 113 1.23 × 10 2.50 × 103 — 1.82 × 10−5 —
FB2 gas-fluidized rough 51–58 49 1.23 × 10 2.50 × 103 — 1.82 × 10−5 —
PL1 pure liquid smooth 0 — 1.10 × 103 — — 5.79 × 10−3 —
PL2 pure liquid rough 0 — 1.04 × 103 — — 2.06 × 10−3 —
NB1 neutral buoy. rough 20 900 1.05 × 103 1.04 × 103 1.04 × 103 2.06 × 10−3 4.22 × 10−3

NB2 neutral buoy. rough 30 900 1.04 × 103 1.04 × 103 1.04 × 103 2.06 × 10−3 6.99 × 10−3

NB3 neutral buoy. rough 40 900 1.04 × 103 1.04 × 103 1.04 × 103 2.06 × 10−3 1.41 × 10−2

UB1 negative buoy. rough 45 900 9.94 × 102 1.04 × 103 1.01 × 103 9.81 × 10−4 1.09 × 10−2

UB2 negative buoy. rough 45 900 1.02 × 103 1.04 × 103 1.03 × 103 1.33 × 10−3 1.48 × 10−2

XB1 positive buoy. rough 40 900 1.08 × 103 1.04 × 103 1.06 × 103 3.70 × 10−3 2.53 × 10−2

XB2 positive buoy. rough 40 900 1.09 × 103 1.04 × 103 1.07 × 103 3.70 × 10−3 2.54 × 10−2

Table 2. Properties of liquids and solids for the gas-fluidized beds (FB), pure liquids (PL) inner cylinders
of differing surface roughness (SR), neutrally buoyant particles (NB), negatively buoyant particles (UB) and
positively buoyant particles (XB). The table lists the volumetric solid fraction (φ), the particle diameter (D),
the fluid density (ρf ), the solid-particle density (ρs), the bulk density (ρb), the fluid dynamic viscosity (μf ) and
the KD effective viscosity (μeff ) for each experiment using φm = 0.61.

A typical set of measurements is collected by computing the sample mean and standard
deviation of steady-state values of resistance torque over several rotations at the set speed,
ωi, which is held fixed after acceleration of the cylinder from rest. The FB2 measurements
are averaged values recorded from ‘up’ and ‘down’ velocity sweeps of the inner cylinder
between rest and the maximum rotational speed ṅ = 1200 rpm.

In the experiments the Reynolds number, Reb, spans from subcritical to supercritical
for the fluidized bed and suspension experiments. In these experiments, the particle
Reynolds numbers, ReD, are less than 1 for FB experiments and less than 120 in
the case of the particle suspensions. The maximum Stokes numbers, St = ρpγ̇ND2/9μ,
are comparable between the suspension experiments (St < 15) and those of the FB1
(St < 30) and FB2 (St < 6) fluidized bed experiments. However, a key experimental
difference is the particle-to-fluid density ratio, ρp/ρf , which is at most 1.03 in the
suspension experiments and approximately 2000 in the fluidized bed experiments. Under
these conditions, particle–particle collisions in the suspensions are not expected to be
significantly contribute to momentum transport (Joseph et al. 2001; Linares-Guerrero et al.
2017), but collisional interactions contribute to the fluidization process.

4. Results

In this section, measurements of the resistance torque from the annular shear experiments
are presented in dimensional form. The results given in § 4.1 pertain to the supporting
experiments on Newtonian liquids and particle suspensions, while those of the FB1 and
FB2 gas-fluidized particle beds are found in § 4.2. The smooth-wall inner cylinder was
used in the PL1 Newtonian liquid experiment, while all other experiments used the
rough-wall profiled cylinder.

4.1. Experiments on Newtonian liquids and particle suspensions
To establish the basic fluid-dynamical behaviour associated with this study’s
low-aspect-ratio concentric cylinder system, shear-rate sweep experiments using pure
Newtonian liquids (PL) were performed in the modified MCR-302 powder cell.
In addition, comparable measurements using neutrally buoyant suspensions (NB) and
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Figure 2. Measured torque against rotational speed for Newtonian liquids (PL, a), neutrally buoyant particle
suspensions (NB, b), negatively buoyant particle suspensions (UB, c) and positively buoyant particle
suspensions (XB, d).

liquid–solid mixtures with either positively (XB) or negatively (UB) buoyant particles
were taken to study the effect of particles on the transition. By varying the density of the
suspending liquid and the solid fraction, the impact of the mixture’s normal consolidating
stresses as well as the rate of particle–particle/particle–fluid interaction are compared with
analogous phenomena appearing in the gas-fluidized particle bed experiments.

Figure 2(a) shows Tz against ωi for aqueous–glycerine mixtures PL1 and PL2. Below
ωi = 2 rad s−1 for PL1 and ωi = 0.5 rad s−1 for PL2, the measured torque varies
directly with the rotational speed. Beyond these critical speeds, Tz shows a higher-order
dependence on ωi for both PL experiments, indicating the development of Taylor vortices
in the annular column (Lewis & Swinney 1999; Racina & Kind 2006). In this supercritical
flow state, the measured torque of the smooth-wall PL1 experiment varies with ωi at an
approximate order of α = 1.5 (Ravelet et al. 2010), whereas the torques associated with
the rough-walled PL2 experiment follow an order α = 1.7 relationship (van den Berg et al.
2003).

The results for the NB1 (φ = 0.2), NB2 (φ = 0.3) and NB3 (φ = 0.4) suspension
experiments, depicted in figure 2(b), also have an α = 1.7 torque dependence in the
supercritical flow state (Linares-Guerrero et al. 2017), but show an initially weaker
dependence on rotational speed prior to transition. Because of slight differences between
the polystyrene particle density and that of the suspending aqueous–glycerine mixtures,
the particles were not homogeneously distributed within the annulus at the lowest rates
of shear. This experimental challenge has been noted in prior studies (Acrivos et al.
1994), and in the case of NB1, the density of the suspending fluid exceeded that of the
particles by less than 1 %, as recorded in table 2, which was sufficient to create a packed
layer of particles at the free surface of the sample volume. As a result, the measured
torque in the slowly sheared NB1 experiment includes a contribution from frictional
interactions between packed particles within the shear region. The subsequent NB2 and
NB3 experiments were conducted with a short period of premixing prior to each measuring
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period so that the particles were more uniformly distributed throughout the sample. This
routine proved particularly important for accurate measurements at low rotational speeds,
where measuring periods could take over an hour to achieve several full rotations. At
low shear rates, the NB1 torque values vary with ωi at an order of α < 1 before abruptly
transitioning to an α ≈ 1.7 relationship at ωi = 4.2 rad s−1. In contrast, the low–shear
rate torques for the NB2 and NB3 experiments vary linearly with the rotational speed until
ωi = 1.2 and 3.1 rad s−1, respectively, beyond which both experiments follow the same
α ≈ 1.7 relationship seen in the NB1 results.

Noting the effects of the densely packed particles on the NB1 torque measurements,
additional experiments were performed using liquid–solid mixtures with deliberately
mismatched densities between phases. Figures 2(c) and 2(d) show Tz against ωi for
negatively buoyant suspensions (UB1 and UB2) and positively buoyant suspensions (XB1
and XB2), respectively. The bulk solid fractions used for these two types of samples were
chosen to ensure that the full length of the inner cylinder remained in contact with particles
in their respective packed states. Both the positively and negatively buoyant suspensions
transition to vortical-flow around ωi ≈ 20 rad s−1 with α ≈ 1.7, similar to that found
for the PL2 and NB experiments. In the subcritical flow state, the UB and XB torque
measurements are largely independent of the rotational speed and dependent on frictional
interaction between the particles and the wall. At speeds between 10 and 20 rad s−1, the
torque measurements show slight shear weakening (α < 0) in which particles begin to
expand from a packed state.

4.2. Experiments on sheared gas-fluidized particles
Following the supporting experiments found in § 4.1, this section presents results for
experiments for the 113 μm FB1 (Geldart group B) and 49 μm FB2 (Geldart group A)
gas-fluidized particles. For FB1 and FB2, preliminary experiments were performed of
the pressure drop across the bed vs air flow rate, Q, at ωi = 0 and 10.5 rad s−1. The
incipient fluidization rate for ωi = 0 is Qinc = 1.2 l min−1 for FB1 and 0.2 l min−1 for
FB2, equivalent to mean upward flow velocities of ūz = 1.3 × 10−2 and 2 × 10−3 m s−1

through the annular gap. At ωi = 10.5 rad s−1, the minimum fluidization rate is slightly
lower than that found at ωi = 0. For simplicity, the averaged values associated with ωi = 0
are used to define incipient velocity, uinc; the fluidization rate for each experiment is given
in terms of the ratio q = Q/Qinc = uz/uinc. Without shearing, the effect of particle size is
most significant at fluidization rates near the minimum or incipient fluidization velocity,
uinc. The larger particles have a higher value of uinc and show bubbling behaviour for
fluidization rates near and beyond uinc. The smaller particles expand uniformly without
significant bubbling as the fluidization rate is increased to uinc and beyond.

With rotation, measurements of the fluidized bed solid fraction show a dependence on
both the fluidization rate and the rotational speed. Figure 3 presents measurements of the
average solid fraction as a function of q and ωi for the FB1 particle bed. For q < 1, the
particle bed gradually expands, and the solid fraction decreases from φ = 0.58 at q = 0 to
φ ≈ 0.55 at q = 1. In the absence of shear, sporadic, localized bubbles appear in the FB1
particle bed at flow rates as low as q = 1.1. Increasing the flow rate results in more regular
bubbling up to q ≈ 1.5, beyond which intermittent to continuous bubbling is observed
throughout the particle bed. Beyond q = 1.7, vigorous bubbling occurs throughout the
sample. The onset of bubbling results in an increase in the apparent bed volume.
Although not presented, comparable patterns in the decrease of φ with respect to q are
also observed in the FB2 particle bed.
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Figure 3. Measurements of the solid fraction φ as a function of normalized fluidization rate q and rotational
speed ωi for FB1 with mean diameter D = 113 μm. At ωi = 0, intermittent bubbling can be seen within the
bed volume starting at q = 1.1. Beyond this flow rate, the estimated volumetric solid fraction, φ, decreases
with respect to q, as found for ωi = 0.01, 10 and 100 rad s−1 in (b), (c) and (d).

The rotation of the inner cylinder impacts the bubbling behaviour of the fluidized
particles. The data at ωi at 0.01 and 10 rad s−1 show similar variation of φ with q.
Beyond ωi = 20 rad s−1, the development of bubbles is mitigated, and localized bubbling
is scarce. However, even at high rotational speeds, an increase in the apparent bed volume
takes place in the range 0.9 � q � 1.1. When sheared at rotational speeds in excess of
ωi ≈ 50 rad s−1, the solid fraction decreases slowly with increasing q, varying in the
range 0.53 < φ < 0.56 for 1.1 < q < 3. As found for ωi = 100 rad s−1, the solid fraction
appears to level out to φ → 0.53 for q > 1.5.

Figure 4 presents average torque measurements for FB1 (a) and FB2 (b) over rotational
speeds 10−2 < ωi < 1.26 × 102 rad s−1. Experiments using the larger FB1 particles
involve q in the range 0.0 ≤ q ≤ 2.0, while experiments using smaller FB2 particles occur
across a wide range of fluidization rates, 0.0 ≤ q ≤ 15. Several distinct regimes in the
flow behaviour were identified via visual inspection through the rheometer’s glass outer
cylinder as well as analysis of the measured torques. These regimes are delineated in
figure 5, and have been named according to their characteristics.

At fluidization rates q � 0.7 for FB1 and q � 0.9 for FB2, the measured torque, Tz,
is quasistatic and independent of the angular speed for ωi < 10 rad s−1; in figure 5, this

983 A14-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1077


A.B. Young, A. Shetty and M.L. Hunt

10–2 10–1 100 101 102

10–6

10–4

10–2
T z

 (N
∙m

)

10–2 10–1 100 101 102

ωi (rad s–1)ωi (rad s–1)

10–6

10–4

10–2

FB1 q = 0
FB1 q = 0.4
FB1 q = 0.5
FB1 q = 0.6
FB1 q = 0.7

FB1 q = 0.9
FB1 q = 1.0
FB1 q = 1.2
FB1 q = 1.3
FB1 q = 1.5

FB1 q = 1.6
FB1 q = 1.7
FB1 q = 1.9
FB1 q = 2.0

FB2 q = 0
FB2 q = 0.3
FB2 q = 0.5
FB2 q = 0.8
FB2 q = 1.5

FB2 q = 2.5
FB2 q = 3.8
FB2 q = 5.0
FB2 q = 6.3
FB2 q = 7.6

FB2 q = 10
FB2 q = 13
FB2 q = 15

(a) (b)

Figure 4. Measured torque as a function of angular velocity and fluidization rate for the FB1 (a) and FB2
(b) experiments. At different values of q and ωi, the torque measurements show quasistatic or viscous stress
behaviour. Both FB1 and FB2 exhibit shear weakening near q ≈ 1 and at intermediate rotational speeds.
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Fluidized granular material (FGM): α → 1
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Dense granular f low (DGF): α = 0, Tz ∝ –q

Turbulent toroidal vortices (TTV): α > 1.5

Frictional suspension (FRS): 0 < α < 1

Figure 5. Flow regimes identified from observations of the FB1 (a) and FB2 (b) experiments and analysis of
the torque measurements. The flow regimes include quasistatic (DGF), viscous (FRS, SGF, FGM) and inertial
(TTV) rheological behaviour depending on the normalized fluidization rate, q, and the inner cylinder rotational
speed, ωi. Estimates of the torque growth order, α ≈ d(log Tz)/d(log ωi), are illustrated in the colour scale.
Critical values of q and ωi delineating the boundaries of each regime are estimated from the experiments.

regime is labelled as dense granular flow (DGF). The torque decreases with q such that

Tz = Tq=0(1 − q), (4.1)

where Tq=0 denotes Tz for q = 0 at low shear rates (Tardos, Khan & Schaeffer 1998). At
the free surface, the shear region along the rotating inner cylinder contains an inwardly
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directed velocity component, indicating the presence of a single dilation-driven vortex, a
phenomenon first described by Krishnaraj & Nott (2016); the region became wider with
increasing ωi. Beyond the shear region, a plug region extends outwards up to ro, which is
consistent with the observations of Anjaneyulu & Khakhar (1995). At rotational speeds
ωi > 10 rad s−1, there is a marked rise in Tz with respect to ωi, varying as Tz ∝ ωα

i
for 0 < α < 1. Figure 5 designates this regime as a frictional suspension (FRS), where
a combination of rotational shear and weak fluidization amounts to a decreasing φ and
increasingly rate-dependent resistance torque. In the FRS regime, stresses transmit through
frictional interactions, and in the absence of dominant secondary flows, stress–strain
dependency varies at a rate that is less than or equal to a linear relationship (Koval et al.
2009; Koos et al. 2012). From the torque measurements, the FRS regime starts at around
ωi ≈ 100 rad s−1 for q = 0 for FB1 and FB2, but decreases for both sets of particles at
around ωi = 20 rad s−1 at q ≈ 1.

Near the minimum fluidization velocity, 0.7 � q � 1.2 for FB1 and 0.9 � q � 2 for
FB2, the torque diminishes in magnitude far more rapidly with increasing q than predicted
by the linear model of (4.1) and remains independent of the rotational speed for ωi <

10 rad s−1. This transition region, labelled sheared granular flow (SGF) in figure 5,
approximately overlaps with the region of rapid bed expansion visible in figure 3, which
precedes the development of noticeable bubbling. Within a range of rotational speeds
around ωi ≈ 5 rad s−1, a distinct shear-weakening pattern can be seen in the torque
measurements, which resembles the behaviour observed in the ‘intermediate’ region
described by Lu et al. (2007) in their experiments using a parallel plate rheometer as well
as the supporting UB and XB experiments at slightly higher rotational speeds. This range
of ωi values narrows with increasing q. The SGF regime transitions to states in which
Tz ∝ ωα

i , where α > 0, beyond roughly ωi = 20 rad s−1. Like DGF, SGF that is fluidized
below the minimum fluidization velocity transitions to a FRS with α < 1 at the highest
values of ωi.

At the highest values of q and for ωi < 10 rad s−1, the particle bed becomes fluidized
granular material (FGM), as indicated in figure 5. In this state, Tz is related to ωα

i according
to 0 ≤ α ≤ 1, where α ≈ 1 at low rotational speeds and high values of q. The value of α

decreases with increasing ωi up to approximately 10 rad s−1, then rapidly rises beyond
α = 1.5 as the fluidized granular material transitions to turbulent toroidal vortices (TTV),
as found in figure 5. In the TTV regime, particles flow radially outwards at the free surface
of the particle bed and downwards along the transparent outer cylinder of the rheometer,
in a fashion opposite to the radial flow observed in the DGF regime.

5. Effective properties and dimensionless quantities for rheological measurements

To compare the results found in § 4, dimensionless quantities were computed using
effective properties. In § 5.1, the particle suspensions are idealized as Newtonian fluids
using the bulk densities and the KD effective viscosities. The FB results are parameterized
as Bingham plastics and Carreau fluids as described in § 5.2.

5.1. Dimensionless torque and Reynolds numbers using KD viscosity
Rheological measurements on fluids are often considered in terms of dimensionless
torque, G, defined as

G = Tzρ

Lμ2 . (5.1)
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Figure 6. The torque ratio, Gcc, against shear Reynolds number, Res, for pure liquids (a), neutrally buoyant
(b), underbuoyant (c) and overbuoyant (d) suspensions. The neutrally buoyant suspension experiments from
Ramesh et al. (2019) as found in (b) were collected in a ζ ≥ 5.5, η ≥ 0.84 annular cell. Newtonian fluids in
circular Couette flow follow the black dashed line of Gcc = 1, and power laws of order α − 1 ∈ [0, 1] in a
state of Taylor-vortex flow. Power laws of form Gcc = βReα−1

s and orders α − 1 = 0.5 and 0.7 are shown as
dotted–dashed and dotted black lines, respectively, where both assume β = Re1−α

s,c for Res,c = 70.

For a Newtonian fluid in circular Couette flow, the predicted dimensionless torque, Gcc, at
r = ri is calculated from the solution provided by (2.6) as

Gcc = 2πr2
i ρ

μ
|γ̇N(ri)| = 2πrori

(ro − ri)2 Res = 4πrir2
o

(r2
o − r2

i )(ro − ri)
Reb, (5.2)

where Gcc has been written in terms of both Res and Reb. The ratio of these quantities,
Gcc = G/Gcc, simplifies to

Gcc = G
Gcc

= Tz

TN
= Tz

2πr2
i Lμ

1
|γ̇N(ri)| . (5.3)

From figure 6, the torque ratio is plotted against Res for the PL, NB, UB and XB
experiments. For Newtonian fluids, (5.1) and (5.3) are computed using the fluid density
and dynamic viscosity. In the case of particle suspensions, both Gcc and Res are determined
by using the effective viscosities given by (2.11) and the sample bulk density as found in
table 2.

In figure 6(a), the Newtonian liquids transition to vortex flow at Res,c = 70 and an
equivalent value of Reb,c = 50. These values are included in table 2 and are lower than
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other studies. As noted previously, the rheometer has a wide gap and short column
height, and therefore the results of figure 2 are shown using Res on the horizontal axes
for easier comparison with the results of other studies. In the Taylor-vortex regime, the
dimensionless torque values for the PL1 experiment are related to Res by an order of α ≈
1.5, whereas those of the PL2 experiment increase according to α ≈ 1.7. The higher-order
growth in the supercritical PL2 measurements is attributed to the surface roughness of
the profiled measuring cylinder (van den Berg et al. 2003). These order α = 1.5 and 1.7
relationships between G and Res correspond to order 0.5 and 0.7 relationships between
Gcc and Res, as found in figure 6 as dotted–dashed and dotted black lines, respectively.

Figure 6(b) presents Gcc and Res for the neutrally buoyant suspensions. With this scaling,
the effect of mismatching phase densities in the NB1 experiment is clearly visible at lower
Reynolds numbers where the dimensionless torque exceeds that for circular Couette flow.
Beyond critical rates of shear, the dimensionless quantities of each suspension experiment
follow the α = 1.7 relationship with supercritical dimensionless torque values matching
those of the PL2 experiment. Visual inspection of the suspensions at these high shear
rates confirmed the toroidal-vortex flow. In figure 6(b), the results for φ = 0.1 and φ =
0.2 neutrally buoyant suspensions, presented in Ramesh et al.’s (2019) study, are plotted
alongside this work’s NB results. Their experiments cover a smaller range of Reynolds
numbers and the torque measurements transition to an order α > 1 relationship around
Res = 95 and 85 for their φ = 0.1 and φ = 0.2 experiments, respectively. Ramesh et al.’s
(2019) suspension measurements vary in orders of 1.5 < α < 1.7, which is consistent with
their use of a smooth measuring cylinder in their rheometer.

The results for UB and XB are plotted in figure 6(c,d). For these experiments, the
behaviour of Gcc as a function of Res shows an inverse dependence in the quasistatic
regime followed by a transition to a positive relationship with Res of order α = 1.7.
For UB, the supercritical values of dimensionless torque are greater than that of Newtonian
fluids at equivalent shear Reynolds numbers. At the highest rates of shear, the UB
samples had a visibly higher concentration of particles near the bottom of the annular
cell; these observations, coupled to the measured values of torque, suggest that locally
concentrated particles affect the supercritical UB measurements. The density difference
between the phases may also lead to a radial variation in particle concentration. An
additional consideration is that the UB experiments correspond to the highest values of
the particle Reynolds number with ReD ≈ 100. Under these conditions, inertial effects of
the particle phase may become important and act to increase the effective viscosity of the
suspension.

5.2. Fitted Bingham plastic and Carreau fluid models
Returning to the results of the gas-fluidized bed experiments, the non-Newtonian torque
measurements found in figure 4 cannot be modelled using the KD effective viscosity.
Instead, Bingham plastic and Carreau fluid model parameters are fitted to the subcritical
torque measurements of each flow rate to capture the shear-thinning behaviour found in
the FB experiments. The Bingham plastic model, which has been previously used to
model multiphase flows (Alibenyahia et al. 1995; Anjaneyulu & Khakhar 1995; Balmforth,
Frigaard & Ovarlez 2014), considers two parameters: the yield stress, τy, and the plastic
viscosity, μp. The Bingham constitutive equation for annular shear is

τrθ (r) = μp

∣∣∣∣r d
dr

(
uθ (r)

r

)∣∣∣∣+ τy = μp|γ̇B(r)| + τy. (5.4)
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For shear stresses less than τy, the Bingham shear rate, γ̇B(r), is zero. As a result of
the rate-independent yield stress term, a Bingham plastic sheared between concentric
cylinders has a ‘plug’ region of zero flow. According to the constant torque assumption
in (2.2), this plug region occupies a region at and beyond the radial position rc = ri

√
τi/τy

for inner-wall shear stresses τi < τy/η
2. If the wall stress exceeds τy/η

2, then the critical
radius is taken to be ro, and the resultant velocity distribution is called a ‘shear’ flow
(Landry, Frigaard & Martinez 2006). Hence, the boundary conditions used to solve (5.4)
are uθ (ri) = riωi and uθ (rc) = 0, where

rc =
{

ri
√

τi/τy τi ≤ τy/η
2 ( plug flow)

ro τi > τy/η
2 (shear flow)

. (5.5)

Given values for μp and τy, applying the boundary conditions to (2.2) and (5.4) yields

uθ (r) = r
μp

[
τy log(r/rc) + ωiμp + τy log(rc/ri)

r2
c − r2

i

(
r2

c r2
i

r2 − r2
i

)]
, (5.6)

and reduces to the Newtonian fluid solution, (2.4), in the case of τy = 0. The torque follows
as

TB = 4πri
2r2

c L[μpωi + τy log(rc/ri)]/(r2
c − r2

i ), (5.7)

which can be coupled to (5.5) and numerically solved to predict torque as a function of ωi
and the Bingham model parameters.

The Carreau constitutive equation applies to materials that behave as a Newtonian fluid
with viscosity μ0 at low shear rates, a power-law fluid of index n ∈ [0, 1] at intermediate
shear rates, and as a Newtonian fluid of viscosity μ∞ at high shear rates (Carreau 1972).
Often, the limiting viscosity, μ∞, is neglected because it is several orders smaller than μ0
(Masuda et al. 2016). With μ∞ = 0, the abbreviated Carreau constitutive equation is

τrθ (r) = [μC(γ̇C(r))] × |γ̇C(r)| = [μ0(1 + (λγ̇C(r))2)(n−1)/2] × |γ̇C(r)|, (5.8)

where μC denotes the rate-dependent Carreau viscosity, γ̇C denotes the shear rate of the
Carreau fluid and λ is the relaxation time. For Carreau shear rates with γ̇C � 1/λ, the
shear stress scales as an n < 1 power-law fluid. While (5.8) has no analytic solution in
uθ (r) for annular shear flows, enforcing the no-slip condition at the inner cylinder implies
that γ̇C(ri) = −kωi, where the constant k ∈ R+ is related to the radius ratio. Masuda et al.
(2016) investigated the variation of k with respect to radius ratios 0.5 < η < 0.9 for indices
in the range 0.3 ≤ n ≤ 0.7, finding that k varies between k = 2 for n = 0.7 and k = 3.5
for n = 0.3 in their widest gap configurations. Hence, given k and the model parameters,
the torque predicted by the Carreau model can be determined using the inner cylinder
boundary condition as

TC = 2πLr2
i (μC(γ̇C(ri)) × γ̇C(ri)) = 2πLr2

i [μ0(1 + (λkωi)
2)(n−1)/2]kωi. (5.9)

Using (5.7) and (5.9), the fitted Bingham and Carreau model parameters for the FB
experiments are found in figures 7 and 8, respectively. The fits are generated using
MATLAB’s Levenberg–Marquardt nonlinear least squares optimization method using
subcritical ωi and Tz pairs from the FB1 and FB2 data sets, excluding measurements
from the vortical regime at and beyond roughly ωi ≈ 10 rad s−1. Note that the objective
function for the fits to the Bingham model accounts for the changing boundary conditions
associated with the transition from plug flow to shear flow. The Carreau model
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Figure 7. Fitted Bingham plastic parameters as found in (5.4) against the normalized fluidization rate for the
FB experiments; symbol legends are found in figure 4. Panels (b) and (d) show data for q < 2. The yield stress,
τy, is shown relative to the average quasistatic shear stress with τq=0 = 225 Pa for FB1 and 160 Pa for FB2.
The yield stress measurements for the DGF flow regime in figure 5 (q ≤ 0.5 for FB1 and q ≤ 0.8 for FB2)
follow the relationship τy = τq=0(1 − q) as shown by the dashed black line in (a,b). Panels (c) and (d) show
the plastic viscosity, μp, against q.

optimization assumes that γC(ri) ∝ −ωi with the factor k = 2r2
o/(r

2
o − r2

i ) = 2.61; this
formulation of k sets the scaling of γ̇C(ri) as equal to the Newtonian shear rate per (2.5),
and the resultant value of k = 2.61 coincides with the range found by Masuda et al.
(2016) for their lowest values of η. In general, the fitted Bingham models accurately
predict measured torque for the q � 1 FB experiments, while the fitted Carreau models are
extremely accurate for q 
 1. Both models fail to capture the shear weakening behaviour
within the intermediate flow rates of q ≈ 1 and rotational speeds 0.1 � ωi � 10 rad s−1,
as both models assume strictly increasing Tz with respect to ωi.

Figure 7 reports the Bingham model parameters τy and μp as functions of the
normalized fluidization rate, q. The yield stresses are scaled by the value of τq=0, which is
the average, quasistatic shear stress for q = 0. For values of q < 0.7, the figure includes the
relation τy/τq=0 = 1 − q. This expression fits well in the DGF regions for FB1 and FB2.
The analysis by Gutam et al. (2013) can be used to estimate τq=0 for a sheared annular
column. In that work, the stress increases exponentially with depth. Because the current
experiments use a short column, the stress distribution can be approximated as varying
linearly with depth. As a result, an average shear stress at the wall can be estimated as
τq=0 ≈ μw(ρb − ρf )gL/(2η2) with ρb evaluated in a packed state with φ = 0.585 and the
wall friction coefficient, μw ≈ 0.2 for FB1 and 0.15 for FB2. This estimate works well for
q = 0 but not as q is increased and the solid fraction begins to drop. As found in figure 3
for ωi ≈ 0, the measured solid fraction based on the average height of the bed remains
relatively constant with φ = 0.59 for q < 0.7. Presumably, there are small changes in solid
fraction and the wall friction that result in the drop in τy; these variations are beyond the
resolution of the experimental techniques. For q > 0.7, the drop in τy does correspond
with the drop in φ. As Anjaneyulu & Khakhar (1995) found for their Bingham plastic
fits, the fitted yield stresses tend to zero as q → ∞. The plastic viscosities increase from
μp ≈ 3 × 10−3 Pa s when the bed is quasistatic for q = 0, then level out to μp ≈ 0.2 and
0.09 Pa s for FB1 and FB2 as the flows show viscous behaviour and as τy drops.
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Figure 8. Fitted Carreau fluid parameters for the FB experiments as found in (5.8) against the normalized
fluidization with (b), (d) and ( f ) showing q < 2. The initial viscosity, μ0, is shown in (a) and (b) and the
relaxation time, λ, in (c) and (d). Panels (e) and ( f ) show the power index, n, which varies between 0 and
1 for shear-thinning Carreau fluids. The FB2 experiments show a maximum with n = 0.19, whereas the FB1
experiments increase up to n = 0.56.

Whereas the Bingham model features a rate-independent constant τy, the Carreau model
assumes that τrθ → 0 as ωi → 0. Hence, the fitted values of μ0 for the quasistatic stress
experiments for q < 1 are approximately four orders higher than the fitted Bingham
plastic viscosities, and accompanied by high values of the relaxation time, λ, to predict
appropriately large magnitudes of torque. For FB1, the value of μo is relatively constant
for q < 0.7, corresponding to approximately constant values of φ; beyond q ≈ 0.7, both
μo and φ decrease. Over this range of q, the index n is near zero, so that torque predictions
using the fitted Carreau models resemble a step function in ωi. Despite this inelegant
compensating behaviour, the Carreau model predicts measured torque in the q < 1 FB
experiments with reasonable accuracy, and performs best for higher q, such as q > 1.2 for
FB1 particles and q > 2.5 for FB2 particles. The inclusion of the power index n in the
Carreau model allows predicted values of torque to scale with ωi more accurately than
those computed from the Bingham model. The fitted values of n generally increase with q,
and those associated with the FB1 experiments increase up to n = 0.56 for q = 2.0, while
the FB2 experiments with pronounced shear-thinning behaviour climb to n = 0.19.

6. Discussion

Can representative dimensionless quantities, computed using effective properties, be used
to compare the rheology and flow transitions found in suspensions, fluidized beds and
granular flows? Figure 9 addresses this question by comparing the dimensionless torque,
G, as a function of the gap Reynolds number, Reb. Overall, the relation between G and Reb
for the fluidized beds shows similar rheological behaviour to that found for the suspensions
over a wide range of flow conditions. The data can also be compared with the pure fluid
experiments for the smooth and rough walls, as shown in figure 9(a). Because of the
density difference between the fluid and solid phases, the NB1 data are not included in
the figure.

For the suspensions, the parameters G and Reb are computed using the sample bulk
density and the KD effective viscosity as given by table 2. Consequently, each of the
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Figure 9. Dimensionless torque, defined in (5.1), against gap Reynolds number for all experiments. The black
dashed lines show the analytical relationship between G and Reb for Newtonian fluids in circular Couette flow,
as specified in (5.2). Power-law relationships of form G = βReα

b are shown for α = 1.5 (dotted–dashed) and 1.7
(dotted) as black lines. In both cases, the scaling is taken to be β = 4πrir2

o/[(r2
o − r2

i )(ro − ri)]Re1−α
b,c , where

Reb,c = 50.

samples featured in figure 9(b–d) are modelled as effective Newtonian fluids, and their
properties as functions of φ and those of their constitutive liquid and solid phases.
For gas-fluidized particles, the idealized fluid density is also taken to be the sample
bulk density estimated from the investigation in § 4.2, but the measurements shown in
figure 9(e, f ) are modelled as either a Bingham pseudo-plastic or a shear-thinning Carreau
fluid. In particular, the fitted Bingham plastic viscosities, μp, shown in figure 7 are used
in G and Reb for q ≤ 1.2 in the FB1 experiments and in the q ≤ 2.5 FB2 experiments.
The rate-dependent Carreau viscosity, μC, corresponding to the bracketed term in (5.8),
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is used for the dimensionless results of the high-flow-rate experiments. Computing G and
Reb with μC collapses the shear-thinning/weakening behaviour found in the dimensional
results onto a linear relationship, but these patterns remain apparent in the dimensionless
profiles of the FB measurements parameterized by μp.

Using the effective density and viscosity, the experimental results are organized into
three basic dimensionless profiles: viscous, quasistatic and α ≥ 1.5 power law. The
viscous behaviour, typified by the PL experiments and shared by the well-mixed NB
and strongly fluidized FB results, show linear variation between G and Reb up to the
critical Reynolds number Reb,c ≈ 50. Quasistatic torque is found for the UB, XB and
q � 1 FB experiments up to and beyond Reb,c. Finally, both viscous and quasistatic
dimensionless torque profiles may transition to power-law relationships of the form G ∝
Reα

b with α > 1.5, corresponding to the development of toroidal-vortex flow in which the
local shear rates are no longer directly related to the rotational speed. The experiments
showing initially viscous behaviour transition to power-law scaling at Reb,c = 50,
whereas those displaying quasistatic torque behaviour transition at higher gap Reynolds
numbers that scale roughly with the magnitude of their rate-independent dimensionless
torque.

Figure 9(a,b,e, f ) shows similar subcritical behaviour between the Newtonian fluids,
neutrally buoyant suspensions and strongly fluidized particle beds, but there are several
differences in the transition to high-order torque growth. For instance, the onset of
vortical flow for Newtonian fluids and well-mixed neutrally buoyant suspensions is
marked by an abrupt change in the slope of G with respect to Reb. In contrast, the
corresponding transition for the FB measurements parameterized using μC is gradual,
with local estimates of α = d(log G)/d(log Reb) varying from α = 1 to α ≥ 1.5 over
a window of roughly 50 with respect to the gap Reynolds number. Moreover, fitting
G = βReα

b to the combined supercritical FB results yields approximately β = 0.6, α =
1.9, which is a higher-order variation than the α = 1.7 relationship for the PL2 and
NB results. While the Newtonian fluid estimates of α compare well with those found
by van den Berg et al. (2003), Ravelet et al. (2010) and Lewis & Swinney (1999), the
mechanism driving the supercritical variation of α for sheared fluidized beds remains
unclear.

The dimensionless torque and gap Reynolds number formulations used in figure 9
effectively capture the viscous and inertial states of the PL, NB and q 
 1 FB flows, but
fail to standardize the transition behaviour of measurements showing quasistatic torque.
Equations (1.1) and (5.1) do not account for rate-independent stress contributions resulting
from friction between particles in their packed state; the KD effective viscosity used for
the dimensionless UB and XB results assumes that φ is homogenous, and the Bingham
plastic viscosity used for the weakly fluidized FB results is associated with only the viscous
shear stress component in (5.4). To formulate dimensionless quantities that represent all
contributions to the stress state, the data for DGF fluidized beds and the UB and XB
suspensions are compared in figure 10 using the thickness of the sheared layer, rc − ri
rather than ro − ri, where rc is the Bingham critical radius as computed from (5.5).
Using rc − ri as the characteristic length scale, the horizontal axis of figure 10(a) is the
plug-corrected gap Reynolds number

Re∗
b = ρbωiri(rc − ri)

μp
. (6.1)
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Figure 10. Comparison between DGF fluidized beds and gravimetrically imbalanced suspensions using fitted
Bingham models. Panel (a) features the torque ratio, GB, equal to the measured torque relative to that
predicted by the Bingham model, plotted against the corrected gap Reynolds number, Re∗

b, which accounts
for the evolving width of the shear region, rc − ri. The dotted black line shows the power-law relationship
of order α − 1 = 0.7, where the coefficient is β = Re1−α

b,c , Reb,c = 50. Inset (b) shows the quasistatic stress
ratio, τ ∗, against the inverse Bingham number, Γ , where the black dashed line is the idealized relationship
τ ∗ = Γ + 1. The UB1 and UB2 data use τy = 4.00 and 1.97 Pa and plastic viscosities μp = 2.49 × 10−2 and
2.01 × 10−2 Pa s, respectively; the XB1 and XB2 data use τy = 2.84 and 3.55 Pa, and μp = 2.73 × 10−2 and
4.73 × 10−2 Pa s.

For Bingham shear flow (τi = Tz/2πr2
i L ≥ τy/η

2), Re∗
b is equivalent to the conventional

gap Reynolds number defined by (1.1). The use of rc − ri as the appropriate length scale
is supported by prior studies (Landry et al. 2006; Jeng & Zhu 2010). The torque ratio is
with respect to the Bingham model, GB = Tz/TB(ωi), where TB is computed as in (5.7).
In addition to the FB fitted results shown in figure 7, Bingham model parameters were
determined for the UB and XB suspension experiments, and are provided in the caption of
figure 10. An estimate for τy follows the analysis of the yield stress for the fluidized beds
with τy ≈ μw(ρb − ρf )gL/(2η2) in which ρb is evaluated for φ = 0.58 with μf ranging
from 0.16 to 0.22.

Figure 10(a) depicts the rheological transition of sheared packed particles to
supercritical flow. By accounting for the rate-independent yield stress featuring in (5.4), the
corrected gap Reynolds number shows that the onset of linear instability occurs at roughly
Re∗

b,c = 50, similar to the Reb,c found for pure fluids and neutrally buoyant suspensions.
The order α − 1 = 0.7 power-law relationship between GB and Re∗

b is shown as a black
dotted line in figure 10(a).

Figure 10(b) shows the developing viscous behaviour of the packed particulate flows by
comparing the quasistatic stress ratio, τ ∗ = τi/τy, against the inverse Bingham number

Γ = μp γ̇B(ri)/τy. (6.2)
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This representation is similar to the master curve developed by Kostynick et al. (2022)
for soil samples that transition from quasistatic behaviour to a viscous regime in which
the stresses scale linearly with shear rate. Note that figure 10(b) includes the data used to
fit the Bingham and Carreau models and excludes data from the toroidal-vortex regime.
Equivalent values of GB and Reb for the data featured in figure 10(b) are contained within
the dotted box in figure 10(a). The Bingham shear rate, γ̇B, is computed from the derivative
of (5.6) with respect to r evaluated at ri. As the inverse Bingham number exceeds Γ =
0.1, viscous contributions come to dominate the measured stress; within the intermediary
region of 0.1 < Γ < 1, τi varies approximately linearly with the rotational speed. The
idealized τ ∗ = Γ + 1 relationship used in Kostynick et al. (2022) is plotted as a dashed
black line in figure 10(b).

7. Conclusion

In this study, experimental measurements on sheared Newtonian liquids, particle
suspensions and gas-fluidized beds were performed in a low-aspect-ratio concentric
cylinder rheometer below and beyond the threshold of linear instability. The results of
these experiments were compared as dimensionless quantities computed using effective
properties of density, viscosity and characteristic length scales derived from idealized
fluid-mechanical models. Despite vast physical differences between the sheared materials,
the dimensionless representations of the measurements showed either quasistatic or
viscous rheological behaviour in their sub-critical flow state, and followed order α ≥ 1.5
power-law scaling during centrifugally unstable toroidal-vortex flow.

While previous investigations have compared pure fluid and neutrally buoyant
Taylor–Couette flows, the analogous flow transitions exhibited by gas-fluidized particle
beds have been studied in less detail. Hence, this research focuses on the classification
of the fluidized bed behaviour, as found in figure 5, in response to variation of the
fluidization rate and shearing velocity. A regime map delineated the flow behaviour
using dimensional experimental measurements and observations. To summarize, particle
beds weakly fluidized below the minimum fluidization velocity (q � 1) resist shear
quasistatically up to moderate rotational speeds as a DGF, then develop rate-dependent
contributions to the torque at exceptionally high rotational speeds as the bed becomes a
FRS. In contrast, (q 
 1) FGM shows viscous behaviour at all rates of shear, transitioning
to turbulent TTV in response to centrifugal instability. Sheared granular flows, with
q ≈ 1, are a transition region between two distinct flow behaviours, showing both
quasistatic and viscous torque behaviour at low-to-moderate rates of shear, but also
developing toroidal-vortex flow at high rotational speeds. Estimates of the bed bulk solid
fraction and previous studies on sheared granular material suggest that this intermediate
regime involves competing effects of fluidization, particle–particle Coulombic friction and
shear-induced bed dilation. Future work involving visualization of the flow could help to
better define this region.

The DGF and FRS rheologies suitably fit the Bingham plastic equation, and the
FGM flows are successfully modelled as shear-thinning Carreau fluids. While neither
model accurately describes the SGF behaviour, both models were used to generate
Reynolds numbers and dimensionless representations of torque that clearly illustrate
the observed flow transitions. In particular, the dimensionless torque computed using
the Carreau viscosity shows transition to vortical flow at the same critical Reynolds
number, Reb,c = 50, found for the Newtonian liquids and neutrally buoyant suspensions
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parameterized using the KD effective viscosity. Similarly, using the Bingham model
prediction of the shear layer width yields a critical gap-corrected Reynolds number of
Re∗

b,c = 50. The Bingham model was also used to define an inverse Bingham number
displaying the fluidized bed torque transition from quasistatic DGF to viscous FRS at
Γ = 0.1. Comparison between the q � 1 fluidized beds and density-mismatched particle
suspensions, which were also fitted to the Bingham model, reveals similar rheological
transitions on the dimensionless axes. Despite the dynamical differences between these
materials, the similarities support the hypothesis that the shear-thinning/weakening
features observed in the gas-fluidized beds may be driven by the shear-induced particle
migration accounting for the same behaviour in negatively and positively buoyant
suspensions.

Using simple rheological models, this investigation outlines an empirical framework
for the identification and comparison of common flow features found across a myriad of
multiphase flows, especially for distinguishing subcritical and inertial states. Complete
explanations of multiphase flow phenomena may only be possible on a case-by-case basis;
however, elementary physical concepts such as momentum and friction govern all flowing
material, and comparisons based on these essential features inform the study of more
complicated cases, such as the SGF fluidized beds. Future simulated and experimental
investigations are necessary to elucidate the transition regions identified in the current
experiments and to incorporate additional complexities, such as properties variations
associated with the density differences between phases. In addition, the measurements
show that the boundary between the viscous FRS regime and supercritical TTV flow
roughly coincides with the minimum fluidization rate, but the direct transition between
these two flow states was not measured in the torque experiments. Finally, further studies
should include detailed visualization of the TTV velocity field, which would improve
understanding of the bulk momentum transport properties measured in this work.
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