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Abstract We obtain a new interpretation of the cohomological Hall algebra HQ of a symmetric quiver Q
in the context of the theory of vertex algebras. Namely, we show that the graded dual of HQ is naturally
identified with the underlying vector space of the principal free vertex algebra associated to the Euler
form of Q. Properties of that vertex algebra are shown to account for the key results about HQ. In
particular, it has a natural structure of a vertex bialgebra, leading to a new interpretation of the product
of HQ. Moreover, it is isomorphic to the universal enveloping vertex algebra of a certain vertex Lie
algebra, which leads to a new interpretation of Donaldson–Thomas invariants of Q (and, in particular,
re-proves their positivity). Finally, it is possible to use that vertex algebra to give a new interpretation
of CoHA modules made of cohomologies of non-commutative Hilbert schemes.

1. Introduction

Cohomological Hall algebras (abbreviated as CoHAs) were introduced in [36] as a

mathematical interpretation of the notion of algebra of (closed) BPS states in string
theory [30]. In a nutshell, the definition of CoHA goes through the same lines as

the definition of the usual Hall algebra [45, 55], but it uses cohomology of moduli

stacks of objects instead of constructible functions on those stacks. As a consequence,
the underlying vector space of CoHA is easier to describe explicitly. In particular, for

the category of quiver representations, one can obtain [36] an explicit description of the

product of CoHA using the Feigin–Odesskii shuffle product.
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However, one is also interested in representations of BPS algebras, modeled by spaces
of open BPS states. In mathematical terms, this corresponds to CoHA-module structures

constructed on cohomology of moduli spaces of stable framed quiver representations [17,

18, 62]. This approach is reminiscent of the construction of Heisenberg algebra action
on the cohomology (or K-theory) of Hilbert schemes on surfaces [26, 38, 39, 43, 49, 61]

or quantum group actions on equivariant cohomology (or K-theory) of Nakajima quiver

varieties [50]. Explicit description of CoHA-modules, using shuffle products, was obtained

in [18].
Poincaré series of CoHAs provide one of the possible approaches to the refined

Donaldson–Thomas (DT) invariants, also called the BPS invariants [35]. As a result, one

can think about CoHAs as a categorification of DT invariants. Unraveling new intrinsic
structures of CoHAs (say, that of a Hopf algebra or that of a vertex algebra) leads to a

better understanding of properties of DT invariants.

Vertex algebras were introduced in [4] in order to formalise the machinery behind some
remarkable constructions in representation theory of infinite-dimensional Lie algebras

[21, 22]. In modern language, those constructions are instances of lattice vertex algebras.

More general vertex algebras provide a mathematical apparatus to work with operator

product expansions (OPEs) in quantum field theory [63, 64]. For us, a special role will be
played by the principal subalgebras of lattice vertex algebras [16, 47] that give explicit

realisations of the so-called free vertex algebras [57, 58].

Operator product expansions A(z)B(w) =
∑

n∈Z
(z−w)nOn(w) have a regular part

(corresponding to non-negative n) and a singular part. If one is only interested in the

singular parts of OPEs, this leads to the notion of vertex Lie algebras, also known as

Lie conformal algebras [34, 51]. By contrast to vertex algebras, these structures only use
n-products for n ≥ 0. The relationship between vertex Lie algebras and vertex algebras

is closely resembling that between Lie algebras and associative algebras. Notably, many

important vertex algebras, and, in particular, free vertex algebras mentioned earlier,

arise as universal envelopes of vertex Lie algebras. These universal enveloping vertex
algebras are cocommutative vertex bialgebras (meaning vertex algebras with a compatible

coalgebra structure) and are automatically universal enveloping algebras of Lie algebras.

Thus, they possess a Hopf algebra structure, and this is where their relationship to CoHAs
manifests itself.

Exploring the relationship between CoHAs and vertex algebras is the main topic of

this paper. This relationship is not entirely new, and there seem to be some physical
reasons for it [53]. For example, in [60, Theorem B] (see also [53]), a relationship between

an equivariant spherical CoHA of a 3-loop quiver and the current algebra [1, §3.11] of
some vertex algebra was established. However, in [33], there was given a very general

construction of vertex algebra structures on homology groups of various moduli stacks,
which leads to a vertex algebra structure on the duals of cohomological Hall algebras.

In this paper, we traverse the path between CoHAs and vertex algebras in a different

direction. Namely, given a symmetric quiver Q, we show that, for the principal free vertex
algebra corresponding to the Euler form of Q, the shuffle product formula of CoHA

emerges ‘for free’, since these free vertex algebras are universal envelopes of appropriate

vertex Lie algebras.
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In [36, §6.2], it was asked if CoHA can be identified with a Hopf algebra of the form

U(g), where g is a graded Lie algebra. In physics terms, this Lie algebra should correspond

to the space of single-particle BPS states [30, 53]. Of course, in view of Milnor–Moore
theorem, one just needs to find a suitable cocommutative bialgebra structure on CoHA.

A bialgebra structure for usual Hall algebras is guaranteed by Green’s theorem [25] and

appropriate twists from [65]. A cohomological incarnation of Green’s theorem was proved
in [8] for some localisation of CoHAs for quivers with potential (see also [66] for a purely

algebraic approach to a similar problem). It is unclear, however, what are the implications

of this result for a bialgebra structure on the CoHA itself. For a different cocommutative
coproduct for usual Hall algebras, see [5, 32 56].

For a symmetric quiver Q, the algebra HQ is supercommutative (once certain sign

twists are implemented), and thus, the required Lie algebra g has to be abelian. In this

case, it was conjectured in [36, §2.6] and proved in [14] that there exists an abelian Lie
algebra g such that HQ � U(g) and g is of the form gprim[x] with x of cohomological

degree 2. Further generalisations for quivers with potentials were obtained in [9].

In our approach to the above question, we change the setting, and we argue that the
graded dual H∨

Q, which is a (super) cocommutative coalgebra, has a vertex bialgebra

structure and can be represented as the universal enveloping algebra of a canonical Lie

algebra (non-abelian in general). More precisely, we establish the following result.

Theorem 1.1 (Theorem 5.7). Let Q be a symmetric quiver, let L= ZQ0 and let χ be the

Euler form of Q. Then the coalgebra H∨
Q has a canonical structure of a cocommutative

connected vertex bialgebra. The space of primitive elements

C = P (H∨
Q) ∈VectL×Z

is a vertex Lie algebra (also having a structure of a Lie algebra) such that H∨
Q is

isomorphic to the universal enveloping vertex algebra of C (as vertex bialgebras). The

canonical derivation ∂ on C has L-degree zero and cohomological degree −2, and C is a

free Q[∂]-module such that the space of generators

C/∂C =
⊕
d∈L

Wd =
⊕

d∈L,k∈Z

W k
d

has finite-dimensional components Wd and k ≡ χ(d,d)(mod 2) whenever W k
d �= 0.

The coalgebra H∨
Q is isomorphic to the universal enveloping algebra U(C), where we

interpret C as a Lie algebra. Consequently, the refined Donaldson–Thomas invariants of
Q are the characters of the components of C/∂C and are contained in N[q±

1
2 ]; hence, we

obtain a new proof of positivity of DT invariants for symmetric quivers, originally proved

in [14]. Note that the quotient C/∂C has a canonical Lie algebra structure; see §4.2.3. The
Lie algebra C/∂C is different from the BPS Lie algebra introduced in [9] (although the

characters of both algebras compute DT invariants), which is a Lie subalgebra of HQ and

has, in particular, the trivial bracket. We conjecture that our results can be generalised
to CoHAs associated to (symmetric) quivers with potential.

Our approach also allows one to re-interpret the CoHA-modules Mw arising from

moduli spaces of stable framed representations (also known as non-commutative Hilbert
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schemes). In particular, we construct combinatorial spanning sets for duals of those

modules; this result is a substantial generalisation (and a conceptual interpretation) of

the main theorem of [10].
Let us mention that all vertex Lie algebras that we consider naturally lead to Lie

algebras with quadratic relations. Moreover, principal free vertex algebras are modules

with quadratic relations over these Lie algebras, so one may wish to study them in the
context of the Koszul duality theory. This approach is taken in the paper [11].

Structure of the paper.

In §2, we summarise various conventions used throughout the paper. In particular, for

a free abelian group L equipped with an integer-valued symmetric bilinear form, we
introduce in §2.2 a special braiding for the monoidal category of L-graded vector spaces;

in this way, we completely avoid any non-canonical choices of sign twists needed both to

ensure super-commutativity of CoHA [36, §2.6] and mutual locality of vertex operators
in lattice vertex algebras [34, §5.4]. In §3, we recall the necessary definitions and results

of the theory of cohomological Hall algebras and their modules. In §4, we recall the

necessary definitions and results of the theory of vertex algebras and conformal algebras,
adapted to the symmetric monoidal category of L-graded vector spaces with the braiding

arising from a symmetric bilinear form. In §5, we prove the main result of this paper: a

new interpretation of CoHA HQ as the graded dual of the principal free vertex algebra

PQ. To that end, we obtain a natural isomorphism of graded vector spaces P∨
Q � HQ

(Proposition 5.3) and then show that the canonical coalgebra structure on PQ leads to

the shuffle product of CoHA (Theorem 5.6). As a consequence, we show that the dual

of CoHA is identified with the universal envelope of a Lie algebra with a freely acting
derivation (Theorem 5.7), leading to a new proof of positivity of DT invariants (Corollary

5.10). In §6, we give two new descriptions of the dual space of the CoHA-module Mw:

as the kernel of the appropriate reduced coaction map (Theorem 6.3) and via an explicit
combinatorial spanning set inside PQ (Theorem 6.4). We also use those results to establish

a surprising symmetry result for the positive and the negative halves of the coefficient

Lie algebra, which may be interpreted as strong evidence for the Koszulness conjecture

of [11].

2. Conventions

Unless specified otherwise, all vector spaces and (co)chain complexes in this article are

defined over the ground field of rational numbers. We use cohomological degrees and view
homologically graded complexes as cohomologically graded ones: for a chain complex C∗,
we consider the cochain complex C∗ with Cn =C−n (note that C[k]n =Cn+k =C−n−k =

C[k]−n). Throughout the paper, L denotes a free abelian group equipped with an integer-
valued symmetric bilinear form (·,·).
Our work brings together two different worlds: that of cohomological Hall algebras

and that of vertex operator algebras. The former operates within the derived category

D(Vect), which we identify with VectZ; the latter uses half-integer conformal weights and

thus operates within the category Vect
1
2Z. Both traditions are well established, so we
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decided to not break either of them, but rather make the necessary effort to carefully
translate results from one language to another.

2.1. Borel–Moore homology

For an introduction to Borel–Moore homology, see, for example, [7], and for an
introduction to equivariant Borel–Moore homology, see, for example, [13]. Given an

algebraic variety X over C, we define its Borel–Moore homology HBM(X) as

HBM(X)−n =HBM
n (X) =Hn

c (X)∨,

where Hn
c (X) denotes the cohomology with compact support and coefficients in Q. If X

is smooth and has dimension dX , then the Poincaré duality implies that

HBM(X)�H∗(X)[2dX ].

Given an algebraic group G acting on X, we define the equivariant Borel–Moore homology

HBM
G (X) =HBM([X/G]) as

HBM
G (X)−n =HBM

G,n(X) =Hn
c,G(X)∨,

where Hn
c,G(X) denotes G-equivariant cohomology with compact support and coefficients

in Q. If X is smooth and X,G have dimensions dX,dG, respectively, then

HBM
G (X)�H∗

G(X)[2dX −2dG].

2.2. Graded vector spaces

Let us consider the category VectL of L-graded vector spaces V =
⊕

α∈LVα, with

morphisms of degree zero. It has a structure of a closed monoidal category with tensor
products and internal Hom-objects defined by

V ⊗W =
⊕
α∈L

(V ⊗W )α, (V ⊗W )α =
∐
β∈L

Vβ ⊗Wα−β,

Hom(V ,W ) =
⊕
α∈L

Homα(V ,W ), Homα(V ,W ) =
∏
β∈L

Hom(Vβ,Wα+β).

We equip VectL with a symmetric monoidal category structure, where the braiding
morphism is defined using the symmetric bilinear form (·,·) on L:

σ : V ⊗W →W ⊗V , a⊗ b 	→ (−1)(α,β)b⊗a, a ∈ Vα, b ∈Wβ . (1)

In what follows, we shall often use C to denote VectL equipped with the thus defined

symmetric closed monoidal category structure.
We define associative algebras in C as monoid objects in this category; in particular,

for each V ∈ C, the object End(V ) = Hom(V ,V ) ∈ C is an associative algebra. Using

the braiding σ, one may also define commutative algebras and Lie algebras, and their
modules. (Alternatively, one may note that the category C contains the category Vect as

a full symmetric monoidal subcategory of objects of degree zero, and so one may consider

objects in C, which are algebras over the classical operads Ass, Com and Lie in Vect.)

https://doi.org/10.1017/S1474748024000288 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000288


296 V. Dotsenko and S. Mozgovoy

In particular, as in the case of Vect, the free associative algebra generated by an object X
of C is the tensor algebra T(X) =

∐
n≥0X

⊗n, and the free commutative algebra generated

by an object X of C is the symmetric algebra S(X) =
∐

n≥0(X
⊗n)Σn

.

Given an associative algebra A ∈ C, we may equip it with the bracket

[−,−] : A⊗A→A, [a,b] = μ(a⊗ b)−μσ(a⊗ b);

this defines a functor from the category of associative algebras in C to the category of

Lie algebras in C. This functor has a left adjoint functor, the functor of the universal
enveloping algebra U(g) of a Lie algebra g. We shall use two different versions of the

Poincaré–Birkhoff–Witt theorem for universal enveloping algebras. The first of them

asserts that if g is a Lie algebra and h ⊂ g is a Lie subalgebra, the universal enveloping
algebra U(g) is a free U(h)-module, and the vector space of generators of this module is

isomorphic to S(g/h); moreover, if there exists a Lie subalgebra h′ such that g = h⊕h′,
we may take U(h′) ⊂ U(g) as the space of generators. The second version uses the fact

that U(g) has a canonical coproduct Δ for which elements of g are primitive, and this
coproduct makes U(g) a cocommutative coassociative coalgebra. The theorem asserts

that as a coalgebra, U(g) is isomorphic to Sc(g), the cofree cocommutative coassociative

conilpotent coalgebra generated by g (note that since we work over Q, the underlying
object of Sc(X) is the same as that of S(X) for all X in C). To prove the Poincaré–

Birkhoff–Witt theorem in C, one may use the methods of [2] or [12] for the first version

and the methods of [52, Appendix B] or [44] for the second version.
We note that for an abelian group L equipped with a homomorphism p : L→ Z2 (for

example, the parity Z → Z2), one normally thinks of the category of L-graded vector

spaces with the braiding morphism (the Koszul sign rule)

σ : V ⊗W →W ⊗V , a⊗ b 	→ (−1)p(α)p(β)b⊗a, a ∈ Vα, b ∈Wβ (2)

and refers to the corresponding commutative (or Lie) algebras as super-commutative

algebras (or Lie superalgebras). In this paper, we mostly encounter the more general
setting discussed above and suppress the qualifier ‘super’.

2.3. Laurent series

Let V be a vector space. Let V [[z±1]] be the vector space of doubly infinite Laurent series

with coefficients in V and V ((z)) ⊂ V [[z±1]] be the subspace of formal Laurent series
(that is, series for which only finitely many negative components are non-zero). For a

series v =
∑

n∈Z
vnz

n ∈ V [[z±1]], we denote the coefficient v−1 by Resz v.

Formal Laurent series with coefficients in an algebra do themselves form an algebra. It
is important to note that doubly infinite Laurent series in several variables contain several

different subspaces of formal Laurent series in those variables: for instance, the subspaces

Q((z))((w)) and Q((w))((z)) of Q[[z±1,w±1]] are different. A lot of formulas in the theory of
vertex algebras use the fact that rational functions like 1

z−w can be expanded as elements

of both of these rings. To avoid unnecessarily heavy formulas, we shall frequently use the

binomial expansion convention for such expansion; see for example, [40, §2.2]: for n ∈ Z,
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we define the formal Laurent series (z+w)n by the formula

(z+w)n =
∑
k≥0

(
n

k

)
zn−kwk.

In plain words, we expand powers of binomials as power series in the second summand.

Thus, for example, (z−w)n = (−1)n(−z+w)n for all n ∈ Z, but it is equal to (−1)n(w−
z)n only for n ≥ 0. An important doubly infinite Laurent series in Q[[z±1]] is the ‘delta

function’

δ(z) =
∑
n∈Z

zn.

Doubly infinite Laurent series cannot be multiplied, but in the instances where we use

the above series, we shall use the following version, which can be multiplied by any formal

Laurent series in w :

δ

(
z−w

u

)
=

∑
n∈Z

∑
k≥0

(−1)k
(
n

k

)
u−nzn−kwk.

A useful formula involving this expression is Resz δ
(
z−w
u

)
= u.

2.4. Characters and Poincaré series

Given an object M ∈ VectZ with finite-dimensional components, we define its character
ch(M) by the formula

ch(M) =
∑
k∈Z

dimMkq−
1
2k. (3)

The number − 1
2k will be called the weight of the component Mk (it may be convenient

to view −k as a homological degree). Note that

ch(M [n]) = q
1
2n ch(M).

In particular, for an algebraic variety X, we have

ch(HBM(X)) =
∑
k∈Z

dimHBM(X)−kq
1
2k =

∑
k∈Z

dimHk
c (X)q

1
2k = Pc(X,q),

the Poincaré polynomial (with compact support) of X.

More generally, given an object M ∈ (VectL)Z � VectL×Z with finite-dimensional

components Mk
d , for d ∈ L and k ∈ Z, we define its Poincaré series Z(M,x,q) by the

formula

Z(M,x,q) =
∑
d∈L

(−1)(d,d) ch(Md)x
d =

∑
d∈L

∑
k∈Z

(−1)(d,d)dimMk
d · q− 1

2kxd. (4)
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2.5. Plethystic exponential

For more information on λ-rings and plethystic exponentials, see, for example, [24, 48].

Consider the ring

R=Q((q
1
2 ))[[xi : i ∈ I]], I = {1, . . . ,r}

and its unique maximal ideal m. We equip R with the m-adic topology. We define plethystic
exponential to be the continuous group isomorphism

Exp: (m,+)→ (1+m,∗)

defined on monomials by

Exp(qkxd) =
∑
n≥0

qnkxnd, k ∈ 1
2Z,d ∈ NI\{0}.

Let us assume now that L = ZI is equipped with a symmetric bilinear form (·,·) and

let VectL×Z be the corresponding symmetric monoidal category (with the signs in the

braiding depending just on L-degrees). We consider a subcategory A⊂VectL×Z consisting
of objects

M =
⊕
d∈NI

Md =
⊕
d∈NI

⊕
k∈Z

Mk
d

such that Mk
d are finite-dimensional and Mk

d = 0 for k  0. Then the Poincaré series (4)
induces a ring homomorphism

Z : K0(A)→R.

This homomorphism is actually a λ-ring homomorphism (with the λ-ring structure on

K0(A) induced by the symmetric monoidal category structure on A that we defined earlier
see, for example, [24, 31]). We will formulate this fact in the following way.

Theorem 2.1. For any graded space M ∈A with M0 = 0, we have

Z(S(M)) = Exp(Z(M)).

Proof. It is enough to prove the statement for a one-dimensional space M =Mk
d . If (d,d)

is odd, then Z(M) =−q−
1
2kxd. However, S(M) =Q⊕M ; hence,

Z(S(M)) = 1− q−
1
2kxd = Exp

(
−q−

1
2kxd

)
= Exp(Z(M)).

If (d,d) is even, then Z(M) = q−
1
2kxd. On the other hand, S(M) =

∐
n≥0(M

⊗n)Σn
=∐

n≥0M
⊗n, hence

Z(S(M)) =
∑
n≥0

q−n 1
2kxnd = Exp

(
q−

1
2kxd

)
= Exp(Z(M)).
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3. CoHA and CoHA-modules

Let Q be a symmetric quiver with the set of vertices I. In this section, we consider the
abelian group L= ZI equipped with the Euler form

χ(d,e) =
∑
i∈Q0

diei−
∑

(a:i→j)∈Q1

diej,

which is a symmetric bilinear form.

3.1. Definition of CoHA

For more details on the results of this section, see [36]. For any d ∈ NI , we define the

space of representations

Rd =R(Q,d) =
⊕

a : i→j

Hom(Cdi,Cdj ),

which has the standard action of Gd =
∏

i∈I GLdi
(C). We define the cohomological Hall

algebra (CoHA) with the underlying L-graded object in D(Vect)�VectZ equal

HQ =
⊕
d∈NI

HQ,d, (5)

where

HQ,d =HBM
Gd

(Rd)[χ(d,d)]�H∗
Gd

(Rd)[−χ(d,d)] (6)

is considered as an object of D(Vect) (note that the stack [Rd/Gd] has dimension

−χ(d,d)). Multiplication in this algebra is constructed as follows. Given d,e∈NI , consider

Vd =
⊕
i∈I

Cdi ⊂ Vd+e =
⊕
i∈I

Cdi+ei

and let Rd,e ⊂ Rd+e be the subspace of representations that preserve Vd. It is equipped
with an action of the parabolic subgroup Gd,e ⊂Gd+e consisting of maps that preserve

Vd. We have morphisms of stacks

[Rd/Gd]× [Re/Ge]
q←− [Rd,e/Gd,e]

p−→ [Rd+e/Gd+e],

where q has dimension −χ(e,d). These maps induce morphisms in D(Vect)

HBM
Gd

(Rd)⊗HBM
Ge

(Re)
q∗−→HBM

Gd,e
(Rd,e)[2χ(e,d)]

p∗−→HBM
Gd+e

(Rd+e)[2χ(e,d)].

Taking the composition, we obtain the multiplication map

HQ,d⊗HQ,e →HQ,d+e

in D(Vect). It was proved in [36] that this multiplication is associative.

3.2. Shuffle algebra description

For any n≥ 0, define the graded algebra

Λn =Q[x1, . . . ,xn]
Σn,
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where xi has degree 2 and Σn is the symmetric group on n elements. Similarly, for any
d ∈ NI , define

Λd =
⊗
i∈I

Λdi
=Q[xi,k : i ∈ I, 1≤ k ≤ di]

Σd, Σd =
∏
i∈I

Σdi
.

Then

H∗
GLn

(pt)� Λn, H∗
Gd

(pt)� Λd.

This implies that

HQ,d =H∗
Gd

(Rd)[−χ(d,d)] = Λd[−χ(d,d)]. (7)

It was proved in [36] that the product HQ,d ⊗HQ,e → HQ,d+e is given by the shuffle

product

f ∗g =
∑

σ∈Sh(d,e)

σ(fgK), (8)

where the sum runs over all (d,e)-shuffles, meaning σ ∈ Σd+e satisfying

σi(1)< · · ·< σi(di), σi(di+1)< · · ·< σi(di+ei) ∀i ∈ I,

and the kernel K is a function in the localisation of Λd⊗Λe defined by

K(x,y) =

∏
a:i→j

∏di

k=1

∏ej

�=1(yj,�−xi,k)∏
i∈I

∏di

k=1

∏ei

�=1(yi,�−xi,k)
=

∏
i,j∈I

di∏
k=1

ej∏
�=1

(yj,�−xi,k)
−χ(i,j). (9)

The above formula for the shuffle product implies that

f ∗g = (−1)χ(d,e)g ∗f, f ∈HQ,d, g ∈HQ,e. (10)

This formula implies that HQ is a commutative algebra in the symmetric monoidal

category VectL×Z � (VectZ)L with the braiding arising from the Euler form χ.

Remark 3.1. It was observed in [36, §2.6] that it is possible to modify multiplication in

HQ (non-canonically) to make it super-commutative. For that, one defines the parity map
p : L→Z2, d 	→χ(d,d)(mod 2) and chooses a group homomorphism ε : L×L→μ2 = {±1}
such that

ε(d,e) = (−1)p(d)p(e)+χ(d,e)ε(e,d), d,e ∈ L. (11)

Then the product on HQ defined by

f �g = ε(d,e)f ∗g, f ∈HQ,d, g ∈HQ,e (12)

is super-commutative: f �g = (−1)p(d)p(e)g �f for all f ∈HQ,d, g ∈HQ,e. We shall avoid
non-canonical choices and not use this sign twist. Instead, we shall interpret HQ as

a commutative algebra in VectL×Z or VectL with the symmetric monoidal category

structure arising from χ.
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3.3. Modules over CoHA

For more details about modules over CoHAs, see for example, [18, 62]. Let w ∈ NI be a

vector, called a framing vector. We may consider a new (framed) quiver Qw by adding

a new vertex ∞ and wi arrows ∞→ i for all i ∈ I. For any d ∈ NI , let d̄= (d,1) ∈ NQw
0

and

Rf
d,w =R(Qw,d̄) =Rd⊕Fd,w =Rd⊕

⊕
i∈I

Hom(Cwi,Cdi).

Let Rf,st
d,w ⊂ Rf

d,w be the open subset of stable representations, consisting of representa-

tions M generated by M∞. Then Gd acts freely on Rf,st
d,w, and we consider the moduli

space

Hilbd,w =Rf,st
d,w/Gd,

called the non-commutative Hilbert scheme. Using this moduli space, one can define a

module over CoHA, denoted by Mw. Its underlying L-graded object in D(Vect)�VectZ

is

Mw =
⊕
d∈NI

Mw,d, Mw,d =HBM(Hilbd,w)[χ(d,d)−2w ·d].

The CoHA-action is defined as follows. Let Rf
d,e,w ⊂ Rf

d+e,w be the subspace of framed

representations that preserve Vd =
⊕

i∈I C
di , and let Rf,st

d,e,w ⊂Rf
d,e,w be the open subset

of stable representations. It is equipped with a free action of the group Gd,e, and we

define Hilbd,e,w =Rf,st
d,e,w/Gd,e. We have morphisms of stacks and algebraic varieties

[Rd/Gd]×Hilbe,w
q←−Hilbd,e,w

p−→Hilbd+e,w ,

where q has dimension n=−χ(e,d)+w ·d. These maps induce morphisms in D(Vect)

HBM
Gd

(Rd)⊗HBM(Hilbe,w)
q∗−→HBM(Hilbd,e,w)[−2n]

p∗−→HBM(Hilbd+e,w)[−2n].

Taking the composition, we obtain the action map

HQ,d⊗Mw,e →Mw,d+e

in D(Vect). The compatibility with the product of CoHA is proved in the same way as

the associativity of that product.
The module Mw can be also described using shuffle algebras [17, 18]. Consider the

forgetful map j : Rf,st
d,w →Rd and the corresponding map of stacks

j : Hilbd,w → [Rd/Gd]

having dimension w ·d. It induces a map

j∗ : HBM
Gd

(Rd)→HBM(Hilbd,w)[−2w ·d],
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which induces a map of L-graded objects in D(Vect)

j∗ : HQ =
⊕
d

HQ,d →Mw =
⊕
d

Mw,d. (13)

It was proved in [17, Theorem 5.2.1] that this map is an epimorphism of HQ-modules
and that its kernel is equal to

ker(j∗) =
∑

d′≥0,d>0

HQ,d′ ∗ewd HQ,d = (ewdHQ,d : d> 0), (14)

where the last expression means the ideal with respect to the product in HQ

ewd =
∏
i∈I

di∏
k=1

xwi

i,k ∈ Λd

is the product of appropriate powers of elementary symmetric functions and ewd HQ,d

means the product in Λd (corresponding to the cup product in cohomology).

3.4. Characters of CoHA and CoHA modules

Let us collect some well-known formulas for the Poincaré series (4) of our objects of

interest. We begin with the Poincaré series of CoHA.

Proposition 3.2. We have

Z(HQ,x,q) =AQ(x,q) :=
∑
d∈NI

(−q
1
2 )−χ(d,d)

(q−1)d
xd,

where (q)d =
∏

i∈I(q)di
and (q)n =

∏n
k=1(1− qk).

Proof. Consider Λn = Q[x1, . . . ,xn]
Σn � Q[e1, . . . ,en], where degxi = 2 and degei = 2i.

Then

ch(Λn) =
n∏

k=1

1

1− q−k
=

1

(q−1)n
.

This implies that ch(Λd) =
1

(q−1)d
, and therefore, HQ,d =Λd[−χ(d,d)] has the character

ch(HQ,d) =
∑
k

dimΛ
k−χ(d,d)
d q−

1
2k = q−

1
2χ(d,d) ch(Λd) =

q−
1
2χ(d,d)

(q−1)d
.

Remark 3.3. We also have

AQ(x,q) =
∑
d

(−q
1
2 )−χ(d,d)

(q−1)d
xd =

∑
d

(−q
1
2 )χ(d,d)

Pc(Rd,q)

Pc(Gd,q)
xd,

where we used the fact that Pc(C
n,q) = qn and Pc(GLn(C),q) = qn

2

(q−1)n.

Let us now determine the Poincaré series of the CoHA module Mw.
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Proposition 3.4. We have

Z(Mw,x,q) =AQ(x,q) ·S−2wAQ(x,q)
−1,

where Sw(xd) = q
1
2w·dxd.

Proof. It follows from [15, Theorem 5.2] that∑
d

(−q
1
2 )χ(d,d)Pc(Hilbd,w ,q)xd = S2wAQ(x,q) ·AQ(x,q)

−1.

As Mw,d =HBM(Hilbd,w)[χ(d,d)−2w ·d], we obtain

Z(Mw) =
∑
d

(−q
1
2 )χ(d,d)−2w·dPc(Hilbd,w ,q)xd =AQ(x,q) ·S−2wAQ(x,q)

−1.

We define (refined) DT invariants Ωd(q) of the quiver Q by the formula

Z(HQ,x,q
−1) =AQ(x,q

−1) = Exp

(∑
d(−1)χ(d,d)Ωd(q

−1)xd

1− q

)
. (15)

By a theorem of Efimov [14], we have Ωd(q) ∈ N[q±
1
2 ]. We shall give a new proof of this

result in Theorem 5.7. The above formula for the Poincaré series of the CoHA module

can be written in the form

Z(Mw,x,q
−1) = Exp

(∑
d

1− qw·d

1− q
(−1)χ(d,d)Ωd(q

−1)xd

)
. (16)

4. Vertex algebras and conformal algebras

Our goal in this section is to offer a detailed recollection of necessary definitions and

results from the theory of vertex algebras and vertex Lie algebras, adapted to the closed

symmetric monoidal category C = VectL of L-graded vector spaces with the braiding
arising from a symmetric bilinear form, as defined in §2.2. In particular, we define vertex

Lie algebras as a particular case of the general framework of conformal algebras. We,

however, choose to not use the terminology ‘Lie conformal algebras’ since for some readers
this would hint at the presence of important conformal symmetries (such as the Virasoro

algebra) included as a subalgebra, which is not the case for algebras we consider. Our

exposition merges material from many different sources, and, in particular, is inspired by

the textbooks [20, 34, 59].

4.1. Graded vertex algebras

In this section, we will introduce L-graded vertex algebras. We start with recalling the
classical definition of a vertex superalgebra and then explain its generalisation to the

L-graded case.

4.1.1. Classical vertex (super)algebras. Let VectZ2 be the category of Z2-graded

vector spaces (also called super vector spaces), equipped with a symmetric monoidal

category structure using the Koszul sign rule (2). Given a Z2-graded vector space
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V = V0 ⊕ V1 and a ∈ Vp, we call p(a) = p ∈ Z2 the parity of a. The Z2-graded vector

space End(V ) = Hom(V ,V ) is equipped with the Lie bracket

[a,b] = ab− (−1)p(a)p(b)ba, a,b ∈ End(V ). (17)

Define the space of fields

F(V ) =

{∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z±1]]

∣∣∣∣∣∀v ∈ V , a(n)v = 0 for n 0

}
.

This means that, for every a(z)∈F(V ) and v ∈ V , we have a(z)v ∈ V ((z)). We equip F(V )

with the Z2-grading, where a(z) =
∑

n a(n)z
−n−1 has parity p if a(n) has parity p for all

n ∈ Z. We say that two fields a(z),b(z) ∈ F(V ) are (mutually) local if

(z−w)n[a(z),b(w)] = 0, n 0. (18)

A vertex (super)algebra is a triple (V ,Y ,1), where V is a Z2-graded vector space,
Y : V → F(V ) is a linear map, and 1 ∈ V0 is an element called vacuum, such that, for all

a,b ∈ V ,

(1) Y (a,z) =
∑

n a(n)z
−n−1 has the same parity as a.

(2) Y (1,z) = idV , the identity operator.

(3) a(n)1= 0 for n≥ 0 and a(−1)1= a.

(4) [T,Y (a,z)] = ∂zY (a,z), where T ∈End(V ) is defined by T (a) = a(−2)1 and ∂z =
∂
∂z .

(5) Y (a,z) and Y (b,z) are local.

Remark 4.1. One can show that, for any a ∈ V ,

Y (Ta,z) = [T,Y (a,z)] = ∂zY (a,z), Y (a,z)1= ezTa.

Therefore,

T (a(n)b) = (Ta)(n)b+a(n)(Tb), (Ta)(n) =−na(n−1).

4.1.2. Graded vertex algebras. In the remaining part of section of §4, we shall

mostly work in the category C
1
2Z �VectL× 1

2Z (the corresponding 1
2Z-degrees will be called

weights). It has a symmetric monoidal category structure induced from that of C (without

any additional signs coming from weights). Consider an object V =
⊕

n∈ 1
2Z

Vn ∈ C
1
2Z

bounded below, meaning that Vn = 0 for n� 0. We define the space of fields

F(V ) = End(V )[[z±1]] ∈ C
1
2Z,

where z has L-degree zero and weight −1. Note that if
∑

n a(n)z
−n−1 ∈ F(V ) has weight

k, then a(n) has weight k−n−1. This implies that, for any b ∈ V , we have

a(n)b= 0, n 0,

by the assumption on V. Locality of fields is defined in the same way as in (18), using the

bracket on End(V ). We define an L-graded vertex algebra to be a triple (V ,Y ,1), where
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V ∈ C
1
2Z is bounded below, Y : V → F(V ) is a linear map, and 1 ∈ V0, such that, for all

a,b ∈ V ,

(1) Y preserves degrees, meaning that, for Y (a,z) =
∑

n a(n)z
−n−1, the operator a(n)

has the same L-degree as a and the weight wt(a)−n−1.

(2) Y (1,z) = idV .

(3) a(n)1= 0 for n≥ 0 and a(−1)1= a.

(4) [T,Y (a,z)] = ∂zY (a,z), where T ∈ End(V ) is defined by T (a) = a(−2)1.

(5) Y (a,z) and Y (b,z) are local.

Note that the map T : V → V has L-degree zero and weight 1. Note also that the map
Y : V → F(V ) is encoded by the products

(n) : V ⊗V → V , a⊗ b 	→ a(n)b, n ∈ Z. (19)

By definition, a morphism f : V →W between two graded vertex algebras is a degree zero
linear map that preserves the vacuum and all these products. A module over a graded

vertex algebra V is a graded vector space M equipped with a degree zero linear map

YM : V → F(M) that preserves products, maps 1 to idM and maps V to a subspace of

mutually local fields.

Remark 4.2. For a lattice L equipped with a symmetric bilinear form (·,·), it is
conventional to use the braiding on VectL given by the Koszul signs (−1)p(α)p(β), where

p(α) = (α,α)(mod 2). This is justified by the desire to work in the familiar setting of

vertex (super)algebras. However, this convention requires one to introduce certain non-
canonical sign twists [34, §5.4] (needed to ensure mutual locality of vertex operators in

lattice vertex algebras), very similar to the sign twists from Remark 3.1. Our convention

for the braiding in VectL (see §2.2) allows one to avoid any non-canonical choices both
in the case of CoHAs and in the case of vertex algebras.

4.1.3. External products. Let V ∈ C
1
2Z be bounded below, and let a ∈ F(V )α, b ∈

F(V )β be two fields (here α,β ∈ L). For any n ∈ Z, we define

[a(z)×n b(w)] = (z−w)na(z)b(w)− (−1)(α,β)(−w+ z)nb(w)a(z) (20)

and consider the binary operation n on F(V ) defined by

(a n b)(w) = Resz[a(z)×n b(w)]. (21)

We have a n b ∈ F(V ) by [41, Lemma 3.1.4]. By Dong’s lemma [41, Proposition 3.2.7], if

a,b,c ∈ F(V ) and a,b are local with c, then a n b is local with c, for all n ∈ Z.

The coefficients of the field a m b can be written explicitly as

(a m b)(n) =
∑
k≥0

(−1)k
(
m

k

)(
a(m−k)b(n+k)− (−1)(α,β)+mb(n+m−k)a(k)

)
. (22)
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In particular, for m≥ 0, we have

(a m b)(n) =

m∑
k=0

(−1)k
(
m

k

)
[a(m−k),b(n+k)]. (23)

For m=−1, we obtain

(a −1 b)(n) =
∑
k≥0

(
a(−k−1)b(n+k)+(−1)(α,β)b(n−k−1)a(k)

)
.

Remark 4.3. The field

(a −1 b)(z) = a+(z)b(z)+(−1)(α,β)b(z)a−(z) (24)

is the so-called normally ordered product : a(z)b(z)) : of the fields a and b. Here, f+(z) =∑
n≥0 fnz

n and f−(z) =
∑

n<0 fnz
n, for f(z) =

∑
n fnz

n.

Lemma 4.4. If V is a vertex algebra, then Y : V → F(V ) preserves the products (19),
meaning that a(n)b is mapped to Y (a,z) n Y (b,z) for all a,b ∈ V and n ∈ Z.

Proof. By the Jacobi identity [23], for any a,b ∈ V , we have

[Y (a,z)×n Y (b,w)] = Resuu
nw−1Y (Y (a,u)b,w)δ

(
z−u

w

)
. (25)

Applying Resz δ
(
z−u
w

)
= w, we obtain

Resz[Y (a,z)×n Y (b,w)] = Resuu
nY (Y (a,u)b,w) = Y (a(n)b,w).

This implies the statement.

For any a ∈ F(V ) and n ∈ Z, we obtain a n ∈ End(F(V )), and we define

Y : F(V )→ End(F(V ))[[u±1]], Y (a,u) =
∑
n∈Z

a n u−n−1.

Let idV ∈ End(V ) ⊂ F(V ) be the identity operator and T = ∂z ∈ End(F(V )). Then, for
any a ∈ F(V ), we have [41, Lemmas 3.1.6-3.1.7]

(1) Y (idV ,u)a= a.

(2) Y (a,u) idV = euT a.

(3) Y (Ta,u) = [T,Y (a,u)] = ∂uY (a,u).

The last property implies (Ta) n b=−na n−1 b. In particular,

a −2 idV = (Ta) −1 idV = Ta.

A subspace W ⊂ F(V ) is called a field algebra if it is closed under products n and
contains idV . It is called a local field algebra if it consists of mutually local fields. In this

case, consider the restriction

Y :W → End(W )[[u±1]], a 	→
∑
n∈Z

a n u−n−1.
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By the locality assumption, we have [a(z)×n b(w)] = 0; hence, a n b = 0, for a,b ∈ W

and n 0. Therefore, Y (a,u) is a field, and we obtain a linear map Y :W → F(W ). The

triple (W,Y , idV ) is a vertex algebra by [41, Theorem 3.2.10]. For any subset S ⊂ F(V ),
consisting of mutually local (homogeneous) fields, let 〈S〉 be the smallest subspace of

F(V ) containing S∪{idV } and closed under all products n . Then by Dong’s lemma, 〈S〉
is a local field algebra, and we conclude that it is a vertex algebra.
In particular, assume that (V ,Y ,1) is a vertex algebra. The map Y : V → F(V ) is

injective as a(−1)1= a. Let W = Y (V )⊂ F(V ). Then W consists of mutually local fields

by the definition of a vertex algebra. It is closed with respect to products by Lemma 4.4,
and it contains idV = Y (1,z). Therefore, W is a vertex algebra and Y : V → W is an

isomorphism of vertex algebras.

4.2. Conformal algebras

In this section, we will introduce the notion of conformal algebras, closely related to the

notion of vertex algebras. For more details on this subject, see, for example, [51, 57].

4.2.1. Definition of conformal algebras. We define a conformal algebra to be an
object C ∈ C

1
2Z equipped with a linear map ∂ : C→ C (of L-degree zero and weight 1) and

bilinear operations n : C⊗C→ C (of L-degree zero and weight −n−1), for n ∈ N, such

that for all a,b ∈ C, we have

(1) a n b= 0 for n 0.

(2) ∂(a n b) = (∂a) n b+a n (∂b).

(3) (∂a) n b=−na n−1 b.

Let us recall a fundamental class of examples of conformal algebras obtained via a

procedure reminiscent of the construction of external products n in §4.1.3. Suppose
that L ∈ C

1
2Z is an algebra, by which we mean a graded vector space equipped with a

bilinear operation

[−,−] : L⊗L→ L

(despite the suggestive notation, we do not assume this operation to satisfy any of the
properties of a Lie bracket). We define external products n on the space L[[z±1]] (where

z has L-degree zero and weight −1) by the formula (cf. (21))

a(z) n b(z) = Resw(w− z)n[a(w),b(z)], n≥ 0, (26)

for a(z) =
∑

n∈Z
a(n)z−n−1 and b(z) =

∑
n∈Z

b(n)z−n−1 in L[[z±1]]. The coefficient of

z−m−1 in this series equals (cf. (23))

(a n b)(m) =
n∑

k=0

(−1)k
(
n

k

)
[a(n−k),b(m+k)]. (27)

We also define ∂ = ∂
∂z : L[[z

±1]]→ L[[z±1]], so that the map ∂ and the products n satisfy

the axioms (2) and (3) above. Note that the axiom (1) is satisfied by the fields a,b∈L[[z±1]]
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if they are (mutually) local, meaning that

(z−w)n[a(z),b(w)] = (z−w)n[b(w),a(z)] = 0, n 0.

In this case, we have [34, §2.2]

[a(m),b(n)] =
∑
k≥0

(
m

k

)
(a k b)(m+n−k). (28)

We see that if C ⊂ L[[z±1]] is a subspace consisting of pairwise mutually local elements

which is closed under all external products and the map ∂, then C is a conformal algebra.

4.2.2. Coefficient algebras of conformal algebras. For a conformal algebra
(C,∂, n ), we shall now define the coefficient algebra Coeff(). Note that we have

(∂a) 0 b= 0, a 0 (∂b) = ∂(a 0 b);

hence, ∂C ⊂ C is an ideal with respect to the product 0 , and we can equip C/∂C with

the bracket

[a,b] = a 0 b. (29)

In particular, we can apply this construction to the affinization of C [34, §2.7], which is

defined to be C̃ =C[t±1] equipped with the derivation ∂̃ = ∂⊗1+1⊗∂t and the products

(af) n (bg) =
∑
k≥0

a n+k b · (∂(k)
t f)g, a,b ∈ C, f,g ∈Q[t±1], (30)

where ∂
(k)
t = 1

k!∂
k
t . Now we define the algebra of coefficients

L=Coeff(C) = C̃/∂̃C̃

with the bracket given by 0 . More explicitly, let us write C(n) = Ctn ⊂ C̃ and a(n) =

atn ∈ C(n), for a ∈ C, n ∈ Z. Then L is equal to the quotient of C̃ =
⊕

n∈Z
C(n) by the

subspace generated by

(∂a)(n)+na(n−1), a ∈ C, n ∈ Z. (31)

The operation [−,−] given by (cf. (28))

[a(m),b(n)] = (atm) 0 (btn) =
∑
k≥0

(
m

k

)
(a k b)(m+n−k) (32)

descends from C̃ to L. We will usually denote the image of a(n) ∈ C̃ in L by a(n). The

map

∂ : L→ L, ∂(a(n)) = (∂a)(n) =−na(n−1)

is a derivation of the algebra L. Let

L(n) = im
(
C(n) ↪→ C̃ → L

)
.
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From (31), we obtain that L(n− 1) embeds into L(n) for n �= 0. Therefore, we have

increasing filtrations

L(0)⊂ L(1)⊂ ·· · ⊂ L+ :=
∑
n≥0

L(n), · · · ⊂ L(−2)⊂ L(−1) =: L−.

All of these subspaces are preserved by the derivation ∂. It is clear from (32) that

[L(m),L(n)]⊂ L(m+n)

for m,n ≥ 0 or m,n < 0. In particular, L± are subalgebras of L. Moreover, we have an

internal direct sum decomposition [51, 57]

L= L+⊕L− (33)

of the vector space L, and an isomorphism of vector spaces

C→ L− = L(−1), a 	→ a(−1).

Under the isomorphism C � L−, the bracket on C is given by [51, p. 4.14]

[a,b] =
∑
k≥0

(−1)k∂(k+1)(a k b). (34)

Note that the map C → C̃, a 	→ a(0), is a homomorphism of conformal algebras; hence,
it induces a morphism of algebras

C/∂C → L(0)⊂ L= C̃/∂̃C̃, a+∂C 	→ a(0). (35)

By [57, Prop. P 1.3], the map C →L(0), a 	→ a(0) has the kernel ∂C+
∑

k≥1 ker∂
k; hence,

C/∂C →L(0) is an isomorphism if ∂ is injective. It is important to note that the brackets

on C and C/∂C are not related.
The map

φ : C→ L[[z±1]], a 	→
∑
n∈Z

a(n)z−n−1

is a homomorphism of conformal algebras (meaning that it preserves the products and

the derivation). Since a 	→ a(−1) is an isomorphism between C and L(−1), this map is
injective.

The coefficient algebra L = Coeff(C) satisfies the following universal property: if A is

an algebra and ψ : C→ A[[z±1]] is a morphism of conformal algebras, then there exists a
unique algebra morphism � : L→A (given by a(n) 	→Resz z

nψ(a)) such that the diagram

C

L[[z±1]] A[[z±1]]

φ ψ




is commutative.
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4.2.3. Vertex Lie algebras and their enveloping vertex algebras. Using
coefficient algebras, one can define particular types of conformal algebras. In particular, a

conformal algebra C is called a vertex Lie algebra (or Lie conformal algebra) if the algebra

Coeff(C) is a Lie algebra. Equivalently, this means that, for a,b ∈ C and m,n ∈N, we have

(1) [a m ,b n ] =
∑m

k=0

(
m
k

)
(a k b) m+n−k (Jacobi identity), or equivalently,

(a m b) n =
∑m

k=0(−1)k
(
m
k

)[
a m−k ,b n+k

]
.

(2) a n b=(−1)1+χ(α,β)
∑

k≥0(−1)n+k ∂k

k! b n+k a, for a∈Cα,b∈Cβ (anti-commutativity).

Under these conditions, the bracket (29) defined on C/∂C is a Lie bracket; see, for

example, [34, Rem. 2.7a]. Let C be a vertex Lie algebra and L=Coeff(C) be its coefficient

algebra. We define the Verma module

V := U(L)⊗U(L+)Q� U(L−),

where Q is equipped with the trivial L+-module structure. Let 1 ∈ V be the cyclic vector

of this module. One can show that, for any a ∈ C and v ∈ V , we have a(n)v = 0 for n 0.

This implies that φ(a) =
∑

n a(n)z
−n−1 ∈ L[[z±1]] induces a field ψ(a) ∈ F(V ). The map

ψ : C→ F(V ) is injective as the map C� L− → End(V ) is injective.

The image of ψ : C → F(V ) consists of mutually local fields and generates a vertex

algebra W ⊂ F(V ). By [57, §2.4], the vertex algebra W has a structure of an L-module,

and the map W → V , a(z) 	→ a(−1)1 is an isomorphism of L-modules. We shall call the
vertex algebra W � V the universal enveloping vertex algebra of C and denote it by U(C).

Note that we have a commutative diagram of graded vector spaces

C L−

U(C) U(L−).

∼

∼

If V is a vertex algebra, then V equipped with the products (n) : V ⊗V → V , n≥ 0, and

the map ∂ = T : V → V is a vertex Lie algebra. By [51, Theorem 5.5], the corresponding

forgetful functor from the category of vertex algebras to the category of vertex Lie algebras

has a left adjoint functor which is precisely the universal enveloping algebra functor
C 	→ U(C).

4.3. Vertex bialgebras

Let C be a symmetric monoidal category and (V ,Δ,ε) be a (counital) coalgebra in C. We
define the set of group-like elements

G(V ) = HomCoalg(1,V ), (36)

where 1 ∈ C is the unit object equipped with the canonical structure of a counital

coalgebra. We say that V is connected if G(V ) contains exactly one element.
For example, let L= ZI be equipped with a symmetric bilinear form and let C=VectL

be the corresponding symmetric monoidal category. Let V ∈ C be a coalgebra with degrees

concentrated in NI ⊂ L and dimV0 = 1. Then V is connected.

https://doi.org/10.1017/S1474748024000288 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000288


DT invariants from vertex algebras 311

Following [42, §4], we define a (local) vertex bialgebra to be a vertex algebra V

equipped with a coalgebra structure (V ,Δ,ε) such that Δ : V → V ⊗V and ε : V →Q are

homomorphisms of vertex algebras. We say that a vertex bialgebra V is cocommutative
if its coproduct is cocommutative. We define the subspace of primitive elements

P (V ) = {x ∈ V |Δ(x) = x⊗1+1⊗x}. (37)

An important family of cocommutative connected vertex bialgebras arises from vertex

Lie algebras [29, 42].

Proposition 4.5. [42, §4] Let C be a vertex Lie algebra and V = U(C) be its universal

enveloping vertex algebra. Then there exists vertex algebra homomorphisms

Δ : V → V ⊗V , ε : V →Q,

uniquely determined by

Δ(1) = 1⊗1, ε(1) = 1,

Δ(x) = x⊗1+1⊗x, ε(x) = 0 ∀x ∈ C.

The vertex algebra V equipped with Δ and ε is a cocommutative vertex bialgebra.

Proposition 4.6 [29, Prop. 3.9]. Let C be a vertex Lie algebra, L=L−⊕L+ be its algebra

of coefficients and V = U(C) = U(L)⊗U(L+)Q be its universal enveloping vertex algebra.
Then the canonical isomorphism V � U(L−) is an isomorphism of coalgebras. Moreover,

the coalgebra V is connected and P (V ) = C.

Conversely, we can associate a vertex Lie algebra with a vertex bialgebra.

Proposition 4.7 [29, Prop. 4.8]. Let V be a vertex bialgebra. Then P (V ) is a vertex Lie
subalgebra of V.

The next result is an analogue of the Milnor-Moore theorem for vertex bialgebras.

Theorem 4.8 [29, Theorem 4.13]. Let V be a cocommutative connected vertex bialgebra.
Then there is a canonical isomorphism U(P (V ))� V of vertex bialgebras.

4.4. Free vertex algebras

As was observed already in [4, §4], the locality axiom contains a quantifier that does not

allow one to define the free vertex algebra on a given set of generators, but if one restricts

to some specific orders of locality, it is possible to define such a universal object; this has
been done in [57]. In this section, we recall the definition of the locality order and explain

how free vertex algebras of given non-negative locality are constructed.

4.4.1. Locality order.

Definition 4.9. Let V ∈ C
1
2Z be a bounded below object. We say that two fields a ∈

F(V )α and b ∈ F(V )β are (mutually) local of order N ∈ Z if

(z−w)Na(z)b(w)− (−1)(α,β)(−w+ z)Nb(w)a(z) = 0, (38)
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where the binomial expansion convention is used. Note that this condition means that
[a(z)×N b(w)] = 0; see (20).

We note that for N ≥ 0, the binomial expansion is finite and the locality condition

becomes simply

(z−w)N [a(z),b(w)] = 0,

being in agreement with the definition of locality (of unspecified order) in §4.1.1.

Lemma 4.10. Let V be a vertex algebra and a,b ∈ V . Then Y (a,z),Y (b,z) are local of

order N if and only if a(n)b= 0 for all n≥N .

Proof. Let a(z) = Y (a,z) and b(z) = Y (b,z). If [a(z)×N b(w)] = 0, then [a(z)×n b(w)] = 0
for all n≥N . This implies that (a n b)(z) = 0. As Y : V →F(V ) is injective and preserves

products, we conclude that a(n)b = 0 for all n ≥ N . Conversely, assume that a(n)b = 0

for all n≥N . By the Jacobi identity (25),

[a(z)×N b(w)] = Resuu
Nw−1Y (a(u)b,w)δ

(
z−u

w

)
.

Under our assumption, all powers of u on the right are non-negative, and we conclude

that [a(z)×N b(w)] = 0.

Using the binomial expansion convention in Equation (38) and extracting the coefficient

of zN−m−1w−n−1, one can obtain an equivalent collection of equations

∑
k≥0

(−1)k
(
N

k

)
a(m−k)b(n+k)− (39)

(−1)(α,β)
∑
k≤N

(−1)k
(

N

N −k

)
b(n+k)a(m−k) = 0

for all m,n ∈ Z. If N ≥ 0, then the locality conditions can be written in the form

N∑
k=0

(−1)k
(
N

k

)
[a(m−k),b(n+k)] = 0. (40)

4.4.2. Free vertex algebras. Let I be a set equipped with a symmetric function
N : I×I →Z called the locality function or just locality and a map deg = (degL ,wt) : I →
L× 1

2Z. We consider the category VerN, deg of graded vertex algebras V ∈ C
1
2Z =VectL× 1

2Z

equipped with a map s : I → V such that

(1) The image of s generates V (as a vertex algebra).

(2) For each i ∈ I, the element si has degree deg(i).

(3) For all i,j ∈ I, the fields Y (si,z) and Y (sj,z) are local of order N(i,j). Equivalently,

si(n)sj = 0 for all n≥N(i,j).
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Analogously to [58], one proves that the category VerN, deg has an initial object, called

the free vertex algebra with respect to locality N and degree deg. We shall now recall the

construction of the free vertex algebra in the case of a non-negative locality function.

4.4.3. Free vertex algebras of non-negative locality. Suppose that the locality
function N is non-negative. We set

X = {i(n) : i ∈ I, n ∈ Z}.

The vector space QX spanned by X can be viewed as an object of C
1
2Z, where we set

degL i(n) = degL(i) ∈ L, wt i(n) = wt(i)−n−1 ∈ 1

2
Z. (41)

In the free associative algebra T(QX), we may consider the locality relations (40) with
a,b ∈ I and N =N(a,b). These relations are manifestly homogeneous, so they generate a

homogeneous ideal I⊂T(QX). The quotient B=T(QX)/I by that ideal is an associative

algebra in C
1
2Z. Let us consider the subset

X+ = { i(n) ∈X |n≥ 0}

and the left B-module P=B/BX+; we denote by 1 the cyclic element of that module.

Lemma 4.11. The module P is restricted, meaning that, for all i ∈ I and x ∈ P, we have
i(n)x= 0 for n 0.

Proof. Let w = i1(n1). . . ip(np) be a monomial in T(QX), and suppose that there exists
i ∈ I such that i(n)w /∈ BX+ for arbitrary large n. We can assume that p is minimal

possible. Then

i1(k)i2(n2). . . ip(np) ∈BX+

for k  0. Therefore, we can assume that for any k > n1, we have

i(n)i1(k)i2(n2). . . ip(np) ∈BX+

for n 0. Let N =N(i,i1). Then we have a locality relation

N∑
k=0

(−1)k
(
N

k

)
[i(n−k),i1(n1+k)] = 0

in the algebra B. This relation implies that i(n)w is contained in the left ideal generated

by elements

i(n′)i1(k)i2(n2). . . ip(np), n′ ≥ n−N, k > n1,

i(n′)i2(n2). . . ip(np), n′ ≥ n−N.

By our assumption, these elements are contained in BX+ for n 0.
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This lemma implies that for every i ∈ I, we have a field

i(z) =
∑
n∈Z

i(n)z−n−1 ∈ F(P).

These fields are mutually local by construction. Let us define a derivation T of T(QX)

by the formula T i(n) =−ni(n−1).

Lemma 4.12. The derivation T preserves the ideal I. In particular, T induces endomor-

phisms of B and P.

Proof. Let us consider i(z) =
∑

n∈Z
i(n)z−n−1 as an element of T(QX)[[z±1]]. Using this

notation, we see that the relations that generate I are coefficients of (z−w)N [i(z),j(w)]

with N =N(i,j). Since T i(z) = ∂zi(z), we have

∂z

(
(z−w)N [i(z),j(w)]

)
=N(z−w)N−1[i(z),j(w)]+(z−w)N [T i(z),j(w)]

and

∂w

(
(z−w)N [i(z),j(w)]

)
=−N(z−w)N−1[i(z),j(w)]+(z−w)N [i(z),T j(w)].

Adding these equations, we obtain

T (z−w)N [i(z),j(w)] = ∂z

(
(z−w)N [i(z),j(w)]

)
+∂w

(
(z−w)N [i(z),j(w)]

)
,

which means that locality relations are preserved by T.

Applying the reconstruction theorem (see [34, Theorem 4.5] or [20, §4.4]) to the fields

i(z) ∈ F(P) and the endomorphism T ∈ End(P), we obtain a vertex algebra structure on
P with

Y (i1(n1). . . ip(np)1,z) = i1(z) n1 (i2(z) n2 (. . . (ip(z) np idP). . . )).

The vertex algebra P is the free vertex algebra with respect to locality N and degree

function deg. We will sometimes denote the element i(−1)1 ∈ P by i.

4.4.4. Free vertex algebras as universal enveloping algebras. Next, we will

show that the free vertex algebra P of non-negative locality can be identified with the

universal enveloping algebra of a vertex Lie algebra. Let L be the Lie algebra with

generators i(n) ∈ X subject to the locality relations (40) with a,b ∈ I and N = N(a,b),
and let L+ ⊂ L be the subalgebra generated by X+ ⊂X. Then we have

B� U(L), P=B/BX+ � U(L)⊗U(L+)Q.

For every i ∈ I, we consider i(z) =
∑

n i(n)z
−n−1 ∈ L[[z±1]]. These elements are mutually

local by definition; therefore, by Dong’s Lemma [41, Prop. 3.2.7], they generate, under
non-negative external products and the derivation ∂z, a conformal algebra

C⊂ L[[z±1]],

which is a vertex Lie algebra as conditions from §4.2.3 are automatically satisfied.
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Proposition 4.13. The free vertex algebra P of non-negative locality is isomorphic to

the universal enveloping vertex algebra of the vertex Lie algebra C.

Proof. First, let us show that the algebra morphism

� : Coeff(C)→ L, a(z)(n) 	→ Resz z
na(z)

is an isomorphism (cf. [57, Prop. 3.1]). (In fact, this vertex Lie algebra is the free vertex

Lie algebra with respect to locality N and degree function deg.) To construct the inverse

map, we need to show that elements i(z)(n) satisfy the locality relations. This means that

for N =N(i,j), we have

N∑
k=0

(−1)k
(
N

k

)
[i(z)(m−k),j(z)(n+k)] = 0

in Coeff(C). Using the formula for the bracket in Coeff(C), this equation can be written

in the form

N∑
k=0

(−1)k
(
N

k

)∑
l≥0

(
m−k

l

)
(i l j)(m+n− l) = 0.

Note that i l j = 0 for l ≥ N by the locality relations. We claim that, however, for any

0≤ l < N , we have

N∑
k=0

(−1)k
(
N

k

)(
m−k

l

)
= 0.

This claim would imply the required statement. We have

∑
k,l≥0

(
N

k

)(
m−k

l

)
xkyl =

∑
k≥0

(
N

k

)
xk(1+y)m−k = (1+y)m

(
1+

x

1+y

)N

= (1+x+y)N (1+y)m−N .

In particular, for x=−1, we obtain∑
k,l≥0

(−1)k
(
N

k

)(
m−k

l

)
yl = yN (1+y)m−N,

which has only powers of y that are ≥N . This proves the claim.

The derivation ∂ on Coeff(C) corresponds to the derivation T on L⊂B from Lemma

4.12. Using the isomorphism �, we obtain the direct sum decomposition

L= L+⊕L−,

where both subalgebras are preserved by T. By [57, §3.2], the algebra L+ ⊂ L is exactly

the algebra generated by X+ = { i(n) ∈X |n≥ 0}, which we introduced earlier.
This implies that P=B/BX+ is isomorphic to the Verma module U(L)⊗U(L+)Q as a

B-module, and therefore, the free vertex algebra P is isomorphic to the universal

enveloping vertex algebra U(C).

https://doi.org/10.1017/S1474748024000288 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000288


316 V. Dotsenko and S. Mozgovoy

4.5. Lattice vertex algebras

In this section, we recall an important class of vertex algebras called lattice vertex

algebras. They play a prominent role in our work, for they can be used to construct

convenient realisations of certain free vertex algebras.

4.5.1. Fock spaces. We consider the Q-vector space h= L⊗ZQ associated to L and
define the Heisenberg Lie algebra ĥ as a one-dimensional extension

0→QK → ĥ→ h⊗Q[t±1]→ 0

with central K and

[hm,h
′
n] =mδm,−n · (h,h′)K.

Here and below, we define hn := h⊗ tn, for h ∈ h and n ∈ Z. If we set weight degrees

wt(hn) =−n, wt(K) = 0,

then ĥ becomes a Lie algebra in Vect
1
2Z.

Let H be the associative Heisenberg algebra which is the quotient of the universal
enveloping algebra of ĥ modulo the ideal generated by K−1. Consider the commutative

subalgebra

H+ = U(h⊗Q[t])� S(h⊗Q[t])⊂ H.

For any λ ∈ L∨ = Hom(L,Z), let Qλ be the 1-dimensional module over H+, where, for

each h∈ h, h0 acts by multiplication with λ(h) and hn with n> 0 acts trivially. We define

the Fock space Vλ to be the H-module

Vλ = H⊗H+
Qλ.

As a vector space, it is isomorphic to S(h⊗ t−1C[t−1]). We denote the cyclic vector of
Vλ by |λ〉. In particular, for any α ∈ L, we may consider the linear function (α,·) ∈ L∨,
and by abuse of notation, we shall denote the corresponding Fock space by Vα and its

generator by |α〉.
For any α ∈ L, we have a field α(z) =

∑
n∈Z

αnz
−n−1 ∈ F(V0). One knows that V0 has

a vertex algebra structure with the vacuum |0〉 and with

Y (α(1)
n1

. . . α(p)
np

|0〉,z) = α(1)(z) n1 (α(2)(z) n2 (. . . α(p)(z) np idV0
)).

In particular, Y (α−1|0〉,z) = α(z). Similarly, using idVλ
in the above formula, we can

equip Vλ with a module structure over the vertex algebra V0.

4.5.2. Vertex operators and lattice vertex algebras. Let us consider the total

Fock space

VL =
⊕
α∈L

Vα.
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This space is automatically L-graded. We equip it with a weight grading for which
wt(|β〉) = 1

2 (β,β), so that

wt(α(1)
n1

. . . α(p)
np

|β〉) = 1

2
(β,β)−

p∑
k=1

nk ∈ 1

2
Z. (42)

Thus, VL may be considered as an object in C
1
2Z.

Let Sα : VL → VL be the unique linear map satisfying

(1) Sα|β〉= |α+β〉.
(2) [hn,Sα] = 0 for n �= 0 and h ∈ h.

Let z(α,−) : VL → VL[[z
±1]] be the map that acts on Vβ by multiplication with z(α,β). Note

that

z(α,−)Sβ = z(α,β)Sβz
(α,−).

For any α ∈ L, we let

Γ−
α (z) = exp

(
−
∑
n<0

αn

n
z−n

)
, Γ+

α (z) = exp

(
−
∑
n>0

αn

n
z−n

)
.

Using these series, we now define the vertex operator (a field on VL)

Γα(z) =
∑
n

Γα(n)z
−n−1 = SαΓ

−
α (z)Γ

+
α (z)z

(α,−). (43)

Let us check that the operators Γα(z) are pairwise local.

Lemma 4.14. For any α,β ∈ L, we have

(z−w)−(α,β)Γα(z)Γβ(w) = (w− z)−(α,β)Γβ(w)Γα(z).

Equivalently, Γα(z), Γβ(z) are local of order −(α,β).

Proof. First of all, we have

Γ+
α (z)Γ

−
β (w) =

(
1− w

z

)(α,β)

Γ−
β (w)Γ

+
α (z),

which follows from the fact that

exp

([∑
n>0

αn

n
z−n,

∑
n<0

βn

n
w−n

])
=

exp

(
(α,β)

∑
n>0

(w/z)n

−n

)
=
(
1− w

z

)(α,β)

.

Now we obtain

Γα(z)Γβ(w) = SαΓ
−
α (z)Γ

+
α (z)z

(α,−) ·SβΓ
−
β (w)Γ

+
β (w)w

(β,−) (44)

= z(α,β)Sα+βΓ
−
α (z)Γ

+
α (z)Γ

−
β (w)Γ

+
β (w)z

(α,−)w(β,−)

= (z−w)(α,β)Sα+βΓ
−
α (z)Γ

−
β (w)Γ

+
α (z)Γ

+
β (w)z

(α,−)w(β,−),
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and similarly for Γβ(w)Γα(z). This implies the first claim of the lemma. For the second

claim, it is enough to note that (w − z)−(α,β) = (−1)(α,β)(−w + z)−(α,β) and recall

Definition 4.9.

Note that the weight of z is −1 and the weight of αn is −n. Therefore, αnz
−n has

weight zero, and the same is true for Γ±
α (z). The element Sαz

(α,−)|β〉= z(α,β)|α+β〉 has
weight 1

2 (α,α)+
1
2 (β,β). We conclude that the operator Γα(z) has weight

1
2 (α,α), which

is also the weight of |α〉. The total Fock space VL has a structure of an L-graded vertex
algebra, called the lattice vertex algebra, that extends the vertex algebra structure on V0

and satisfies

Y (|α〉,z) = Γα(z).

4.5.3. Principal free vertex algebras. Let (ei)i∈I be a basis of the lattice L. Recall

that, according to Lemma 4.14, the fields Γi(z) := Γei(z) and Γj(z) := Γej (z) on VL are

local of order −(ei,ej). We define the locality function

N : I× I → Z, N(i,j) =−(ei,ej)

and the degree map

deg : I → L× 1

2
Z, deg(i) =

(
ei,

1

2
(ei,ei)

)
.

Let P be the free vertex algebra with respect to locality N and degree deg, which we shall

also call the principal free vertex algebra. By the universality property of the free vertex

algebra, there is a unique morphism of graded vertex algebras

P→ VL, i 	→ |ei〉.

By [58, Theorem 2], this morphism is injective. Therefore, the free vertex algebra P can
be identified with the vertex subalgebra of VL generated by elements |ei〉, i ∈ I. This

subalgebra was studied in [47] under the name principal subalgebra.

5. CoHA and the free vertex algebra

From now onwards, we restrict ourselves to the situation considered in §3, so that Q is

a symmetric quiver with the set of vertices I, and L = ZI is a lattice equipped with the

Euler form χ of the quiver Q. Then I parametrises the standard basis of L, and we can
consider the corresponding principal free vertex algebra P from §4.5.3, which we shall

usually denote by PQ. The locality function of that free vertex algebra is given by

N(i,j) =−χ(ei,ej).

Hence, we see that N(i,j) ≥ 0 for i �= j and N(i,i) ≥ −1. This property together with

Lemma 5.1 implies that the construction of §4.4.3 for free vertex algebras of non-negative
locality applies.

In this section, we shall unravel a deep relationship between the principal free vertex

algebra PQ and the CoHA HQ. In §5.2, we shall see that there is an isomorphism of vector
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spaces between the graded dual P∨
Q and HQ. In §5.3, we shall show that this isomorphism

allows one to recover the algebra structure of HQ. Finally, in §5.4, we use our results to

obtain a new proof of Efimov’s positivity theorem for Donaldson–Thomas invariants.

5.1. Three incarnations

In this section, we shall discuss three different incarnations of the same vertex algebra PQ:
as a principal free algebra, as a free algebra of non-negative locality, and as the universal

enveloping algebra of a vertex Lie algebra. From (40), we know that for N(i,j) ≥ 0, the

locality relation between Y (i,z) and Y (j,z) is a collection of ‘honest’ Lie algebra relations
(finite combinations of Lie brackets). In our situation, the only possible negative value of

the locality function is N(i,j) =−1, in which case, i= j and χ(ei,ei) = 1.

Lemma 5.1. Let V be a graded vertex algebra, and suppose that a∈ F(V )α is a field with
χ(α,α)≡ 1 (mod 2). Then a is local with itself of order −1 if and only if it is local with

itself of order 0.

Proof. We already know that locality of order −1 implies locality of order 0, so we
only need to prove the reverse implication. The locality of order −1 is equivalent to the

relations ∑
k≥0

a(m−k)a(n+k)−
∑
k<0

a(n+k)a(m−k) = 0 (45)

for all m,n ∈ Z. The locality of order 0 is equivalent to

[a(m),a(n)] = a(m)a(n)+a(n)a(m) = 0, m,n ∈ Z. (46)

It remains to note that, assuming that m≥ n, Condition (45) can be rewritten as

m−n∑
k=0

a(m−k)a(n+k) = 0,

which vanishes whenever (46) holds.

It follows from Lemma 5.1 that if N(i,i) =−1, then the field Y (i,z) is local of order 0

with itself, so the principal free vertex algebra PQ coincides with the free vertex algebra
for the non-negative locality function N+ := max(N,0). In particular, even though some

values of the locality function for PQ can be negative, Proposition 4.13 implies that PQ

is isomorphic to the universal enveloping vertex algebra U(C) of a vertex Lie algebra C.
Let us recall some notation for future reference. We consider the sets

X = { i(n) | i ∈ I, n ∈ Z}, X+ = { i(n) | i ∈ I, n≥ 0}

and define L to be the Lie algebra generated by X subject to locality relations (40) with
a,b ∈ I and N =N+(a,b), and L+ ⊂ L to be the subalgebra generated by X+ ⊂X.

For every i ∈ I, we consider i(z) =
∑

n i(n)z
−n−1 ∈ L[[z±1]], and we define C⊂ L[[z±1]]

to be the vertex Lie algebra generated by these series. We know from Proposition 4.13
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that L� Coeff(C) and that we have a direct sum decomposition

L= L+⊕L−,

where L± ⊂ L are Lie subalgebras closed under the derivation

∂ : L→ L, ∂(i(n)) =−ni(n−1). (47)

We have an isomorphism of graded vector spaces (compatible with derivations)

C
∼−−→ Coeff(C)−

∼−−→ L−, a(z) 	→ a(z)(−1) 	→ Resz z
−1a(z). (48)

Moreover, the principal free vertex algebra PQ is isomorphic to the universal enveloping
vertex algebra of the vertex Lie algebra C

PQ � U(C) = U(L)⊗U(L+)Q. (49)

We also have an isomorphism of graded vector spaces

PQ � U(L)⊗U(L+)Q� U(L−). (50)

5.2. The graded dual of the principal free vertex algebra

Our first goal is to exhibit a relationship between the underlying objects of PQ and HQ.

Recall from (41) that PQ is equipped with the L-degree as well as the weight

wt(i1(n1). . . ip(n)1) =
∑
k

(
1

2
χ(eik,eik)−nk−1

)
∈ 1

2
Z.

As we are aiming to relate vertex algebras to cohomological Hall algebras, we shall

implement a relationship between half-integer weights and integer cohomological degrees,

defining, for u ∈ PQ, its (cohomological) degree to be

deg(u) =−2wt(u) ∈ Z.

If we superpose the L-degree and the degree we just defined, PQ becomes an object of
VectL×Z with finite-dimensional components Pn

Q,d, for d∈NI and n∈Z; this immediately

follows from the fact that the lattice realisation of free vertex algebras allows us to view

PQ as a subspace of the total Fock space VL. We define the graded dual space of PQ by
the formula

P∨
Q =

⊕
d∈NI

P∨
Q,d, P∨

Q,d =Hom(PQ,d,Q) =
⊕
n∈Z

(P−n
Q,d)

∨.

Let us describe this graded dual directly. For a dimension vector d ∈NI , let p= |d| and
Homj = (j1, . . . ,jp) be any sequence of vertices with ej1 + · · ·+ejp = d. We shall associate

to such sequence Homj and ξ ∈ P∨
0,d an element Fξ,Homj(z1, . . . ,zp) ∈ Q((z1)). . . ((zp))

given by the formula

Fξ,Homj(z1, . . . ,zp) =
∏
k<l

(zk− zl)
N(jk,jl) · 〈ξ,Y (j1,z1)Y (j2,z2) · · ·Y (jp,zp)1〉.
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Lemma 5.2. For any ξ ∈ P∨
0,d, the Laurent series Fξ,Homj(z1, . . . ,zp) is completely

symmetric under the action of Σp permuting simultaneously the vertices jk and the

variables zk. Moreover, this Laurent series is a polynomial in z1, . . . ,zp.

Proof. By the locality properties of the free vertex algebra PQ, we have

(z−w)N(i,j)Y (i,z)Y (j,w) = (w− z)N(i,j)Y (j,w)Y (i,z), i,j ∈ I.

This shows that the Laurent series∏
k<l

(zk− zl)
N(jk,jl)Y (j1,z1)Y (j2,z2) · · ·Y (jp,zp)1

is fully symmetric under the action of Σp: the product

Y (j1,z1)Y (j2,z2) · · ·Y (jp,zp)

is multiplied by the exactly correct factors to make it completely symmetric.
To prove that Fξ,Homj(z1, . . . ,zp) is a polynomial, we shall argue as follows. Note that∏

k<l

(zk− zl)
N(jk,jl)Y (j1,z1)Y (j2,z2) · · ·Y (jp,zp)1= (51)

∏
k<l

(zk− zl)
N(jk,jl)

∑
n1

j1(n1)z
−n1−1
1

∑
n2

j2(n2)z
−n2−1
2 · · ·

∑
np

jp(np)z
−np−1
p 1.

Examining this formula, we immediately conclude that the Laurent series Fξ,Homj

(z1, . . . ,zp) does not contain any negative power of the last variable zp: the vacuum vector 1

of PQ is annihilated by all generators jp(n) with n≥ 0, and multiplication by the product∏
k<l(zk − zl)

N(jk,jl) does not create negative powers of zp because of the convention
for the geometric series expansion of (z+w)n. Since we already know that the result is

symmetric, we conclude that (51) has no negative powers of any variable, and thus is a

formal power series in z1, . . ., zp. Finally, since we are dealing with the graded dual vector

space, the linear functional ξ is supported at finitely many degrees, and so in∏
k<l

(zk− zl)
N(jk,jl) · 〈ξ,Y (j1,z1)Y (j2,z2) · · ·Y (jp,zp)1〉,

one ends up ignoring all coefficients of our formal power series but finitely many, and we
obtain a polynomial.

We shall now state and prove the main result of this section. For a dimension vector

d ∈ NI , we now make a choice of a concrete sequence of vertices Hom i= (i1, . . . ,ip) with
ei1 + · · ·+ eip = d. For that, we choose an order of I, use this order to identify I with

{1, . . . ,r}, where r = |I|, and put

id1+···+dj−1+k = j, j ∈ I, 1≤ k ≤ dj .

We shall use formal variables zd1+···+dj−1+k = xj,k associated to this sequence of vertices.
Recall from §3.2 that

Λd =
⊗
j∈I

Λdj
=Q[xj,k : j ∈ I, 1≤ k ≤ dj ]

Σd

is a graded algebra with deg(xj,k) = 2 (corresponding to weight −1, cf. §4.1.2).
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Proposition 5.3. We have an isomorphism of graded vector spaces

F : P∨
Q →HQ. (52)

Specifically, for any dimension vector d, the isomorphism P∨
Q,d →HQ,d = Λd[−χ(d,d)]

is given by the formula

ξ 	→ Fξ =
∏
k<l

(zk− zl)
N(ik,il) · 〈ξ,Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp)1〉|zd1+···+dj−1+k=xj,k

.

Proof. We begin with noticing that, according to Lemma 5.2, the polynomial Fξ in

variables xj,k is symmetric with respect to the action of the group Σd =
∏

i∈I Σdi
(the

action of a permutation from Σd simultaneously on the vertices ik and the variables zk
is the same as the action on the variables only). Thus, F is a well-defined map into

Λd[−χ(d,d)].

Let us first check that F is a map of degree zero. Recall that Y (i,z) has weight 1
2χ(ei,ei),

so by our convention deg(u) = −2wt(u), the degree of Y (i,z) is equal to −χ(ei,ei).

Therefore, Fξ has degree

deg(ξ)+2
∑
k<l

N(ik,il)−
∑
k

χ(eik,eik) =

deg(ξ)−
∑
k,l

χ(eik,eil) = deg(ξ)−χ(d,d).

This constant shift of degrees by −χ(d,d) means exactly that the map

F : P∨
Q,d → Λd[−χ(d,d)]

has degree zero.

Let us show that F is injective. Suppose that for some ξ ∈ P∨
Q,d, we have Fξ = 0.

According to Lemma 5.2, this implies that∏
k<l

(zk− zl)
N(ik,il) · 〈ξ,Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp)1〉= 0

for any sequence of vertices with ei1 + · · ·+eip = d. Since Fξ is a polynomial, its product
with

∏
k<l(zk − zl)

−N(jk,jl) (expanded according to the binomial expansion convention)

is well defined, so we may conclude that

〈ξ,Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp)1〉= 0.

Extracting coefficients of individual monomials zm1
1 · · ·zmp

p , we see that ξ vanishes on all

vectors i1(n1)i2(n2). . . ip(np)1 ∈ P0,d, so ξ = 0.

Let us finally show that F is surjective. For that, we shall use the lattice vertex operator
realisation, replacing Y (ik,zk) by vertex operators Γik(zk) = Γeik

(zk) and 1 by |0〉. Recall
that we established the equality (44)

Γα(z)Γβ(w) = (z−w)χ(α,β)Sα+βΓ
−
α (z)Γ

−
β (w)Γ

+
α (z)Γ

+
β (w)z

(α,−)w(β,−).

This implies, more generally, that
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Γi1(z1). . .Γip(zp) =∏
k<l

(zk− zl)
χ(eik,eil )Γ−

i1
(z1). . .Γ

−
ip
(zp)Γ

+
i1
(z1). . .Γ

+
ip
(zp)z

(ei1,−)
1 · · ·z(eip,−)

p ,

and therefore, ∏
k<l

(zk− zl)
N(ik,il) · 〈ξ,Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp)1〉=

∏
k<l

(zk− zl)
N(ik,il) · 〈ξ|Γi1(z1). . .Γip(zp)|0〉=

∏
k<l

〈ξ|Γ−
i1
(z1). . .Γ

−
ip
(zp)Γ

+
i1
(z1). . .Γ

+
ip
(zp)z

(ei1,−)
1 · · ·z(eip,−)

p |0〉=

〈ξ|Γ−
i1
(z1). . .Γ

−
ip
(zp)|0〉,

where the last equality uses the definition χ(eik,eil) = −N(ik,il) of the Euler form and

the obvious fact that Γ+
i (z)|0〉= |0〉 for all i. Thus, we may write∏

k<l

(zk− zl)
N(ik,il) · 〈ξ,Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp)1〉|zd1+···+dj−1+k=xj,k

=

〈ξ|Γ−
i1
(z1). . .Γ

−
ip
(zp)|0〉|zd1+···+dj−1+k=xj,k

=

〈ξ|
∏
j∈I

exp

(∑
n>0

ej,−n

∑dj

k=1x
n
j,k

n

)
|0〉.

If we now expand the exponentials, we obtain the formal infinite sum of all standard

basis vectors
∏

js,ns
eas
js,−ns

of the Fock space Vd with coefficients being scalar multiples
of monomials in the power sum Σd-symmetric functions [46]. Since every Σd-symmetric

function is a polynomial in the power sum symmetric functions, we may obtain each Σd-

symmetric function for a suitable choice of a linear functional on Vd, and the surjectivity

claim follows.

Using our result, we can immediately recover the formula for the Poincaré series

Z(PQ,x,q) proved in [47, Theorem 5.3] using combinatorial bases for free vertex algebras.

Corollary 5.4. We have

Z(PQ,x,q) =
∑
d∈NI

(−q
1
2 )χ(d,d)

(q)d
xd.

Proof. By Proposition 3.2, we have

Z(HQ,x,q) =
∑
d∈NI

(−q
1
2 )−χ(d,d)

(q−1)d
xd.

However, by the established isomorphism, we have Z(PQ,x,q) = Z(P∨
Q,x,q

−1) =

Z(HQ,x,q
−1).
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5.3. The coalgebra structure of the principal free vertex algebra

Our next goal is to unravel a canonical coproduct on PQ (cf. Proposition 4.5) and to

relate it to the product on HQ. The universal enveloping algebra U(L) is a bialgebra,

with the canonical coproduct Δ. Because of this coproduct, the tensor product PQ⊗PQ

acquires a U(L)-module structure; note that the action of U(L) has obvious signs arising
from the braiding.

Proposition 5.5. There exists a unique morphism of U(L)-modules δ : PQ → PQ⊗PQ

for which δ(1)=1⊗1. This morphism makes PQ a cocommutative coassociative coalgebra.

Proof. Recall that PQ may also be described as U(L)/U(L)X+, where

X+ = { i(n) ∈X |n≥ 0}.

The U(L)-module morphism condition implies that

δ(i(n)w) = (i(n)⊗ id+id⊗i(n))δ(w)

for all w ∈ PQ, and so it is clear that if the morphism δ exists, then it is unique, and is

induced by Δ. Thus, all we have to show is that Δ descends to the quotient by the left

ideal generated by X+, which follows from the property

Δ(X+)⊂X+⊗Q+Q⊗X+.

Recall that we have an isomorphism of graded vector spaces (50)

PQ � U(L)⊗U(L+)Q� U(L−).

The above coproduct on PQ can be identified with the canonical coproduct on U(L−) (cf.
Proposition 4.6). We are now ready to state and prove the main result of this section.

Theorem 5.6. The isomorphism F : P∨
Q →HQ of Proposition 5.3 sends the product δ∨

of the commutative associative algebra P∨
Q to the shuffle product of HQ.

Proof. Suppose that ζ ∈ P∨
Q,d, ξ ∈ P∨

Q,e and Hom i= (i1, . . . ,ip) is a sequence of vertices

such that
∑

k eik = d+e. According to the proof of Proposition 5.3,

Fδ∨(ζ⊗ξ) =
∏
k<l

(zk− zl)
N(ik,il) · 〈δ∨(ζ⊗ ξ),Y (i1,z1). . . Y (ip,zp)1〉. (53)

The map δ∨ is completely defined by

〈δ∨(ζ⊗ ξ),u〉= 〈ζ⊗ ξ,δ(u)〉

for all u ∈ PQ. Note that

δ(Y (i1,z1)Y (i2,z2). . .Y (ip,zp)1) =∑
A�B=[1,p]

(−1)κ(A,B) ·
∏
a∈A

Y (ia,za)1⊗
∏
b∈B

Y (ib,zb)1,

where κ(A,B) =
∑

a>bχ(ia,ib), for A�B = [1,p] = {1, . . . ,p}, and the products over A and

B are taken in the increasing order. For the calculation of the symmetric polynomial (53),
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we need to consider only A,B with dim(A) =
∑

a∈A eia = d and dim(B) = e. Recalling

that the pairing of P∨
Q,d ⊗ P∨

Q,e with PQ,d ⊗ PQ,e produces an extra sign (−1)χ(d,e)

according to the braiding, we see that Fδ∨(ζ⊗ξ) is equal to∏
k<l

(zk− zl)
N(ik,il)×

∑
A�B=[1,p]

(−1)κ(A,B)+χ(d,e)

〈
ζ,

∏
a∈A

Y (ia,za)1

〉〈
ξ,

∏
b∈B

Y (ib,zb)1

〉
.

The product
∏

k<l(zk − zl)
N(ik,il) is equal to the product of four terms, according to

whether each of the two elements k and l belongs to A or to B. Note that

∏
a<a′

(za− za′)N(ia,ia′ )

〈
ζ,

∏
a∈A

Y (ia,za)1

〉

is precisely Fζ , and

∏
b<b′

(zb− zb′)
N(ib,ib′ )

〈
ξ,

∏
b∈B

Y (ib,zb)1

〉

is precisely Fξ, so we just need to investigate the factor by which their product is
multiplied; that is,

(−1)κ(A,B)+χ(d,e)
∏
a<b

a∈A,b∈B

(za− zb)
N(ia,ib)

∏
b<a

a∈A,b∈B

(zb− za)
N(ib,ia)

= (−1)κ(A,B)+χ(d,e)
∏
b<a

a∈A,b∈B

(−1)N(ia,ib)
∏

a∈A,b∈B

(za− zb)
N(ia,ib),

= (−1)χ(d,e)
∏

a∈A,b∈B

(za− zb)
N(ia,ib) =

∏
a∈A,b∈B

(zb− za)
N(ia,ib).

Recalling the shuffle product formula (8), we see that

Fδ∨(ζ⊗ξ) = Fζ ∗Fξ,

so the isomorphism F recovers precisely the shuffle product of CoHA.

5.4. A new proof of positivity of Donaldson–Thomas invariants

The above results together with the isomorphism of graded vector spaces (50)

PQ � U(L)⊗U(L+)Q� U(L−)

have an interesting consequence: another proof of Efimov’s positivity theorem for refined
Donaldson–Thomas invariants [14, Theorem 1.1]. To see that, we shall study the Lie

algebra L− in more detail. Recall from §5.1 that L− is stable under the derivation

∂ : L→ L.
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Theorem 5.7. Let Q be a symmetric quiver. Then the coalgebra H∨
Q has a canonical

structure of a cocommutative connected vertex bialgebra. The space of primitive elements

C = P (H∨
Q) ∈VectL×Z

is a vertex Lie algebra (also having a structure of a Lie algebra) such that H∨
Q �U(C) as

vertex bialgebras. The derivation ∂ on C has L-degree zero and cohomological degree −2,

and C is a free Q[∂]-module such that the space of generators

C/∂C =
⊕
d∈L

Wd =
⊕

d∈L,k∈Z

W k
d

has finite-dimensional components Wd and k ≡ χ(d,d)(mod 2) whenever W k
d �= 0.

Proof. We have H∨
Q � PQ � U(C) for the vertex Lie algebra C ; see §5.1. Therefore,

H∨
Q has a structure of a cocommutative connected vertex bialgebra and P (H∨

Q) � C by
Propositions 4.5 and 4.6. We can identify C with L−, and we will show that L− satisfies

the required properties. Theorem 5.6 implies that we have an isomorphism of coalgebras

H∨
Q � PQ � U(L−).

Let us define another derivation of L, which we shall denote t ; it acts on the generators
of L by the formula t(i(n)) = −i(n+1). By direct inspection, t preserves all relations

of L, and thus acts on this algebra. Moreover, this derivation preserves the subalgebra

L+, and so acts on the vector space L/L+ � L−. We note that [∂,t] = id on the space
of generators; it follows that [∂,t] = |d| · id on each graded component (L−)d. Thus, each
such component is a Z-graded module over the Weyl algebra A1 = Q[t,∂] of polynomial

differential operators on the line (on which ∂ acts by an endomorphism of weight 1 and
t acts by an endomorphism of weight −1). Since we can embed (L−)d ⊂ P0,d ⊂ Vd (the

Fock space), weights of (L−)d are bounded from below. Therefore, by Lemma 5.8, we

obtain L− �W ⊗Q[∂], for W � L−/∂L−.
The Fock space Vd has finite-dimensional weight components, and its weights are

bounded below. Moreover, each vector of Vd is obtained from |d〉 by action of elements of

integer weights; hence, all weights of Vd are of the form 1
2χ(d,d)+n, for some n ∈ Z. The

corresponding degree is congruent to χ(d,d)(mod 2). The same applies to Wd ⊂ Vd, and
we conclude that ch(Wd) ∈N((q

1
2 )). It remains to establish that Wd is finite-dimensional,

and for this, we will show that ch(Wd) ∈ N[q±
1
2 ].

Since H∨
Q � U(L−) and L− �W ⊗Q[∂], we obtain

Z(HQ,x,q
−1) = Exp(Z(L−,x,q)) = Exp

(
Z(W,x,q)

1− q

)
.

Applying formula (15) for DT invariants, we obtain

Z(W,x,q) =
∑
d

(−1)χ(d,d)Ωd(q
−1)xd,
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meaning that ch(Wd) =Ωd(q
−1). Let us now use characters of CoHA-modules. According

to (16), for any w ∈ NI , we have

Z(Mw,x,q
−1) = Exp

(∑
d

qw·d−1

q−1
(−1)χ(d,d)Ωd(q

−1)xd

)
.

All componentsMw,d of the CoHA module Mw are finite-dimensional (as the cohomology
of an algebraic variety); hence, Z(Mw,x,q

−1) ∈ Z[q±
1
2 ][[xi : i ∈ I]]. This implies that for

all d,
qw·d−1

q−1
ch(Wd) =

qw·d−1

q−1
Ωd(q

−1)

is an element of Q[q±
1
2 ] (actually Z[q±

1
2 ], but we do not need this). We can choose

w ∈ NI such that w ·d > 0. We have just shown that the product of the polynomial
qw·d−1
q−1 ∈N[q] and the series ch(Wd) ∈N((q

1
2 )) is a Laurent polynomial. This implies that

ch(Wd) ∈ N[q±
1
2 ], as required.

Lemma 5.8. Let A1 = Q[t,∂] be the Weyl algebra (with ∂t− t∂ = 1) equipped with the

weight grading wt(∂) = 1, wt(t) =−1, and let M =
⊕

n∈Z
Mn be a bounded below graded

A1-module. Then M is a free module over Q[∂]. More precisely, ∂ : M →M is injective,

and we have M =
⊕

n≥0 ∂
n(V ), for any graded subspace V ⊂M such that M = V ⊕ im(∂).

Proof. Assume that ∂v = 0 for some (homogeneous) v ∈ M . Then the subspace

〈tnv : n≥ 0〉 is an A1- submodule. It is finite-dimensional as tnv = 0, for n 0, by degree

reasons. But there are no nonzero finite-dimensional A1-modules; hence, we conclude that

v = 0.
Let V ⊂M be a graded subspace such that M = V ⊕ im(∂). If the sum

∑
n≥0 ∂

n(V ) is

not direct, we can find vk ∈ V such that
∑n

k=0 ∂
k(vk) = 0 and vn �= 0. As ∂ is injective, we

can assume that v0 �= 0. But v0 ∈ V ∩ im(∂) = 0, which is a contradiction. To show that

x ∈Mk is contained in
∑

n≥0 ∂
n(V ), we proceed by induction on k. We can decompose

x= v+∂(y), where v ∈ Vk and y ∈Mk−1. By induction, y ∈
∑

n≥0 ∂
n(V ); hence, ∂(y) ∈∑

n≥1 ∂
n(V ). We conclude that x= v+∂(y) ∈

∑
n≥0 ∂

n(V ).

Remark 5.9. In the proof of [14, Theorem 1.1], a free action of the polynomial ring in

one variable on HQ,d is used to find a space of free generators of HQ. This action on
HQ,d is given by multiplication with

σd =
∑

j∈I,1≤k≤dj

xj,k, (54)

and it can also be obtained as a by-product of our argument. Recall the derivation t from

the proof of Theorem 5.7 that acts on the generators by the formula t(i(n)) =−i(n+1).

This means that

t(Y (i,z)) = t

(∑
n

i(n)z−n−1

)
=

−
∑
n

i(n+1)z−n−1 =−
∑
n

i(n)z−n−2z =−zY (i,z).
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Since t is a derivation, this implies that

t(Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp))|zd1+···+dj−1+k=xj,k
=

−

⎛
⎝ ∑

j∈I,1≤k≤dj

xj,k

⎞
⎠ · Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp)|zd1+···+dj−1+k=xj,k

.

We see that up to a sign the multiplication by (54) is precisely the action of the

endomorphism t∨ on P∨
Q,d. We saw that PQ is isomorphic to U(L−) � Sc(W ⊗Q[∂]) as

a coalgebra; after taking graded duals (which can be implemented by doing the Fourier
transform for differential operators), the modules become Q[t∨]-free.

Let us record a simple consequence of Theorem 5.7.

Corollary 5.10. For any symmetric quiver Q, consider the graded vertex bialgebra H∨
Q

and its space of primitive elements C = P (H∨
Q), which is a vertex Lie algebra. Then the

corresponding Donaldson–Thomas invariants satisfy

Ωd(q
−1) = ch(Cd/∂Cd) ∈ N[q±

1
2 ].

Proof. We established that H∨
Q � PQ and that the principal free vertex algebra PQ is

isomorphic to universal enveloping vertex algebra of a vertex Lie algebra C. We have

seen in the proof of Theorem 5.7 that Ωd(q
−1) = ch(Wd), where L− =W ⊗Q[∂], so that

W � L−/∂L−. Recall that for any vertex Lie algebra C, its coefficient algebra L has a

decomposition L= L−⊕L+ such that C � L− (as a graded vector space). Moreover, we

have

L/∂L� L−/∂L− � C/∂C, (55)

which completes the proof.

This statement is easily generalisable to the following appealing conjecture suggesting
a relationship between vertex algebras and more general DT invariants.

Conjecture 5.11. For each CoHA H associated to a (symmetric) quiver with potential,

its dual H∨ can be equipped with a vertex bialgebra algebra structure (cf. [33]) such that

the corresponding perverse graded object is isomorphic to the universal enveloping vertex
algebra of some vertex Lie algebra C. The corresponding DT invariants are equal to the

characters of the components of C/∂C.

5.5. Relationship to the vertex algebras of Joyce

In this section, we will briefly explain the relationship of our results to the geometric

construction of vertex algebras proposed in [33] (see also [3, 27, 28, 37]). In order to do

this, we will need to formulate a minor generalisation of that construction. Let us assume

that we have the following data

(1) A lattice L equipped with a symmetric bilinear form χ.

(2) An abelian category A and a linear map cl :K0(A)→ L.
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(3) A moduli stack M of object in A such that the substack Md of objects E ∈M with

cl(E) = d is open and closed and there exist natural morphisms of stacks

(a) Φ :M×M→M that maps (E,F ) 	→ E⊕F .

(b) Ψ :BGm×M→M that maps Gm×Aut(E) � (t,f) 	→ tf ∈Aut(E), for E ∈A.

(4) A perfect complex Θ on M×M such that

(a) Θ is weakly-symmetric, meaning that

[σ∗Θ∨] = [Θ] (56)

in the Grothendieck group of M×M, where σ : M×M → M×M is the

permutation of factors.

(b) The restriction Θd,e =Θ|Md×Me has constant rank χ(d,e) for all d,e ∈ L.

(c) We have

(Φ× idM)∗Θ� π∗
13Θ⊕π∗

23Θ, (idM×Φ)∗Θ� π∗
12Θ⊕π∗

13Θ,

(Ψ× idM)∗Θ� U�Θ, (idM×Ψ)∗Θ� U∨�Θ,

where πij :M
3 →M2 is the projection to the corresponding factors and U is the

universal line bundle over BGm.

The proof of the following result goes through the same lines as in [33].

Theorem 5.12. Consider the L×Z-graded vector space

V =
⊕
d∈L

Vd =
⊕
d∈L

H∗(Md)[χ(d,d)]

so that the component of Vd of homological degree k (and weight 1
2k) is Hk−χ(d,d)(Md).

Then V has a structure of a graded vertex algebra (in the symmetric monoidal category

VectL×Z with the braiding induced by χ) defined by

(1) 1= η∗(1) ∈H0(M0), where η : pt→M is the inclusion of the zero object.

(2) The operator T : V → V of homological degree 2 (and weight 1) is defined by T (v) =

Ψ∗(t�v), where t ∈H2(BGm) =H2(P
∞) is the canonical generator.

(3) For u ∈Hk(Md), v ∈H∗(Me), we define

Y (u,z)v = (−1)kχ(d,d)zχ(d,e)Φ∗
(
(ezT ⊗ id)((u�v)∩ cz−1(Θd,e))

)
.

Let us show that the above vertex algebra construction can be applied in the case of

the moduli stack of representations of a symmetric quiver. Let Q be a symmetric quiver
with the set of vertices I. Let L=ZI and χ be the Euler form of Q. Let A be the category

of representations of Q and M be the stack of representations of Q. We have a linear

map dim :K0(A)→ L. We define the perfect complex Θ = RHom over M×M such that
its fiber over (M,N) ∈M×M is isomorphic to RHom(M,N) ∈Db(Vect). The rank of Θ

over Md×Me is equal to χ(d,e). In order to apply Theorem 5.12, we need to prove that

Θ is weakly-symmetric (56).
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Lemma 5.13. We have

[σ∗Θ∨] = [Θ]

in the Grothendieck group of M×M.

Proof. Let A = CQ be the path algebra of Q. For every i ∈ I, let ei ∈ A be the

corresponding idempotent and P = Aei be the corresponding projective A-module. For
any representation M, we have the standard projective resolution

0→
⊕
a:i→j

Pj ⊗Mi →
⊕
i

Pi⊗Mi →M → 0.

Therefore, RHom(M,N) can be written as a complex

· · · → 0→
⊕
i

Hom(Mi,Ni)→
⊕
a:i→j

Hom(Mi,Nj)→ 0→ . . .

Similarly, RHom(N,M) can be written as a complex

· · · → 0→
⊕
i

Hom(Ni,Mi)→
⊕
a:i→j

Hom(Ni,Mj)→ 0→ . . .

Using the fact thatQ is symmetric and that Hom(Ni,Mj)�Hom(Mj,Ni)
∨, we can rewrite

this complex in the form

· · · → 0→
⊕
i

Hom(Mi,Ni)
∨ →

⊕
a:i→j

Hom(Mi,Nj)
∨ → 0→ . . .

This implies that [RHom(M,N)∨] = [RHom(N,M)]. The statement of the lemma is a

global version of this observation.

Applying the previous lemma and the construction of Theorem 5.12, we obtain a vertex

algebra structure on H∗(M)�H∨
Q.

Conjecture 5.14. The vertex algebra structure on H∗(M)�H∨
Q coincides with the vertex

algebra structure constructed earlier on PQ �H∨
Q; see Proposition 5.3 and Theorem 5.7.

However, in [37], one constructed a quantum vertex bialgebra structure on H∗(M)

associated with a complex Θ which is not necessarily weakly-symmetric. In the case
of symmetric quivers and Θ = RHom, the resulting quantum vertex algebra structure

on H∗(M) � H∨
Q is actually a vertex algebra (in an appropriate symmetric monoidal

category) because of Lemma 5.13. Therefore, by the results of [37], one has a vertex
bialgebra structure on H∗(M)�H∨

Q. We expect that Conjecture 5.14 can be lifted to the

level of vertex bialgebras, where PQ �H∨
Q is equipped with a vertex bialgebra structure

by Theorem 5.7.
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6. CoHA-modules and free vertex algebras

In this section, we shall use previously obtained identification H∨
Q
∼= PQ to give a new

interpretation of the CoHA modules

Mw =HQ/(e
w
dHQ,d : d> 0)

considered in Section 3.3. Since Mw is a quotient of HQ, it is natural to seek for a

description of M∨
w as a subspace of PQ. In this section, we give two such descriptions. In

§6.1, we interpretM∨
w in terms of the coproduct generalising the coproduct PQ →PQ⊗PQ

considered earlier. In §6.2, we exhibit a combinatorially defined spanning set of M∨
w ⊂PQ.

6.1. Modified coproduct

For each w ∈ NI , let us consider the subset

Xw = { i(n) ∈X |n≥−wi}

of the set of generators of the Lie algebra L, and the corresponding U(L)-module Pw =

U(L)/U(L)Xw with the cyclic vector 1w. For each i∈ I, the series i(z) =
∑

n∈Z
i(n)z−n−1

defines a field on Pw. These series can be used to equip Pw with a structure of a module

over the vertex algebra PQ; clearly, PQ itself is a particular case of this construction for

w = 0.

Note that since w∈NI , we have X+ ⊂Xw, and therefore, there is a canonical surjection
of U(L)-modules π : PQ → Pw. We shall now see how the graded dual

P∨
w =

⊕
d∈NI

P∨
w,d

of Pw is included in P∨
Q. As before, we fix a dimension vector d ∈ NI and let p= |d| and

Homj = (j1, . . . ,jp) be any sequence of vertices with ej1 + · · ·+ ejp = d.

Lemma 6.1. For any ξ ∈ P∨
w,d, the Laurent series

Fξ,Homj(z1, . . . ,zp) =
∏
k<l

(zk− zl)
N(jk,jl) · 〈ξ,Y (j1,z1)Y (j2,z2) · · ·Y (jp,zp)1w〉

is completely symmetric under the action of Σp permuting simultaneously the vertices jp
and the variables zp. Moreover, it is a polynomial divisible by the product z

wj1
1 · · ·zwjp

p .

Proof. The proof is analogous to that of Lemma 5.2; the only difference is that X+ is

replaced by Xw, which has the effect of replacing the property of absence of negative
powers by the property of absence of powers of zp that are less than wjp .

Proposition 6.2. For any d ∈ NI , we have an isomorphism of graded vector spaces

F : P∨
w,d → ewd Λd[−χ(d,d)], ewd =

∏
i∈I

di∏
k=1

xwi

i,k,

https://doi.org/10.1017/S1474748024000288 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000288


332 V. Dotsenko and S. Mozgovoy

defined by the formula

ξ 	→ Fξ =
∏
k<l

(zk− zl)
N(ik,il) · 〈ξ,Y (i1,z1)Y (i2,z2) · · ·Y (ip,zp)1w〉,

where p= |d|, id1+···+dj−1+k = j and zd1+···+dj−1+k = xj,k, for j ∈ I and 1≤ k ≤ dj.

Proof. Completely analogous to that of Proposition 5.3.

We note that ewd Λd[−χ(d,d)]� ewd HQ,d is precisely one of the vector spaces used in the
shuffle algebra description (14) of the module Mw. To use this observation, we consider

the surjection π : PQ → Pw and define a U(L)-module map

ρw := (id⊗π)δ : PQ → PQ⊗Pw,

which can be interpreted as a coaction of the cocommutative coalgebra Pw on its comodule
PQ. Explicitly, we have

ρw(i1(n1)i2(n2). . . ip(np)1) =
∑

A�B={1,...,p}
(−1)κ(A,B) ·

∏
a∈A

ia(na)1⊗
∏
b∈B

ib(nb)1w, (57)

where κ(A,B) =
∑

a>bχ(ia,ib). Note that the projection of ρw(v) to PQ⊗Pw,0 is equal

to v⊗1w. Since the description of the module Mw uses the spaces ewd HQ,d with d > 0,

it will be useful to consider the reduced coaction

ρ̄w : PQ
ρw−−→ PQ⊗Pw → PQ⊗ P̄w, P̄w = Pw/Pw,0.

Using the isomorphism P̄w �
⊕

d>0Pw,d, we can write ρ̄w in the form

ρ̄w(v) = ρw(v)−v⊗1w.

Theorem 6.3. The kernel of the map ρ̄w is isomorphic to the graded dual of the CoHA-
module

Mw =HQ/(e
w
dHQ,d : d> 0).

Proof. Note that we have an exact sequence

0→ ker(ρ̄w) ↪→ PQ
ρ̄w−−→w PQ⊗ P̄w,

which, after passing to graded duals, becomes

0← ker(ρ̄w)∨ � P∨
Q

ρ̄∨
w←−− P∨

Q⊗ P̄∨
w.

Using the isomorphisms of Propositions 5.3, 6.2, we obtain the diagram

0 ker(ρ̄w)∨ P∨
Q P∨

Q⊗ P̄∨
w

0 Mw HQ H⊗
(⊕

d>0 e
w
dHQ,d

)
,

F F⊗F

ρ̄∨
w

∗
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where the bottom right map is the shuffle product by Theorem 5.6. Its cokernel is
isomorphic to the CoHA module Mw by (14). Therefore, we obtain an isomorphism

ker(ρ̄w)∨ �Mw.

6.2. Subspace construction

We shall now exhibit an explicit combinatorial spanning set of the subspace ker(ρ̄)⊂ PQ.
Let Qw be the subspace of PQ � U(L)⊗U(L+)Q obtained by applying elements of Xw =

{ i(n) |n≥−wi} to the vacuum 1 ∈ PQ.

We can also interpret this space as follows. Let Lw
+ denote the Lie subalgebra of L

generated by the set Xw. As X+ ⊂Xw, for w ∈ NI , we have L+ ⊂ Lw
+ . Then Qw can be

identified with

Qw = U(Lw
+)⊗U(L+)Q,

where Q is equipped with the structure of the trivial L+-module.

We can actually identify Qw with the universal enveloping algebra of a certain Lie

algebra as follows. Consider the Lie algebra isomorphism

τw : L→ L, i(n) 	→ i(n−wi), (58)

which extends to the isomorphism U(L) → U(L). Note that τw maps L+ to Lw
+

isomorphically; we also define a new Lie algebra Lw
− = τw(L−), leading to the direct

sum decomposition L= Lw
− ⊕Lw

+ . As L+ ⊂ Lw
+ , we have direct sum decompositions

L= Lw
− ⊕Lw

◦ ⊕L+, Lw
+ = Lw

◦ ⊕L+, Lw
◦ = L−∩Lw

+, (59)

where Lw
◦ is a Lie algebra, being an intersection of two Lie algebras. We conclude that

Qw = U(Lw
+)⊗U(L+)Q� U(Lw

◦ ). (60)

Theorem 6.4. For each w ∈ NI , we have a commutative diagram

P∨
Q HQ

Q∨
w Mw.

F

∼

Proof. According to Theorem 6.3, we have M∨
w � ker(ρ̄w), so we need to show that

ker(ρ̄w) = Qw. Let us first remark that Qw ⊂ ker(ρ̄w). Indeed, if

v = i1(n1)i2(n2). . . ip(np)1 ∈ Qw

with ik(nk) ∈Xw for all k, then in Formula (57), we have
∏

b∈B ib(nb)1w = 0 whenever
B �=∅. Therefore, ρ(v) = v⊗1w and ρ̄(v) = 0.

To establish that the inclusion Qw ⊂ ker(ρ̄w) is an equality, it is sufficient to show that

these two subspaces of PQ have the same Poincaré series; that is,

Z(Qw,x,q) = Z(ker(ρ̄),x,q).
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We shall now prove this equality. The left-hand side computation will use various
results about vertex Lie algebras. We have already seen that there is an isomorphism

Qw �U(Lw
◦ ). The decomposition (59) implies, together with the Poincaré–Birkhoff–Witt

theorem, that we have an isomorphism of L×Z-graded vector spaces

U(L−)� U(L)⊗U(L+)Q� U(Lw
−)⊗U(Lw

◦ ),

and therefore,

Z(U(L−),x,q) = Z(U(Lw
−),x,q) ·Z(U(Lw

◦ ),x,q),

or, equivalently,

Z(U(Lw
◦ ),x,q) = Z(U(L−),x,q) ·Z(U(Lw

−),x,q)−1.

According to Corollary 5.4, we have

Z(U(L−),x,q) = Z(HQ,x,q
−1) =AQ(x,q

−1).

This formula can be used to determine the Poincaré series of U(Lw
−) = τw(U(L−)). Indeed,

we have wt(τw(i(n)) = wt(i(n))+wi. Therefore, for any graded subspace M ⊂U(L)d, we

have ch(τw(M)) = qw·d ch(M) and, for any L×Z-graded subspace M ⊂ U(L), we have

Z(τw(M),x,q) = S2wZ(M,x,q),

where Sw(xd) = q
1
2w·dxd. This implies

Z(U(Lw
−),x,q) = S2wZ(U(L−),x,q) = S2wAQ(x,q

−1),

and so we may conclude that

Z(Qw,x,q) = Z(U(Lw
◦ ),x,q) =AQ(x,q

−1) ·S2wAQ(x,q
−1)−1.

At the same time, according to Theorem 6.3, we have

Z(ker(ρ̄),x,q) = Z(Mw,x,q
−1).

Since Proposition 3.4 asserts that Z(Mw,x,q) = AQ(x,q) ·S−2wAQ(x,q)
−1, we conclude

that

Z(ker(ρ̄),x,q) =AQ(x,q
−1) ·S2wAQ(x,q

−1)−1 = Z(Qw,x,q),

which completes the proof.

Remark 6.5. Let us consider the quiver Q with one vertex 1 and two loops. Its Euler
form on ZI � Z is given by χ(e1,e1) =−1, and the Lie algebra L is the Lie superalgebra

generated by odd elements an, n ∈ Z, such that

[am,an] = [am−1,an+1], m,n ∈ Z.

This is precisely the algebra considered in [10], where it was proved that for w = 1 and
d= n, the dimension of Qw,d is given by the n-th Catalan number, and incorporating the

weight leads to the q-analogue of the Catalan numbers introduced by Carlitz and Riordan

[6]. We can recover this result using Theorem 6.4, which asserts that we should check the
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same for the dimension ofMw,d. The latter vector space is, up to a degree shift, isomorphic

to the cohomology of the non-commutative Hilbert scheme H
(2)
n,1 =Hilbn,1. According to

[54], its dimension is indeed the n-th Catalan number. Moreover, the Poincaré polynomial

of H
(2)
n,1 computed in [54] is easily seen to produce the expected q-Catalan number.

Recall that Qw is spanned by elements obtained by applying elements of

Xw = { i(n) |n≥−wi}

to the vacuum 1 ∈ PQ. Extracting from these elements a basis of Qw is far from obvious;

for example, it does not seem that either of the two known combinatorial descriptions

of a basis in PQ (obtained in [58, Theorem 1] and in [47, Theorem 4.8]) is easy to use
to describe a basis of Qw. If one is in the situation for which the locality relations form

a Gröbner basis (for the most obvious order of monomials, such quivers are classified in

[11]), such a description exists. For example, for each n≥ 1, if one considers the quiver on n

vertices with two loops at each vertex and one arrow i→ j for each i �= j, and the framing
vector w = (1,1, . . . ,1), the locality relations form a Gröbner basis, and one recovers the

result of [10, Theorem 1] stating that the space Qw has an explicit combinatorial basis

labeled by parking functions on {1, . . . ,n}.
However, one can describe an explicit basis of Mw parametrised by subtrees of the tree

of paths in the framed quiver [15, 54] (this basis depends on some non-canonical choices).

In the recent paper [19], a canonical basis of Mw was constructed. Taking the dual basis
of M∨

w � Qw, we obtain a canonical combinatorial basis of Qw.

6.3. Poincaré series of the Lie algebra L+

We shall now use our results on the Poincaré series of CoHA-modules to establish a
surprising symmetry formula, showing that the Poincaré series of Lie algebras L− and

L+ add up to zero. To the best of our knowledge, this result does not follow from the

general principles. It would be interesting to determine the class of vertex Lie algebras

for which such symmetry holds.

Theorem 6.6. The Poincaré series Z(L−,x,q) and Z(L∨
+,x,q) belong to the subring

Q(q
1
2 )[[xi : i ∈ I]]⊂Q((q

1
2 ))[[xi : i ∈ I]].

In that subring, we have the equality

Z(L−,x,q
−1) =−Z(L∨

+,x,q).

Proof. We have L= Lw
− ⊕Lw

◦ ⊕L+ and Lw
+ = Lw

◦ ⊕L+ by (59). Therefore,

Z(L−,x,q) = Z(Lw
−,x,q)+Z(Lw

◦ ,x,q),

Z((Lw
+)∨,x,q) = Z((Lw

◦ )∨,x,q)+Z(L∨
+,x,q).

Note that

Z(Lw
−,x,q) = Z(τwL−,x,q) = S2wZ(L−,x,q),

Z((Lw
+)∨,x,q) = Z((τwL+)

∨,x,q) = S−2wZ(L∨
+,x,q).
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Hence,

Z(Lw
◦ ,x,q) = Z(L−,x,q)−S2wZ(L−,x,q), (61)

Z((Lw
◦ )∨,x,q) = S−2wZ(L∨

+,x,q)−Z(L∨
+,x,q). (62)

By Corollary 5.4, we have

Exp(Z(L−,x,q)) = Z(U(L−),x,q) =
∑
d∈NI

(−q
1
2 )χ(d,d)

(q)d
xd.

Hence, this series as well as Z(L−,x,q) are contained in Q(q
1
2 )[[xi : i ∈ I]], and we can

interpret (61) as an equality in this ring and obtain

Z(Lw
◦ ,x,q

−1) = Z(L−,x,q
−1)−S−2wZ(L−,x,q

−1). (63)

We have U(Lw
◦ ) �M∨

w by Theorem 6.4 and (60). All components of the module Mw

are (degree shifted) cohomology of algebraic varieties, so they are finite-dimensional.

Therefore, components of Lw
◦ are also finite-dimensional, meaning that the coefficients

of the power series Z(Lw
◦ ,x,q) are Laurent polynomials in q

1
2 and Z(Lw

◦ ,x,q
−1) =

Z((Lw
◦ )∨,x,q). Comparing (63) and (62), we obtain

S2wZ(L−,x,q
−1)−Z(L−,x,q

−1) = Z((Lw
+)∨,x,q)−S2wZ(L∨

+,x,q).

Letting w→∞ (meaning that wi →∞ for all i∈ I), we obtain the required equation.

This result implies that there exists a version of Corollary 5.10 where the action of ∂
on the Lie algebra L+ is used to determine the refined Donaldson–Thomas invariants. As

a consequence, one obtains a strong supporting evidence for the Koszulness conjecture

of [11]. More precisely, in [11], one constructed some explicit quadratic algebra AQ such
that its Koszul dual algebra is isomorphic to U(L+) and

Z(AQ,q
1
2x,q) =AQ(x,q). (64)

By Theorem 6.6, we have

Z(U(L+)
∨,x,q) = Z(U(L−),x,q

−1)−1 =AQ(x,q)
−1. (65)

Hence,

Z(U(L+)
∨,x,q) ·Z(AQ,q

1
2x,q) = 1, (66)

which is the ‘numerical Koszulness’ property of the algebra AQ.
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