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EMBEDDING NEAR-RINGS INTO
POLYNOMIAL NEAR-RINGS

by JOHN D. P. MELDRUM, GUNTER PILZ and YONG-SIAN SO*
(Received 9th September 1980)

In this paper we will show that large classes of near-rings are embeddable into (or
even isomorphic to) near-rings GV[x] of polynomials over G in a suitably chosen
variety V' of Q-groups.

For near-rings see [2], for polynomials [1]; for near-rings of polynomials over
Q-groups see [3],[4], [5].

We start with the surprising result that every near-ring is a polynomial near-ring:

Theorem 1. For every near-ring N there is a variety V of Q2-groups and a G € V such
that

N < G[x].

Proof. By 1.102 of [2], N can be embedded into a near-ring N with identity 1. Now
we take V' as the subvariety of the variety of all near-rings with identity which is
generated by N (this last restriction is not necessary for the sequel, but seems to be
natural when looking at examples). Now we can consider the map

¢: N — NY[x]: n— nx

¢ easily turns out to be a near-ring homomorphism if NY[x] is considered as a
near-ring w.r.t. addition and composition of polynomials. ¢ is even a monomorphism
(hence an embedding map): take n € Ker ¢. Then nx =0. Suppose that n# 0. Then the
polynomial function f: N — N induced by nx would fulfill f(1)=n1=n#0. Hence f#0
(zero function), whence nx# 0, a contradiction. This proves the theorem.

Now we fix the variety ¥ and take for ¥ some important varieties.

We start with the variety ¢ of groups. Quite unexpectedly, we need information
about the idempotents in G9[x]. G[x] as an additive group is the free sum of the
group G and an infinite cyclic group generated by x. The product is composition of
functions:

(got+zyx+...+z,x+g,) -h=gotz;h+....+z,h+g,
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where g e€G, 0=i=n,z;eZ, 1=i=n and he G[x]. Obviously, constant elements
g€ G and x are idempotent. But that’s all:

Theorem 2. The idempotent elements in G[x] (G a group) are x and the constants.

Proof. Lete=go+z;x+....+2z,x+g, be in reduced (normal) form. deg (e)=n is
the ““degree” of e. If n =1 then it is fairly easy to see that e = x or e = c € G. So suppose
that n=2.

We first remark that if a is an element of a free product of groups written in reduced
normal form, then there is a unique element b of maximal length such that a=
—b+c+b and this expression on the right is already in reduced form. Then the
reduced form of 2c is just ¢ +c. Note that ¢ is the cyclically reduced form of a. The
reduced form of za is then —b + zc + b. In this expression for a, b may be 0, but ¢ never
is.

From the expression for e and the assumptions, we deduce that

eoce=gytze+...+z,e+g,

where g, or g, or both or neither may be zero, but no other terms are zero. Let
e = —a+b+a, with b the cyclically reduced form of e.
If a#0, then ze=—a+zb+a and

ece=gy—a+z,;b+ta+...+g —at+zb+tat+tg—a+....

The only place where cancellations could start is at g for some i. Also a ends in either
g, Or z,x, so the only cancellation possible is the replacement of g by g, + g — g, which
is non-zero. There is no cancellation at the ends of the expression for e c e, except if g
or g, is of order 2. In any case the degrees considered are not affected. Hence

deg(ece)= ). deg(ze)=2dege>dege
i=1
as n=2, dege=n=2 and deg(z,e) =deg e since |z;|=1. Thus in this case eceFe.
Now suppose that a =0. Then the sum e+ e has no cancellations. Consider e e at

&: ) oot zietg tzi e+

If sgn z; #sgn z,.,, again we have
tetg Fe

and, as before, the only possible change is in replacing g, by g, +g — g, or —g,+ & + &o-
So assume that sgn z; =sgn z;,,. Then, at g; we have

otz xtg g tgtzixt.. .,
or

e em I X — ot G g T Z XL

If g, +g + 8o or —go+ g — g, is not zero then there is no more cancellation. If it is zero,
then we have

2(zyx+. ..+ 2z,.x),
or

—2(zx+...+2,x)
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and the cancellation can not proceed more than halfway along the expression +
(z,x+...+z,.x). This means that each g can be considered separately. There is no
cancellation at either end since g,# — g, apart from replacing g, by 2g, or g,— &, and
g, by 2g, or —go+g,. If g, or g, is of order 2 then 2g, or 2g, may be 0. In any case the
degrees  considered are not affected. Also deg(2(z.x+...+zx)=
deg(zx +...+2z.x).

So unless sgn z; is constant for all §, 1=i=n, |z|=1for 1=i=nand g, +g +g=0
(sgnz;=+1)or —go+g—g, =0 (sgnz;=—1) for 1=i=n-1, we have

deg(ece)=2dege=2n>dege=n,
and hence e - e# e. Otherwise we have
eoce=gytgotn(z;x+...+z,x)+g, +g (sgnz,=+1)

or
go— g —h(zix+...+2,x)— g+ (sgnz;=-1)
If ece=e¢, then g, =g, =0 and so sgn z, =sgn z, forces degn(z;x+....+z,x)=n deg

(zyx+...4z,x)=n’~(n—1)>n as n 22. Thus in all cases it is impossible for ece=e
to hold if n=2. This finishes the proof.

Corollary 1. (a) If e is idempotent in Go[x] then e=0 or e =x.
(b) G[x] has exactly |G|+ 1 idempotents.

Corollary 2. Let N be a non-zero subnear-ring of G[x] with identity e. Then e=x.
This holds since e is zerosymmetric.

Corollary 3. Let N be a near-ring with identity e#0 and let ¢: N— Gg[x] be an
embedding map. Then ¢(e) = x.

Corollary 4. Let ¢ be as above. If d € N (d+ 0) is distributive then there is some g€ G
with ¢(d)=g+x—gor N=Z and ¢(d) = zx, zeZ.

Proof. d is zero-symmetric, hence ¢(d) has the form

¢ d)= 2 (& +zx—g) (8€G,z€Z, g gu).

Now
$(d)o(x+x)=d(d)odple+e)=d(de(ete))=d(doet+doe)=d(d+d)=¢(d)+d(d).
Hence . . .

; (g +2zx—g)= 2 (g+zx—g)+ ) (& +zx—g).

i=1 i=1

However, this relation can only hold if the right hand side collapses, i.e. if g, = g,, z, =

~Zy, 8§,_1= g2, and so on. So the right side is either zero, whence g, +2z,—g,+...+

g, +2z,x—g, =0, a contradiction, or n =1 in which case ¢(d)=g,+z,x —g,.
Computing ¢(d °(e+d)) in two ways and comparing the results we obtain z,=1 or

g,=0.1f z;, =1, we have ¢(d)=g+x—g If g, =0, then ¢(d) = z,x. Suppose z, #1 and.
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d(N)>{zx;ze€Z}. Then z;xe(a+b)=z,(a+b), zxca+z;xeb=z,a+z;b. So
z,(a+b)=z,a+ z,b. Take one of the pair a, b to be x, the other to lie in ¢(N), but not
of the form zx, z €e Z. By examining the various cases that can arise it is easy to see that
we get a contradiction. Thus N=7 and ¢(N)={zx; z €Z}.

Now we prove one of the few existing results that certain embeddings can not take
place.

Theorem 3. There exist distributively generated near-rings which cannot be embed-
ded into some G[x].

Proof. Let N be a distributively generated near-ring such that (N, +) is not a free
group (for instance, take N finite, but #{0}). Let ¢ be a monomorphism of N into
some G[x]. Then ¢(N)< Gy[x]. But (Gy[x],+) is a free group and hence so is
(p(N), +). As (¢p(N), +)=(N, +) we have a contradiction.

Consequently, not every generalized distributively generated (g.d.g.) near-ring can be
embedded into some G[x]. Here, a near-ring N is g.d.g. if N is (additively) generated
by distributive and constant elements (see [5]). G[x] itself is g.d.g.

On the other hand we have shown in [5] that every finite near-ring can be embedded
into the g.d.g. near-ring P(G) of all polynomial functions on a suitable finite, simple,
non-abelian group G.

We now consider the embedding of G[x]in P(H) for a suitable group H. To do this
we need some information on the structure of G[x]. From {1], each element of G[x]
can be written uniquely in the form

gtz x—gt...+tg. tz,x—g. +th= Z (g +x—g)+h,
i=1

where each g +x — g is distributive and h is a constant element. It is immediate that
Gp(g+x—g;8e G)=Gilx],
is the free d.g. near-ring on the set,
{g+x-g;8€G}
of distributive elements. Also
(B1tx—g)eo(g2tXx—g)=gi+&B+x—g—g.

So the multiplicative set of distributive elements {g+x —g; g€ G} is a group which is
isomorphic as an abstract group to the additive group (G, +) under the isomorphism

g+x-g—g

As an additive group (G[x],+) has (Gg[x], +) as a normal subgroup and G[x]=
Go[x]+ G.[x] where G_[x] is the constant subnear-ring isomorphic as an additive group
to G. Also, from the normal form given above, if he G[x],

h+(g+x—g)—h=(h+g)+x—(h+g).
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So the automorphism induced in (Gyfx], +) by conjugation by an element he G [x]
maps

g+x—g—(h+g)+x—(h+g).

The automorphisms induced in (Gg[x], +) by the elements of G.[x]= G is that induced
in the free group (Gg[x], +) by the permutation of the free generators of Gg[x] by the
left regular representation.

This determines the additive structure of G[x] completely. Now we consider the
multiplicative structure. Since the right distributive law is satisfied, we only need to
consider products of the form xy where y is a general element and x is either an
element of the form g+x—g or h. But hey=h for all ye G[x]. So consider

(g+x—g)°<z gi+x—gi+h>=g+z gtx—gth—g
i=1

i=1

=

=2 (g+tg+tx—g—g+gth—g

i=1

We now turn to the construction of the group H which we will need. Let G*=
{g*; g€ G} be a set in one-one correspondence with the elements of the group G and
define K to be the free group on the set G*. Let 7: G— Aut K be defined by
1(g) (gF)=(g+g)* for all g, K. This is enough to define 7(g)e Aut K since K is a
free group on G*. Define H as the semidirect product of K by G using 7. Consider
P(H) and note that Py(H)=I(H), the near-ring generated by Inn (H), the inner
automorphisms of H and P.(H)= H. Let the constant map which sends H to he H be
denoted by 6(h).

Without loss of generality, assume that G ¢ H. Consider the subnear-ring N of P(H)
generated by 7(G) and 6(G), where 7(G) are the inner automorphisms of H deter-
mined by G. We first show that Gp (7(G)) is a free group on 7(G).

n

Consider Y g7(g) where ¢, = +1, 1=i=n. Then
i=1

i=

(3 erie) 0= ¥ e

i=1 i=1

g(g+ 0)*
1

Il
I M:

Il
it
Lo
o
%

n
and this is not O unless Y g7(g) is the trivial word since K is free on G*. Hence

Y &7(g)#0 in P(H). It is trivial to check that 7(g,)° 7(g,) = 7(g; + g2). Also 7(g)0* =
i=1

g*# g1 =7(g.)0% if g#g,.

Thus 7(G) is a multiplicative group isomorphic to the additive group G and
Gp (7(G)) is the free d.g. near-ring on 7(G). Call this near-ring Ngo. Then Ny= Gg[x],
with 7(g)—g+x—g. Again it is trivial that 6(g)+7(g)—6(g) =1(g+g). Hence
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(N, ¥)=(G[x],+) and N, =G_[x], No= Gg[x]. Finally consider 7(g) ° (i 7(g)+ G(k))
. i=1
for ke G. Let he H.

n

r(@2 (3 7(8)+000 )00 = (@) (£ (@) +K)

i=1 i=1

= 3 rlgrad+g+k—g=( I rlg+e)+oe+k—g)h).

i=1
This is enough to complete the proof of the following theorem.

Theorem 4. Let G be a group. Then there exists a group H such that G[x] can be
embedded in P(H).

Corollary 5. Let G be a group. Then there exists a group H such that Gg[x] can be
embedded in Py(H).

Note that Py(H)=I(H) and that the group H is isomorphic as a group to (G[x], +) in
the construction given above.

Now we change the variety of groups to &f, the variety of abelian groups. If Ae &
then Alx[:= A¥[x]={a+2zx|ac A, z€Z} is an abstract affine near-ring.

If we look at the variety My of R-modules over a ring R and Me#y then
Mg[x]):= M*=[x]={m+rx | me M, re R} is abstract affine, too.

Hence it is natural to ask which abstract affine near-rings can be embedded into AJx[
or Mg{x]. Alx[ does not suffice, but Mg[x] does an excellent job:

Theorem 5. (i) Not every abstract affine near-ring N can be embedded into some
Alx[(A an abelian group).

(ii) Every abstract affine near-ring is isomorphic to a suitably chosen Mg[x] (Mg an
R-module).

Proof. (i) We take N:=RXxR with + componentwise and (r,s)-(r,s):=
(r+sr', ss'). Then N is an abstract affine near-ring. Suppose that A is an abelian group
with N < Alx[ by some monomorphism ¢. Ny={0}*xR will then be embedded into
(Alx[)o=7Z, a contradiction.

(ii) Let N be an abstract affine near-ring. Then Ny is a ring and the constants N, are
an Ny-module. We consider the map ¢: N — (N.)[x]: 1. +no— n. +nex. ¢ is obvi-
ously a group isomorphism. Also, for all n,n’€ N, n=n. +ny, n' =nl+nj, we get

Y(nn') = Y((n. +np)(ni+np)) = Y(n. + nonl +nent).
Since n. +ngnle N, and ngnje N, this expression equals
(n. +nond +(nonf)x = (n. + nox) ° (nL+ npx) = Y(n) ° Y(n').

Hence we get N=(N_)n,[x]
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The authors hope that these results will help to solve the long-standing problem
whether or not every zerosymmetric near-ring can be embedded into a d.g. near-ring
(see [2], p. 178).
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