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The classical missing at random (MAR) assumption, as defined by Rubin (Biometrika 63:581–
592, 1976), is often not required for valid inference ignoring the missingness process. Neither are other
assumptions sometimes believed to be necessary that result from misunderstandings of MAR. We discuss
three strategies that allowus to use standard estimators (i.e., ignoremissingness) in caseswheremissingness
is usually considered to be non-ignorable: (1) conditioning on variables, (2) discarding more data, and (3)
being protective of parameters.
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Missing data are pervasive in empirical research, and a wide range of methods have been
developed to address this problem. We recommend Little and Rubin (2020) and Allison (2002)
for gentle introductions to these methods and Molenberghs and Kenward (2007) and Daniels and
Hogan (2008) for more technical treatments.

The aim of this IMPS 2015 presidential address is to discuss under what assumptions and
with what modifications to data or models, standard estimators, such as maximum likelihood,
are valid, so that the missingness process can be ignored. The term “ignorable” was used in the
seminal Rubin (1976) article to describe assumptions regarding the missingness process (miss-
ing at random (MAR) and distinctness) that are needed to obtain valid inferences, ignoring the
missingness process. If missingness is ignorable, we can estimate the model of interest, ignoring
the missingness process, by defining the likelihood for all available (AA) data. This AA-data
likelihood can be used for maximum likelihood or Bayesian estimation, and the latter can be
implemented via multiple imputation (without an auxiliary model). Following Little and Zhang
(2011), we will use “ignorable likelihood” (IL) as the umbrella term for these three approaches.

The term “ignoring” in the first part of this paper’s title means not modeling the missingness
mechanism, whereas the term “non-ignorable” in the second part of the title means that Rubin’s
assumptions for ignorability are violated. Instead of modeling the “non-ignorable” missingness
mechanism, some modifications to data or models may be necessary before proceeding with
standard ILmethods. Thesemodifications include conditioning onvariables, discardingmore data,
switching from random-effects to fixed-effects estimation, or introducing additional parameters
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32 PSYCHOMETRIKA

in the model to “protect” the parameters of interest. Which approach to take does not depend on
any parametric assumptions regarding the missingness process but is determined by conditional
independence assumptions between missingness (or selection) indicators and the variables of
interest.

Our plan is as follows. In Sect. 1 we introduce modifications to Rubin’s MAR assumption
and define R-MAR, an assumption that allows valid frequentist inference by IL approaches. In
Sect. 2 we briefly describe three strategies for valid inference when R-MAR is violated, and these
strategies become the topics of Sects. 3, 4, and 5. Whereas C-MAR, the modified MAR require-
ment when conditioning on variables (Strategy 1, Sect. 3), has been discussed in the literature,
confusion about this requirement persists. The idea of discarding more data to relax R-MAR
(Strategy 2, Sect. 4) is new, to our knowledge. We show how it relates to sequential estimation
based on Mohan, Pearl, and Tian’s (2013) ordered factorization theorem and that it is preferable
to sequential estimation when IL methods are applicable. Section4 gives an overview of protec-
tive estimation (Strategy 3, Sect. 5) where estimators and models are selected to protect specific
parameters from being inconsistently estimated due to missing data. In Sect. 5 we end with some
concluding remarks.

1. MAR, its Modifications, and Ignorability

1.1. MAR and its Modifications

We assume throughout that we have a parametric model for our variables of interest with
parameters θ and that we would like to make inferences regarding (possibly a subset) of these
parameters.We also assume that themodel is correctly specified so that we can focus on the impact
ofmissing data. LetUi be the vector of all variables in themodel for unit i , e.g.,Ui = (Xi , Zi ,Yi )′,
with realized values ui = (xi , zi , yi )′. A separate missingness or selection process determines
which of the variables are observed for which units. The vector of selection indicators Si has
elements equal to 1 if the corresponding variable is observed for unit i and 0 if it is missing,
e.g., Si = (Sxi , Szi , S

y
i )′ with 4 realized values si = (sxi , szi , s

y
i )′. We will occasionally say that a

variable is “selected” for a unit, meaning that it is not missing.
Using the notation uobsi for the sub-vector of ui containing the variables that are observed, i.e.,

the variables for which the corresponding elements in si are 1, Rubin’s (1976) MAR assumption
can be written as

P(si |ui ) = P(si |uobsi ).

In words, the probability that the missing variables are missing, given the realized values of
all observed variables, is unchanged, regardless of what values are substituted for the missing
variables (Rubin, 1976; Seaman et al., 2013).1 Rubin (1976) calls the missingness ignorable if
MAR holds and if the parameters of the missingness process are distinct from the parameters of
the model of interest. Under these assumptions, direct maximum likelihood inference (without
frequentist claims) and Bayesian inference are valid. Rubin (1976) did not define missing com-
pletely at random (MCAR), but it later became understood (e.g., Mealli & Rubin, 2015) to mean
P(si |ui ) = P(si ).

An important paper by Seaman et al. (2013) points out that Rubin’s MAR definition has been
widely misunderstood by not recognizing that it refers to the realized selection indicators and
the realized data. Instead, MAR has been interpreted as a conditional independence statement for

1Themissingness process P(si |ui ) depends on parameters φ andMAR requires that the equality holds for all possible
values of φ. We added the i subscript which is permitted because we will assume that Si and U i are i.i.d.
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random variables, Si ⊥⊥ Umis
i |Uobs

i , where Umis
i is the sub-vector of Ui containing the variables

that are not observed andUobs
i is the corresponding sub-vector of variables that are observed. Def-

initions of MAR based on random variables rather than their realized values can be interpreted
as a stricter requirement than Rubin’s MAR, namely that Rubin’s MAR should hold in repeated
samples. Seaman et al. (2013) show that frequentist likelihood inference ignoring the missingness
process requires that MAR always holds (in repeated samples) and calls that assumption “every-
where MAR.” Mealli and Rubin (2015) adopt the same definition and suggest the term “always”
instead of “everywhere.” We will use the acronym A-MAR for always MAR.

A problem with these MAR assumptions is that different units have different variables in
Uobs
i (see also Schafer & Graham, 2002), and it rarely makes sense to assume that a variable Xi

affects selection of other variables only if it is observed, Sxi = 1. An exception would be if X only
affects selection when it has been realized or revealed to the individual (e.g., failing an educational
assessment). Generally, a more plausible MAR condition therefore is what we call realisticMAR
(R-MAR), where missingness cannot depend on any variable that can be missing. Pothoff et al.
(2006) call this assumptionMAR+, Greenland and Finkle (1995) refer to it as “stratifiedMCAR,”
and Mohan et al. (2013) define their MAR assumption this way. If both X and Y can be missing
and Z is always observed, the assumption becomes

R-MAR: Si ⊥⊥ Xi ,Yi |Zi . (1)

Note that it is now valid to write the assumption as a conditional independence statement. In
contrast, the conditional independence statement Si ⊥⊥ Umis

i |Uobs
i is problematic, as pointed out

by Seaman et al. (2013), because Umis
i is a function of Si (in the sense that Si determines which

elements of Ui are missing) and can therefore not be conditionally independent of it.
In their MAR definition, Mohan et al. (2013) refer to variables like X and Y that have

missing values as “partially observed” and to variables like Z that have no missing values as
“fully observed” without discussing what would happen in repeated samples. In contrast, Mealli
and Rubin (2015) use the term “always observed” to clarify that this is not just what happened in
the realized data but that it is an assumption regarding the missingness mechanism. They prove
that when the units are exchangeable, A-MAR implies what we call R-MAR. However, as Mealli
andRubin (2016) point out in an erratum, this is true only if the selection indicators Si aremutually
independent given Ui , which is not required by A-MAR or R-MAR. For instance, A-MAR with
exchangeable units allows for the possibility that selection Sxi of Xi depends on Yi only when Yi
is observed, Syi = 1. These kinds of processes seem odd, which is the reason for our term realistic
MAR, but we will make use of such a process in Sect. 4 to justify one of our approaches, namely
discarding more data.

1.2. Ignorability and IL Methods

Amissingness process is ignorable if it is valid to base inferences on the AA-data likelihood,
ignoring the missingness process, instead of the joint likelihood of the data and the missingness
process. The assumptions required for ignorability depend on the kind of inference we wish to
make, such as direct likelihood, Bayesian, or frequentist likelihood inference. Seaman et al. (2013)
show that A-MAR, together with distinctness of the parameters of themissingness process and the
model of interest, is ignorable for frequentist likelihood inference. The reason is that the likelihood
of the data is proportional to the joint likelihood of the missingness process and the data, and this
is true not just for the realized data but also in repeated samples. Hence, the point estimates and
observed informationmatrix based on the likelihood of the data (ignoring themissingness process)
are identical to those based on the joint likelihood of the data and missingness process in each
repeated sample. Therefore tests and confidence intervals will have the same frequentist properties
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Figure 1.
Linear regression model via multivariate model, SEM.

for both approaches. Using analogous arguments, Bayesian point estimators and credible intervals
have the same repeated sampling properties whether they are based on the likelihood of the data or
the joint likelihood of the data and missingness process. Because R-MAR implies (and is stricter
than) A-MAR, R-MAR is also ignorable in the same sense.

The likelihood of the data (ignoring the missingness process) is the joint likelihood of the
variables, integrated over the missing data. For simplicity, consider three variables, X , Z , and
Y , where Z is always observed. The log-likelihood contribution of a unit can then be written as
(suppressing the i subscript)

L joint = sx s y lnP(x, z, y)

+ sx (1 − sy)lnP(x, z) + (1 − sx )sy lnP(z, y)

+ (1 − sx )(1 − sy)lnP(z). (2)

Each term corresponds to a missingness pattern, with (sx , sy) equal to (1,1) for the first term,
(1,0) for the second, (0,1) for the third, and (0,0) for the final term. Correspondingly, P(X, Z ,Y )

is the joint distribution of all variables, P(X, Z) is the marginal joint distribution of X and Z ,
integrating out Y because it is missing, and similarly for the remaining terms. For each pattern,
we make use of all available data, as described for a multivariate normal distribution by Anderson
(1957). As mentioned in the introduction, when this likelihood is used in maximum likelihood or
Bayesian estimation (including multiple imputation without an auxiliary model), we will use the
umbrella term “ignorable likelihood” (IL) method.

Importantly, R-MAR treats all variables inU as response variables, with the implicit assump-
tion that the likelihood is defined as in (2). However, typically the model of interest is a regression
model (in a general sense, e.g., linear, logistic, multilevel, quantile, etc.) for Y given X and Z .
To make use of the R-MAR assumption, we can embed this model within a multivariate model
for U. In the case of linear regression, this is easy to do by specifying a linear structural equation
model (SEM) as shown in Fig. 1 where the parameters of interest are the coefficients for the paths
X → Y and Z → Y . Maximum likelihood estimation for linear SEMs based on AA data was
discussed in detail by Muthén et al. (1987) and Allison (1987) for the case of few missingness
patterns (multiple group approach) and Arbuckle (1996) for the general case. If all variables are
categorical, loglinear models can be used in an analogous way. Under R-MAR, all ILmethods will
have the same frequentist properties as the corresponding approaches based on the joint likelihood
of the data and selection indicators.

In addition to the various definitions of MAR discussed in Sect. 1.1 that have been a source
for confusion, there are three other sources of confusion, each of which suggests a strategy or
guiding principle that allows us to ignore missingness processes that are usually understood to be
non-ignorable. Section 2 gives an overview of these strategies, and the following sections provide
more details on each strategy.
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2. Three Strategies

2.1. Strategy 1: Condition on (Functions of) Variables

An important source of confusion is that the MAR assumptions (Rubin’s MAR, A-MAR, or
R-MAR) are relevant only for inferences regarding the joint distribution of U. However, by far
the most common types of analyses are regression models for one response variable given a set
of covariates. Conditioning on covariates automatically results in units with incomplete data to
be discarded, sometimes called listwise deletion or complete-case analysis. Contrary to common
belief, such an approach does not require any of the MAR assumptions but rather an assumption
that we will call conditionalMAR, or C-MAR, that is more lenient than R-MAR. Unfortunately,
it is common practice to apply a univariate MAR condition to each variable, such as incorrectly
requiring that missingness of a covariate X cannot depend on X itself, given the other variables.
However, this misconception can lead to adoption of approaches that fail when X directly affects
its own missingness.

In latent variable models, conditioning on sufficient statistics for the latent variables (con-
ditional maximum likelihood estimation) means that C-MAR can be relaxed further to allow
selection to depend directly on the latent variables.

2.2. Strategy 2: Discard More Data

MAR allows selection of one variable to depend on selection of another variable for the
same unit. This is again due to the multivariate definition of MAR where Si is a vector of all
selection indicators for unit i , so these indicators can be dependent. This issue is rarely discussed
and, in fact, Mealli and Rubin (2015) neglected this possibility in their theorem. It turns out that
we can interfere with the missingness process, by discarding data in some variables for those
units for which other variables are missing, making the selection indicators more dependent, and
thereby making the process MAR. We refer to this approach as M-MAR (for make MAR). By
imagining that we would discard data in this way in repeated samples, so that it becomes part
of the missingness process, the process becomes A-MAR and frequentist likelihood inference
becomes valid. We can alternatively think of the data deletion as being part of the estimator. We
show that there is a close connection between our M-MAR approach and Mohan et al.’s (2013)
ordered (or sequential) factorization theorem.

2.3. Strategy 3: Be Protective of (Subsets of) Parameters

Violation of MAR conditions (e.g., A-MAR, R-MAR, C-MAR), i.e., the problem of missing
not at random (MNAR), does not imply that all parameters are estimated inconsistently when
ignoring the missingness mechanism. Some estimators may be consistent for the parameters of
interest. A well-known example is binary logistic regression for case–control data, where cases
(with response variable equal to 1) and controls (with response variable equal to 0) have different
probabilities of inclusion in the sample, which violates C-MAR.Nevertheless, standardmaximum
likelihood estimators of the regression coefficients and corresponding odds ratios are consistent,
although the estimator of the intercept is not.

We can sometimes modify our model or estimation method to protect the parameters of
interest from being estimated inconsistently, a strategy we call protective estimation (Skrondal
& Rabe-Hesketh, 2014). For example, in binary longitudinal data, different kinds of conditional
maximum likelihood estimators can be used to protect the odds ratios of interest. These results
also take advantage of conditioning (Strategy 1) and can involve discarding some data (Strategy
2).

The next three sections discuss each of the strategies in more detail.
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3. Strategy 1: Condition on (Functions of) Variables

3.1. Complete-Case (CC) Regression Analysis

If we are only interested in the conditional distribution P(Y |X, Z), as in a regression model,
it seems cumbersome to specify and estimate a multivariate model for X , Z , and Y and use the
joint likelihood in (2) for IL estimation as described in Sect. 1.2. Instead, we may want to use the
likelihood conditional on the covariates. The only units that make contributions to the likelihood
conditional on X and Z are those units that have complete data. Complete-case (CC) analysis
refers to analyzing the subsample of individuals with complete data, sometimes called listwise
deletion. If both X and Y can be missing, whereas Z is always observed, as in Sect. 1.2, the
log-likelihood contribution from a unit becomes

Lcond = sx s y lnP(y|x, z).

Due to the conditioning on covariates, MAR definitions are no longer useful, as also pointed
out by White and Carlin (2010). In fact, we can relax the R-MAR assumption and define C-MAR
as

C-MAR : C ⊥⊥ Y |X, Z ,

where C = Sx Sy is an indicator for being in the CC sample. In a longitudinal setting, Little
(1995) calls this assumption covariate-dependent missingness (or dropout).

This condition allows missingness of X to depend on X itself, given the other variables.
For instance, if X is income, then whether income is reported can depend on income (and other
covariates). Comparing C-MARwith R-MAR shows that there are situations where CC regression
is valid and (multivariate) IL methods are not. Specifically, in any situation where missingness of
X or Y depends on either X or Y , IL methods will not be valid, but CC regression will be valid
as long as missingness of X or Y does not depend on Y (given X ).

Figure 2 illustrates the scenario where X is likely to be missing when it is less than zero and
never missing when it is greater than zero (and here there is no other covariate Z ). The ordinary
least squares regression line (in black) coincides with the true regression line (thick gray line)
because the distribution of Y given X is the same in the selected sample as in the full sample,
P(Y |X, Sx = 1) = P(Y |X), and because the selected sample is so large that the least squares
estimate is very precise. Selection just thins out the scatterplot to the left of zero but keeps the
conditional distribution intact.

It is important to note that, while selection is associated with Y here, it is independent of
Y given X , and therefore satisfies the C-MAR condition. Mohan et al. (2013) formalize this
way of reasoning by representing the missingness process via directed acyclic graphs (DAGs)
that they call Missingness Graphs or m-graphs. Conditional independence relations can then
be derived by d-separation (e.g., Pearl, 2009). Figure 3 [same as Figure 1(c) in Mohan et al.
(2013)] is an m-graph that satisfies C-MAR. There is no Z here and both X and Y are not
always observed, as indicated by hollow circles. The variables Sx and Sy are caused by X , as
shown by the paths from X to these variables, and they are fully observed (filled circles). The
fully observed “proxy” variable X∗ equals X when the selection indicator Sx = 1 and equals
a symbol for missing, such as “NA” or “.”, otherwise. So X∗ is determined by the combination
of X and Sx , as indicated by the two paths X → X∗ and Sx → X∗ and similarly for Y ∗.
The proxy variables and selection indicators are always observed and constitute the data. The
question is whether we can estimate a given quantity or estimand (referred to as “query” by
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Figure 2.
CC regression is consistent if (Sx , Sy) �⊥⊥ X , as long as (Sx , Sy) ⊥⊥ Y |X .

Figure 3.
m-graph for C-MAR.

Mohan et al., 2013) from the data consistently. With the implicit assumption that all variables
are categorical, Mohan et al. (2013) discuss estimation (or “recovery”) of the joint distribution
P(Y, X) or conditional distribution P(Y |X) from the observed data. It follows from the graph
that (Sx , Sy) ⊥⊥ Y |X , so that P(Y |X) = P(Y ∗|X∗, Sx = 1, Sy = 1). Therefore, we can recover
the conditional distribution from the observed data by estimating it in the CC sample. However,
we cannot recover P(X) to obtain the joint distribution because of the path X → Sx .

It has been pointed out frequently that CC regression is valid if missingness depends on
the covariates, as long as it does not depend on the response variable given the covariates (e.g.,
Dardanoni et al., 2011; Jones, 1996; Little, 1992; Little & Rubin, 2020, p. 49; Seaman et al., 2013;
Wooldridge, 2010, p. 796). Nevertheless, MCAR is often said to be necessary for valid CC regres-
sion (e.g., King et al., 2001; Molenberghs et al., 2004;Molenberghs &Kenward, 2007, p. 43). One
reason for this confusionmay be that covariates are sometimes not treated as randomvariables. For
example, Diggle andKenward (1994) define “completely random dropout” and “random dropout”
in longitudinal data only in terms of whether dropout depends on current or previous values of the
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outcome variable (without conditioning on covariates). Another reason is that missingness that
depends on covariates only is sometimes defined as MCAR (e.g., Daniels & Hogan,2008, p. 92;
Laird, 1988).

Believing thatMCAR is necessarywould erroneously lead to rejectingCC regression analysis
based on the path from X to Sy in Fig. 3 (even if there is no path from X to Sx ). Then relying
on the A-MAR assumption would lead to adoption of IL inference for the multivariate model.
However, such an approach will likely be inconsistent because it is not realistic that X affects
selection of Y only when X is observed. CC regression, in contrast, would yield valid inferences,
even with the additional path from X to Sx . That multiple imputation can be invalid when CC
regression is valid does not appear to be widely known although it has been pointed out repeatedly
(e.g., Allison, 2000; Bartlett et al., 2014; Little & Zhang,2011; White & Carlin, 2010).

Another common belief is that missingness of a covariate X in a regression model cannot
depend on X itself given the other variables. This misconception appears to arise from falsely
assuming that a univariate version of A-MAR must hold for each variable. Specifically, for each
variable Vi , it is sometimes assumed to be necessary for valid inference that P(Sv

i |Vi ,Ui\Vi ) =
P(Sv

i |(Ui\Vi )obs), where \Vi means “excluding Vi .” This assumption is clearly violated in the
scenarios depicted in Figs. 2 and 3 which satisfy C-MAR and hence produce valid inferences
for regression models. Both Enders (2010, p. 11, 13) and Allison (2002, p. 4) define MAR in this
univariate way and, when discussing that MAR is needed for ignorability, do not mention that
this is so only for a multivariate model. Readers can find remarks elsewhere in these books that
the univariate MAR assumption is not required for covariates in CC regression.

3.2. Hybrid CC and AA Analysis: Subsample Ignorable Likelihood

As discussed in Sect. 3.1, CC regression is consistent if selection of any covariate in themodel
depends on the covariate itself, in contrast to inferences regarding the joint distribution of U via
IL methods. Little and Zhang (2011) therefore suggest a hybrid approach. Denoting the subset
of covariates suspected of affecting their own selection as W , they assume that C-MAR holds
for these variables, Sw ⊥⊥ Y |W, X, Z , where Z is completely observed variables (assumed to be
always observed), and the variables in X are partially observed covariates, assumed not to affect
their own selection. The subsample of units with complete data for W is then analyzed using IL
methods based on the likelihood for P(Y, X |Z ,W ), under the assumption that MAR or A-MAR
holds for selection of X and Y , givenW and SW . Little and Zhang (2011) write the assumption as
P(Sx , Sy |Z ,W, X,Y, SW ) = P(Sx , Sy |Z ,W, Xobs,Y obs, SW ). Note that this hybrid approach
can also be viewed as an example of Strategy 2 to discard more data.

3.3. Fixed Instead of Random Effects for Longitudinal or Clustered Data

We now consider longitudinal data where units j = 1, . . . , N are observed at n j occasions
i = 1, . . . , n j . The variables Yi j and Xi j are time-varying and Z j is time invariant. A linear
random-intercept model can be written as

Yi j = α + βXi j + γ Z j + ζ j + εi j , (3)

where ζ j is a random intercept or latent variable and εi j an error term. Typically, it is assumed
that ζ j ∼ N (0, ψ) and εi j ∼ N (0, θ). Associated with each variable is a selection indicator Syi j ,
Sxi j , and Szj . The same model can also be used for cross-sectional clustered data, but we will use
longitudinal-data terminology for concreteness.

Let Ci j = Syi j S
x
i j S

z
j be the complete “case” indicator (where a “case” is a unit-occasion

combination), taking the value 1 if all variables in the model are observed for unit j at occasion
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i and zero otherwise. We use vectors for the variables associated with a subject j across all n j

occasions, C j = (C1 j , . . . ,Cn j j )
′, W j = (Z j , X1 j , . . . , Xn j j )

′, and Y j = (Y1 j , . . . ,Yn j j )
′.

Then C-MAR becomes

C-MAR: C j ⊥⊥ (Y j , ζ j )|W j .

Again, this is covariate-dependent missingness in the sense of Little (1995). Selection cannot
depend on ζ j because this latent variable is always missing, and we are not conditioning on it.

If selection depends on ζ j , we can adopt a fixed-effects approach. We now treat ζ j as fixed by
using indicator (or dummy) variables Ir j for units j (with Ir j = 1 if r = j and Ir j = 0 otherwise)
and omitting the intercept α

Yi j = βXi j +
N∑

r=1

ζr Ir j + εi j .

The coefficient γ of the time-invariant covariate Z j cannot be estimated because Z j is perfectly
collinear with the dummy variables for the units. Selection based on ζ j now becomes selection
based on covariates Ir j , and β can be estimated consistently (see also Verbeek & Nijman,1992).
The requirement for valid inference now becomes

C-MAR*: C j ⊥⊥ Y j |W j , ζ j . (4)

Another advantage of the fixed-effects approach is that it controls for all possible known and
unknown time-invariant confounders (e.g., Skrondal & Rabe-Hesketh, 2022).

Adopting a fixed-effects estimator for β while not obtaining any inferences for γ and ψ can
also be viewed as an example of Strategy 3, protective estimation, discussed in Sect. 5. There we
describe the standard fixed-effects estimator for random-intercept logistic regression, which is the
conditional maximum likelihood estimator. That estimator is valid under C-MAR*. Furthermore,
modifying the model and/or discarding more data produces protective estimators under several
MNAR mechanisms.

Interestingly, when selection S j of units j (instead of unit-occasion combinations) depends on
ζ j and not on the covariatesW j , i.e., when S j ⊥⊥ (Y j ,W j )|ζ j , themaximum likelihood estimator
for the random-interceptmodel in (3) is consistent for the regression coefficients. The reason is that
selection alters only the latent variable distribution P(ζ j |S j = 1) �= P(ζ j ) and not the conditional
response distribution P(Y j |W j , ζ j , S j = 1) = P(Y j |W j , ζ j ) and consistency of the regression
coefficients does not rely on correct specification of the random-effects distribution in linearmixed
models (Verbeke & Lesaffre, 1997). When the model is modified to a common factor model, by
replacing ζ j by λiζ j (with λ1 = 1), replacing α by αi , and removing the covariates, the maximum
likelihood estimator of the factor loadings λi is also consistent when S j ⊥⊥ Y j |ζ j . This result is
closely related to factorial invariance (e.g., Meredith, 1964). As pointed out by Skrondal & Rabe-
Hesketh (2004, p. 56), consistency requires that anchoring (setting a factor loading to 1) is used for
identification instead of factor standardization (setting the variance of the factor to 1) because the
variance of the latent variable is different in the selected sample. Choosing anchoring to obtain
consistent estimates of the factor loadings can therefore also be seen as a form of protective
estimation.
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4. Strategy 2: Discard More Data

In this section, we return to the scenario with three variables X , Z , and Y , where Z is
always observed, whereas X and Y are not always observed, and we are interested in a model
for P(X, Z , Y ). Even if we are interested only in the parameters governing P(Y |Z , X), we may
want to model the joint distribution by IL methods, making use of AA data, because it is more
efficient than CC regression (e.g., Little & Schluchter, 1985). Now R-MAR is required for valid
frequentist inference. However, we consider two missingness processes that violate R-MAR and
show that we can still obtain valid frequentist inference by discarding more data to make the
process A-MAR before proceeding with IL inference.

4.1. MNAR-X: X Affects Selection of Y

Consider the m-graph in the left panel of Fig. 4 with proxy variables not shown. Here, the
DAG for X , Z , and Y is compatible with the SEM in Fig. 1, but could correspond to many other
statistical models because DAGs are nonparametric. This graph is not strictly a DAG because
there is a double-headed arrow between X and Z , but this arrow could be replaced by a latent
variable node with paths to both X and Z . R-MAR is violated because of the path X → Sy .
However, C-MAR is satisfied because (Sx , Sy) ⊥⊥ Y |X, Z , so we could perform CC regression.
However, if we would like to estimate the joint distribution P(X, Z ,Y ), IL methods will not be
valid.

4.1.1. M-MAR It turns out that IL methods become valid if we discard Y when Sx = 0, with
corresponding modified missingness indictor

Ṡ y =
{

0 if Sx = 0
Sy if Sx = 1

.

This does not mean deleting units when X is missing, but just making Y missing for the units
with missing X (but retaining Z for these units). We now show that the process for Ṡ y satisfies
A-MAR by factorizing the joint probability of the selection indicators as

P(Sx, Ṡ y |U) = P(Sx |U)P(Ṡ y |Sx ,U),

where the first term is P(Sx |U) = P(Sx |Z) and the second term is

P(Ṡ y =1|Sx ,U) =
{
0 if Sx = 0
P(Ṡ y =1|Xobs, Z) if Sx = 1

.

We see that P(Ṡ y |Sx ,U) = P(Ṡ y |Sx, Xobs, Z), so the following condition is satisfied:

M-MAR: P(Sx, Ṡ y |U) = P(Sx |Z)P(Ṡ y |Sx, Xobs, Z) = P(Sx, Ṡ y |Uobs). (5)

The idea is that we allow selection of Y to depend on X if X is selected/observed, but when X
is missing, we make selection of Y impossible so that it no longer depends on the unobserved X .
The M-MAR (makeMAR) condition is satisfied because we made it so by data deletion. We can
think of the selection process as a natural process, represented in the left panel of Fig. 4, followed
by deletion of Y when X is missing by the data analyst. It does not matter for inference that part
of the process is man-made. If we imagine that data analysts will behave this way in repeated
samples, we have A-MAR and frequentist IL inference is therefore valid.
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4.1.2. Ordered Factorization Figure 1(d) in Mohan et al. (2013) corresponds to the m-graph
in the left panel of Fig. 4 with Z removed. Applying their approach (in their Example 3) to our
situation, the joint distribution can be factorized as follows:

P(X, Z ,Y ) = P(Z)P(X |Z)P(Y |X, Z). (6)

Then the terms are estimated sequentially as follows:

Step 1: Estimate P(Z) by using all units because Z is never missing.

Step 2: Estimate P(X |Z) by using only those units with Sx = 1 (i.e., deleting units with
Sx = 0). This is valid because Sx ⊥⊥ X |Z , so that P(X |Z) = P(X∗|Z , Sx = 1).

Step 3: Estimate P(Y |X, Z) by using only units with Sx Sy = 1, i.e., pruning the dataset further
by deleting units with Sy = 0. This is valid because (Sx , Sy) ⊥⊥ Y |X, Z so that
P(Y |X, Z) = P(Y ∗|X, Z , Sx = 1, Sy = 1).

This last step corresponds to CC regression and is justified because C-MAR is satisfied. Mohan
et al. (2013) point out that the deletion ordermatters. Units with missing X are deleted in Step 2,
followed by deletion of further units, with missing Y , in Step 3.

4.1.3. M-MAR Versus Ordered Factorization for MNAR-X We can consider the contribution
of a unit to the AA-data log-likelihood after discarding Y when X missing. Replacing sy in (2) by
ṡ y , the third term disappears, (1 − sx )ṡ y lnP(z, y) = 0, because (1 − sx ) is nonzero only when
sx = 0, and in this case ṡ y = 0. We therefore have

L joint = sx ṡ y lnP(x, z, y) + sx (1 − ṡ y)lnP(x, z) + (1 − sx )(1 − ṡ y)lnP(z).

Using the factorization in (6), we can rewrite this log-likelihood contribution as

L joint = sx ṡ y[lnP(y|x, z) + lnP(x |z) + lnP(z)] + sx (1 − ṡ y)[lnP(x |z) + lnP(z)]
+ (1 − sx )(1 − ṡ y)lnP(z)

= lnP(z) + sx lnP(x |z) + sx ṡ y P(y|x, z).

We can see that information about P(Z) comes from all units, information about P(X |Z) comes
only from the subset of units with sx = 1, and information about P(Y |X, Z) comes only from
the subset of units with both sx = 1 and sy = 1, exactly as in the sequential estimation proposed
by Mohan et al. (2013). Factorization such as shown in (6) also facilitates AA-data maximum
likelihood estimation (e.g., Anderson, 1957; Marini et al., 1980), and for this reason (not for
achieving consistency) it has been suggested to discard data (Marini et al., 1980, p. 333).

It is instructive to consider why it is necessary to discard values of Y when X is missing
or why including the third term from (2), namely (1 − sx )sy lnP(z, y), in the log-likelihood
would lead to inconsistent estimation. Units with sx = 0 and sy = 1 contribute to this term,
but P(Z ,Y |Sx = 0, Sy = 1) �= P(Z ,Y ) because Sy is a collider in the graph, so conditioning
on it creates a new backdoor path between Z and Y through X and therefore corrupts the joint
distribution.

The M-MAR approach is preferable to sequential estimation whenever the goal is to esti-
mate parameters of a parametric model. After deleting Y when X is missing, estimation can
be performed straightforwardly using standard software for IL methods, such as AA-data maxi-
mum likelihood estimation, and standard error estimates are produced as a byproduct. In contrast,
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Mohan et al. (2018) use m-graphs to derive sequential estimators for parameters of linear SEMs.
Their estimators of regression coefficients are sums of products of estimators of variances and
other path coefficients and require complex algorithms to evaluate sequentially. Estimation of
standard errors requires further work, such as a delta method or resampling approaches.

4.2. MNAR-Y

For MNAR-Y, shown in the right panel of Fig. 4, the problem is that selection of X depends
on Y , but Y is not always observed. It is clear that CC regression cannot be used to estimate
P(Y |X, Z) because Sx �⊥⊥ Y |X, Z , violating C-MAR.

4.2.1. M-MAR TheM-MAR solution here is to delete X whenY ismissing, with corresponding
modified missingness indicator,

Ṡx =
{

0 if Sy = 0
Sx if Sy = 1

.

We can factorize the joint probability of the selection indicators as

P(Sx, Ṡ y |U) = P(Sy |U)P(Ṡx |Sy,U),

where P(Sy |U) = P(Sy |Z), and

P(Ṡx =1|Sy,U) =
{
0 if Sy = 0
P(Ṡx =1|Y obs, Z) if Sy = 1

,

so that

M-MAR: P(Ṡx, Sy |U) = P(Sy |Z)P(Ṡx |Sy, Xobs, Z) = P(Ṡx, Sy |Uobs). (7)

The term omitted from the AA-data log-likelihood is ṡ x (1 − sy)lnP(x, z) because ṡ x = 0
whenever sy = 0. This term is problematic because conditioning on Sx produces an additional
path between X and Z through Y .

4.2.2. Ordered Factorization ForMNAR-Y, the ordered factorization approach byMohan et al.
(2013) is based on the factorization P(Z)P(Y |Z)P(X |Z ,Y ). Unfortunately, the conditional dis-
tribution of interest P(Y |X, Z) does not appear directly but can derived from the joint distribution
by dividing it by P(X, Z) if P(X, Z) > 0. Note that we cannot obtain P(X, Z) directly because
P(X, Z) �= P(X∗, Z |Sx = 1), but we can obtain P(X, Z) bymarginalizing the joint distribution.
In practice, the marginalization will not be straightforward and the resulting distribution may not
be a closed-form function of the model parameters of interest. In contrast, M-MAR remains as
easy to implement as for MNAR-X and will directly yield estimates of the parameters of interest
if the joint distribution is parameterized in terms of P(Y |X, Z) as in Fig. 1. Therefore, M-MAR
becomes the method of choice for MNAR-Y.

For a model with three variables, we have considered two different R-MAR violations and
shown howwe canmake themissingness A-MAR.Withmore variables, a general approachwould
be to identify, for each variable V , which other variables have direct paths to Sv . If any of these
variables are missing for a unit i , discard Vi . This approach presupposes substantive understand-
ing of the missingness mechanisms and may lead to a considerable loss of data. An alternative
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Figure 5.
Monotone missingness pattern for longitudinal data.

approach would be to check whether it is possible to sort the variables so that the missingness
pattern is approximately monotone, in the sense that earlier variables are rarely missing for a
unit if later variables are not missing for the unit. The next step would be to assess whether it is
justifiable to assume that selection of each variable is independent of subsequent variables given
the previous variables and their selection indicators. If this does not appear reasonable for a given
variable, the variable should be placed later in the sequence as needed. The final step would be
to make the missingness monotone. If there are covariates that affect their own selection, we can
condition on those variables in the IL method, as described in Sect. 3.2.

4.3. Making Longitudinal Data Monotone

Returning to a longitudinal setting with the notation of Sect. 3.3, we consider the scenario
where the CC indicator Ci j for unit j at occasion i being a complete “case” with Xi j and Yi j
(as well as Z j ) observed depends on the unit’s outcomes at previous occasions. Then A-MAR is
violated because those previous outcomes may be missing, unless the missingness patterns are
(always) monotone as shown in Fig. 5. Here rows represent units j which have been sorted in
terms of the occasion whenmissing data first occur, and the rectangles for (Xi j , Yi j , i = 1, 2, 3, 4)
enclose all units with complete data at occasions 1, 2, 3, and 4.

When missingness is not monotone, we propose making the missingness monotone. This
means deleting Yi j if any previous Yi j is missing:

Ċi j =
{

0 if
∏i−1

r=1 Cr j = 0

Ci j otherwise
.

As in previous subsections, we are exploiting the fact that A-MAR allows for dependencies
among selection indicators, and that we can manufacture part of the selection process ourselves.
For example, consider the case where selection depends on the previous outcome. Then the new
selection mechanism becomes

P(Ċi j = 1|Y j , Z j , ζ j ,C1 j , . . . ,Ci−1, j ) =
{

0 if Ci−1, j = 0
P(Ci j = 1|Y obs

i−1, j , Z j ) if Ci−1, j = 1

and satisfies A-MAR.
Interestingly, the fact that A-MAR allows missingness to depend on other responses for the

same unit is often mentioned in the longitudinal data literature, but the point that this requires

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:37:01, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


SOPHIA RABE-HESKETH, ANDERS SKRONDAL 45

monotone missingness is rarely mentioned, an exception being Schafer and Graham (2002). In
longitudinal data, it is possible that only monotone patterns can occur because having a missing
value at an occasion means that the unit has dropped out and cannot re-enter the study.When there
are no such barriers to re-entering the study, it is difficult to think of a natural selection mechanism
where the previous response causes missingness only when it is observed. Therefore, the A-MAR
property cannot be assumed to hold even if the realized missingness pattern is monotone, unless
the data analyst imagines that she would make the data monotone in repeated samples.

As mentioned at the end of Sect. 3.3, regression coefficients (or factor loadings) can be
estimated consistently in linear mixed models (or factor models) if selection S j of units depends
on the random effects (or latent variables) as long as S j ⊥⊥ (Y j ,W j )|ζ j . This result does not
hold when there is item non-response, where Ci j can be 1 for some items (or occasions) i and 0
for other items for the same unit j . In this latter situation, we can convert item non-response to
unit non-response by dropping units with

∏
i Ci j = 0, so that Ṡ j = ∏

i Ci j . Then consistency is
achieved under the assumption that C j ⊥⊥ (Y j ,W j )|ζ j .

5. Strategy 3: Be Protective of (Subsets of) Parameters

5.1. Logistic Regression

Strategy 3 is best introduced for logistic regression, for simplicity with a single covariate Xi ,

P(Yi = 1|Xi ) = exp(α + βXi )

1 + exp(α + βXi )
.

In a case–control study, controls (with Yi = 0) are undersampled relative to cases (with
Yi = 1), also known as outcome-based or retrospective sampling, and selection into the CC
sample Ci = Sxi S

y
i therefore depends on Yi :

P(Ci = 1|Xi ,Yi = 1) = P(Ci = 1|Yi = 1) ≡ π(1)

P(Ci = 1|Xi ,Yi = 0) = P(Ci = 1|Yi = 0) ≡ π(0).

The model for the CC sample becomes

P(Yi = 1|Xi ,Ci = 1) = π(1)P(Yi = 1|Xi )

π(0)P(Yi = 0|Xi ) + π(1)P(Yi = 1|Xi )

= π(1) exp(α + βXi )

π(0) + π(1) exp(α + βXi )

= {π(1)/π(0)} exp(α + βXi )

1 + {π(1)/π(0)} exp(α + βXi )
.

It follows that

logit[P(Yi = 1|Xi , S
x
i = 1, Syi = 1)] = [α + ln{π(1)/π(0)}]︸ ︷︷ ︸

α∗
+βXi ,

so the log odds ratio,β, is estimated consistently bymaximum likelihood, whereas the estimator of
the intercept α converges to α∗ = α+ ln{π(1)/π(0)}. The intercept can be estimated consistently
only if π(1)/π(0) is either known (e.g., by design) or can be consistently estimated, in which
case ln{π̂(1)/π̂(0)} can be included in the logistic regression model as an offset. This result is
well-known for case–control designs (e.g., Breslow, 1996).
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5.2. Fixed-Effects Logistic Regression for Longitudinal Data

As in Sect. 3.3, we consider a random-intercept model for clustered or longitudinal data, but
now with a logit link for a binary outcome variable:

logit[P(Yi j = 1|Xi j , Z j , ζ j )] = α + βXi j + γ Z j + ζ j , ζ j ∼ N (0, ψ). (8)

Again, we could replace ζ j by a fixed effect to be able to relax the C-MAR requirement to C-
MAR* defined in (4), where ζ j can directly affect selection. Because of an incidental parameter
problem, the fixed-effects estimator is not obtained by including indicator variables for the units
as in Sect. 3.3, but by conditional maximum likelihood estimation.

The contribution from unit j to the conditional likelihood, given the sum of the outcomes for
the unit, τ j = ∑

i Yi j , is

P(Y j |
∑

Yi j =τ j ,W j , ζ j ) =
∏n j

i=1 exp(βXi j )
Yi j

∑
d j∈B j

∏n j
i=1 exp(βXi j )

di j
, (9)

where B j ={d j =(d1 j , . . . , dnj )′ | di j = 0 or 1, and
∑

i di j =τ j }, or in words, B j is the set of all
vectors of length n j with binary elements that sum to τ j . This set can be obtained by permuting
the elements of Y j . Note that the between-unit component of the model, α + γ Z j + ζ j , cancels
out due to conditioning on the sufficient statistic τ j .

When there are missing data, we let I j be the set of occasions for unit j when outcomes are
observed and redefine B j as

B j =
⎧
⎨

⎩d j |di j = 0 or 1, i ∈ I j , and
∑

i∈I j

di j = τ j

⎫
⎬

⎭ .

The conditional likelihood contribution from unit j , conditioning on the vector of selection indi-
cators C j , is:

P(Yobs
j |C j ,

∑

i∈I j

Yi j =τ j ,W j , ζ j )

=

[∏
i∈I j

exp(βXi j )
Yi j

] ∫
Ymis

j
P(C j |Yobs

j ,Ymis
j ,W j , ζ j )P(Ymis

j |W j , ζ j ) dYmis
j

∑
d j∈B j

[∏
i∈I j

exp(βXi j )
di j

] ∫
Ymis

j
P(C j |d j ,Ymis

j ,W j , ζ j )P(Ymis
j |W j , ζ j ) dYmis

j

.

(10)

If selection does not depend on observed outcomes, given missing outcomes and random inter-
cepts, P(C j |Yobs

j ,Ymis
j ,W j , ζ j ) = P(C j |Yobs

j ,W j , ζ j ), then the integrals in the numerator and
denominator are identical and we obtain the standard conditional likelihood in (9).

If selection depends on the current outcome only,

P
(
C j |Yobs

j ,Ymis
j ,W j , ζ j

)
=

[∏

i∈I j

P(Si j = 1|Y obs
i j )

] ∏

i∈I j

Pr(Si j = 0|Ymis
i j )
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≡
[∏

i∈I j

πi (Y
obs
i j )

] ∏

i∈I j

π i (Y
mis
i j ),

the integrals in the numerator and denominator of (10) become

∫

Ymis
j

[∏

i∈I j

πi (Y
obs
i j )

] ∏

i∈I j

π i (Y
mis
i j )P(Ymis

j |W j , ζ j ) dYmis
j

and

∫

Ymis
j

[∏

i∈I j

πi (di j )

] ∏

i∈I j

π i (Y
mis
i j )Pr(Ymis

j |W j , ζ j ) dYmis
j ,

respectively. Taking the first product in square brackets out of each integral, the ratio of these
integrals becomes the ratio of the products in square brackets, giving

P(Yobs
j |C j ,

∑

i∈I j

Yi j =τ j ,W j , ζ j ) =

[∏
i∈I j

exp(βXi j )
Yi j

] [∏
i∈I j

πi (Y obs
i j )

]

∑
d j∈B j

[∏
i∈I j

exp(βXi j )
di j

] [∏
i∈I j

πi (di j )

]

=
∏

i∈I j
exp(βXi j )

Yi j πi (Yi j )
∑

d j∈B j

∏
i∈I j

exp(βXi j )
di j πi (di j )

=
∏

i∈I j
exp([ln(πi (1)/πi (0))] + βXi j )

Yi j

∑
d j∈B j

∏
i∈I j

exp([ln(πi (1)/πi (0))] + βXi j )
di j

.

Then we can be protective of β by including occasion-specific intercepts αi in the original model
in (8) that represent α + ln(πi (1)/πi (0)),

logit[P(Yi j = 1|Xi j , Z j , ζ j )] = αi + βXi j + γ Z j + ζ j .

Skrondal and Rabe-Hesketh (2014) show that if selection Ci j at occasion i depends on the
outcome Yi−1, j at the previous occasion, a consistent estimator for β is obtained by either analyz-
ing complete units (across time,

∏
i Ci j = 1) only and including occasion-specific intercepts αi ,

or by allowing the occasion-specific intercepts to take on different values for different missing-
ness patterns across time (through interactions between indicators for occasions and indicators
for the missingness patterns). If selection depends on both the previous and current outcomes,
a consistent estimator for β is obtained by analyzing complete units (across time) with sum of
outcomes equal to τ j = 1 or τ j = n − 1 and allowing the occasion-specific intercepts to take
different values for τ j = 1 and τ j = n − 1.
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6. Concluding Remarks

One message of this address is that complicated procedures, such as multiple imputation
instead ofCC regression, are often not necessary and could performworse than simple approaches.
Even when MAR assumptions are violated, joint modeling of the missingness and substantive
processes can often be avoided. By making conditional independence assumptions regarding the
missingness process, we can instead derive simple estimators that do not require explicit modeling
of the missingness process.

We also made the point that confusion persists in the literature regarding MAR and MCAR
and what assumptions are needed for different estimators. We are therefore excited that Mohan,
Pearl and co-authors are developing a completely new framework for investigating missing data
problems that we believe holds strong promise, especially if it is adopted in statistics. Mohan and
Pearl (2021) provide an accessible overview of their approach for a statistical audience.

Our main new contribution is to propose discarding more data as one way to handle MNAR
problems.We justified this approach by purely relying on theA-MARassumption and recognizing
that it is immaterial whether the entire selection mechanism is due to nature or whether part of it is
man-made. We also showed the connection of our estimator toMohan et al.’s sequential estimator
based on their ordered factorization theorem. It seems that this connection is not at all obvious
given the much more cumbersome estimators developed for SEMs in Mohan et al. (2018).

We made conditional independence assumptions regarding the missingness process which
may sometimes be justifiable based on an understanding of the phenomena being studied. How-
ever, some of these conditional independencies are testable. Ji et al. (2023) propose such tests,
show that they are powerful, and that test-based estimators (chosen based on the results of the con-
ditional independence tests) have smaller mean squared error than the naive AA-data maximum
likelihood estimator for SEMs in a wide range of conditions.

Acknowledgements

This article was partially supported by The Research Council of Norway through its Centres
of Excellence funding scheme Project Number 26270.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

References

Allison, P. D. (1987). Estimation of linear models with incomplete data. In C. C. Clogg (Ed.), Sociological methodology
1987 (pp. 71–103). Washington, DC: American Sociological Association.

Allison, P. D. (2000). Multiple imputation for missing data: A cautionary tale. Sociological Methods & Research, 28,
301–309.

Allison, P. D. (2002).Missing data. Thousand Oaks, CA: Sage.
Anderson, T. W. (1957). Maximum likelihood estimates for the multivariate normal distribution when some observations

are missing. Journal of the American Statistical Association, 52, 200–203.

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:37:01, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core


SOPHIA RABE-HESKETH, ANDERS SKRONDAL 49

Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E.
Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243–277). Mahwah, NJ:
Erlbaum.

Bartlett, J. W., Carpenter, J. R., Tilling, K., & Vansteelandt, S. (2014). Improving upon the efficiency of complete case
analysis when covariates are NMAR. Biostatistics, 15, 719–730.

Breslow, N. E. (1996). Statistics in epidemiology: The case–control study. Journal of the American Statistical Association,
91, 14–28.

Daniels, M. J., & Hogan, J. W. (2008).Missing data in longitudinal studies. Boca Raton: Chapman & Hall/CRC.
Dardanoni, V., Modica, S., & Peracchi, F. (2011). Regression with imputed covariates: A generalized missing-indicator

approach. Journal of Econometrics, 162, 362–268.
Diggle, P. J., & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Journal of the Royal Statistical

Society, Series C, 43, 49–73.
Enders, C. K. (2010). Applied missing data analysis. New York: Guilford.
Greenland, S., & Finkle, W. D. (1995). A critical look at methods for handling missing covariates in epidemiologic

regression analyses. American Journal of Epidemiology, 142, 1255–1264.
Ji, F., Rabe-Hesketh, S., & Skrondal, A. (2023). Diagnosing and handling common violations of missing at random.

Psychometrika. https://doi.org/10.1007/s11336-022-09896-0
Jones, M. P. (1996). Indicator and stratification methods for missing explanatory variables. Journal of the American

Statistical Association, 91, 222–230.
King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science data: An alternative

algorithm for multiple imputation. American Political Science Review, 95, 49–69.
Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine, 7, 305–315.
Little, R. J. A. (1992). Regression with missing X ’s: A review. Journal of the American Statistical Association, 87,

1227–1237.
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistical

Association, 90, 1112–1121.
Little, R. J. A., & Rubin, D. B. (2020). Statistical analysis with missing data (3rd ed.). New York: Wiley.
Little, R. J. A., & Schluchter, M. (1985). Maximum likelihood estimation for mixed continuous and categorical data with

missing values. Biometrika, 72, 497–512.
Little, R. J. A., & Zhang, N. (2011). Subsample ignorable likelihood for regression analysis with missing data. Journal

of the Royal Statistical Society, Series C, 60, 591–605.
Marini, M. M., Olsen, A. R., & Rubin, D. B. (1980). Maximum-likelihood estimation in panel studies with attrition. In

K. F. Schuessler (Ed.), Sociological methodology 1980 (pp. 314–357). San Francisco: Jossey Bass.
Mealli, F., & Rubin, D. (2015). Clarifying missing at random and related definitions, and implications when coupled with

exchangeability. Biometrika, 10, 995–1000.
Mealli, F., & Rubin, D. (2016). Amendments and corrections: Clarifying missing at random and related definitions, and

implications when coupled with exchangeability. Biometrika, 103,491.
Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29, 177–185.
Mohan, K., & Pearl, J. (2021). Graphical models for processing missing data. Journal of the American Statistical Asso-

ciation, 116, 1023–1037.
Mohan, K., Pearl, J., & Tian, J. (2013). Graphical models for inference with missing data. In C. J. C. Burges, L. Bottou,

M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing system (Vol. 26,
pp. 1277-1285).

Mohan, K. , Thoemmes, F. , & Pearl, J. (2018). Estimation with incomplete data: The linear case. In Proceedings of the
twenty-seventh international joint conference on artificial intelligence (pp. 5082–5088).

Molenberghs, G., & Kenward, M. G. (2007).Missing data in clinical studies. Chichester: Wiley.
Molenberghs,G., Thijs, H., Jansen, I., Beunckens, C., Kenward,M.G.,Mallinckrodt, C.,&Carroll, R. J. (2004).Analyzing

incomplete longitudinal clinical trial data. Biostatistics, 5, 445–464.
Muthén, B. O., Kaplan, D., &Hollis, M. (1987). On structural equationmodeling with data that are not missing completely

at random. Psychometrika, 52, 431–462.
Pearl, J. (2009). Causality (2nd ed.). Cambridge: Cambridge University Press.
Pothoff, R. F., Tudor, G. E., Pieper, K. S., & Hasselblad, V. (2006). Can one assess whether missing data are missing at

random in medical studies? Statistical Methods in Medical Research, 15, 213–234.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.
Seaman, S., Galati, J., Jackson, J., & Carlin, J. (2013). What is meant by “missing at random”? Statistical Science, 28,

257–268.
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural

equation models. Boca Raton, FL: Chapman & Hall/CRC.
Skrondal, A., & Rabe-Hesketh, S. (2014). Protective estimation of mixed-effects logistic regression when data are not

missing at random. Biometrika, 101, 175–188.
Skrondal, A., & Rabe-Hesketh, S. (2022). The role of conditional likelihoods in latent variable modeling. Psychometrika,

87, 799–834.
Verbeek, M., & Nijman, T. (1992). Testing for selectivity bias in panel data models. International Economic Review, 33,

681–703.

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:37:01, subject to the Cambridge Core terms of use.

https://doi.org/10.1007/s11336-022-09896-0
https://www.cambridge.org/core


50 PSYCHOMETRIKA

Verbeke, G., & Lesaffre, E. (1997). The effect of misspecifying the random-effects distribution in linear mixed models
for longitudinal data. Computational Statistics & Data Analysis, 23, 541–556.

White, I., &Carlin, J. (2010). Bias and efficiency ofmultiple imputation comparedwith complete-case analysis formissing
covariate values. Statistics in Medicine, 29, 2920–2931.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data (2nd ed.). Cambridge, MA: The MIT
Press.

Manuscript Received: 4 MAR 2022
Published Online Date: 20 DEC 2022

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:37:01, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

	Ignoring Non-ignorable Missingness
	Abstract
	1 MAR, its Modifications, and Ignorability
	1.1 MAR and its Modifications
	1.2 Ignorability and IL Methods

	2 Three Strategies
	2.1 Strategy 1: Condition on (Functions of) Variables
	2.2 Strategy 2: Discard More Data
	2.3 Strategy 3: Be Protective of (Subsets of) Parameters

	3 Strategy 1: Condition on (Functions of) Variables
	3.1 Complete-Case (CC) Regression Analysis
	3.2 Hybrid CC and AA Analysis: Subsample Ignorable Likelihood
	3.3 Fixed Instead of Random Effects for Longitudinal or Clustered Data

	4 Strategy 2: Discard More Data
	4.1 MNAR-X: X Affects Selection of Y
	4.1.1 M-MAR
	4.1.2 Ordered Factorization
	4.1.3 M-MAR Versus Ordered Factorization for MNAR-X

	4.2 MNAR-Y
	4.2.1 M-MAR
	4.2.2 Ordered Factorization

	4.3 Making Longitudinal Data Monotone

	5 Strategy 3: Be Protective of (Subsets of) Parameters
	5.1 Logistic Regression
	5.2 Fixed-Effects Logistic Regression for Longitudinal Data

	6 Concluding Remarks
	Acknowledgements
	References




