
Managing combinatorial design challenges
using flexibility and pathfinding algorithms

Julian Martinsson Bonde1 , Iñigo Alonso Fernández1, Michael Kokkolaras1,2,

Johan Malmqvist1, Massimo Panarotto1,3 and Ola Isaksson1

1Department of Industrial andMaterials Science, Chalmers University of Technology, Gothenburg, Sweden; 2Department
of Mechanical Engineering, McGill University, Montréal, QC, Canada and 3Department of Mechanical Engineering,
Politecnico Milano, Milan, Italy

Abstract

Morphological matrices (MMs) have traditionally been used to generate concepts by combining
different means. However, exploring the vast design space resulting from the combinatorial
explosion of large MMs is challenging. Additionally, all alternative means are not necessarily
compatible with each other. At the same time, for a system to achieve long-term success, it is
necessary for it to be flexible such that it can easily be changed. Attaining high system flexibility
necessitates an elevated compatibility with alternative means of achieving system functions,
which further complicates the design space exploration process. To that end, we present an
approach that we refer to as multi-objective technology assortment combinatorics. It uses a
shortest-path algorithm to rapidly converge to a set of promising design candidates. While this
approach can take flexibility into account, it can also consider other quantifiable objectives such
as the cost and performance of the system. The efficiency of this approach is demonstrated with a
case study from the automotive industry.

Introduction

In the early phase of product development, design engineers are often required to determine the
means necessary to achieve the intended main functionality. Multiple alternatives to such means
give rise to discrete design spaces, where combinations of ideas form the basis for new concepts.
Depending on the nature of the development project, such as if it is a newor derivative development
project, the considered means can either be new, existing, or a combination of the two. In such
design scenarios, itmay not be possible to identify promising designs using traditional optimization
processes because (i) it is too early in the design process to conduct simulations or physical tests or
(ii) novel configurations of previously developed subsystemsmay render existing analytical models
nonrepresentative. For these reasons, expert opinion is required to identify promising configur-
ations. However, exploring vast discrete design spaces through expert opinion alone makes it
difficult to ensure that all promising configurations have been considered.

To explore discrete design spaces, designers have the option to use morphological matrices
(MMs) (Zwicky, 1967). MMs list all functions that are necessary to fulfill the main function,
together with all considered means that can achieve each function. By combining means, one for
each function in the MM, a potential solution candidate is generated. However, one of the major
issues with this approach is that the number of possible combinations is often out of bounds from
what a team of engineers can realistically consider for further development, due to time
constraints (Motte and Bjärnemo, 2013). To exemplify this, consider the study conducted by
Almefelt (2005), which resulted in an MM with eight functions, and up to 22 alternative means
for each function. That results in a theoretical maximum of about 54.9 billion possible combin-
ations. Such a vast number of combinations cannot possibly be considered manually. However,
the exact threshold for what is considered a too-large design space will naturally vary depending
on the size and experience of the engineering team working on the problem. Furthermore, the
traditional MM is used to support concept generation, but not evaluation. Thus, it assists in the
identification of concepts, but not in determining their fitness. In other words, the traditional
method contains no mechanism to assist in identifying the most promising solutions.

At the same time, commitment to means at this stage of development may either enable or inhibit
future changes to the system. As Buede (2016) put it, “Themark of a long-lived system is one that has
beenupgraded successfullymany times.”Fricke andSchulz (2005) refer to upgradable systems as being
flexible. Examples of design scenarios where designing for flexibility is critical include the following:

1. The system needs to be configurable such that it can handle varying customer requirements.
2. The system needs to be upgradable such that additional modules or features can be retrofitted or

swapped out. This can, for instance, enable the lifetime of the product to be extended (Khan et al.,
2018).

Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

www.cambridge.org/aie

Research Article

Cite this article: Martinsson Bonde J, Alonso
Fernández I, Kokkolaras M, Malmqvist J,
Panarotto M and Isaksson O (2025). Managing
combinatorial design challenges using
flexibility and pathfinding algorithms. Artificial
Intelligence for Engineering Design, Analysis
and Manufacturing, 39, e16, 1–16
https://doi.org/10.1017/S0890060425100048

Received: 05 August 2024
Revised: 28 March 2025
Accepted: 03 June 2025

Keywords:
engineering design; design support; design
space exploration; steer-by-wire; flexibility;
system architecture; morphological matrix

Corresponding author:
Julian Martinsson Bonde;
Email: julianm@chalmers.se

© The Author(s), 2025. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution-NonCommercial licence
(http://creativecommons.org/licenses/by-nc/
4.0), which permits non-commercial re-use,
distribution, and reproduction in any medium,
provided the original article is properly cited.
Thewritten permission of CambridgeUniversity
Press must be obtained prior to any
commercial use.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://orcid.org/0000-0003-4441-7089
https://orcid.org/0000-0001-5216-0944
https://doi.org/10.1017/S0890060425100048
mailto:julianm@chalmers.se
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1017/S0890060425100048

3. The system that is being designed needs to account for future
technologies. Accommodating such future technologies can
reduce the need for straying from the original design in future
product iterations, thus enabling the reuse of existing assets
(Martinsson Bonde et al., 2023).

4. Any combination of previously listed scenarios.

Situation 1 includes scenarios such as having the customer be able
to select different design configurations and also scenarios where it
is possible for the user to procure modules after purchasing the
original product. Situation 3, on the other hand, can be of interest
when designing within a product family (Simpson et al., 2001). One
of the main purposes of product families is to reuse assets, both
tangible and intangible, between product iterations. Therefore,
designing with the compatibility of future technologies in mind
ensures that a greater overlap exists between the existing design and
future designs, thus increasing the possibilities of asset reuse. In either
scenario, considering flexibility already during concept design has the
potential to assist designers in understanding the future of the system,
and its subcomponents, enabling them to make better-informed
decisions.

The aim of the research presented in this paper is to explore
ideas for how MMs can be used to support design, with a focus on
(i) efficient exploration of large discrete design spaces and
(ii) accounting for design flexibility, while also accounting for other
design objectives such as performance and cost. We focus on the
following research question: How can vast discrete design spaces be
explored with respect to design objectives and flexibility? By vast
discrete design spaces, we mean spaces that are difficult for engin-
eers to explore without support due to the combinatorial explosion
often created by MMs.

Theoretical background

Design space exploration in the early stages of design has been
covered thoroughly in academic literature. Key examples of this
include Hubka (1982), Pahl et al. (2007), and Ulrich et al. (2020).
A design generation method found in all three of these well-
recognized works is the MM. The MM is typically preceded by a
functional decomposition of the problem. First, a main function is
defined that, when performed, solves the design problem. This main
function is then decomposed into smaller functions that, when com-
bined, achieve the main function. The idea of the MM is to collect
means that can achieve functions identified through decomposition.
By combining one means for each function, a solution candidate can
be conceived.

A prominent issue with MMs is the vast number of potential
solutions that can spring from only a few functions andmeans. This
combinatorial explosion often makes it challenging to consider all
possible combinations in theMM. Thus, high-performing combin-
ations can remain undiscovered. In the “Exploring large discrete
design spaces” section, different ideas for how to deal with this
problem are explored. Additionally, since this research aims to
contribute a method for including flexibility when using MMs,
the “Evaluating and trading for design flexibility” section is dedi-
cated to contemporary means of accounting for flexibility in design
space exploration.

Exploring large discrete design spaces

Design space exploration is the act of representing and evaluating
design variants (Woodbury and Burrow, 2006). In contrast to

design spaces conceived through continuous variation of design
variables, such as dimensional values, the design space spanned by
an MM is discrete in nature, as it is a set of combinations that are
being considered (Zwicky, 1967). Discrete design spaces are
encountered in the early phases of design when different means
are considered for achieving the various functions of the system.
This includes new product development scenarios in which infor-
mation concerning the alternative means is scarce. It also includes
scenarios in which more is known about the alternatives, such as
when configuring design variants within a product family (Siddique
and Rosen, 2001).

To make discrete design space exploration more manageable,
different approaches have been proposed. Motte and Bjärnemo
(2013) divide these approaches into two categories: automatic or
semi-automatic exploration and reduction through heuristics.
Motte and Bjärnemo (2013) further outline multiple approaches
within each category, some of which are discussed here alongside
additional approaches.

Ulrich et al. (2020) state that means that are not feasible should
be excluded from the MM. Yet clarity regarding the feasibility of
design alternatives is not always evident in the early phases of the
design process. It can, however, be possible to determine if a specific
combination is infeasible due to incompatibilities among means.
For instance, different means may rely on different energy sources
or material flows. Pahl et al. (2007) suggest that such incompatible
pairings of means are identified so that they can be avoided. These
methods do not require the use of software or computational
resources, but their impact on the number of possible combinations
is small.

Experiments conducted by Smith et al. (2012), together with
engineering students, suggest that large MMs, especially those with
many functions relative to the number of means, can result in
lower-quality concepts. Consequently, for manual exploration of
MMs, it can be beneficial to restrict the decomposition of functions
and keep them at a high level.

Instead of reducing the size of the design space by excluding
means, or combinations of means, Almefelt (2005) suggests an
alternative approach. The functions are sorted with respect to com-
plexity in terms of how much they interact with other functions
within the system. Then, focus is put on identifying high-performing
interactions between means within the functions that have the
highest complexity. Consequently, combinations with high levels
of positive interactions are found more rapidly, while other combin-
ations can be discarded, thus delimiting the design space.

The aforementioned approaches are based on heuristics, and
manual navigation through the discrete design space. An alterna-
tive approach is to let a computer perform the navigation or
to combine manual navigation with computational means, which
Motte and Bjärnemo (2013) refer to as automatic or semi-
automatic exploration. However, to enable a computer to make
decisions using a morphological approach, additional informa-
tion is needed. This can, for instance, be provided by attaching
mathematical models to the means or by quantifying the desired
attributes of the means.

Bryant et al. (2007) developed a web-based tool for generating
concepts. The user is asked to input which functions the system
needs to achieve. Using a repository of existing concepts, the tool
identifies alternative means for the functions. The tool can then be
used to generate concepts, which is done by evaluating which
combinations of means are feasible based on previous concepts.
The tool can also be used interactively to, rather than generate
concepts, assist the user in selecting feasible combinations.

2 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

Ölvander et al. (2009) and Tiwari et al. (2009) enriched the
means in the MMwith mathematical models to describe properties
such as weight and cost and used optimization to identify promis-
ing solutions. The approach demonstrated byÖlvander et al. (2009)
is based on the Tabu search, while Tiwari et al. (2009) instead used a
genetic algorithm. Notably, these methods also consider incompat-
ible combinations, as the designer can formulate incompatibilities
in the form of optimization constraints.

Ma et al. (2017) used fuzzy programming to represent customer
preferences, determining the values using fuzzy pairwise compari-
son. In addition, the authors introduced an element of reliability
such that the MM could be optimized with respect to two separate
objectives: customer satisfaction and product reliability.

Using optimization algorithms in this way entails that enough
detailed information about each means is obtainable such that the
mathematical models can be populated. However, the resolution of
these mathematical models is typically limited by the scarcity of
information in the early phases of design. Consequently, themodels
may need to be populated through the application of qualitative
information, such as expert opinions or experience from previous
projects.

Some morphological approaches emphasize the application of
expert opinion. One such approach is the advanced morphological
approach (AMA), which was introduced by Bardenhagen and
Rakov (2019). AMA aims to reduce the dimensionality of the
MM and then uses a mixture of random solution generation and
expert selection to identify high-performing solution variants. Fur-
ther work was recently conducted by Todorov et al. (2022) to refine
AMA by incorporating fuzzy sets as a means to codify expert
knowledge, enriching its possibility to identify promising solutions
based on certain criteria. Another approach, which used enhanced
function-means (F-M) trees for design space exploration, was
proposed by Müller et al. (2019). This approach combined all
possible alternative means in an F-M tree into concepts. However,
the means of the tree were enhanced with additional information
such as constraints and design variables. This information allowed
for concepts to be screened automatically, but also partially based
on expert opinion.

Evaluating and trading for design flexibility

Design freedom is a concept commonly used to refer to the degree
to which a design can be adjusted while still meeting requirements
(Simpson et al., 1998). The well-known design paradox stipulates
that, when the most is known about the design, designers have the
least amount of freedom to act on that knowledge (Ullman, 2002).
In other words, as the design space becomes increasingly con-
strained over time, the design freedom is reduced. Design freedom
can also be constrained from the very start of a product develop-
ment project, for instance, due to the constraints of the product
platform upon which the product is being built. An example of this
in the automotive industry is the stylistic elements associated with
brands, which can significantly constrain the design space from the
very start (Burnap et al., 2016).

Retaining design freedom for as long as possible is generally
favorable, as demonstrated by practices such as set-based concur-
rent engineering (Sobek et al., 1999). Flexibility, described by Fricke
and Schulz (2005) as a system’s ability to be easily changed, is a
means of preserving a degree of design freedom throughout a
system’s life cycle. A flexible system allows for life-cycle upgrades,
such as retrofitting new components or modules, and extends to
upgrading a product platform within a product family (Simpson

et al., 2001). Thus, a flexible platform can accommodate emerging
requirements and novel technologies through necessary external
changes.

Making changes to a subsystem is likely to affect other compo-
nents of the system. One way to quantify this is through change
propagation (Clarkson et al., 2004), which measures how other
subsystems are affected by a change to one system. This highlights
the need to design for flexibility, as high flexibility entails reduced
impact on the rest of the system, in the event of a change. However,
for a system to be successful, it must also be performant. Therefore,
there is a need to balance flexibility with other system properties,
such as weight and cost. To enable trading flexibility against other
system properties such as performance, the flexibility of a design
first needs to be quantified. To that end, a range of studies have
proposed metrics for measuring flexibility in engineering design.
For instance, Hölttä and Otto (2005) introduced a procedure for
designing products with a flexible architecture, using a redesign
effort complexity metric to minimize redesign effort. They empha-
size the need for designingmodules andmodule interfaces such that
changes to a module require minimal rework. Cormier et al. (2008)
focused on design flexibility for mass customization, proposing
metrics to evaluate the overall flexibility of a system. This empha-
sizes the importance of systems to enable the fulfillment of many
different needs, while at the same time being efficient in the utiliza-
tion of common resources. Recently, Alonso Fernández et al. (2024)
showed how to accommodate future technologies by demonstrating
a flexibility trade-off method with a focus on reserving geometric
space for future upgrades and managing the risk of failure propaga-
tion. Field effects were used to evaluate the ability of subsystems to
function within a geometric region, indicating how the system could
handle the integration of new technologies. There exists a large set of
alternativemethods for quantifying flexibility,whichdepends heavily
on context and application. For a more thorough review of alterna-
tives, Machchhar et al. (2024) recently conducted a review on the
topic.

Designmargins play a crucial role in managing flexibility within
product platforms. These margins, which represent the buffer or
excess capacity built into a design, allow for adaptability and future
upgrades without significant redesign (Eckert et al., 2020). In the
context of product platforms, design margins help absorb the
impact of changes and new requirements, facilitating smoother
integration of new technologies and reducing the need for extensive
rework. By incorporating adequate design margins, systems can
maintain performance and accommodate unforeseen demands,
thus enhancing overall robustness and longevity. However, man-
aging these margins effectively is essential to avoid overdesign and
underdesign, which can respectively lead to unnecessary costs or
potential system failures. A recent review by Brahma et al. (2024a)
provides a comprehensive analysis of margins in engineering
design, outlining their definitions, applications, and methods for
effective management of margins. This review highlights the diver-
gent and fragmented understanding of margins across different
domains and proposes a unified framework to better manage
margins systematically. The authors differentiate between deliber-
ately added margins and those that arise inadvertently, emphasiz-
ing the importance of strategic margin allocation to mitigate
uncertainties and ensure robust, flexible design. This systematic
approach is crucial for enhancing the upgradability and longevity of
product platforms, as it helps in accommodating future changes
and minimizing redesign efforts.

The large number of papers on the topic of flexibility suggests
that there is a need to better understand how systems can be

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

designed to be upgradable. This need seems to be driven by the
necessity tominimize design rework, extend the life of systems such
as product platforms, and cater to the needs of multiple market
segments while maintaining resource efficiency through common-
ality. One of the main challenges is to ensure that the existing
system can handle the change without negatively affecting other
parts of the system. Thus, evaluating flexibility already in the early
stages of design is critical. The method presented in the “Multi-
objective technology assortment combinatorics” section can miti-
gate these issues by providing an early indication of flexibility and
assisting in the selection of flexible concepts.

Multi-objective technology assortment combinatorics

Multi-objective technology assortment combinatorics (MOTAC) is
an approach to flexible product design. It assumes a system that
achieves a set of functions and that there are alternative ways of
achieving those functions.

The first step of the approach is to perform a functional
decomposition of the system in the form of an F-M tree. Alterna-
tive means are provided to the functions of the system within the
confounds of an MM.

The second step is to identify pairings of means that are unfeas-
ible. In addition to assisting the pathfinding algorithm in identify-
ing feasible combinations, this step also provides the basis for the
flexibility evaluation, as a means that cannot easily be combined
with other design solutions is less flexible.

The third step involves defining objectives and quantifying each
means in thematrix based on those objectives. A penalty function also
needs to be defined. The penalty function is a mathematical function
that determines how much a means is penalized in the automated
selection process. How much a means is penalized depends on how
performant it is with respect to the previously defined objectives.

In the fourth step, a selection process is conducted using a
pathfinding algorithm, which strives to find the path through the
MM with the least amount of penalties. In doing so, it identifies
solution candidates, which manifest as combinations of means in
the MM. A visual representation of the method can be seen in
Figure 1.

These four steps grant an overview of MOTAC. The remainder
of this section describesMOTAC in detail, going through each step.

Functional decomposition and identification of
incompatibilities

Initially, the system functionality is modeled using an F-M tree.
When designing for a product family, the functions performed by
the system often overlap between product iterations. Therefore, in
such a scenario, it is possible to either (1) functionally decompose
an existing product from within the product family or (2) reuse the
F-M tree model from a previous product. Additional functions can
be added, if necessary.

Once the structure of the F-M tree is completed, additional
means can be added. Having more than one means for one indi-
vidual function entails that there are options. Once all options are in
place, incompatible means are identified and marked. This can, for
instance, be done by drawing lines between the incompatiblemeans
in the F-M tree or using a design structure matrix (DSM).

The system functionality and its alternative means, as contained
in the F-M tree, are then mapped onto an MM. However, a typical
MM does not take into account higher-level functions. Therefore,
only the lowest level of functions in the F-M tree are used in the
MM. Consequently, for themethod to work as intended, alternative
means cannot exist on higher levels in the F-M tree, as that would
also entail alternative functions, which are not compatible with the
conventional MM method without creating multiple MMs.

Figure 1. Visualization of the MOTAC approach.

4 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

Setting up the quantifiable morphological matrix

The low-level functions and their alternative means are used to
compose an MM. At this stage, it is also possible to add additional
alternative means to the matrix. Once all the functions and means
are in place, the design objectives need to be defined. The design
objectives are to be used to identify promising combinations of
means, referred to here as solution candidates. Thus, the design
objectives need to be key attributes that are important to the success
of the potential product. Such objectives may, for instance, involve
weight, cost, performance, and manufacturability. As is further
discussed in the “Accounting for flexibility” section, the design
objectives may also concern flexibility.

Next, the attributes need to be represented numerically for each
means in the MM. How this is conducted can vary significantly
depending on how much is known about the system and each indi-
vidual means. It is indeed possible to attribute a means with its exact
weight and cost, although it is often the case that this information is
unknown. Preferably, all means should have the same attribute reso-
lution. Commonly in the early design phase, information is scarce.
Even if the individual means are known from previous projects, it is
often uncertain how they will behave when combined in novel ways
(Stenholm et al., 2019). Thus, a fittingmethod of determining attribute
values for eachmeans in theMM is through the application of pairwise
comparison, where the means of each function are compared with
each other. Similarly, pairwise comparison can be used to determine
the importance of the design objectives. This enables the formulation
of a penalty function λ that follows the pattern of a weighted linear
combination, as seen in Equation (1)), where there are n design
objectives. xa,b represents the performance of means b with respect
to design objective a . The objective performance of each means is
multiplied with their respective objective coefficient, determined
through pairwise comparison, the sum of which is multiplied by
the importance of the function IFi each multiplied by an objective
coefficient Wa. This calculation is performed and summed over each
means (k) to determine the penalty value for a combination of means.
It should be noted that, since this process contains plenty of uncer-
tainty, it is recommended to perform a sensitivity analysis, an aspect
that is further discussed in the “Possible improvements” section:

λ=
Xk
i= 1

IFi W1 �x1,i +W2 �x2,i +…+Wn �xn,ið Þ: (1)

Identifying promising combinations with pathfinding

The MM can be considered as a network of nodes, within which
there is only one possible direction to travel. By modeling the MM
as a network of nodes, a pathfinder algorithm, such as Dijkstra’s
algorithm (Dijkstra, 1959; Skiena, 1998), can be used to navigate
it. The pathfinder needs to traverse from one function to the next,
without ever visiting the same function twice. A node in this
network is a representation of a means. If the performance of a
means with respect to the design objectives can be rephrased as a
penalty function, then the nodes in the path of the least aggregated
penalty will compose the highest performing solution candidate. In
addition, the objective coefficients in the penalty function can be
rebalanced depending on the importance of different criteria.

It also becomes possible, through slight modifications to Dijk-
stra’s algorithm, to consider incompatibilities. Each node is instan-
tiated with a set of incompatibilities that matches the ones listed in
the DSM. An example of how such a node can be implemented is
demonstrated in Pseudocode 1.

Pseudocode 1. Node definition for use in pathfinding in morpho-
logical matrices.

class Node:
m: Means # The means this node represents
previous: Node # Previously traversed Node
incomp_set: set = m.incomp_set.union(previous.incomp_set)
penalty_aggregate: float =m.penalty + previous.penalty_aggregate

Before the algorithm traverses from one node to another, it is first
confirmed that the next node does not belong to the set of incom-
patible means. If it is not part of the incompatible set, then the next
node is visited. At the same time, the incompatibilities of the previ-
ously visited node are inherited by the current node. Thus, to adjust
Dijkstra’s algorithm, the nodes need to inherit the incompatibilities
of the means it represents and all previously visited means in the
path. Then, before queuing the means in the next function, they are
checked against the set of incompatible means to assert that the
queued nodes are compatible with the already visited nodes. An
example of how this can be implemented is demonstrated in Pseudo-
code 2, where a priority queue (Skiena, 1998) has been used to sort the
nodes based on penalty such that the node with the lowest penalty is
always returned from the queue.

Pseudocode 2. Pathfinding algorithm for morphological matrices
with incompatible means.

def generate_solution():
Instantiate Priority Queue sorted by aggregated node penalty
pq = PriorityQueue()

#Addonenode for each of themeans in the first function to the queue
for m in first_function:

pq.insert(Node(m=m, previous=None))

while pq.isEmpty() is False:
current_node = pq.find_minimum()
next_f = get_next_function()

if next_f is None:
return create_solution(current_node)

Only queue compatible means from next function
for m in next_f:

if m in current_node.incomp_set:
continue

pq.insert(Node(m=m, previous=current_node))

The key differences from the traditional pathfinding algorithm
are (i) nodes in the network are only linked in one direction to
nodes of the next function, (ii) nodes keep track of incompatibilities
gained through the path, and (iii) a node that is incompatible with
any previous node cannot be visited.

It should be noted that, while the pathfinding algorithm will
identify the path with the least aggregated penalty, it is still advisable
to use this method to generate multiple solutions and not just one.
This is especially true if the attributes have low resolution, which
entails a high degree of uncertainty. Screening a larger set of solutions
will thus increase the chances of identifying high-performing solu-
tion candidates for further development. Modifying the pathfinding
algorithm to return N number of solutions is a trivial adjustment.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

Accounting for flexibility

As covered in the “Introduction” section, there are multiple scen-
arios where designers can benefit from taking flexibility into
account when exploring the design space. To achieve this using
MOTAC, flexibility also needs to be included in the penalty func-
tion, thus penalizing combinations that are less flexible. To achieve
this, flexibility first needs to be quantified. We propose calculating
the impact of committing to a means on the available design space.
In other words, howmuch of the design space becomes unavailable
as a consequence of committing to a specific means? This can be
quantified as a ratio between the constrained and unconstrained
design spaces. The design space becomes constrained by commit-
ting to means in the MM that are incompatible with other means.
Consequently, if a means is compatible with all other means in the
MM, then there is no negative impact on the available design space
due to that means, and thus the flexibility is high. On the other
hand, if a choice of means prevents the selection of other means,
then that choice results in a lower flexibility as it constrains the
design space. The flexibility can thus be formulated as in
Equation (2), where f i is the impact on flexibility by choosing
means i , Nconstrained is the number of possible design candidates
where i is included, and Nunconstrained is the number of available
design candidates where i is included if there were no incompat-
ibilities. As such, this is a metric of combinatorial flexibility, given
the choice of a particular means, where a lower value entails a

higher flexibility. A visualization of how the metric works can be
seen in Figure 2.

f i = 1�
Nconstrained

Nunconstrained
: (2)

A slight complication occurs in scenarios wheremultiple incom-
patibilities overlap. Whether or not the same incompatibility
should be counted twice is a matter of discussion. Consider
Figure 2, which depicts an MM that has three functions: A, B,
and C. Each of the three functions has two alternative means: A1
and A2, B1 and B2, and C1 and C2. Both B2 and C2 are incom-
patible with A1. If the combination A2–B2–C2 is evaluated, then
the incompatibility with A1 occurs twice: once with B2 and once
with C2. It can be argued that if B2 has already been selected, then it
makes no difference if C2 has the same incompatibility, and thus it
should have no impact on the flexibility. On the other hand,
counting each occurrence of an incompatibility can potentially
provide an indication of how entrenched it is. Another point to
consider is that counting incompatibilities only once is more com-
putationally expensive since the algorithm needs to keep track of
which incompatibilities have already been encountered. Con-
versely, if there is no need to keep track of existing incompatibilities,
then the flexibility of each means can be calculated before the
pathfinding algorithm begins since it is independent of previous

Figure 2. Visualization of the proposed metric for combinatorial flexibility and its application in morphological matrices.

6 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

selections. Nevertheless, the impact on computational expenses is
minor and unlikely to be an issue. A final point on this matter:
counting the same incompatible means more than once can result
in scenarios where a system with only one incompatible means is
deemed less flexible than a system with two or more incompatible
means. For this reason, throughout the rest of the presented
research, the first alternative was used. In other words, incompat-
ible means were counted only once.

Example: Steer-by-wire system

To test and demonstrate usage of the MOTAC approach, the method
and algorithms proposed in the “Multi-objective technology assort-
ment combinatorics” section were implemented as new features in
previously developed software used to create F-M trees and MMs
(Martinsson Bonde et al., 2022; Martinsson Bonde et al., 2024). This
ensured that the method can indeed be integrated and used with a
computer and that the algorithms are computationally inexpensive.

Using these software, a steer-by-wire (SbW) design scenario was
studied. SbW is being increasingly considered for commercial cars,
as it has the potential to drastically reduce weight while also
providing features such as an adjustable steering ratio and the
possibility to stow the steering wheel for autonomous driving.
However, when designing an SbW system, there are multiple
design alternatives that can be considered that will affect the cost,
weight, and performance of the system. Together with two experts
from a Swedish car manufacturer, a simplified SbW system was
decomposed into some of its most critical functions using an F-M
tree. TheMOTAC approach was then applied with that functional
decomposition as a basis.

System decomposition

The result of the F-M decomposition is visualized in Figure 3. The
tree contains a set of functions that need to be achieved and an array
of alternative means for each function. Since not all functions are of
the same importance to the end user, each function was attributed
an importance factor IF . This was done by having the experts,
together with the authors, rate each function on a scale from 1 to
3, where 1 was the least important and 3 was the most important.
Those ratings were then normalized over the total sum, resulting in
the importance factor of each function. The functions that con-
tained multiple alternative means, along with their importance
factor (IF), are listed in Table 2.

The incompatibilities were mapped using a DSM that contained
all means for all functions. A connection in the DSM between
two means indicates that those two means never can be com-
bined. A DSM containing only the incompatible means can be
seen in Table 1.

Without incompatibilities, the design space spanned 147,456
possible combinations. After applying the incompatibilities using
the DSM, that number was reduced to 28,800 possible combin-
ations. The next step was to define quantifiable objectives such that
this space could be explored using a pathfinding algorithm.

Implementation of design objectives

Three design objectives were identified: (i) the performance of a
component with respect to the functions it fulfills should be maxi-
mized; (ii) each component should be as lightweight as possible; and
(iii) the cost of the system should beminimized. In practice, safety is

the most important factor. However, for this study, it was elected to
omit safety as that information is highly sensitive.

To implement performance, weight, and cost ratings into the
model, a pairwise comparison was used. For each function, the
alternative means available to achieve that function were compared
with these three aspects in mind, thus resulting in a score in the
range 0,1½ � for each attribute. Additionally, the importance of each
function (IF) was used to determine the impact of any means used
to achieve that function when calculating the value of the penalty
function. A section of the quantified MM can be seen in Figure 4.
The full matrix can be found in the Appendix.

The penalty function (see Equation (3)) was composed as an
aggregate of each attribute: weight (w), cost (c), and performance
(p) multiplied by the importance of each attribute (Ww,Wc, andWp,
representing the importance of design weight, cost, and performance
respectively) and summed over all means in a solution candidate (k).
The penalty function (λ) yields the penalty value of a solution
candidate, which determines how well a solution achieves the
design objectives. A lower λ value is always preferable. This enabled
solutions to be generated for different customer segments. For
instance, to generate premium design variants, the cost import-
ance (Wc) might be reduced while instead allowing for higher-
performance importance (Wp). The values of w , c , and p are
determined by the means (i). It should be noted that, since this is a
penalty function, lower values are considered to be better, while
higher values are penalizing, no matter the metric. Each means
achieves a single function, and the importance of that function is
represented by an importance factor IFi . To calculate the aggre-
gated penalty of a solution candidate, the penalty function sums
over all combined means:

λ=
Xk
i= 1

IFi Ww �wi +Wc � ci +Wp �pi
� �

: (3)

To start the solution generation process, the quantifiedMM and
the penalty function were fed to the pathfinding algorithm.

Identifying solution candidates

Three potential customer segments were considered. The first
segment, referred to as Premium, is willing to pay extra for high
performance. The second segment, Economy, is focused on afford-
ability. The third segment, referred to here as Economy flexible, is an
affordable alternative that has the potential to be upgraded. To
achieve this, three sets of penalty function objective coefficients
were used, as can be seen in Table 3.

It is desirable for all segments to minimize design weight, as it
has a negative effect on energy efficiency. However, the importance
of cost and performance naturally varies significantly between the
customer segments.

With the penalty function objective coefficients in place, all
requirements to execute the pathfinding algorithm were fulfilled.
At this point, a decision needed to be made regarding how many
solutions to generate. Figure 5 demonstrates how the penalty
function, as defined in Equation (3), changes for the 28,800possible
combinations. The change in aggregated solution penalty increases
drastically for the first generated solutions and then diminishes
slightly. The worst possible solutions are clustered in the end, which
results in a final drastic increase in solution penalty.

With this in mind, how many solution candidates should be
considered? Generating a single solution candidate using path-
finding is a matter of milliseconds; hence, the bottleneck is not

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

computational budget, but engineering capacity. However, the
number of solution alternatives that could be efficiently managed
within a team of design engineers is outside the scope of this
paper. Therefore, for the purposes of this paper, only the solution

candidates with the lowest solution penalties per customer seg-
ment were considered.

The best-scoring combinations for each segment were, at first
glance, reasonable configurations. However, some choices have

Figure 3. Screenshot of a function-means tree for a steer-by-wire system. The dash-dotted lines that connect some of the means represent incompatibilities.

8 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

Table 1. DSM containing only the incompatible means. A total of nine incompatibilities were mapped

Means A B C D E F G H I J K L M N

A: Rack position sensor A X X

B: Single-pinion rack drive X B

C: Dual-pinion rack drive X C

D: Backup steering: mechanical connection D X

E: Backup steering: steer-by-brakes E X

F: Backup steering: rack actuator & steer-by-brakes F X

G: Always active redundant steering X X G

H: Belt drive active feedback H X

I: Direct drive active feedback I X

J: Low-torque active feedback motor X X J X

K: Yoke user interface K X

L: Stowable steering wheel X L

M: No variable steering ratio X M

N: Mechanical steering stop & software stop X N

Table 2. System functions for which alternative means were identified and the impact factor (IF) of the individual functions

Function IF Alternative means Comment

Interface with driver 0.1 1. Yoke
2. Round wheel

Yoke requires a variable steering ratio.

Enable variable steering
ratio

0.1 1. No variable steering ratio
2. Software-controlled steering ratio

Provide torque for
feedback

0.1 1. High-torque electric motor
2. Low-torque electric motor

Provide active feedback 0.1 1. Direct drive
2. Belt drive
3. Planetary gear drive
4. Worm gear

Direct drive and belt drive require a high-torque motor.

Backup transmission of
torque to wheels

0.067 1. Mechanical backup connection
2. Redundant rack actuator
3. Steer-by-brake
4. Combined redundant rack actuator and steer-by-brake

Steer-by-brake needs to be engaged only when necessary.
Other variants can be always active.

Avoid loss of driver
feedback

0.067 1. Redundant active feedback
2. Mechanical feedback backup

Detect driver intention 0.067 1. Incremental rotary encoder
2. Absolute angle sensor
3. Both absolute and incremental

Limit unintended
steering

0.067 1. Redundant steering system
2. Turn off the problem source

Follow driver input 0.067 1. High-performance steering rack actuator
2. Low-performance steering rack actuator

Engage backup steering
system

0.067 1. Activate when needed
2. Always active

Principle for engaging backup steering system. Always active is
incompatible with steer-by-brake variants.

Adjust steering wheel
position

0.067 1. Stowable
2. Short-distance telescopic

Stowable requires the absence of a mechanical shaft.

Move steering rack 0.067 1. Belt drive
2. Dual-pinion drive
3. Single pinion drive

Pinion drives require an angle sensor.

Measure steering rack
position

0.033 1. Angle sensor
2. Position sensor

Stop wheel at max
angle

0.033 1. Mechanical stop
2. Combined mechanical- and software-controlled stop

Software-controlled design requires a high-performance
feedback motor.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

been made that are nontrivial. For instance, in the Economy
variant, the “Belt Drive” was chosen as the means for moving the
steering rack, despite being the most expensive alternative. After

inspection, there are two reasons for this: (i) the performance
benefit of the belt drive and (ii) the cost–benefit of the Position
Sensor for measuring the rack position, which is a necessary choice
as that particular sensor is incompatible with any of the less
expensive pinion drives. Thus, a combination of accounting for
the objective functions and the incompatibilities of certain means
resulted in a nontrivial selection.

In the premium segment, the pathfinding algorithm elected to
use “steer-by-brake” as a backup for transmitting torque to the
wheels. This is the least performant of the backup alternatives,
although it is compensated for by being the most lightweight
alternative and also the cheapest. A similar choice has been made
for the function “Limit unintended steering,” for which the algo-
rithm selected “Turn off problem source,” despite the alternative
being more performant.

Finally, it is worth noting the Premium choice of driver inter-
face: both the Yoke and the traditional Steering wheel have similar
cost and performance, but the yoke only works with variable
steering ratio. Since the variable steering ratio is part of the Pre-
mium solution, it does not matter in terms of performance, cost, or
weight, whichmeans that it is chosen. Thus, both are viable options
for the algorithm.

This addresses the solutions made without taking flexibility into
consideration. For the final segment Economy flexible, an attempt
was made to identify a solution candidate that was both affordable
and upgradable.

Including flexibility in the penalty function

The penalty function was modified to include the flexibility metric
described in the “Accounting for flexibility” section, as can be seen
in Equation (4). As previously explained, this metric is a ratio that
represents how much of the design space is screened off due to the
selection of a particular means. However, to make it comparable to

Figure 5. Visualization of how the solution to the penalty function steadily increases
with each newly generated solution candidate.

Figure 4. Screenshot of a section of themorphologicalmatrix. It shows the three considered attributes: weight (WGH), cost (CST), and performance (PRF), together with the function
importance factor (IMP).

Table 3. Penalty function objective coefficients

Economy Economy flexible Premium

Ww 0.20 0.14 0.31

Wc 0.49 0.34 0.20

Wp 0.31 0.24 0.49

Wf 0.00 0.28 0.00

10 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

the othermetrics involved in this scenario, the flexibility metric also
needed to be scaled. Consequently, the flexibility value for each
means was scaled relative to other options available for each func-
tion. This scaled flexibility is noted as bf . Additionally, the penalty
function coefficients (Ww,Wc, Wp, and Wf) were reconfigured to
account for the high importance of flexibility. The exact values are
specified in Table 3:

λ =
Xk
i= 1

IFi Ww �wi +Wc � ci +Wp �pi +Wf � f̂ i
� �

(4)

These adjustments to the penalty function resulted in a new
candidate solution, referred to as Economy flexible. In Table 4, all
three candidate solutions are listed, along with the unweighted
penalties (without the penalty function objective coefficients) for
each of the individual design objectives, and their total penalty
value λ. The unweighted penalties provide an overview of how each
design candidate performs in each design objective, regardless of
variant-specific coefficients. When studying the unweighted pen-
alties, it becomes clear that the Economy variant has the lowest
cost penalty (

Pk
i= 1 IFi � cið Þ = 0.106), and the Economy flexible and

Premium variants have the lowest flexibility (0.033) and perform-
ance (0.184) penalties, respectively. The Premium variant has two
possible penalty values for unweighted flexibility as it can have

either a yoke, which results in a higher flexibility penalty (0.305),
since it requires a variable steering ratio, or a wheel. The lowest
unweighted penalties for each design objective are shown in bold in
Table 4.

The Economy flexible solution differentiated itself from the Econ-
omy variant in three ways, highlighted in bold text in Table 4. The
first difference is the software-controlled steering ratio. This means
that the system can be changed to have a yoke, which requires a
variable steering ratio. The seconddifference is the provider of torque
feedback, forwhich a high-torque electricmotorwas selected. This has
the benefit of enabling switching to a more high-performing active
feedback system such as a belt drive system or a direct drive system.
The third difference is the choice of backup transmission of torque to
the wheels. Rather than choosing steer-by-braking, as selected in
both the Economy and the Premium variants, the flexible variant
uses a redundant rack actuator. This was chosen as it enables using
the always active backup system, which is not a possibility with the
steer-by-braking system.

Ultimately, the aggregated cost of the components of this flexible
configuration is likely to be slightly more costly relative to the Econ-
omy configuration chosen without flexibility in mind. However, this
configuration opens up several paths for upgrading the system and
has additional commonalities with the Premiumconfiguration,which
can potentially reduce manufacturing and development costs.

Table 4. Optimal choice of means for targeted segments. At the bottom of the table, the total penalty (λ) of each design candidate is listed, along with the
unweighted objective penalties for weight (w), cost (c), performance (p), and flexibility (w), summed over all means (k)

Function Economy Economy flexible Premium

Interface with driver Round wheel Round wheel Yoke or round wheel

Enable variable steering ratio No variable steering ratio Software-controlled steering
ratio

Software-controlled steering ratio

Provide torque for feedback Low-torque electric motor High-torque electric motor High-torque electric motor

Provide active feedback Worm gear Worm gear Belt drive

Backup transmission of torque to
wheels

Steer-by-brake Redundant rack actuator Steer-by-brake

Avoid loss of driver feedback Mechanical feedback backup Mechanical feedback backup Redundant active feedback

Detect driver intention Absolute angle sensor Absolute angle sensor Both absolute and incremental

Limit unintended steering Turn off problem source Turn off problem source Turn off problem source

Follow driver input Low-performance steering rack
actuator

Low-performance steering rack
actuator

High-performance steering rack actuator

Engage backup steering system Activate when needed Activate when needed Activate when needed

Adjust steering wheel position Short-distance telescopic Short-distance telescopic Stowable

Move steering rack Belt drive Belt drive Belt drive

Measure steering rack position Position sensor Position sensor Position sensor

Stop wheel at max angle Mechanical stop Mechanical stop Combined mechanical- and software-
controlled stop

Unweighted objective penalties:

Pk
i = 1 IFi �wið Þ 0.189 0.301 0.314

Pk
i = 1 IFi � cið Þ 0.106 0.317 0.607

Pk
i = 1 IFi �pið Þ 0.673 0.462 0.184

Pk
i = 1 IFi � f̂ i

� �
0.255 0.033 0.305 or 0.205

Total penalty (λ) 0.298 0.270 0.309

The Economy flexible solution differentiated itself from the Economy variant in three ways, highlighted in bold text in Table 4.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

Discussion

The discussion is divided into three parts. First, it is key to under-
stand howMOTAC is positioned relative to contemporary research.
Other similar methods exist, but none, to the best of our knowledge,
handle both discrete design spaces and flexibility using pathfinding.
In addition to this, the discussion in the “Relation to existing
research” section covers the importance of understanding how these
kinds of methods can impact the sustainability of a system. Further-
more, during the development of the MOTAC method, different
scenarios were considered, and alternative features of MOTAC were
conceptualized. In the “Possible improvements” section, a couple of
features are discussed that were left out of the main method to keep
the scope clear and focused. Finally, in the “Addressing the research
question” section, the research question is discussed.

Relation to the existing research

Using pathfinding algorithms to identify promising solutions is fast
and deterministic. The speed comes at the cost of resolution, as
more detailed results would require more advanced mathematical
models to represent the alternative means. However, as previously
argued, in the early phases of design, the mathematical models
needed to carry out a conventional optimization are not necessarily
available in the early phases of design and may be too resource-
intensive to create. Instead, populating means with simpler math-
ematical models that are based on approximations, or even by
relative comparison as in the SbW example, can be used to get an
early understanding of the discrete design space. This has prece-
dence in traditional engineering design methodology, where, for
instance, Pugh concept selection (Pugh, 1990) often is taught as a
means of identifying promising solutions by manually comparing
arrays of solutions with each other.

Regarding the use of optimization for concept generation, Pahl
et al. (2007) note that optimization or other quantitative methods
are “out of place” in the relatively abstract concept phase. However,
the authors also state that an exception to this is when the individual
elements in the analysis are known. Indeed, MMs can be useful in
less abstract scenarios, when more is known about the individual
means. An example of this is when supporting product develop-
ment within a product family, wheremany of the consideredmeans
are likely to have been applied in previous products, or through
technology demonstrators. In such scenarios, a lot more is known
about the means than in a situation where a completely new
product is to be conceived.

Out of the alternative methods identified through the literature
review, Ölvander et al. (2009) most closely resemble MOTAC.
Thus, it is important to highlight similarities and differences.
Similarly to MOTAC, the authors also use a quantified MM, a
weighted penalty function, and account for incompatible combin-
ations. However, it uses a different search strategy for identifying
combinations, as it uses Tabu Search optimization, unlikeMOTAC,
which is based on Dijkstra’s algorithm. Tabu search is not guaran-
teed to avoid local optima, while Dijkstra’s algorithm will always
return the best possible combination. On the other hand, Dijkstra’s
algorithm is limited to positive penalty function values, which is a
restriction that Tabu search does not share. Another small but
significant difference can be found in how the MM is quantified.
Both methods involve quantifying the properties of each individual
means. However, MOTAC also enables quantified properties to be
attributed to functions of the system, thus enabling, for instance,
functions to be ranked by importance. Finally, the most important

difference between the two methods is the inclusion of flexibility
metrics in the MOTAC approach.

Furthermore, it is important to discuss how MOTAC relates to
design margins. Designing a system that contains excessive cap-
ability such that it can accommodate future upgrades can poten-
tially result in overdesign. An example from the examined case in
the “Example: Steer-by-wire system” section is the use of a high-
torque motor in a car that might not need such a powerful motor.
Indeed, it is important to understand the stakeholder needs before
committing to a flexible system. Questions such as “Is the system
likely to be upgraded?” and “Does the commonality outweigh the
losses of excessive margins?” should be asked as early as possible to
avoid wasting resources. This is critical from a sustainability per-
spective, as there is a need to strive to conserve natural resources
and minime waste (Benton, 2015). In some cases, extending the life
of a system can potentially reduce its environmental impact (Vezzoli
et al., 2017), and making it easier to upgrade a system is one way of
extending its potential life (Khan et al., 2018). On the other hand,
integrating excessive amounts of margins into a system that has no
need for suchmargins will result in superfluous capacity and a waste
of resources (Brahma et al., 2024b).

Possible improvements

Depending on the scenario, it can be interesting to bring in add-
itional steps into the MOTAC method. To keep the scope of the
demonstrated method focused, some ideas were not included as
part of the method, although they can be integrated if necessary.
The first of these additional steps, “property thresholds,” accounts
for the possibility of requirement-bound limits for certain proper-
ties, such as “maximum power consumption” or “maximum
weight.” The second additional step is to run a sensitivity analysis
on the results to enable securing a higher degree of confidence in the
results.

Property thresholds
In certain scenarios, it may be known in advance that a design is not
to exceed a certain threshold value to adhere to requirements. For
instance, if the weight of the design is not allowed to be too high,
concepts that exceed this limit should not be generated. The pathfind-
ing algorithmcanbe configured to discard any solution candidate that
exceeds the threshold. Consider the pseudocode in Pseudocode 2: if
the intention is to avoid solutions that exceed a certain weight
threshold, then a check can be implemented before addingnewmeans
for the pathfinder to explore. This check can be designed to ensure
that the weight of the next means, combined with the currently
aggregated weight, is within the threshold. If it is not, then do not
add that means to the priority queue.

Two criteria need to be considered before using this approach:
(i) the impact on computational expenses and (ii) the need formore
detailed mathematical models of each means. Since this change
results in more solutions being discarded due to exceeding the
threshold, it takes more iterations for the algorithm to find solution
candidates. However, the impact on computation is only significant
for extremely large design spaces. Of higher significance is the time
and knowledge needed to refine the mathematical models of each
means to provide a high enough resolution to screen out infeasible
designs. In other words, the means need to be represented in such a
way that they provide a fairly accurate approximation of, for example,
the weight of each mean. In the case of configuring existing subsys-
tems, as when designing for a product family, this is more feasible as

12 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

experience anddata frompreviousdesigns can be used to populate the
models.

Sensitivity analysis
The understanding of each means, and each generated design
candidate, in the early phases of design is highly limited. For this
reason, it is impossible to determine which design candidate is the
“best” already at this stage. This is especially true in cases where low-
resolutionmathematicalmodels are used to represent themeans, such
as in the presented case in the “Example: Steer-by-wire system”
section. For this reason, we propose generating multiple design can-
didates using MOTAC. The more designs that are evaluated, the
higher the likelihood of identifying a high-performing design. How-
ever, the outcomeof the pathfinding algorithmhighly depends onhow
the problem is configured. To understand how sensitive the outcome
is to the setup, it is likely to be beneficial to perform a sensitivity
analysis. This can, for instance, be done by varying the penalty
function objective coefficients and property values using the Monte
Carlo method. The speed of the pathfinding algorithm is fast enough
to permit such an approach. Naturally, it would take more time to set
up the design generation process and analyze the results, as the
distributions of properties and objective coefficients would need to
be configured. However, performing such a sensitivity analysis may
ultimately save time as designers avoid rework.

Addressing the research question

With regard to the research question posed in the Introduction, “How
can vast discrete design spaces be explored with respect to design
objectives and flexibility?” there are naturally an infinite number of
ways to solve this problem. In the “Theoretical background” section,
multiple ways of exploring discrete design spaces were covered, and in
the “Evaluating and trading for design flexibility” section, we looked at
different means of quantifying flexibility. However, we did not find
any existing attempts at combining discrete design space exploration
with quantified flexibility in the early phases of design.

To enable flexibility metrics at this early stage, we needed to
consider the information that was available: Which functions are
supposed to be achieved by the design, and what are the known
alternatives for achieving those functions? Additionally, it was
shown in the “Implementation of design objectives” section that
some degree of information regarding the relative characteristics
and properties of the different means can also be elicited using
expert opinions. With this limited information, how can flexibility
be quantified and used to support decision-making? It was found that,
by looking at the known alternative means, an expert can determine
which means cannot be combined. These incompatibilities can be

used to quantify the design space by calculating how much of the
design space is screened off when committing to any given means in
theMM. To simplify the process of identifying and capturing incom-
patible means, a DSM was used to visualize and store identified
incompatibilities.

The final step was to design an appropriate algorithm for navi-
gating the discrete design space with respect to these new metrics. A
pathfinding algorithmwas deemed suitable, as anMMcan be seen as
a node network in which only one direction of travel is possible. This
approach is also apt for navigating around incompatible combin-
ations, as incompatible node pairings can easily be stored in a fast-
access data structure such as a hash table. Similarly, the impact on
flexibility can conveniently be integrated as part of the pathfinding
algorithm, allowing it to remember previous incompatibilities such
that the same incompatibility is not counted twice, as discussed in the
“Accounting for flexibility” section.

Notably, the proposed method necessitates a greater effort in
terms of preparation compared to its traditional counterpart. Besides
performing a functional decomposition and identifying alternative
means, objectives need to be defined and the MM needs to be
quantified systematically. However, the efficiency of investigating
and reducing the discrete design space down to a feasible number of
combinations is significantly improved, as is visualized in Figure 6.
Since MOTAC automatically excludes incompatible combinations,
the design space is immediately reduced significantly. What is left
is quickly navigated by the pathfinding algorithm, which assists in
identifying a feasible number of design candidates that are to be
further investigated. Overall, the process of going from functional
decomposition to a set of design candidates for further investigation
is made more efficient.

Conclusion

The two key contributions that theMOTAC approach provides are
(i) efficiently navigating large discrete design spaces in the form of
MMs using a pathfinding algorithm and (ii) involving flexibility in
the evaluation of solution candidates when performing discrete
design space exploration.

To enable design space exploration using pathfinding, the alter-
natives in the MM need to be quantifiable. This can be done by
identifying objectives that need to be minimized or maximized and
attributing each element in the matrix with the necessary informa-
tion to evaluate those objectives. A penalty function can then be
formed, which can be used by a pathfinding algorithm to identify
promising design candidates.

Flexibility can be accounted for by mapping which means in
the MM are incompatible. This can be captured using a DSM.

Figure 6. Visualization of how MOTAC improves the efficiency of the design space exploration process. The numbers are based on those identified in the steer-by-wire scenario.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

A pathfinding algorithm can be designed to avoid pairing incom-
patible combinations while simultaneously measuring how much
of an impact this has on the available design space. The more
incompatible pairings that are mapped, the more constrained the
design space becomes. In this context, flexibility can be thought of as
the ratio between the constrained and unconstrained design spaces.
We refer to this as combinatorial flexibility, which can be used by a
pathfinding algorithm to identify solution candidates that are flexible.
In other words, the algorithm can assist in identifying concepts that
can be changed, or upgraded, over time.

This approach, combining pathfinding withMMs and flexibility
metrics, was designedwith two scenarios inmind. The first scenario
when this approach can be used is in the early stages of concept
development when little is known about the various means. In such
a scenario, large MMs can be difficult to explore, and it is often
unclear if the most promising designs have been explored. By
providing simple objectives based on initial requirements such as
minimizing weight or maximizing some aspect of performance, the
individual means can be compared and provided with relativistic
metrics. This is enough for a pathfinding algorithm to efficiently
explore and suggest a predetermined number of solution candi-
dates. In addition, it keeps track of incompatible means and can
navigate MMs of sizes that would traditionally be considered as
being too large. The second scenario is when designing within a
product family.Within a product family, theremight already exist a
large assortment of technologies that can be combined in various
ways. These technologies can be from previous products or from
technology development programs. Through the implementation
of the flexibilitymetric, theMOTACapproach can provide strategic
support in identifying solution candidates that are compatible with
future technology that is not yet ready for market. Thus, contem-
porary designs can be prepared for the inclusion of novel technolo-
gies in the future by ensuring that the designs are compatible with
potential future upgrades.

Acknowledgements. The research presented in this paper was funded by the
Swedish Innovation Agency (VINNOVA) through the DIFAM 2 project (ID
2023-01196) and the D-SIFT project (ID 2024-03148).

Author contribution. All listed authors have read and approved of the manu-
script.

Competing interests. The authors declare that they have no known compet-
ing financial interests or personal relationships that could have influenced the
work reported in this paper.

References

Almefelt L (2005) Balancing properties while synthesising a product concept – a
method highlighting synergies. In DS 35: Proceedings of ICED’05 – the 15th
International Conference on Engineering Design, Melbourne, Australia, August
15–18, 2005, pp. 427–428.

Alonso Fernández I, Panarotto M and Isaksson O (2024) Modeling technical
risk propagation using field-effects in automotive technology infusion design
studies. Journal of Mechanical Design 146, 121702. https://doi.org/10.1115/
1.4065611.

Bardenhagen A and Rakov D (2019) Advanced morphological approach in
aerospace design during conceptual stage. FactaUniversitatis 17(3), 321–332.
https://doi.org/10.22190/FUME180110005B.

Benton R (2015) Reduce, reuse, recycle… and refuse. Journal of Macromarket-
ing 35(1), 111–122. https://doi.org/10.1177/0276146714534692.

Brahma A, Ferguson S, Eckert C and Isaksson O (2024a) Margins in design –

review of related concepts and methods. Journal of Engineering Design 35,
1193–1226. https://doi.org/10.1080/09544828.2023.2225842.

Brahma A,Hallstedt SI,WynnDC and Isaksson O (2024b) Circular products:
The balance between sustainability and excessive margins in design. Proceed-
ings of theDesign Society 4, 1199–1208. https://doi.org/10.1017/pds.2024.122.

Bryant CR, Bohm M, Stone RB and McAdams DA (2007) An interactive
morphological matrix computational design tool: A hybrid of two methods.
In IDETC-CIE2007, pp. 249–261. https://doi.org/10.1115/DETC2007-35583.

Buede DM (2016) The Engineering Design of Systems: Models and Methods, 1st
Edn. New York: John Wiley & Sons, Incorporated.

Burnap A, Hartley J, Pan Y, Gonzalez R and Papalambros PY (2016) Balan-
cing design freedom and brand recognition in the evolution of automotive
brand styling. Design Science 2, e9. https://doi.org/10.1017/dsj.2016.9.

Clarkson PJ, Caroline S and Claudia E (2004) Predicting change propagation
in complex design. Journal of Mechanical Design 126(5), 788–797. https://doi.
org/10.1115/1.1765117.

Cormier, P., Olewnik, A., & Lewis, K. (2008). An approach to quantifying
design flexibility for mass customization in early design stages. In IDETC-
CIE2008, pp. 203–216. https://doi.org/10.1115/DETC2008-49343.

Dijkstra EW (1959) A note on two problems in connexion with graphs. In
Edsger Wybe Dijkstra: His Life, Work, and Legacy. New York: Association for
Computing Machinery, pp. 287–290. https://doi.org/10.1145/3544585.3544600.

Eckert C, IsakssonO, Lebjioui S, Earl CF and Edlund S (2020) Designmargins
in industrial practice.Design Science6, e30. https://doi.org/10.1017/dsj.2020.19.

Fricke E and Schulz AP (2005) Design for changeability (DfC): Principles to
enable changes in systems throughout their entire lifecycle. Systems Engin-
eering 8(4), 342–359. https://doi.org/10.1002/sys.20039.

Hölttä KM and Otto KN (2005) Incorporating design effort complexity meas-
ures in product architectural design and assessment. Design Studies 26(5),
463–485. https://doi.org/10.1016/j.destud.2004.10.001.

Hubka V (1982) Principles of Engineering Design, 1st Edn. Oxford, United
Kingdom: Butterworth & Co.

Khan MA, Mittal S, West S and Wuest T (2018) Review on upgradability – a
product lifetime extension strategy in the context of product service systems.
Journal of Cleaner Production 204, 1154–1168. https://doi.org/10.1016/j.
jclepro.2018.08.329.

Ma H, Chu X, Xue D and Chen D (2017) A systematic decision making
approach for product conceptual design based on fuzzy morphological
matrix. Expert Systems with Applications 81, 444–456. https://doi.org/10.1016/
j.eswa.2017.03.074.

Machchhar RJ, Bertoni A,Wall J and Larsson T (2024) Incorporating change-
ability for value-robust product-service systems: An integrative review.
Design Science 10, e8. https://doi.org/10.1017/dsj.2024.5.

Martinsson Bonde, J.,Mallalieu, A.,Panarotto,M., Isaksson, O.,Almefelt, L.,
& Malmqvist, J. (2022). Morpheus: The Development and Evaluation of a
Software Tool for Morphological Matrices. DS 118: Proceedings of NordDe-
sign 2022, Copenhagen, Denmark, 16th-18th August 2022, 1–10. https://doi.
org/10.35199/NORDDESIGN2022.38

Martinsson Bonde J,Kokkolaras M,Andersson P, Panarotto M and Isaksson
O (2023) A similarity-assisted multi-fidelity approach to conceptual design
space exploration.Computers in Industry 151, 103957. https://doi.org/10.1016/
j.compind.2023.103957.

Martinsson Bonde, J., Breimann, R.,Malmqvist, J.,Kirchner, E., & Isaksson,
O. (2024). The impact of specialized software on concept generation. Pro-
ceedings of the Design Society, 4, 663–672. Cambridge Core. https://doi.org/
10.1017/pds.2024.69

Motte, D., & Bjärnemo, R. (2013). Dealing with the combinatorial explosion
of the morphological matrix in a “manual engineering design” context
[V005T06A014]. In IDETC-CIE2013. https://doi.org/10.1115/DETC2013-12040

Müller JR, Isaksson O, Landahl J, Raja V, Panarotto M, Levandowski C and
RaudbergetD (2019) Enhanced function-meansmodeling supporting design
space exploration. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 33(4), 502–516. https://doi.org/10.1017/S0890060419000271.

Ölvander J, Lundén B and Gavel H (2009) A computerized optimization
framework for the morphological matrix applied to aircraft conceptual design.
Computer-AidedDesign41(3), 187–196. https://doi.org/10.1016/j.cad.2008.06.005.

Pahl G, Beitz W, Feldhusen J and Harriman RA (2007) Engineering Design: A
Systematic Approach, 3rd Edn. London: Springer.

Pugh S (1990) Total Design: Integrated Methods for Successful Product Engin-
eering. Boston: Addison-Wesley.

14 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1115/1.4065611
https://doi.org/10.1115/1.4065611
https://doi.org/10.22190/FUME180110005B
https://doi.org/10.1177/0276146714534692
https://doi.org/10.1080/09544828.2023.2225842
https://doi.org/10.1017/pds.2024.122
https://doi.org/10.1115/DETC2007-35583
https://doi.org/10.1017/dsj.2016.9
https://doi.org/10.1115/1.1765117
https://doi.org/10.1115/1.1765117
https://doi.org/10.1115/DETC2008-49343
https://doi.org/10.1145/3544585.3544600
https://doi.org/10.1017/dsj.2020.19
https://doi.org/10.1002/sys.20039
https://doi.org/10.1016/j.destud.2004.10.001
https://doi.org/10.1016/j.jclepro.2018.08.329
https://doi.org/10.1016/j.jclepro.2018.08.329
https://doi.org/10.1016/j.eswa.2017.03.074
https://doi.org/10.1016/j.eswa.2017.03.074
https://doi.org/10.1017/dsj.2024.5
https://doi.org/10.35199/NORDDESIGN2022.38
https://doi.org/10.35199/NORDDESIGN2022.38
https://doi.org/10.1016/j.compind.2023.103957
https://doi.org/10.1016/j.compind.2023.103957
https://doi.org/10.1017/pds.2024.69
https://doi.org/10.1017/pds.2024.69
https://doi.org/10.1115/DETC2013-12040
https://doi.org/10.1017/S0890060419000271
https://doi.org/10.1016/j.cad.2008.06.005
https://doi.org/10.1017/S0890060425100048

Siddique Z and Rosen DW (2001) On combinatorial design spaces for the
configuration design of product families.Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 15(2), 91–108. https://doi.org/10.1017/
S0890060401152029.

SimpsonTW,Maier JR andMistree F (2001) Product platform design:Method
and application. Research in Engineering Design 13(1), 2–22. https://doi.org/
10.1007/s001630100002.

Simpson TW, Rosen D, Allen J and Mistree F (1998) Metrics for assessing
design freedom and information certainty in the early stages of design.
Journal of Mechanical Design, Transactions of the ASME 120(4), 628–635.
https://doi.org/10.1115/1.2829325.

Skiena SS (1998) The Algorithm Design Manual, Vol. 2. London: Springer.
https://doi.org/10.1007/978-1-84800-070-4.

Smith G, Richardson J, Summers J and Mocko G (2012) Concept exploration
throughmorphological charts: An experimental study. Journal ofMechanical
Design 134(5), 051004. https://doi.org/10.1115/1.4006261.

Sobek D, Ward A and Liker J (1999) Toyota’s principles of set-based concur-
rent engineering. Sloan Management Review 40(2), 67–83.

Stenholm D, Corin Stig D, Ivansen L and Bergsjö D (2019) A framework of
practices supporting the reuse of technological knowledge. Environment
Systems and Decisions 39(2), 128–145. https://doi.org/10.1007/s10669-019-
09732-4.

Tiwari S, Teegavarapu S, Summers JD and Fadel GM (2009) Automating
morphological chart exploration: Amulti-objective genetic algorithm to address
compatibility and uncertainty. International Journal of Product Development
9(1-3), 111–139. https://doi.org/10.1504/IJPD.2009.026176.

Todorov VT, Rakov D and Bardenhagen A (2022) Enhancement oppor-
tunities for conceptual design in aerospace based on the advanced mor-
phological approach. Aerospace 9(2), 78. https://doi.org/10.3390/aerospace
9020078.

Ullman DG (2002) TheMechanical Design Process, 3rd Edn. NewYork:McGraw-
Hill Science/Engineering.

Ulrich KT, Eppinger SD and Yang MC (2020) Product Design and Develop-
ment. Boston: McGraw-Hill/Irwin.

Vezzoli C,Kohtala C, Srinivasan A,Diehl JC, Fusakul SM, Xin L and Sateesh
D (2017) Product-service system design for sustainability. In Product-Service
System Design for Sustainability (pp. 49–86). Milton Park, United Kingdom:
Routledge.

Woodbury RF and Burrow AL (2006) Whither design space? Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing 20(2), 63–82.
https://doi.org/10.1017/S0890060406060057.

Zwicky F (1967) The morphological approach to discovery, invention, research
and construction. In Zwicky F andWilson AG (eds),NewMethods of Thought
and Procedure. Berlin–Heidelberg: Springer, pp. 273–297.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401152029
https://doi.org/10.1017/S0890060401152029
https://doi.org/10.1007/s001630100002
https://doi.org/10.1007/s001630100002
https://doi.org/10.1115/1.2829325
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1115/1.4006261
https://doi.org/10.1007/s10669-019-09732-4
https://doi.org/10.1007/s10669-019-09732-4
https://doi.org/10.1504/IJPD.2009.026176
https://doi.org/10.3390/aerospace9020078
https://doi.org/10.3390/aerospace9020078
https://doi.org/10.1017/S0890060406060057
https://doi.org/10.1017/S0890060425100048

Appendix: Steer-by-wire morphological matrix

Figure A1 depicts anMM containing all functions for which there were alternative means in the considered SbW case in the “Example: Steer-by-wire system” section.

Figure A1. Screenshot of the full morphological matrix for the steer-by-wire system.

16 Julian Martinsson Bonde et al.

https://doi.org/10.1017/S0890060425100048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100048

	Managing combinatorial design challenges using flexibility and pathfinding algorithms
	Introduction
	Theoretical background
	Exploring large discrete design spaces
	Evaluating and trading for design flexibility

	Multi-objective technology assortment combinatorics
	Functional decomposition and identification of incompatibilities
	Setting up the quantifiable morphological matrix
	Identifying promising combinations with pathfinding
	Accounting for flexibility

	Example: Steer-by-wire system
	System decomposition
	Implementation of design objectives
	Identifying solution candidates
	Including flexibility in the penalty function

	Discussion
	Relation to the existing research
	Possible improvements
	Property thresholds
	Sensitivity analysis

	Addressing the research question

	Conclusion
	Acknowledgements
	Author contribution
	Competing interests
	References
	Appendix: Steer-by-wire morphological matrix

