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Non-torsion algebraic cycles on the
Jacobians of Fermat quotients

Yusuke Nemoto

Abstract. We study the Abel-Jacobi image of the Ceresa cycle Wk ,e −W−

k ,e , where Wk ,e is the image of
the k-th symmetric product of a curve X with a base point e on its Jacobian variety. For certain Fermat
quotient curves of genus g, we prove that for any choice of the base point and k ≤ g − 2, the Abel-Jacobi
image of the Ceresa cycle is non-torsion. In particular, these cycles are non-torsion modulo rational
equivalence.

1 Introduction

Let X be a smooth projective curve of genus g over C and Jac(X) be its Jacobian.
Let CHk(Jac(X))hom be the Chow group of homologically trivial algebraic cycles of
dimension k on Jac(X) modulo rational equivalence. To study this group, we consider
the Abel-Jacobi map

Φk ∶ CHk(Jac(X))hom → Jk(Jac(X)) (k = 1, . . . , g − 1).

Here, Jk(Jac(X)) is a complex torus, which is called the Griffiths intermediate
Jacobian (see Section 3.1). It is well known that Φg−1 is an isomorphism by the Abel-
Jacobi theorem; however, for a general k, Φk is neither injective nor surjective. Fix a
base point e ∈ X and let ιe be the embedding defined by

ιe ∶ X → Jac(X); x ↦ [x] − [e].

Put Xe = ιe (X). We denote X−e by the image of Xe under the inversion map. Since the
inversion map acts trivially on the cohomology groups of even degree, we have

Xe − X−e ∈ CH1(Jac(X))hom .

Let Wk ,e be the image of the k-th symmetric product of X on Jac(X). As in the case
of k = 1, we have

Wk ,e − W−
k ,e ∈ CHk(Jac(X))hom .

These cycles are called the Ceresa cycles and for a generic curve X, Ceresa [4] proves
that if 1 ≤ k ≤ g − 2, then Wk ,e − W−

k ,e is nontrivial modulo algebraic equivalence.
For a positive integer N and integers a, b ∈ {1, . . . , N − 1}, let Ca ,b

N be the smooth
projective curve birational to the affine curve
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2 Y. Nemoto

yN = xa(1 − x)b .

Let FN be the Fermat curve of degree N. Then Ca ,b
N is a quotient of FN by a cyclic

group Ga ,b
N (see Section 2). Let g be the genus of Ca ,b

N . The main theorem of this paper
is as follows.

Theorem 1.1 Suppose that N has a prime divisor p > 7 such that p ∤ ab and a2 + ab +
b2 ≡ 0 (mod p). Then Φk(Wk ,e − W−

k ,e ) ∈ Jk(Jac(Ca ,b
N )) is non-torsion for any choice

of the base point e ∈ Ca ,b
N and k = 1, . . . , g − 2.

Remark 1.2 When N does not have a prime divisor p > 7, there exist some examples
that the Abel-Jacobi image of the Ceresa cycle of Ca ,b

N is torsion. For example,
Φ1(Xe − X−e ) is torsion for X = C1,2

9 , C1,3
12 , C1,5

15 and e = (0, 0) ([1, §2 Theorem],
[15, Theorem 3.2]).

The algebraical nontriviality of the Ceresa cycles of FN (N ≤ 1000) and C1,b
p

(p ≤ 1000 is a prime and b2 + b + 1 ≡ 0 (mod p)) is proved by Harris [10], Bloch
[2], Kimura [14], Tadokoro [18, 19, 20], and Otsubo [16]. Moreover, Otsubo [16]
and Tadokoro [20] give a sufficient condition for the Ceresa cycles of these to
be non-torsion modulo algebraic equivalence; however, it is impossible to confirm
numerically these conditions. There are only two explicit examples of non-torsioness
modulo algebraic equivalence for k = 1: F4 by Bloch [2] and C1,2

7 by Kimura [14]; they
prove the non-torsioness of the l-adic Abel-Jacobi image.

Let N be a positive integer divisible by a prime p > 7. Eskandari-Murty [6, 7]
prove that Φ1(FN ,e − F−N ,e ) is non-torsion for any e ∈ FN ; in particular, FN ,e − F−N ,e
is non-torsion modulo rational equivalence. Moreover, they conjecture that the same
result holds for C1,m

p with m ∈ {1, . . . , p − 2} and m ≠ 1, (p − 1)/2, p − 2 [7, Section 4,
Remark (2)]. Theorem 1.1 partially but affirmatively answers their conjecture.

We briefly give a sketch of the proof. First, we reduce to the case k = 1 using a
method of Otsubo [16] (see Proposition 3.1). The reduction to the case N = p is easy.
The rest of the proof is parallel to the method of Eskandari-Murty [6, 7]. First, the
Abel-Jacobi image of the Ceresa cycle is described by an extension of mixed Hodge
structures by Harris [10] and Pulte [17] (see Section 3.2). Second, we construct a
1-cycle Z on Ca ,b

p × Ca ,b
p and evaluate the extension of mixed Hodge structures at Z.

Here, we use the assumptions on a and b so that an automorphism of Fp of order
3 descends to Ca ,b

p . Then the extension class is expressed by a rational point PZ ∈
Jac(Ca ,b

N ) by formulas of Kaenders [13] and Darmon-Rotger-Sols [5] (see Sections 3.3,
3.4). Finally, since PZ is non-torsion by a result of Gross-Rohrlich [8] (see Section 2),
where we use the assumption p > 7, the theorem follows.

2 Fermat quotient curves

Let N > 3 be an integer, and for integers a, b ∈ {1, . . . , N − 1}, let Ca ,b
N be the smooth

projective curve birational to

yN = xa(1 − x)b .
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Non-torsion algebraic cycles on the Jacobians of Fermat quotients 3

The map

Ca ,b
N → P1; (x , y) ↦ x

is ramified at x = 0, 1 and ∞. Above 0 (resp. 1, ∞), there are gcd(N , a) (resp.
gcd(N , b), gcd(N , a + b)) branches and the ramification index is N/ gcd(N , a) (resp.
N/ gcd(N , b), N/ gcd(N , a + b)). Therefore, by the Riemann-Hurwitz formula, the
genus of Ca ,b

N is

1
2

(N − (gcd(N , a) + gcd(N , b) + gcd(N , a + b))) + 1.

We have an isomorphism

Ca ,b
N ≅ Cb ,a

N

sending x to 1 − x. If two other integers a′ , b′ ∈ {1, . . . , N − 1} satisfy the relation

(a′ , b′) = (ha, hb) + (Ni , N j)

for some integers h, i , j with gcd(N , h) = 1, we have

Ca ,b
N ≅ Ca′ ,b′

N ; (x , y) ↦ (x , yh x i (1 − x) j).

Let FN be the Fermat curve of degree N defined by

uN + vN = wN .

Then there is a morphism

πa ,b
N ∶ FN → Ca ,b

N ; (u ∶ v ∶ w) ↦ (x , y) = (uN w−N , uavbw−a−b).

Define a finite group by

GN = Z/NZ ⊕ Z/NZ

and denote an element (r, s) ∈ GN by gr ,s
N . Fix a primitive N-th root of unity ζN and

let GN act on FN by

gr ,s
N (u ∶ v ∶ w) = (ζ r

N u ∶ ζ s
N v ∶ w).

Let Ga ,b
N be a subgroup of GN defined by

Ga ,b
N = {gr ,s

N ∈ GN ∣ ar + bs = 0}.

If gcd(N , a, b) = 1, FN is generically Galois over Ca ,b
N and

Gal(FN /Ca ,b
N ) = Ga ,b

N = ⟨gb ,−a
N ⟩ ≃ Z/NZ.

There is an automorphism α of FN of order 2 defined by

α((u ∶ v ∶ w)) = (v ∶ u ∶ w).

When N is odd, there is an automorphism β of FN of order 3 defined by

β((u ∶ v ∶ w)) = (−v ∶ w ∶ u).
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4 Y. Nemoto

Lemma 2.1 (cf. [12, Section 3.1]) Suppose that gcd(N , a, b) = 1. Then,
(i) α descends to Ca ,b

N if and only if a2 ≡ b2 (mod N).
(ii) Suppose that N is odd. Then β descends to Ca ,b

N if and only if a2 + ab + b2 ≡ 0
(mod N). We denote this automorphism by β̃.

Proof We only prove (ii) since we use the morphism β̃ to prove Theorem 1.1 and
(i) is similarly proved. The automorphism β descends to β̃ if and only if

πa ,b
N (β(gb ,−a

N (u ∶ v ∶ w))) = πa ,b
N (β(u ∶ v ∶ w));

that is, there exists an integer i such that

(−ζ−a
N v ∶ w ∶ ζb

N u) = (−ζbi
N v ∶ ζ−ai

N w ∶ u)

for all (u ∶ v ∶ w) ∈ FN . This is equivalent to

a + b ≡ −bi and b ≡ ai (mod N).(2.1)

First, (2.1) implies a2 + ab + b2 ≡ 0 (mod N). However, if a2 + ab + b2 ≡ 0 (mod N),
then we have gcd(N , a) = gcd(N , b) = 1 by the assumption gcd(N , a, b) = 1. There-
fore, there is an integer i such that ai ≡ b (mod N), which satisfies (2.1). ∎

Remark 2.2
(i) If N is a prime, the condition a2 + ab + b2 ≡ 0 (mod N) implies that N ≡ 1

(mod 3).
(ii) When N = a2 + ab + b2, the curve Ca ,b

N is isomorphic to the Hurwitz curve ([12,
Lemma 3.8]) which is the smooth projective curve birational to

XbY a+b + Y b Za+b + Zb Xa+b = 0.

(iii) The condition a2 + ab + b2 ≡ 0 (mod N) (for N prime) appears in Tadokoro
[20]. He uses β̃ to construct from a 1-form ω on Ca ,b

N two other 1-forms of the
same Hodge type and evaluate the Abel-Jacobi image of the Ceresa cycle for
k = 1 at ω ∧ β̃∗ω ∧ (β̃2)∗ω.

When gcd(N , 6) = 1, the automorphism β of FN has two fixed points

S = (ζ6 ∶ ζ−1
6 ∶ 1), S = (ζ−1

6 ∶ ζ6 ∶ 1),

and there is no other fixed point.

Lemma 2.3 Suppose that gcd(N , a, b) = gcd(N , 6) = 1 and a2 + ab + b2 ≡ 0
(mod N). Then the fixed points of the automorphism β̃ of Ca ,b

N are πa ,b
N (S) and

πa ,b
N (S), which are distinct.

Proof We regard a, b as elements in (Z/NZ)∗. Put γ = gb ,−a
N . Then we have

βγ = g−a−b ,−b
N β = γa−1 b β
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Non-torsion algebraic cycles on the Jacobians of Fermat quotients 5

since −a − b = a−1b2 by the assumption a2 + ab + b2 = 0 in Z/NZ. For P ∈ Ca ,b
N ,

suppose that β̃(P) = P and take any Q ∈ FN such that πa ,b
N (Q) = P. Then

β(Q) = γk Q

for some k ∈ Z/NZ. Since (a − b)2 = 3ab ∈ (Z/NZ)∗, we have a − b ∈ (Z/NZ)∗. We
take i = a(a − b)−1k. Then we have

β(γ i Q) = γa−1 bi β(Q) = γa−1 bi+k Q = γ i Q ,

which means that γ i Q = S or S; hence, P = πa ,b
N (S) or πa ,b

N (S).
We are to show that πa ,b

N (S) ≠ πa ,b
N (S). Suppose that πa ,b

N (S) = πa ,b
N (S); that is,

there exists an integer i such that

ζ6 = ζbi
N ζ−1

6 , ζ−1
6 = ζ−ai

N ζ6 .

Then we have ζ2N
6 = 1, which contradicts the assumption gcd(N , 6) = 1. ∎

Put P0 = (0 ∶ 1 ∶ 1) ∈ FN and let FN → Jac(FN ) be the map defined by Q ↦ [Q] − [P0].
Similarly, we define a map Ca ,b

N → Jac(Ca ,b
N ) by sending Q′ to [Q′] − [πa ,b

N (P0)]. Then
we have a commutative diagram

FN ��

πa ,b
N

��

Jac(FN )

(πa ,b
N )∗

��
Ca ,b

N
�� Jac(Ca ,b

N ).

The following result of Gross and Rohrlich is one of the key ingredients to the proof
of Theorem 1.1.

Theorem 2.4 [8, Theorem 2.1] Let N be an integer such that gcd(N , 6) = 1 and N
is divisible by a prime p > 7. If a − b, a + 2b, 2a + b /≡ 0 (mod p), then the point
(πa ,b

N )∗([S] + [S] − 2[P0]) on Jac(Ca ,b
N ) is non-torsion.

3 Algebraic cycles and Hodge theory of quadratic iterated integrals

3.1 Extension of mixed Hodge structures

Let R = Z or Q. An R-mixed Hodge structure H is an R-module HR of finite rank
equipped with an increasing weight filtration W● on HQ ∶= HR ⊗R Q and a decreasing
Hodge filtration F● on HC ∶= HR ⊗R C such that for each k, GrW

k (HQ) with the
induced filtration F● is a pure Q-Hodge structure of weight k. Let R(n) be the Tate
object of pure weight −2n and put H(n) = H ⊗R R(n). Let H∨ be the dual R-mixed
Hodge structure of H.

Let MHS(R) be the category of R-mixed Hodge structures. For R-mixed Hodge
structures A, B, let ExtMHS(R)(A, B) denote the set of equivalence classes of extensions
of R-mixed Hodge structures (i.e., exact sequences

0 → B → E → A → 0
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6 Y. Nemoto

of R-mixed Hodge structures up to natural equivalence relation). There is a natural
operation called the Baer sum which makes ExtMHS(R)(A, B) an abelian group. If X
is a smooth projective variety over C, the cohomology group Hn(X ,Z) underlies a
pure Z-Hodge structure of weight n, which we denote by Hn(X).

For a pure Z-Hodge structure H of weight −1, the intermediate Jacobian is
defined by

JH = HC/(F0HC + HZ),

which is a complex torus. We have Carlson’s isomorphism [3]

JH ≅ ExtMHS(Z)(H∨ ,Z(0)).

For a smooth projective variety X over C, H2k+1(X)(−k) is a pure Z-Hodge structure
of weight −1, and

Jk(X) ∶= JH2k+1(X)(−k) ≅ (F k+1H2k+1(X ,C))∨/H2k+1(X ,Z)

is the k-th intermediate Jacobian of Griffiths. The Carlson isomorphism is written as

Jk(X) ≅ ExtMHS(Z)(H2k+1(X)(k),Z(0)).

Let CHk(X) be the Chow group of k-dimensional algebraic cycles on X modulo
rational equivalence, and CHk(X)hom be the subgroup of homologically trivial cycles.
Then we have the Abel-Jacobi map

Φk ∶ CHk(X)hom → Jk(X); Z ↦ (η ↦ ∫
�

η)

for any η ∈ F k+1H2k+1(X ,C), where � is a topological (2k + 1)-chain such that
∂� = Z.

From now on, let X be a smooth projective curve of genus g ≥ 3 over C. Let

⟨ ⟩∶ H1(X) ⊗ H1(X) → H2(X) = Z(−1)

be the cup product φ ⊗ φ′ ↦ ∫X φ ∧ φ′. Choosing a base point e ∈ X, X is embedded
into Jac(X) sending e to zero. It induces isomorphisms

H1(X) ≃�→ H1(Jac(X)), H1(Jac(X)) ≃�→ H1(X),

which do not depend on the choice of e. We identify these and denote them by H1 and
H1, respectively. Recall that the cup product induces an isomorphism

∧n H1 ≃�→ Hn(Jac(X)).

For e ∈ X, let ιe ∶ X → Jac(X) be the map defined by P ↦ [P] − [e]. Let Xk (resp.
Jac(X)k) be the k-fold product of X (resp. Jac(X)) and μ∶ Jac(X)k → Jac(X) be the
addition. We put

Wk ,e = (μ ○ (ιe )k)(Xk) (1 ≤ k ≤ g).

Then Wk ,e defines an algebraic k-cycle on Jac(X), and Wk ,e − W−
k ,e defines an element

of CHk(Jac(X))hom.
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Non-torsion algebraic cycles on the Jacobians of Fermat quotients 7

Proposition 3.1 If Φ1(Xe − X−e ) is non-torsion, then Φk(Wk ,e − W−
k ,e ) is non-torsion

for any k = 2, . . . , g − 2.

Proof Let S = {e i , f i ∣ 1 ≤ i ≤ g} be a symplectic basis of H1
Z (i.e., ⟨e i , e j⟩ =

⟨ f i , f j⟩ = 0, ⟨e i , f j⟩ = δ i j). Under the identification

Jk(Jac(X)) ≅ Hom(∧2k+1H1
Z ,R/Z),

if Φ1(Xe − X−e ) is non-torsion, there exists elements φ1, φ2, φ3 ∈ S such that

Φ1(Xe − X−e )(φ1 ∧ φ2 ∧ φ3)

is non-torsion. By renumbering, we may assume that φ1, φ2, φ3 ∈ {e i , f i ∣ 1 ≤ i ≤ 3}.
For i = 1, . . . , k − 1, we put

φ2i+2 = e i+3 , φ2i+3 = f i+3 .

Note that i + 3 ≤ g by the assumption. Put φ = φ1 ∧ ⋯ ∧ φ2k+1. Then, by [16, Proposi-
tion 3.7], we have

k! ⋅ Φk(Wk ,e − W−
k ,e )(φ)

= k! ⋅ ∑
σ

Φ1(Xe − X−e )(φσ(1) ∧ φσ(2) ∧ φσ(3))
k−1
∏
i=1

⟨φσ(2i+2) , φσ(2i+3)⟩

= k! ⋅ Φ1(Xe − X−e )(φ1 ∧ φ2 ∧ φ3),

where σ runs through the elements of the symmetric group S2k+1 such that
σ(1) < σ(2) < σ(3), σ(2i + 2) < σ(2i + 3) for 1 ≤ i ≤ k − 1, and σ(2i + 2) < σ(2i + 4)
for 1 ≤ i ≤ k − 2. Therefore, Φk(Wk ,e − W−

k ,e ) is non-torsion. ∎

Corollary 3.2 Let N be an integer which has a prime divisor p > 7 and X = FN be
the Fermat curve of degree N. Then Φk(Wk ,e − W−

k ,e ) is non-torsion for any e ∈ FN and
k = 1, . . . , g − 2.

Proof By Proposition 3.1, we are reduced to the case k = 1, which is a theorem of
Eskandari and Murty [6, Theorem 1.1]. ∎

3.2 Harris-Pulte formula

In this subsection, we recall the Harris-Pulte formula, which is a relation between
the Abel-Jacobi image of the Ceresa cycle and an extension class of mixed Hodge
structures on the space of quadratic iterated integrals on the curve X.

We put

(H1 ⊗ H1)′ = Ker(∪∶ H1 ⊗ H1 → H2(Jac(X))).

Then the map

ϕ∶ H1 ⊗ (H1 ⊗ H1)′ → ∧3H1 ,
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8 Y. Nemoto

which is obtained by restricting the natural quotient map (H1)⊗3 → ∧3H1, is surjec-
tive ([17, Lemma 4.7]), and induces the injective map

ϕ∗∶ ExtMHS(Z)(∧3H1 ,Z(−1)) → ExtMHS(Z)(H1 ⊗ (H1 ⊗ H1)′ ,Z(−1)).

Let π1(X , e) be the fundamental group. Let I be the augmentation ideal of the
group ring Z[π1(X , e)] – that is, the kernel of the degree map

Z[π1(X , e)] → Z; ∑ n i γ i ↦ ∑ n i .

By Chen’s π1-de Rham theorem, Hom(Z[π1(X , e)]/Is+1 ,R) is generated by closed
iterated integrals of length ≤ s. Using this, Hain [9] defines aZ-mixed Hodge structure
on Z[π1(X , e)]/Is such that the natural map Z[π1(X , e)]/Is → Z[π1(X , e)]/I t for
s ≥ t is a morphism of mixed Hodge structures. Consider the exact sequence of mixed
Hodge structures

0 → I2/I3 → I/I3 → I/I2 → 0.(3.1)

The map π1(X , e) → I/I2; γ ↦ γ − 1 is well-defined and induces an isomorphism

H1(X ,Z) ≃�→ I/I2

of Hodge structures of weight −1. However, the multiplication I/I2 ⊗ I/I2 → I2/I3

induces an isomorphism

Hom(I2/I3 ,Z) ≃�→ (H1 ⊗ H1)′

of Hodge structures of weight 2. Taking the dual of (3.1), we have an exact sequence

0 → H1 → L2(X , e) → (H1 ⊗ H1)′ → 0,

where we put L2(X , e) = Hom(I/I3 ,Z).
Let ∞ ≠ e be another point on X. Put U = X − {∞}. We identify H1(U) and H1

via the map induced by the inclusion U ⊂ X. Then we can obtain an exact sequence
of mixed Hodge structures

0 → H1 → L2(U , e) → H1 ⊗ H1 → 0

similarly as above. We have a commutative diagram

0 �� H1 ��

∥

L2(X , e) ��

∩

(H1 ⊗ H1)′ ��

∩

0

0 �� H1 �� L2(U , e) �� H1 ⊗ H1 �� 0.

Let Ee (resp. E∞e ) be an extension class of the top (resp. bottom) row. We regard Ee
as an element of

ExtMHS(Z)((H1 ⊗ H1)′ , H1) ≅ ExtMHS(Z)((H1)∨ ⊗ (H1 ⊗ H1)′ ,Z(0))
≅ ExtMHS(Z)(H1 ⊗ (H1 ⊗ H1)′ ,Z(−1)),
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Non-torsion algebraic cycles on the Jacobians of Fermat quotients 9

and E∞e as an element of

ExtMHS(Z)(H1 ⊗ H1 , H1) ≅ ExtMHS(Z)((H1)∨ ⊗ H1 ⊗ H1 ,Z(0))
≅ ExtMHS(Z)(H1 ⊗ H1 ⊗ H1 ,Z(−1)).

Here, we used the Poincaré duality H1(1) ≅ (H1)∨. One sees that Ee is the restriction
of E∞e to H1 ⊗ (H1 ⊗ H1)′. Then Harris’s formula [10, Section 4], reworked by Pulte
[17, Theorem 4.10], is

ϕ∗ ○ Φ1(Xe − X−e ) = 2Ee

under the identification J1(Jac(X)) = ExtMHS(Z)(∧3H1 ,Z(−1)).

3.3 The decomposition of (H1)⊗3

In this subsection, for a Z-mixed Hodge structure H, we consider the image of H
under the forgetful functor MHS(Z) → MHS(Q), which we denote by the same letter.
The Hodge structure (H1)⊗3 can be decomposed in MHS(Q) as follows. Let ξΔ ∈ H1 ⊗
H1 be the Künneth component of the Hodge class of the diagonal of X in H2(X × X).
Then we have a decomposition

H1 ⊗ H1 ⊗ H1 = (H1 ⊗ ⟨ξΔ⟩) ⊕ (H1 ⊗ (H1 ⊗ H1)′).

Since the Mumford-Tate group of H1 is reductive, the map ϕ admits a section σ in
MHS(Q), and we have

H1 ⊗ (H1 ⊗ H1)′ = ker(ϕ) ⊕ σ(∧3H1).

Let ξΔ be the image of ξΔ in ∧2H1. Then we have a decomposition in MHS(Q)

H1 ⊗ H1 ⊗ H1 = (H1 ⊗ ⟨ξΔ⟩) ⊕ ker(ϕ) ⊕ σ(H1 ∧ ⟨ξΔ⟩) ⊕ σ((∧3H1)prim),

where the last summand (primitive part) is the kernel of the map ∧3H1 → ∧2g−1H1

given by wedging by ξ
g−2
Δ (cf. [7, Section 4.2]). We put E ∶= Ee ∣σ((∧3 H1)prim). Then E is

independent of the choice of e ([17, Theorem 3.9] and [10]).

Proposition 3.3
(i) Suppose that −2g[∞] + 2[e] + K = 0. Then E∞e = 0 if and only if Ee = 0.
(ii) Suppose that (2g − 2)[e] − K = 0. Then Ee = 0 if and only if E = 0.

Proof (i) The statement follows from that E∞e ∣H1⊗(H1⊗H1)′ = Ee and a result of
Kaenders [13, Theorem 1.2] that

E∞e ∣H1⊗⟨ξΔ⟩ = −2g[∞] + 2[e] + K

under the identification (cf. [7, Section 4.3.1])

ExtMHS(Q)(H1 ⊗ ⟨ξΔ⟩,Q(−1)) ≅ CH0(X)hom ⊗ Q.

(ii) The statement follows from that results of Harris [10, Section 3] and Pulte
[17, Theorem 4.10]] that Ee ∣ker(ϕ) ∈ ExtMHS(Q)(ker(ϕ),Q(−1)) is zero, and Pulte
[17, Corollary 6.7] that
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Ee ∣σ(H1∧⟨ξΔ⟩)
= (2g − 2)[e] − K

under the identification (cf. [7, Section 4.3.3])

ExtMHS(Q)(σ(H1 ∧ ⟨ξΔ⟩),Q(−1)) ≅ CH0(X)hom ⊗ Q. ∎

3.4 Darmon-Rotger-Sols formula

Let Δ ∈ CH1(X × X) be the diagonal of X and

p i ∶ X × X → X (i = 1, 2)

be the projection to the i-th component. For Z ∈ CH1(X × X), put

Z12 = (p1)∗(Z ⋅ Δ) = (p2)∗(Z ⋅ Δ),
Z1 = (p1)∗(Z ⋅ (X × {e})), Z2 = (p2)∗(Z ⋅ ({e} × X)) ∈ CH0(X).

Put

PZ = Z12 − Z1 − Z2 − (deg(Z12) − deg(Z1) − deg(Z2))[e] ∈ Jac(X).

Then the point PZ is related to the extension E∞e as follows. Let ξZ be the H1 ⊗ H1-
Künneth component of the class of Z in H2(X × X). Consider the map

ξ−1
Z ∶ ExtMHS(Z)((H1)⊗3 ,Z(−1)) → ExtMHS(Z)(H1(−1),Z(−1)) ≅ J0(X) = Jac(X),

where the first arrow is the pullback along the morphism H1(−1) → (H1)⊗3 defined
by ω ↦ ω ⊗ ξZ . Then we have the following.

Proposition 3.4 [5, Corollary 2.6] For any Z ∈ CH1(X × X), we have

ξ−1
Z (E∞e ) = (∫

Δ
ξZ ) ([∞] − [e]) − PZ

in Jac(X).

4 Proof of Theorem 1.1

There are 3N points on FN

Pi = (0 ∶ ζ i
N ∶ 1), Q i = (ζ i

N ∶ 0 ∶ 1), R i = (ξN ζ i
N ∶ 1 ∶ 0), (i ∈ Z/NZ),

where we put ξN = exp(πi/N). Fix P0 as the base point; then the above points are
torsion points in Jac(FN ) [8]. Therefore, for the base point πa ,b

N (P0), the images
of these points under (πa ,b

N )∗ are also torsion in Jac(Ca ,b
N ). We shall continue to

use the notation as in the previous section, specializing X = Ca ,b
N , e = πa ,b

N (P0) and
∞ = πa ,b

N (Q0).

Lemma 4.1 Let KC (resp. g) be the canonical divisor (resp. genus) of Ca ,b
N . Then

KC − (2g − 2)[e], KC − 2g[∞] + 2[e] ∈ Jac(Ca ,b
N ) are torsion points.
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Proof Since

KC − 2g[∞] + 2[e] = KC − (2g − 2)[e] − 2g([∞] − [e])

and [∞] − [e] is a torsion point, it suffices to show that KC − (2g − 2)[e] is a torsion
point. Let KF be the canonical divisor of FN and Rπa ,b

N
be the ramification divisor of

πa ,b
N ; that is,

KF = (N − 1)
N−1
∑
i=0

Q i − 2
N−1
∑
i=0

R i ,

Rπa ,b
N

= (gcd(N , a) − 1)
N−1
∑
i=0

Pi + (gcd(N , b) − 1)
N−1
∑
i=0

Q i + (gcd(N , a + b) − 1)
N−1
∑
i=0

R i .

Then we have

KF = (πa ,b
N )∗(KC ) + Rπa ,b

N

up to principal divisor (cf. [11, Proposition 2.3, Chap.IV]). Therefore, we have

N(KC − (2g − 2)[e]) = (πa ,b
N )∗ (KF − Rπa ,b

N
− (2g − 2)N[P0])

in Jac(Ca ,b
N ). Since Pi , Q i , and R i are torsion in Jac(FN ), KF − Rπa ,b

N
− (2g − 2)N[P0]

is torsion, which finishes the proof. ∎

Proof of Theorem 1.1 First, by Proposition 3.1, it suffices to show the case when
k = 1. Secondly, consider the map

f ∶ FN → Fp ; (x0 ∶ y0 ∶ z0) ↦ (xN/p
0 ∶ yN/p

0 ∶ zN/p
0 ).

Let ⟨a⟩ ∈ {0, . . . , p − 1} be the representative of a. Then f descends to a map f ∶ Ca ,b
N →

C⟨a⟩,⟨b⟩p . Since

f∗(Φ1(Ca ,b
N ,e − (Ca ,b

N ,e )−)) = deg f ⋅ Φ1 (Ca ,b
p, f (e)

− (Ca ,b
p, f (e)

)−) ,

we are reduced to the case when N = p.
By Lemma 4.1 and Proposition 3.3, it suffices to show that, for the specific choices of

e and ∞ as above, the elementE∞e ∈ ExtMHS(Q)(H1 ⊗ H1 ⊗ H1 ,Q(−1)) is nonzero. By
Lemma 2.1, the automorphism β of Fp descends to an automorphism β̃ of Ca ,b

p ; let Z
be the graph of β̃. Since [∞] − [e] is torsion, it suffices to show that PZ is non-torsion
by Proposition 3.4. Since β̃ ○ πa ,b

p = πa ,b
p ○ β and β̃ has two fixed points by Lemma 2.3,

we have

PZ = ([πa ,b
p (S)] + [πa ,b

p (S)] − 2[e]) − ([β̃(e)] + [β̃−1(e)] − 2[e])
= (πa ,b

p )∗(([S] + [S] − 2[P0]) − ([β(P0)] + [β−1(P0)] − 2[P0])).

The point [β(P0)] + [β−1(P0)] − 2[P0] is a torsion point on Jac(Fp); hence,
(πa ,b

p )∗([β(P0)] + [β−1(P0)] − 2[P0]) is a torsion point on Jac(Ca ,b
p ). However, since
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a − b, a + 2b, 2a + b /≡ 0 (mod p) by the assumption a2 + ab + b2 ≡ 0 (mod p), the
point

(πa ,b
p )∗([S] + [S] − 2[P0]) ∈ Jac(Ca ,b

p )

is non-torsion by Theorem 2.4. Therefore, the point PZ is non-torsion, which finishes
the proof. ∎
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