Biquadratic Extensions with One Break Nigel P. Byott and G. Griffith Elder Abstract. We explicitly describe, in terms of indecomposable $\mathbb{Z}_2[G]$ -modules, the Galois module structure of ideals in totally ramified biquadratic extensions of local number fields with only one break in their ramification filtration. This paper completes work begun in [Elder: Canad. J. Math. (5) **50**(1998), 1007–1047]. #### 1 Introduction The Galois module structure of ambiguous ideals in biquadratic extensions of global number fields was studied in [Eld98]. In this paper, we examine the one situation that [Eld98] left unresolved: The structure of ideals in totally ramified biquadratic extensions of local number fields with only one ramification break. So that we can be more precise, we introduce some notation. Let K be a finite extension of the 2-adic numbers \mathbb{Q}_2 and N be a totally ramified biquadratic extension of K with Galois group G generated by σ and γ . Let $G = G_{-1} \supseteq G_0 \supseteq G_1 \supseteq \cdots$ denote the ramification filtration of G (with lower numbering). In general, the filtration of a biquadratic extension may contain one or two breaks. We focus here on the one break situation where $G = \cdots = G_b \supseteq G_{b+1} = G_{b+2} = \cdots = \{e\}$, for some odd integer b satisfying $0 < b < 2e_0$. See [Ser79]. Using subscripts to denote the field of reference, we let \mathfrak{D}_N denote the ring of integers of N, \mathfrak{P}_N its unique prime ideal and \mathfrak{P}_N^i (for some integer i) a generic ideal. We also let \mathbb{Z}_2 denote the ring of 2-adic integers. The main result of this paper is Theorem 3.2, where assuming exactly one ramification break, we explicitly decompose each ideal \mathfrak{P}_N^i into indecomposable $\mathbb{Z}_2[G]$ -modules As explained in [Eld98], the $\mathbb{Z}[G]$ -module structure of an ambiguous ideal in a biquadratic extension of global number fields is completely determined by its 2-adic completion. This is the result of a special property of $G = C_2 \times C_2$, namely that the conclusion of the Krull-Schmidt Theorem holds for $\mathbb{Z}[G]$. Consequently, Theorem 3.2 together with the results of [Eld98] provide an explicit description, as a sum of indecomposable $\mathbb{Z}[G]$ -modules, of any ambiguous ideal in a biquadratic extension of global number fields. As we will need further notation, we introduce it now. Let π_N denote a prime element in N and ν_N denote its valuation, then $\nu_N(\pi_N)=1$ and $\mathfrak{P}_N=\pi_N\mathfrak{D}_N$. Besides N and K, we will need to refer to T, the maximal unramified extension of \mathbb{Q}_2 Received by the editors July 20, 2000. The first author was partially supported by EPSRC grant GR/M91037 and by UCR grant MG2000-03, The University of Nebraska at Omaha. AMS subject classification: Primary: 11S15; secondary: 20C11. [©]Canadian Mathematical Society 2002. contained in K. Clearly $e_0 := [K : T]$ is the absolute ramification index of K, while $f := [T : \mathbb{Q}_2]$ is its degree of inertia. #### 1.1 Motivation of Method In [Eld98] the Galois module structure of an ideal, \mathfrak{P}_N^i , was determined by constructing a basis over \mathfrak{D}_T upon which the Galois action could be explicitly followed. The essential ingredient in this construction was the determination of the valuation of an expression of the form, $(\gamma-1)\alpha+(\sigma-1)\theta$, for certain elements $\alpha,\theta\in N$ with $\nu_N(\alpha)\neq\nu_N(\theta)$ although $\nu_N(\alpha)\equiv\nu_N(\theta)$ mod 4. It was found that this pair of conditions on α,θ could be satisfied only when there were two breaks in the ramification filtration. When there was only one break in this filtration of G, necessarily $\nu_N(\alpha)=\nu_N(\theta)$. This presented an obstacle which could not be overcome, except in a few isolated cases—see [Eld98, Theorem 3.5]. In this paper, we return to this issue. Note that since $v_N(\alpha) = v_N(\theta)$, there must be a 2^f-1 root of unity, ω , and a principal unit, $1+\Gamma \in \mathfrak{D}_N$, such that $\theta = \omega(1+\Gamma)\alpha$. We will determine both ω and $1+\Gamma$ in determining the Galois module structure of ideals. Doing so however, requires a characterization of biquadratic extensions with only one break number. # 2 Characterization of Extensions and a Galois Relationship As one might expect, any restriction on the ramification in a biquadratic extension will restrict the type of square roots that can be used to generate the extension. Indeed if N/K is to have only one break, at b, in its ramification filtration; then the ramification break of each quadratic subfield must also occur at b. Since a quadratic extension with break number b is generated by the square root of a unit with quadratic defect $2e_0 - b$, we may assume that N = K(x, y), where $x^2 = 1 + \beta$, $y^2 = 1 + \beta^* \in K$, and $v_K(\beta) = v_K(\beta^*) = 2e_0 - b$. Since the extension, K(xy)/K, must also have b as its break number, $\beta^*/\beta \equiv \omega^{-2} \mod \pi_K$ for some nontrivial $2^f - 1$ root of unity, ω^{-2} . (Note that any $2^f - 1$ root of unity may be expressed as a square.) As a consequence of this discussion and since $K(\omega^{-2}y) = K(y)$, we assume, without loss of generality, that N = K(x, y) for (2.1) $$x^{2} = 1 + \beta,$$ $$y^{2} = (\omega^{2} + \beta)(1 + \tau),$$ where $\beta, \tau \in \mathfrak{P}_K$, $\nu_K(\beta) = 2e_0 - b$ and ω is a non-trivial $2^f - 1$ root of unity. Clearly τ might be zero. If $\tau \neq 0$, since we are only interested in the unit $1 + \tau$ up to a square factor, we may assume that $\nu_K(\tau) := 2e_0 - t$ where either t is odd and 0 < t < b, or t = 0. Choose $\sigma, \gamma \in \operatorname{Gal}(N/K)$ so that $$\sigma(y) = -y$$, $\sigma(x) = x$, $\gamma(y) = y$, $\gamma(x) = -x$. Let L := K(x) and consider the quadratic extension N/L. Since N/L has ramification number b, there is a $\Delta \in L$ with valuation, $v_L(\Delta) = 4e_0 - b$, such that N = L(Y) and $$Y^2 = 1 + \Delta$$. Since L(y) = L(Y), there is an element $a_1 + a_2x \in L$ $(a_1, a_2 \in K)$ such that $$(2.2) Y = (a_1 + a_2 x) \cdot y.$$ To better understand this relationship between *Y* and *y*, we seek a characterization of a_1 and a_2 . Note that (2.2) leads to $1 + \Delta = (a_1 + a_2 x)^2 (\omega^2 + \beta)(1 + \tau)$. Therefore, (2.3) $$\begin{aligned} 1 + \Delta &= (a_1 + a_2)^2 \omega^2 + \left((a_1 + a_2)^2 + a_2^2 \omega^2 \right) \beta \\ &+ (a_1 + a_2)^2 \omega^2 \tau + a_1 a_2 \omega^2 2(x - 1) + a_2^2 \beta^2 + \left((a_1 + a_2)^2 + a_2^2 \omega^2 \right) \beta \tau \\ &+ a_1 a_2 \left(2(x - 1) \right) \beta + a_1 a_2 \omega^2 \left(2(x - 1) \right) \tau + a_1 a_2 \left(2(x - 1) \right) \tau \beta + a_2^2 \beta^2 \tau \end{aligned}$$ To clarify matters, we eliminate some terms, $$1 \equiv (a_1 + a_2)^2 \omega^2 \bmod \beta.$$ Therefore $(a_1+a_2)\omega=1+c$ for some $c\in\mathfrak{P}_K$. Since $(1+c)^2\equiv 1 \mod \beta$, we have $2c+c^2\equiv 0 \mod \beta$. To get the stronger congruence $2c+c^2\equiv 0 \mod \beta\pi_K$, we consider two cases. If $v_K(c)\geq e_0$, then $v_K(2c+c^2)=v_K\left(c(2+c)\right)\geq v_K(c)+e_0\geq 2e_0>v_K(\beta)$. On the other hand, if $v_K(c)< e_0$, then $v_K(2c+c^2)=v_K\left(c(2+c)\right)=2v_K(c)$. Since $v_K(2c+c^2)$ is even and $v_K(\beta)$ is odd, $v_K(2c+c^2)>v_K(\beta)$. In any case, $1\equiv (a_1+a_2)^2\omega^2 \mod \beta\cdot\pi_K$. Now reducing (2.3) modulo $\beta\cdot\pi_L$, we find $1\equiv (a_1+a_2)^2\omega^2+\left((a_1+a_2)^2+a_2^2\omega^2\right)\beta\mod \beta\cdot\pi_L$. Since each term lies in K, we may replace $\mod\beta\cdot\pi_L$ with $\mod\beta\cdot\pi_K$. Therefore, (2.4) $$1 = (a_1 + a_2)^2 \omega^2 \mod \pi_K \beta,$$ $$0 = (a_1 + a_2 + \omega a_2)^2 \beta \mod \pi_K \beta.$$ These equations yield $a_1 + a_2 = \omega^{-1} \mod \pi_K(x-1)$ and $a_1 + a_2 + \omega a_2 = 0 \mod \pi_K$. Solving for a_1 and a_2 , we find that there are elements $\kappa_1, \kappa_2 \in K$ with positive valuation such that $a_1 = \omega^{-1} + \omega^{-2} + \kappa_1$ and $a_2 = \omega^{-2} + \kappa_2$. Since $a_1 + a_2 = \omega^{-1} \mod \pi_K(x-1)$, $\kappa_1 \equiv \kappa_2 \mod \pi_K(x-1)$. Therefore (2.5) $$a_1 = \omega^{-1} + \omega^{-2} + \kappa_1$$ $$a_2 = \omega^{-2} + \kappa_1 + u(x - 1),$$ for some $u \in L$ with $v_L(u) \ge 2$. Note, in particular, that a_1 and a_2 are units in K. This is used to derive the following Galois relationship. **Proposition 2.1** There are elements $\alpha \in N$ and $\kappa, \beta' \in K$ with $\nu_N(\alpha) = b$ and $\nu_K(\beta') = 2e_0 - b$ such that $$\rho := \left[(\gamma + 1) + (\omega^{-1} + \kappa)(\sigma + 1) + \beta' \frac{1}{2} (\gamma - 1)(\sigma - 1) \right] \alpha$$ has valuation $v_N(\rho) = 3b$. Let $s = v_K(\kappa)$. If 2t > b and $2b - t < 2e_0$ then s = (b - t)/2. Otherwise, $s > e_0 - b/2$. **Proof** Since $\gamma(Y) \neq Y$ there is a $\delta \neq 1$ in L such that $\gamma(Y)/Y = \delta$. From (2.2) we find that $$\delta = \frac{a_1 - a_2 x}{a_1 + a_2 x} = 1 + 2d_0 + 2d_1 x,$$ where $d_0 = a_2^2(1+\beta)/(a_1^2-a_2^2(1+\beta)) \in \mathfrak{D}_K$ and $d_1 = -a_1a_2/(a_1^2-a_2^2(1+\beta)) \in \mathfrak{D}_K$. Recall that since Y and y are units, $a_1 + a_2x$ must be a unit. So its norm, namely $a_1^2 - a_2^2(1+\beta)$, is a unit. Let $\alpha = (x-1)(Y-1)$, so $\nu_N(\alpha) = 8e_0 - 3b$. Then $$(\gamma - 1)\alpha = 2x - 2(d_0 + d_1 + d_1\beta)Y - 2(1 + d_0 + d_1)xY,$$ $$(\sigma - 1)\alpha = 2Y - 2xY,$$ $$1/2 \cdot (\gamma - 1)(\sigma - 1)\alpha = 2(d_0 + d_1 + d_1\beta)Y + 2(1 + d_0 + d_1)xY.$$ Letting $A = 1 - (1 + 2d_0 + 2d_1 + d_1\beta)^{-1}$ and $A' = d_0 + d_1 + d_1\beta$, we find that $$(2.6) \qquad (\gamma - 1)\alpha + (1 - A)A'(\sigma - 1)\alpha + (A/2)(\gamma - 1)(\sigma - 1)\alpha = 2x - 2xY.$$ Note that $v_N((\sigma - 1)\alpha) = 8e_0 - 2b$. So $(\sigma - 1)\alpha$ may be expressed in terms of an element fixed by γ having valuation $8e_0 - 2b$ and an element in N of higher valuation. As a consequence, $v_N((\gamma - 1)(\sigma - 1)\alpha) > 8e_0 - b$. Meanwhile $v_N(2x(1 - Y)) = 8e_0 - b$. Let $\rho_0 = [(2x - 2xY) - (d_0 + d_1)/(1 + 2d_0 + 2d_1 + d_1\beta)(\gamma - 1)(\sigma - 1)\alpha]\pi_K^b/4$. Since d_0 and d_1 are integers in K, $v_N(\rho_0) = 3b$. Redefine α to be $\alpha := \alpha \cdot \pi_K^b/4$ and replace 2x - 2xY using (2.6). All this results in the expression, $\rho_0 = [(\gamma - 1) + \Omega(\sigma - 1) + (\beta'/2)(\gamma - 1)(\sigma - 1)]\alpha$, with $$\Omega = \frac{d_0 + d_1 + \beta d_1}{1 + 2d_0 + 2d_1 + \beta d_1} \quad \beta' = \frac{d_1}{1 + 2d_0 + 2d_1 + d_1\beta} \cdot \beta.$$ Add $2(1 + \Omega)\alpha$ to both sides of this equation. Let $\rho := \rho_0 + 2(1 + \Omega)\alpha$. Since $\nu_N(2\alpha) = 4e_0 + b > 3b$, $\nu_N(\rho) = 3b$. Therefore (2.7) $$\rho = \left[(\gamma + 1) + \Omega(\sigma + 1) + \beta' \frac{1}{2} (\gamma - 1)(\sigma - 1) \right] \alpha$$ where $v_K(\alpha) = b$ and $v_N(\rho) = 3b$. Using (2.5) we find that d_0 and d_1 are units, so that $v_K(\beta') = v_K(\beta) = 2e_0 - b$. To characterize Ω , note that $\Omega \equiv d_0 + d_1 \equiv (\delta - 1)/2 \equiv -a_2/(a_1 + a_2) \mod (x - 1)$. Meanwhile from (2.5), $-a_2/(a_1 + a_2) \equiv -(\omega^{-2} + \kappa_1)\omega \mod (x - 1)$. So $$\Omega = \omega^{-1} + \kappa,$$ for some $\kappa \in \mathfrak{P}_K$ with $\kappa \equiv \omega \kappa_1 \mod (x-1)$. Now we show that when 2t > b and $2b - t < 2e_0$, $v_K(\kappa) = (b - t)/2$. Otherwise $v_K(\kappa) > e_0 - b/2$. First recall from (2.5) that $u(x - 1) = a_2 - \omega^{-2} - \kappa_1 \in K$. Therefore $v_L(u(x - 1))$ is even, and as a result, $v_L(u)$ is odd. Consider 2t > b (i.e. $v_L(\tau) < v_L(\Delta)$) and reduce (2.3) modulo $\tau \cdot \pi_L$. Since 2t > b > 0, $2(x-1) \equiv 0 \mod \tau \cdot \pi_L$. So $1 \equiv (a_1 + a_2)^2 \omega^2 + \left((a_1 + a_2)^2 + a_2^2 \omega^2\right) \beta + (a_1 + a_2)^2 \omega^2 \tau + a_2^2 \beta^2 \mod \tau \cdot \pi_L$. Using (2.5), $(a_1 + a_2)^2 \equiv \omega^{-2} + u^2 \beta \mod \tau \cdot \pi_L$, while $a_2^2 = \omega^{-4} + k_1^2 + u^2 \beta \mod \tau \cdot \pi_L$. Substitution leads to (2.8) $$0 \equiv (\omega^2 u^2 + \omega^2 \kappa_1^2)\beta + \tau + ((1 + \omega^2)u^2 + \omega^{-4} + \kappa_1^2)\beta^2 + u^2\beta^3 \mod \tau \cdot \pi_L.$$ If $v_L(\tau) < v_L(\beta^2)$ (in other words $2b-t < 2e_0$), then $v_L\left((\omega^2u^2+\omega^2\kappa_1^2)\beta\right)$ must equal $v_L(\tau)$. In other words, $v_L(\chi^2\beta) = v_L(\tau)$ with $\chi = \omega(u+\kappa_1)$. Consequently $v_L(\chi) = \left(v_L(\tau) - v_L(\beta)\right)/2 = b-t$. Since t>0, t is odd. Of course b is odd. Therefore $v_L(\chi) = b-t$ is even. Since $v_L(\kappa_1)$ is even while $v_L(u)$ is odd and $\chi = \omega(u+\kappa_1)$ has even valuation, $v_L(\omega\kappa_1) = v_L(\chi)$. Therefore $v_K(\omega\kappa_1) = (b-t)/2$. Since $2b-t < 2e_0$, $v_L(\omega\kappa_1) < v_L(x-1)$. So since $\kappa \equiv \omega\kappa_1 \mod (x-1)$, $v_K(\kappa) = (b-t)/2$. Alternatively, if $v_L(\tau) > v_L(\beta^2)$ (in other words $2b-t > 2e_0$), an examination of (2.8) leads to $v_L\left((\omega^2u^2+\omega^2\kappa_1^2)\beta\right) \geq v_L(\beta^2)$. As a result, $v_L(\chi^2) \geq v_L(\beta)$. Since $v_L(u)$ and $v_L(\kappa_1)$ have opposite parity $v_L(\kappa_1) \geq v_L(\beta)/2$. Therefore $\kappa \equiv \omega\kappa_1 \equiv 0 \mod (x-1)$ and so $v_L(\kappa) \geq 2e_0 - b$. Since $v_K(\kappa)$ is an integer, $v_K(\kappa) > e_0 - b/2$. Consider b > 2t (i.e. $v_L(\tau) > v_L(\Delta)$) and reduce (2.3) modulo Δ . Clearly $1 \equiv (a_1 + a_2)^2 \omega^2 + ((a_1 + a_2)^2 + a_2^2 \omega^2) \beta + a_2^2 \beta^2 \mod \Delta$. Again use (2.5) to replace a_1 and a_2 . This results in (2.9) $$0 \equiv (\omega^2 u^2 + \omega^2 \kappa_1^2) \beta + ((1 + \omega^2) u^2 + \omega^{-4} + \kappa_1^2) \beta^2 + u^2 \beta^3 \mod \Delta.$$ If $v_L(\beta^2) < v_L(\Delta)$, then $v_L\left((\omega^2u^2 + \omega^2\kappa_1^2)\beta\right) \ge v_L(\beta^2)$. By following the discussion in the previous paragraph $v_K(\kappa) > e_0 - b/2$. So assume instead that $v_L(\beta^2) \ge v_L(\Delta)$. In this case (2.9) leads to $0 = \chi^2\beta \mod \Delta$. So $v_L(\chi^2) \ge v_L(\Delta/\beta) = b$, and $v_L(\chi) \ge b/2$. Since $v_L(u)$ is odd while $v_L(\kappa_1)$ is even, $v_L(\kappa_1) = v_L(\chi) \ge b/2$. If $v_L(\kappa_1) > 2e_0 - b$ then as before $v_K(\kappa) > e_0 - b/2$. So assume $v_L(\kappa_1) < 2e_0 - b$. But then since $\kappa \equiv \omega \kappa_1 \mod (x-1)$, $v_K(\kappa) = v_K(\kappa_1) > b/4$. Therefore $v_N\left(\kappa(\sigma+1)\alpha\right) > 3b$, and so ρ has the same valuation as $\rho - \kappa(\sigma+1)\alpha$. Replace one by the other. This results in a revised expression in (2.7), one with $\Omega = \omega^{-1}$. But then $\kappa = 0$ while clearly $v_K(0) > e_0 - b/2$. ## 3 Structure of Ideals In this section we determine the Galois module structure of each ideal \mathfrak{P}_N^i , using the same technique as in [Eld98]. Thus we first find elements μ_k of N, for $k \in \mathbb{Z}$ such that $\nu_N(\mu_k) = k$. Clearly $\mu_i, \mu_{i+1}, \dots, \mu_{i+4e_0-1}$ will be a basis for \mathfrak{P}_N^i over \mathfrak{D}_T . We then adjust this basis to obtain a new basis, whose elements will not necessarily have distinct valuations, but on which the action of the Galois group is easier to follow. To expedite matters, we begin with [Eld98, Lemmma 3.15] and the discussion following the lemma. Note that the only condition on α_m in [Eld98, Lemmma 3.15] is in terms of valuation, $\nu_N(\alpha_m) = b + 4m$. Any element with the same valuation can be used. So we let $\alpha_m := \alpha \cdot \pi_K^m$ with α from Proposition 2.2. Using all other elements as in [Eld98, Lemma 3.15] (in particular the element $\rho_m \in N$ produced in the proof of that lemma), we may create bases for \mathfrak{P}_N^i over \mathfrak{D}_T . For example, under $3b < 4e_0$ the elements listed in [Eld98, (3.2)–(3.5)] all have distinct valuations and so serve as a basis for \mathfrak{P}_N^i over \mathfrak{D}_T . Note that we may replace any element in this basis with another element of the same valuation (and still have a basis). And so we replace each ρ_m in [Eld98, (3.4)] with $\rho \cdot \pi_K^m$ (where ρ is from Proposition 2.2). It should not cause any confusion if each such $\rho \cdot \pi_K^m$ is now referred to as ρ_m . Note however that we have not replaced any of the ρ_m in [Eld98, (3.2), (3.3), (3.5)], and so for each of these ρ_m we have $\rho_m - (\gamma + 1)\alpha_m$ contained in the fixed field of σ . Following [Eld98, Remark 3.16] we can replace each ρ_m in [Eld98, (3.2), (3.3), (3.5)] with $(\gamma + 1)\alpha_m$ and still have a basis over \mathfrak{D}_T (although one which no longer has distinct valuations). Consequently the elements listed in [Eld98, (3.6)–(3.9)] provide an \mathfrak{D}_T -basis for \mathfrak{P}_N^i when $3b < 4e_0$. Similarly, when $3b < 4e_0$, we can conclude that the elements in [Eld98, (3.10)–(3.13)] provide a basis. In both cases, the elements α_m arose as $\alpha \cdot \pi_K^m$ with α from Proposition 2.2, while the ρ_m (that appear) are $\rho \cdot \pi_K^m$ with ρ from Proposition 2.2. For the convenience of the reader, we include a slight revision of these lists. Each element of [Eld98, (3.9)] is divided by 2 and is listed in (3.1) below. These elements are followed in sequence by the elements in [Eld98, (3.6)–(3.8)]. Meanwhile we have divided the elements in [Eld98, (3.12), (3.13)] by 2 and listed them as (3.5) and (3.6) below. They are followed by the elements listed in [Eld98, (3.10), (3.11)]. Let $\lceil x \rceil$ denote the ceiling function (least integer greater than or equal to x). *Case* $3b < 4e_0$ (3.1) $$1/2(\gamma+1)(\sigma+1)\alpha_m, \ \alpha_m, \ (\sigma+1)\alpha_m, \ (\gamma+1)\alpha_m,$$ for $e_0 + \left\lceil \frac{i}{4} \right\rceil - b \le m \le e_0 + \left\lceil \frac{i-3b}{4} \right\rceil - 1.$ (3.2) $$\alpha_{m}, (\sigma+1)\alpha_{m}, (\gamma+1)\alpha_{m}, (\gamma+1)(\sigma+1)\alpha_{m},$$ for $\left\lceil \frac{i-b}{4} \right\rceil \leq m \leq e_{0} + \left\lceil \frac{i}{4} \right\rceil - b - 1.$ (3.3) $$(\sigma+1)\alpha_m, \ (\gamma+1)\alpha_m, \ (\gamma+1)(\sigma+1)\alpha_m, \ 2\alpha_m,$$ $$for \left\lceil \frac{i-2b}{4} \right\rceil \le m \le \left\lceil \frac{i-b}{4} \right\rceil -1$$ (3.4) $$\rho_m, (\gamma+1)(\sigma+1)\alpha_m, 2\alpha_m, 2(\sigma+1)\alpha_m,$$ for $\left\lceil \frac{i-3b}{4} \right\rceil \le m \le \left\lceil \frac{i-2b}{4} \right\rceil - 1.$ *Case* $3b > 4e_0$ (3.5) $$\alpha_m, \ 1/2(\gamma+1)(\sigma+1)\alpha_m, \ (\sigma+1)\alpha_m, \ (\gamma+1)\alpha_m,$$ for $\left\lceil \frac{i-b}{4} \right\rceil \le m \le e_0 + \left\lceil \frac{i-3b}{4} \right\rceil - 1$ (3.6) $$1/2(\gamma+1)(\sigma+1)\alpha_m, \ (\sigma+1)\alpha_m, \ (\gamma+1)\alpha_m, \ 2\alpha_m,$$ for $e_0 + \left\lceil \frac{i}{4} \right\rceil - b \le m \le \left\lceil \frac{i-b}{4} \right\rceil - 1.$ (3.7) $$(\sigma+1)\alpha_m, \ (\gamma+1)\alpha_m, \ 2\alpha_m, \ (\gamma+1)(\sigma+1)\alpha_m,$$ $$for \left\lceil \frac{i-2b}{4} \right\rceil \le m \le e_0 + \left\lceil \frac{i}{4} \right\rceil - b - 1$$ (3.8) $$\rho_m, \ 2\alpha_m, \ (\gamma+1)(\sigma+1)\alpha_m, \ 2(\sigma+1)\alpha_m,$$ for $\left\lceil \frac{i-3b}{4} \right\rceil \le m \le \left\lceil \frac{i-2b}{4} \right\rceil - 1.$ The following lemma enables us to clarify the Galois action upon the elements listed in (3.4) and (3.8). **Lemma 3.1** Let ω , κ and β' be defined as in the previous section. Then $$\eta := \frac{(\omega^{-1} - 1 + \kappa)(\omega^{-1} + 1 + \kappa - \beta')}{(\omega^{-1} + \kappa - \beta')(\omega^{-1} + \kappa)} \equiv (1 - \omega^2) \bmod \pi_K.$$ **Furthermore** $$a := \nu_K (\eta - (1 - \omega^2)) = \begin{cases} b - t & \text{if } 2t > b \text{ and } 2b - t < 2e_0, \\ 2e_0 - b & \text{otherwise} \end{cases}$$ **Proof** One may check that $$\eta = (1 - \omega^2) + \frac{\omega^2}{\left(1 + \omega(\kappa - \beta')\right)(1 + \omega\kappa)} \cdot B$$ where $B=(1-\omega)\beta'-2\omega\kappa+\omega^2\kappa^2-\omega^2\kappa\beta'$. If $v_K(\kappa^2)< v_K(\beta')$ (equivalently, $2s<2e_0-b$), then $v_K(B)=v_K(-2\omega\kappa+\omega^2\kappa^2)$ and $v_K(\kappa)=(b-t)/2< e_0$. Therefore $v_K(-2\omega\kappa+\omega^2\kappa^2)=v_K(\omega^2\kappa^2)=2s$. If $v_K(\kappa^2)>v_K(\beta')$ or $2s>2e_0-b$ then $v_K(2\omega\kappa)=e_0+s>2e_0-b/2>2e_0-b$. So $v_K(B)=v_K\left((1-\omega)\beta'\right)=2e_0-b$. For m such that $\lceil (i-3b)/4 \rceil \le m \le \lceil (i-2b)/4 \rceil - 1$ (in other words, those m listed in (3.4) and (3.8)), we redefine α_{m+a} in terms of α_m . Let $$\alpha_{m+a} := \left(\eta - (1 - \omega^2)\right) \alpha_m,$$ since the elements have the same valuation. Furthermore if $m+a \le \lceil (i-2b)/4 \rceil - 1$, let $\rho_{m+a} := (\eta - (1-\omega^2)) \rho_m$. Now for a particular value of *m*, consider the Galois action on the basis elements: $$\rho_m$$, $2\alpha_m$, $(\gamma + 1)(\sigma + 1)\alpha_m$, $2(\sigma + 1)\alpha_m$. First, note that we still have a basis if these are replaced by $$\rho_m$$, $\rho_m - 2\alpha_m$, $(\gamma - 1)(\sigma + 1)\alpha_m$, $(\gamma + 1)(\sigma + 1)\alpha_m$. Since $v_N(\rho_m) < v_N(2\alpha_m) < v_N(2\beta'\alpha_m)$, we may also replace ρ_m by $\rho_m - 2\beta'\alpha_m$. Therefore we instead examine the Galois action on the alternative elements: $$\rho_m - 2\beta'\alpha_m, \rho_m - 2\alpha_m, (\gamma - 1)(\sigma + 1)\alpha_m, (\gamma + 1)(\sigma + 1)\alpha_m.$$ The action on $(\gamma - 1)(\sigma + 1)\alpha_m$, $(\gamma + 1)(\sigma + 1)\alpha_m$ is clear. Meanwhile it is easy to check that $$(\gamma - 1)(\rho_m - 2\beta'\alpha_m) = (\gamma - 1)(\sigma + 1)[\omega^{-1} + \kappa - \beta']\alpha_m$$ $$(\gamma + 1)(\rho_m - 2\alpha_m) = (\gamma + 1)(\sigma + 1)[\omega^{-1} + \kappa]\alpha_m$$ The effect of σ is more complicated: $(\sigma+1)(\rho_m-2\beta'\alpha_m)=(\gamma+1)(\sigma+1)\cdot [\omega^{-1}+1+\kappa-\beta']\alpha_m-(\gamma-1)(\sigma+1)[\omega^{-1}+\kappa-\beta']\alpha_m$ while $(\sigma+1)(\rho_m-2\alpha_m)=(\gamma+1)(\sigma+1)[\omega^{-1}+\kappa]\alpha_m-(\gamma-1)(\sigma+1)[\omega^{-1}-1+\kappa]\alpha_m$. As a result, we use the fact that $\sigma\gamma+1=(\sigma+1)(\gamma+1)-(\sigma+1)-(\gamma-1)$ and $\sigma\gamma-1=(\sigma+1)(\gamma-1)+(\sigma+1)-(\gamma+1)$ to easily determine the much simpler effect of $\sigma\gamma$: $$(\sigma\gamma + 1)(\rho_m - 2\beta'\alpha_m) = (\gamma + 1)(\sigma + 1)[\omega^{-1} + 1 + \kappa - \beta']\alpha_m$$ $$(\sigma\gamma - 1)(\rho_m - 2\alpha_m) = (\gamma - 1)(\sigma + 1)[\omega^{-1} - 1 + \kappa]\alpha_m.$$ As we are working with a basis over \mathfrak{D}_T , we may multiply basis elements by units in \mathfrak{D}_T . As a result, we use the alternative basis elements: $$y_m^+ := \frac{\omega^{-1} - 1 + \kappa}{\omega^{-1} + \kappa - \beta'} (\rho_m - 2\beta' \alpha_m), \quad y_m^- := \rho_m - 2\alpha_m,$$ $$x_m^+ := (\gamma + 1)(\sigma + 1)[\omega^{-1} + \kappa]\alpha_m, \quad x_m^- := (\gamma - 1)(\sigma + 1)[\omega^{-1} - 1 + \kappa]\alpha_m$$ Since $\alpha_{m+a} = [\eta - (1 - \omega^2)]\alpha_m$, $x_{m+a}^+ = [\eta - (1 - \omega^2)]x_m^+$, and so $\eta x_m^+ = (1 - \omega^2)x_m^+ + x_{m+a}^+$. Therefore (3.9) $$(\gamma - 1)y_m^+ = x_m^- \quad (\gamma + 1)y_m^- = x_m^+$$ $$(\sigma \gamma + 1)y_m^+ = (1 - \omega^2)x_m^+ + x_{m+a}^+ \quad (\sigma \gamma - 1)y_m^- = x_m^-.$$ Now consider the situation where $m+a\geq \lceil (i-2b)/4 \rceil$. If $m+a< e_0+\lceil (i-3b) \rceil$ then it is clear that $(\gamma+1)\alpha_{m+a}$ is an element in our basis, appearing in (3.1)–(3.3) or (3.5)–(3.7). If $m+a\geq e_0+\lceil (i-3b) \rceil$ then $(\gamma+1)\alpha_{m+a}\in 2\mathfrak{P}_N^i$. In either case, we may replace y_m^+ by $\bar{y}_m^+:=y_m^+-(\gamma+1)[\omega^{-1}+\kappa]\alpha_{m+a}$ and still have a basis. Note that $(\gamma - 1)$ has the same effect upon \bar{y}_m^+ as on y_m^+ , but that the effect of $(\sigma \gamma + 1)$ is much simpler: $$(\sigma \gamma + 1)\bar{y}_m^+ = (1 - \omega^2)x_m^+.$$ Replace each such y_m^+ with \bar{y}_m^+ . Therefore without loss of generality, we may replace the elements listed in (3.4) and (3.8) by $$y_m^+, y_m^-, x_m^+, x_m^-$$ and assume that the Galois action is defined by (3.9) except that (3.10) $$(\sigma \gamma + 1) y_m^+ = \begin{cases} (1 - \omega^2) x_m^+ + x_{m+a}^+ & \text{if } m + a < \lceil (i - 2b)/4 \rceil \\ (1 - \omega^2) x_m^+ & \text{otherwise} \end{cases} .$$ Let (3.11) $$n := \left\lfloor \frac{\left\lfloor \frac{i-2b-1}{4} \right\rfloor + \left\lfloor \frac{3b-i}{4} \right\rfloor}{a} \right\rfloor,$$ $\lfloor x \rfloor$ denoting the floor or greatest integer function. One can easily verify that $\lfloor b/(4a) \rfloor - 1 \le n \le \lfloor b/(4a) \rfloor$, moreover n is the maximal integer such that $\lceil (i-3b)/4 \rceil + na < \lceil (i-2b)/4 \rceil$. Therefore the basis elements listed in (3.4) and (3.8) result in a direct sum of $\mathfrak{D}_T[G]$ -modules with bases such as: $$y_{m+ka}^{+}, y_{m+ka}^{-}, x_{m+ka}^{+}, x_{m+ka}^{-}$$ $$\vdots$$ $$y_{m+2a}^{+}, y_{m+2a}^{-}, x_{m+2a}^{+}, x_{m+2a}^{-}$$ $$y_{m+a}^{+}, y_{m-a}^{-}, x_{m+a}^{+}, x_{m+a}^{-}$$ $$y_{m}^{+}, y_{m}^{-}, x_{m}^{+}, x_{m}^{-}$$ Either k = n or k = n - 1. Note that $(\sigma \gamma + 1)y_{m+ka}^+ = (1 - \omega^2)x_{m+ka}^+$ Let us now examine the module that results from these basis elements. If we list the x_i^+ first then the x_i^- , followed by the y_i^+ and then the y_i^- ; the Galois action is described by the following $4k \times 4k$ matrices over \mathfrak{D}_T : $$\gamma \to \begin{vmatrix} E & 0 & 0 & E \\ 0 & -E & E & 0 \\ 0 & 0 & E & 0 \\ 0 & 0 & 0 & -E \end{vmatrix} \quad \sigma\gamma \to \begin{vmatrix} E & 0 & M & 0 \\ 0 & -E & 0 & E \\ 0 & 0 & -E & 0 \\ 0 & 0 & 0 & E \end{vmatrix}$$ where E denotes a $k \times k$ identity matrix and M is the matrix in Jordan canonical form associated with the minimal polynomial $\left(x-(1-\omega^2)\right)^k$. In other words, M is an $k \times k$ matrix with $1-\omega^2$ on the diagonal and 1 just above the diagonal. Upon restriction of scalars the Galois action appears essentially the same. Let p(x) be the irreducible polynomial with $1-\omega^2$ as a root, and let d be the degree of p(x). Then in this case E denotes a $kd \times kd$ identity matrix, while M denotes the $kd \times kd$ matrix over \mathbb{Z}_2 in Jordan canonical form with minimal polynomial $p(x)^k$. We denote this module by $$\hat{J}_{k-1}(p(x))$$ This module is part of a family of indecomposable modules identified in [Naz61, p. 1306] in the paragraph beginning "Let n=d". It is also listed among the modules classified in Lemma 1 of [Naz67, p. 1310] where a proof of its indecomposability is given. We have chosen our notation to be consistent with notation in [Eld98]. This module belongs in the same family as another module that also appears in the decomposition of ideals. Replacing p(x) by x-1 we find that $\hat{J}_{k-1}(x-1) = \hat{J}_{k-1}$, the module listed on [Eld98, p. 1040]. We now list certain other $\mathbb{Z}_2[G]$ -modules that we will require for our main result. Our notation is that used in [Eld98, Section 4]. Let $\hat{\mathcal{G}} = \mathbb{Z}_2[G]$. Note this module occurs for each m in (3.2). Let $\hat{\mathcal{Z}}$ denote the rank one module fixed by the group action, while for each $x \in G$ let $\hat{\mathcal{R}}_x$ be the rank one module on which only x acts trivially upon (all other nontrivial group elements should act via multiplication by -1). Then the maximal order, $\hat{\mathcal{Z}} \oplus \hat{\mathcal{R}}_{\sigma} \oplus \hat{\mathcal{R}}_{\gamma} \oplus \hat{\mathcal{R}}_{\sigma\gamma}$, occurs for each m in (3.6). Let $\hat{\mathbb{C}}$ and $\hat{\mathbb{D}}$ be rank 4 modules with Galois action described by the pairs of matrices below: $$\hat{\mathbb{C}} \colon \gamma \to \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix} \quad \sigma \to \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix}$$ $$\hat{\mathcal{D}} \colon \gamma \to \begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix} \quad \sigma \to \begin{vmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix}$$ Note that $\hat{\mathbb{C}}$ occurs for each m in (3.1) and (3.6), while $\hat{\mathbb{D}}$ occurs for each m in (3.3) and (3.7). All this is collected in the following Theorem: **Theorem 3.2** Let ω , b, t be as in (2.1), p(x) be the minimal polynomial of $1 - \omega^2$ over \mathbb{Z}_2 and $d = \deg p(x)$. If 2t > b and $2b - t < 2e_0$, let a = b - t. Otherwise, let $a = 2e_0 - b$. Let $$n := \left\lfloor \frac{\left\lfloor \frac{i-2b-1}{4} \right\rfloor + \left\lfloor \frac{3b-i}{4} \right\rfloor}{a} \right\rfloor.$$ The $\mathbb{Z}_2[G]$ -module structure of \mathfrak{P}_N^i then, is as follows: $$\mathfrak{P}_{N}^{i}\cong\mathfrak{X}\oplus\mathfrak{Y},$$ 178 where $$\mathfrak{X} = \begin{cases} \hat{\mathfrak{G}}^{(e_0 + \lceil \frac{i-4b}{4} \rceil - \lceil \frac{i-b}{4} \rceil)f} \oplus \hat{\mathfrak{D}}^{(\lceil \frac{i-b}{4} \rceil - \lceil \frac{i-2b}{4} \rceil)f} \oplus \\ \hat{\mathfrak{C}}^{(\lceil \frac{i-3b}{4} \rceil - \lceil \frac{i-4b}{4} \rceil)f} & \textit{if } b < 4e_0/3 \\ \hat{\mathfrak{D}}^{(e_0 + \lceil \frac{i-4b}{4} \rceil - \lceil \frac{i-2b}{4} \rceil)f} \oplus \hat{\mathfrak{C}}^{(\lceil \frac{i-3b}{4} \rceil - \lceil \frac{i-b}{4} \rceil)f} \\ (\hat{\mathfrak{Z}} \oplus \hat{\mathfrak{R}}_{\sigma} \oplus \hat{\mathfrak{R}}_{\gamma} \oplus \hat{\mathfrak{R}}_{\sigma\gamma})^{(\lceil \frac{i-b}{4} \rceil - e_0 - \lceil \frac{i-4b}{4} \rceil)f} & \textit{otherwise} \end{cases}$$ while $$\mathcal{Y} = \hat{\mathbb{I}}_{n-1} \left(p(x) \right)^{\left(\lceil \frac{i-3b}{4} \rceil - \lceil \frac{i-2b}{4} \rceil + (n+1)a \right) \frac{f}{d}} \oplus \hat{\mathbb{I}}_{n} \left(p(x) \right)^{\left(\lceil \frac{i-2b}{4} \rceil - \lceil \frac{i-3b}{4} \rceil - na \right) \frac{f}{d}}$$ Note that [x] denotes the ceiling or least integer function. # 4 Example: Quadratic Twist Consider the class of biquadratic extensions with $\tau=0$ (where τ is as in (2.1)). These are extensions $N_1:=K(x,y)$ with $x^2=1+\beta$ and $y^2=\omega^2+\beta$ for some nontrivial 2^f-1 root of unity ω , and some $\beta\in K$ with $\nu_K(\beta)=2e_0-b$, b odd and $0< b<2e_0$. To compare such an extension with one for which $\tau\neq 0$ we introduce the quadratic extension K(z)/K associated with the unit $z^2=1+\tau$. So that K(z)/K is truly a quadratic extension, we must have $\nu_K(\tau)=2e_0-t$ with $0\leq t<2e_0$. Clearly N_1 and $N_2 := K(x, yz)$, both biquadratic extensions, sit in the larger field K(x, y, z). To ensure that they both have exactly one break in their Galois filtration, we must assume 0 < t < b. Now use Theorem 3.2 to compare the Galois structure of ideals in N_1 and in N_2 , and one notices something remarkable. The Galois structure of each ideal in N_2 is precisely the same as the Galois structure of the corresponding ideal in N_1 if t < b/2 or $2b - t > 2e_0$. Thus, if the ramification number t of K(z)/K is sufficiently small (relative to b), each ideal of N_2 has the same Galois module structure as the corresponding ideal of N_1 , whereas for larger values of t this is not the case. We would like to thank the referee for pointing out that we may view N_2 as the quadratic twist of N_1 associated with the extension K(z)/K, and for suggesting the following more general question: **Question 4.1** Given a representation V of $\operatorname{Gal}(\bar{K}/K)$ with fixed field N_1 , and a one-dimensional character χ of $\operatorname{Gal}(\bar{K}/K)$, such that the twist $V \otimes \chi$ of V by χ has isomorphic image to V, how is the Galois module structure of ideals in the fixed field N_2 of $V \otimes \chi$ related to that of ideals in N_1 ? In particular, if χ is, in some appropriate sense, "not too highly ramified" (relative to V), will the ideals of N_1 and N_2 have "the same" Galois module structure? ### References [Eld98] G. G. Elder, Galois module structure of ideals in wildly ramified biquadratic extensions. Canad. J. Math. (5) 50(1998), 1007–1047. L. A. Nazarova, Integral representations of Klein's four-group. Soviet Math. Dokl. 2(1961), [Naz61] 1304-1307. ______, Representation of a Tetrad. Math. USSR-Izv. (6) 1(1967), 1305–1321. J-P. Serre, Local fields. Springer-Verlag, New York, 1979. [Naz67] [Ser79] $School\ of\ Mathematical\ Sciences$ Department of Mathematics University of Exeter University of Nebraska at Omaha Exeter EX4 4QE Omaha, Nebraska 68182-0243 United Kingdom U.S.A. e-mail: N.P.Byott@exeter.ac.uk e-mail: elder@unomaha.edu