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Biquadratic Extensions with One Break
Nigel P. Byott and G. Griffith Elder

Abstract. We explicitly describe, in terms of indecomposable Z2[G]-modules, the Galois module struc-
ture of ideals in totally ramified biquadratic extensions of local number fields with only one break in
their ramification filtration. This paper completes work begun in [Elder: Canad. J. Math. (5) 50(1998),
1007–1047].

1 Introduction

The Galois module structure of ambiguous ideals in biquadratic extensions of global
number fields was studied in [Eld98]. In this paper, we examine the one situation
that [Eld98] left unresolved: The structure of ideals in totally ramified biquadratic
extensions of local number fields with only one ramification break. So that we can be
more precise, we introduce some notation.

Let K be a finite extension of the 2-adic numbers Q2 and N be a totally ram-
ified biquadratic extension of K with Galois group G generated by σ and γ. Let
G = G−1 ⊇ G0 ⊇ G1 ⊇ · · · denote the ramification filtration of G (with lower
numbering). In general, the filtration of a biquadratic extension may contain one or
two breaks. We focus here on the one break situation where G = · · · = Gb ) Gb+1 =
Gb+2 = · · · = {e}, for some odd integer b satisfying 0 < b < 2e0. See [Ser79]. Using
subscripts to denote the field of reference, we let ON denote the ring of integers of N,
PN its unique prime ideal and Pi

N (for some integer i) a generic ideal. We also let Z2

denote the ring of 2-adic integers.
The main result of this paper is Theorem 3.2, where assuming exactly one rami-

fication break, we explicitly decompose each ideal Pi
N into indecomposable Z2[G]-

modules.
As explained in [Eld98], the Z[G]-module structure of an ambiguous ideal in a

biquadratic extension of global number fields is completely determined by its 2-adic
completion. This is the result of a special property of G = C2 × C2, namely that
the conclusion of the Krull-Schmidt Theorem holds for Z[G]. Consequently, Theo-
rem 3.2 together with the results of [Eld98] provide an explicit description, as a sum
of indecomposable Z[G]-modules, of any ambiguous ideal in a biquadratic extension
of global number fields.

As we will need further notation, we introduce it now. Let πN denote a prime
element in N and vN denote its valuation, then vN (πN ) = 1 and PN = πN ON .
Besides N and K, we will need to refer to T, the maximal unramified extension of Q2
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contained in K. Clearly e0 := [K : T] is the absolute ramification index of K, while
f := [T : Q2] is its degree of inertia.

1.1 Motivation of Method

In [Eld98] the Galois module structure of an ideal, Pi
N , was determined by con-

structing a basis over OT upon which the Galois action could be explicitly followed.
The essential ingredient in this construction was the determination of the valuation
of an expression of the form, (γ − 1)α + (σ − 1)θ, for certain elements α, θ ∈ N
with vN (α) 6= vN (θ) although vN (α) ≡ vN (θ) mod 4. It was found that this pair of
conditions on α, θ could be satisfied only when there were two breaks in the rami-
fication filtration. When there was only one break in this filtration of G, necessarily
vN (α) = vN (θ). This presented an obstacle which could not be overcome, except in
a few isolated cases—see [Eld98, Theorem 3.5].

In this paper, we return to this issue. Note that since vN (α) = vN (θ), there must
be a 2 f−1 root of unity, ω, and a principal unit, 1+Γ ∈ ON , such that θ = ω(1+Γ)α.
We will determine both ω and 1 + Γ in determining the Galois module structure of
ideals. Doing so however, requires a characterization of biquadratic extensions with
only one break number.

2 Characterization of Extensions and a Galois Relationship

As one might expect, any restriction on the ramification in a biquadratic extension
will restrict the type of square roots that can be used to generate the extension. Indeed
if N/K is to have only one break, at b, in its ramification filtration; then the ramifica-
tion break of each quadratic subfield must also occur at b. Since a quadratic extension
with break number b is generated by the square root of a unit with quadratic defect
2e0 − b, we may assume that N = K(x, y), where x2 = 1 + β, y2 = 1 + β∗ ∈ K, and
vK (β) = vK (β∗) = 2e0 − b. Since the extension, K(xy)/K, must also have b as its
break number, β∗/β ≡ ω−2 mod πK for some nontrivial 2 f − 1 root of unity, ω−2.
(Note that any 2 f − 1 root of unity may be expressed as a square.)

As a consequence of this discussion and since K(ω−2 y) = K(y), we assume, with-
out loss of generality, that N = K(x, y) for

(2.1)
x2 = 1 + β,

y2 = (ω2 + β)(1 + τ ),

where β, τ ∈ PK , vK (β) = 2e0− b and ω is a non-trivial 2 f − 1 root of unity. Clearly
τ might be zero. If τ 6= 0, since we are only interested in the unit 1 + τ up to a square
factor, we may assume that vK (τ ) := 2e0 − t where either t is odd and 0 < t < b, or
t = 0. Choose σ, γ ∈ Gal(N/K) so that

σ(y) = −y, σ(x) = x, γ(y) = y, γ(x) = −x.

Let L := K(x) and consider the quadratic extension N/L. Since N/L has ramifica-
tion number b, there is a ∆ ∈ L with valuation, vL(∆) = 4e0−b, such that N = L(Y )
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and
Y 2 = 1 + ∆.

Since L(y) = L(Y ), there is an element a1 + a2x ∈ L (a1, a2 ∈ K) such that

(2.2) Y = (a1 + a2x) · y.

To better understand this relationship between Y and y, we seek a characterization
of a1 and a2. Note that (2.2) leads to 1 + ∆ = (a1 + a2x)2(ω2 + β)(1 + τ ). Therefore,

1 + ∆ = (a1 + a2)2ω2 +
(

(a1 + a2)2 + a2
2ω

2
)
β

(2.3)

+ (a1 + a2)2ω2τ + a1a2ω
22(x − 1) + a2

2β
2 +
(

(a1 + a2)2 + a2
2ω

2
)
βτ

+ a1a2

(
2(x − 1)

)
β + a1a2ω

2
(

2(x − 1)
)
τ + a1a2

(
2(x − 1)

)
τβ + a2

2β
2τ

To clarify matters, we eliminate some terms,

1 ≡ (a1 + a2)2ω2 mod β.

Therefore (a1 + a2)ω = 1 + c for some c ∈ PK . Since (1 + c)2 ≡ 1 mod β, we
have 2c + c2 ≡ 0 mod β. To get the stronger congruence 2c + c2 ≡ 0 mod βπK , we
consider two cases. If vK (c) ≥ e0, then vK (2c + c2) = vK

(
c(2 + c)

)
≥ vK (c) + e0 ≥

2e0 > vK (β). On the other hand, if vK (c) < e0, then vK (2c + c2) = vK

(
c(2 + c)

)
=

2vK (c). Since vK (2c + c2) is even and vK (β) is odd, vK (2c + c2) > vK (β). In any
case, 1 ≡ (a1 + a2)2ω2 mod β · πK . Now reducing (2.3) modulo β · πL, we find
1 ≡ (a1 + a2)2ω2 +

(
(a1 + a2)2 + a2

2ω
2
)
β mod β · πL. Since each term lies in K, we

may replace modβ · πL with modβ · πK . Therefore,

(2.4)
1 = (a1 + a2)2ω2 mod πKβ,

0 = (a1 + a2 + ωa2)2β mod πKβ.

These equations yield a1 + a2 = ω−1 mod πK (x − 1) and a1 + a2 + ωa2 = 0 mod
πK . Solving for a1 and a2, we find that there are elements κ1, κ2 ∈ K with positive
valuation such that a1 = ω−1 + ω−2 + κ1 and a2 = ω−2 + κ2. Since a1 + a2 =
ω−1 mod πK (x − 1), κ1 ≡ κ2 mod πK (x − 1). Therefore

(2.5)
a1 = ω−1 + ω−2 + κ1

a2 = ω−2 + κ1 + u(x − 1),

for some u ∈ L with vL(u) ≥ 2. Note, in particular, that a1 and a2 are units in K.
This is used to derive the following Galois relationship.

Proposition 2.1 There are elements α ∈ N and κ, β ′ ∈ K with vN (α) = b and
vK (β ′) = 2e0 − b such that

ρ :=
[

(γ + 1) + (ω−1 + κ)(σ + 1) + β ′
1

2
(γ − 1)(σ − 1)

]
α

has valuation vN (ρ) = 3b. Let s = vK (κ). If 2t > b and 2b−t < 2e0 then s = (b−t)/2.
Otherwise, s > e0 − b/2.
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Proof Since γ(Y ) 6= Y there is a δ 6= 1 in L such that γ(Y )/Y = δ. From (2.2) we
find that

δ =
a1 − a2x

a1 + a2x
= 1 + 2d0 + 2d1x,

where d0 = a2
2(1+β)/

(
a2

1−a2
2(1+β)

)
∈ OK and d1 = −a1a2/

(
a2

1−a2
2(1+β)

)
∈ OK .

Recall that since Y and y are units, a1 + a2x must be a unit. So its norm, namely
a2

1 − a2
2(1 + β), is a unit.

Let α = (x − 1)(Y − 1), so vN (α) = 8e0 − 3b. Then

(γ − 1)α = 2x − 2(d0 + d1 + d1β)Y − 2(1 + d0 + d1)xY,

(σ − 1)α = 2Y − 2xY,

1/2 · (γ − 1)(σ − 1)α = 2(d0 + d1 + d1β)Y + 2(1 + d0 + d1)xY.

Letting A = 1− (1 + 2d0 + 2d1 + d1β)−1 and A ′ = d0 + d1 + d1β, we find that

(2.6) (γ − 1)α + (1− A)A ′(σ − 1)α + (A/2)(γ − 1)(σ − 1)α = 2x − 2xY.

Note that vN

(
(σ − 1)α

)
= 8e0 − 2b. So (σ − 1)α may be expressed in terms of an

element fixed by γ having valuation 8e0−2b and an element in N of higher valuation.
As a consequence, vN

(
(γ − 1)(σ − 1)α

)
> 8e0 − b. Meanwhile vN

(
2x(1 − Y )

)
=

8e0 − b.
Let ρ0 = [(2x − 2xY ) − (d0 + d1)/(1 + 2d0 + 2d1 + d1β)(γ − 1)(σ − 1)α]πb

K/4.
Since d0 and d1 are integers in K, vN (ρ0) = 3b. Redefine α to be α := α · πb

K/4
and replace 2x − 2xY using (2.6). All this results in the expression, ρ0 = [(γ − 1) +
Ω(σ − 1) + (β ′/2)(γ − 1)(σ − 1)]α, with

Ω =
d0 + d1 + βd1

1 + 2d0 + 2d1 + βd1
β ′ =

d1

1 + 2d0 + 2d1 + d1β
· β.

Add 2(1 + Ω)α to both sides of this equation. Let ρ := ρ0 + 2(1 + Ω)α. Since
vN (2α) = 4e0 + b > 3b, vN (ρ) = 3b. Therefore

(2.7) ρ =
[

(γ + 1) + Ω(σ + 1) + β ′
1

2
(γ − 1)(σ − 1)

]
α

where vK (α) = b and vN (ρ) = 3b.
Using (2.5) we find that d0 and d1 are units, so that vK (β ′) = vK (β) = 2e0− b. To

characterize Ω, note that Ω ≡ d0 + d1 ≡ (δ − 1)/2 ≡ −a2/(a1 + a2) mod (x − 1).
Meanwhile from (2.5),−a2/(a1 + a2) ≡ −(ω−2 + κ1)ω mod (x − 1). So

Ω = ω−1 + κ,

for some κ ∈ PK with κ ≡ ωκ1 mod (x − 1).
Now we show that when 2t > b and 2b− t < 2e0, vK (κ) = (b− t)/2. Otherwise

vK (κ) > e0 − b/2. First recall from (2.5) that u(x − 1) = a2 − ω−2 − κ1 ∈ K.
Therefore vL

(
u(x − 1)

)
is even, and as a result, vL(u) is odd.
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Consider 2t > b (i.e. vL(τ ) < vL(∆)) and reduce (2.3) modulo τ · πL. Since
2t > b > 0, 2(x− 1) ≡ 0 mod τ · πL. So 1 ≡ (a1 + a2)2ω2 +

(
(a1 + a2)2 + a2

2ω
2
)
β +

(a1 + a2)2ω2τ + a2
2β

2 mod τ · πL. Using (2.5), (a1 + a2)2 ≡ ω−2 + u2β mod τ · πL,
while a2

2 = ω−4 + k2
1 + u2β mod τ · πL. Substitution leads to

(2.8) 0 ≡ (ω2u2 + ω2κ2
1)β + τ +

(
(1 + ω2)u2 + ω−4 + κ2

1

)
β2 + u2β3 mod τ · πL.

If vL(τ ) < vL(β2) (in other words 2b−t < 2e0), then vL

(
(ω2u2 +ω2κ2

1)β
)

must equal
vL(τ ). In other words, vL(χ2β) = vL(τ ) with χ = ω(u + κ1). Consequently vL(χ) =(

vL(τ ) − vL(β)
)
/2 = b − t . Since t > 0, t is odd. Of course b is odd. Therefore

vL(χ) = b− t is even. Since vL(κ1) is even while vL(u) is odd and χ = ω(u + κ1) has
even valuation, vL(ωκ1) = vL(χ). Therefore vK (ωκ1) = (b−t)/2. Since 2b−t < 2e0,
vL(ωκ1) < vL(x−1). So since κ ≡ ωκ1 mod (x−1), vK (κ) = (b−t)/2. Alternatively,
if vL(τ ) > vL(β2) (in other words 2b − t > 2e0), an examination of (2.8) leads to
vL

(
(ω2u2 + ω2κ2

1)β
)
≥ vL(β2). As a result, vL(χ2) ≥ vL(β). Since vL(u) and vL(κ1)

have opposite parity vL(κ1) ≥ vL(β)/2. Therefore κ ≡ ωκ1 ≡ 0 mod (x − 1) and so
vL(κ) ≥ 2e0 − b. Since vK (κ) is an integer, vK (κ) > e0 − b/2.

Consider b > 2t (i.e. vL(τ ) > vL(∆)) and reduce (2.3) modulo ∆. Clearly 1 ≡
(a1 + a2)2ω2 +

(
(a1 + a2)2 + a2

2ω
2
)
β + a2

2β
2 mod ∆. Again use (2.5) to replace a1 and

a2. This results in

(2.9) 0 ≡ (ω2u2 + ω2κ2
1)β +

(
(1 + ω2)u2 + ω−4 + κ2

1

)
β2 + u2β3 mod ∆.

If vL(β2) < vL(∆), then vL

(
(ω2u2 + ω2κ2

1)β
)
≥ vL(β2). By following the discussion

in the previous paragraph vK (κ) > e0−b/2. So assume instead that vL(β2) ≥ vL(∆).
In this case (2.9) leads to 0 = χ2β mod ∆. So vL(χ2) ≥ vL(∆/β) = b, and vL(χ) ≥
b/2. Since vL(u) is odd while vL(κ1) is even, vL(κ1) = vL(χ) ≥ b/2. If vL(κ1) >
2e0− b then as before vK (κ) > e0− b/2. So assume vL(κ1) < 2e0− b. But then since
κ ≡ ωκ1 mod (x− 1), vK (κ) = vK (κ1) > b/4. Therefore vN

(
κ(σ + 1)α

)
> 3b, and

so ρ has the same valuation as ρ− κ(σ + 1)α. Replace one by the other. This results
in a revised expression in (2.7), one with Ω = ω−1. But then κ = 0 while clearly
vK (0) > e0 − b/2.

3 Structure of Ideals

In this section we determine the Galois module structure of each ideal Pi
N , using the

same technique as in [Eld98]. Thus we first find elements µk of N, for k ∈ Z such
that vN (µk) = k. Clearly µi , µi+1, . . . , µi+4e0−1 will be a basis for Pi

N over OT . We
then adjust this basis to obtain a new basis, whose elements will not necessarily have
distinct valuations, but on which the action of the Galois group is easier to follow.

To expedite matters, we begin with [Eld98, Lemmma 3.15] and the discussion
following the lemma. Note that the only condition on αm in [Eld98, Lemmma 3.15]
is in terms of valuation, vN (αm) = b + 4m. Any element with the same valuation
can be used. So we let αm := α · πm

K with α from Proposition 2.2. Using all other
elements as in [Eld98, Lemma 3.15] (in particular the element ρm ∈ N produced in
the proof of that lemma), we may create bases for Pi

N over OT . For example, under
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3b < 4e0 the elements listed in [Eld98, (3.2)–(3.5)] all have distinct valuations and
so serve as a basis for Pi

N over OT . Note that we may replace any element in this
basis with another element of the same valuation (and still have a basis). And so we
replace each ρm in [Eld98, (3.4)] with ρ · πm

K (where ρ is from Proposition 2.2). It
should not cause any confusion if each such ρ · πm

K is now referred to as ρm. Note
however that we have not replaced any of the ρm in [Eld98, (3.2), (3.3), (3.5)], and
so for each of these ρm we have ρm − (γ + 1)αm contained in the fixed field of σ.
Following [Eld98, Remark 3.16] we can replace each ρm in [Eld98, (3.2), (3.3), (3.5)]
with (γ + 1)αm and still have a basis over OT (although one which no longer has
distinct valuations). Consequently the elements listed in [Eld98, (3.6)–(3.9)] provide
an OT-basis for Pi

N when 3b < 4e0. Similarly, when 3b < 4e0, we can conclude that
the elements in [Eld98, (3.10)–(3.13)] provide a basis. In both cases, the elements
αm arose as α · πm

K with α from Proposition 2.2, while the ρm (that appear) are ρ · πm
K

with ρ from Proposition 2.2.
For the convenience of the reader, we include a slight revision of these lists. Each

element of [Eld98, (3.9)] is divided by 2 and is listed in (3.1) below. These elements
are followed in sequence by the elements in [Eld98, (3.6)–(3.8)]. Meanwhile we have
divided the elements in [Eld98, (3.12), (3.13)] by 2 and listed them as (3.5) and (3.6)
below. They are followed by the elements listed in [Eld98, (3.10), (3.11)]. Let dxe
denote the ceiling function (least integer greater than or equal to x).

Case 3b < 4e0

1/2(γ + 1)(σ + 1)αm, αm, (σ + 1)αm, (γ + 1)αm,(3.1)

for e0 +
⌈ i

4

⌉
− b ≤ m ≤ e0 +

⌈ i − 3b

4

⌉
− 1.

αm, (σ + 1)αm, (γ + 1)αm, (γ + 1)(σ + 1)αm,(3.2)

for
⌈ i − b

4

⌉
≤ m ≤ e0 +

⌈ i

4

⌉
− b− 1.

(σ + 1)αm, (γ + 1)αm, (γ + 1)(σ + 1)αm, 2αm,(3.3)

for
⌈ i − 2b

4

⌉
≤ m ≤

⌈ i − b

4

⌉
−1

ρm, (γ + 1)(σ + 1)αm, 2αm, 2(σ + 1)αm,(3.4)

for
⌈ i − 3b

4

⌉
≤ m ≤

⌈ i − 2b

4

⌉
− 1.

Case 3b > 4e0

αm, 1/2(γ + 1)(σ + 1)αm, (σ + 1)αm, (γ + 1)αm,(3.5)

for
⌈ i − b

4

⌉
≤ m ≤ e0 +

⌈ i − 3b

4

⌉
− 1
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1/2(γ + 1)(σ + 1)αm, (σ + 1)αm, (γ + 1)αm, 2αm,(3.6)

for e0 +
⌈ i

4

⌉
− b ≤ m ≤

⌈ i − b

4

⌉
− 1.

(σ + 1)αm, (γ + 1)αm, 2αm, (γ + 1)(σ + 1)αm,(3.7)

for
⌈ i − 2b

4

⌉
≤ m ≤ e0 +

⌈ i

4

⌉
− b− 1

ρm, 2αm, (γ + 1)(σ + 1)αm, 2(σ + 1)αm,(3.8)

for
⌈ i − 3b

4

⌉
≤ m ≤

⌈ i − 2b

4

⌉
− 1.

The following lemma enables us to clarify the Galois action upon the elements
listed in (3.4) and (3.8).

Lemma 3.1 Let ω, κ and β ′ be defined as in the previous section. Then

η :=
(ω−1 − 1 + κ)(ω−1 + 1 + κ− β ′)

(ω−1 + κ− β ′)(ω−1 + κ)
≡ (1− ω2) mod πK .

Furthermore

a := vK

(
η − (1− ω2)

)
=

{
b− t if 2t > b and 2b− t < 2e0,

2e0 − b otherwise
.

Proof One may check that

η = (1− ω2) +
ω2(

1 + ω(κ− β ′)
)

(1 + ωκ)
· B

where B = (1 − ω)β ′ − 2ωκ + ω2κ2 − ω2κβ ′. If vK (κ2) < vK (β ′) (equivalently,
2s < 2e0 − b), then vK (B) = vK (−2ωκ + ω2κ2) and vK (κ) = (b − t)/2 < e0.
Therefore vK (−2ωκ + ω2κ2) = vK (ω2κ2) = 2s. If vK (κ2) > vK (β ′) or 2s > 2e0 − b
then vK (2ωκ) = e0 + s > 2e0−b/2 > 2e0−b. So vK (B) = vK

(
(1−ω)β ′

)
= 2e0−b.

For m such that d(i − 3b)/4e ≤ m ≤ d(i − 2b)/4e − 1 (in other words, those m
listed in (3.4) and (3.8)), we redefine αm+a in terms of αm. Let

αm+a :=
(
η − (1− ω2)

)
αm,

since the elements have the same valuation. Furthermore if m + a ≤ d(i−2b)/4e−1,
let ρm+a :=

(
η − (1− ω2)

)
ρm.
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Now for a particular value of m, consider the Galois action on the basis elements:

ρm, 2αm, (γ + 1)(σ + 1)αm, 2(σ + 1)αm.

First, note that we still have a basis if these are replaced by

ρm, ρm − 2αm, (γ − 1)(σ + 1)αm, (γ + 1)(σ + 1)αm.

Since vN (ρm) < vN (2αm) < vN (2β ′αm), we may also replace ρm by ρm − 2β ′αm.
Therefore we instead examine the Galois action on the alternative elements:

ρm − 2β ′αm, ρm − 2αm, (γ − 1)(σ + 1)αm, (γ + 1)(σ + 1)αm.

The action on (γ − 1)(σ + 1)αm, (γ + 1)(σ + 1)αm is clear. Meanwhile it is easy to
check that

(γ − 1)(ρm − 2β ′αm) = (γ − 1)(σ + 1)[ω−1 + κ− β ′]αm

(γ + 1)(ρm − 2αm) = (γ + 1)(σ + 1)[ω−1 + κ]αm

The effect of σ is more complicated: (σ + 1)(ρm − 2β ′αm) = (γ + 1)(σ + 1) ·
[ω−1 + 1 +κ−β ′]αm− (γ− 1)(σ + 1)[ω−1 +κ−β ′]αm while (σ + 1)(ρm− 2αm) =
(γ + 1)(σ + 1)[ω−1 + κ]αm − (γ − 1)(σ + 1)[ω−1 − 1 + κ]αm. As a result, we
use the fact that σγ + 1 = (σ + 1)(γ + 1) − (σ + 1) − (γ − 1) and σγ − 1 =
(σ + 1)(γ − 1) + (σ + 1)− (γ + 1) to easily determine the much simpler effect of σγ:

(σγ + 1)(ρm − 2β ′αm) = (γ + 1)(σ + 1)[ω−1 + 1 + κ− β ′]αm

(σγ − 1)(ρm − 2αm) = (γ − 1)(σ + 1)[ω−1 − 1 + κ]αm.

As we are working with a basis over OT , we may multiply basis elements by units
in OT . As a result, we use the alternative basis elements:

y+
m :=

ω−1 − 1 + κ

ω−1 + κ− β ′
(ρm − 2β ′αm), y−m := ρm − 2αm,

x+
m := (γ + 1)(σ + 1)[ω−1 + κ]αm, x−m := (γ − 1)(σ + 1)[ω−1 − 1 + κ]α.

Since αm+a = [η − (1 − ω2)]αm, x+
m+a = [η − (1 − ω2)]x+

m, and so ηx+
m =

(1− ω2)x+
m + x+

m+a. Therefore

(3.9)
(γ − 1)y+

m = x−m (γ + 1)y−m = x+
m

(σγ + 1)y+
m = (1− ω2)x+

m + x+
m+a (σγ − 1)y−m = x−m .

Now consider the situation where m + a ≥ d(i−2b)/4e. If m + a < e0 + d(i−3b)e
then it is clear that (γ + 1)αm+a is an element in our basis, appearing in (3.1)–(3.3)
or (3.5)–(3.7). If m + a ≥ e0 + d(i− 3b)e then (γ + 1)αm+a ∈ 2Pi

N . In either case, we
may replace y+

m by ȳ+
m := y+

m− (γ + 1)[ω−1 +κ]αm+a and still have a basis. Note that
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(γ − 1) has the same effect upon ȳ+
m as on y+

m, but that the effect of (σγ + 1) is much
simpler:

(σγ + 1) ȳ+
m = (1− ω2)x+

m.

Replace each such y+
m with ȳ+

m. Therefore without loss of generality, we may re-
place the elements listed in (3.4) and (3.8) by

y+
m, y−m , x

+
m, x
−
m

and assume that the Galois action is defined by (3.9) except that

(3.10) (σγ + 1)y+
m =

{
(1− ω2)x+

m + x+
m+a if m + a < d(i − 2b)/4e

(1− ω2)x+
m otherwise

.

Let

(3.11) n :=
⌊ b i−2b−1

4 c + b 3b−i
4 c

a

⌋
,

bxc denoting the floor or greatest integer function. One can easily verify that
bb/(4a)c − 1 ≤ n ≤ bb/(4a)c, moreover n is the maximal integer such that
d(i − 3b)/4e + na < d(i − 2b)/4e.

Therefore the basis elements listed in (3.4) and (3.8) result in a direct sum of
OT[G]-modules with bases such as:

(3.12)

y+
m+ka, y−m+ka, x

+
m+ka, x

−
m+ka

...

y+
m+2a, y−m+2a, x

+
m+2a, x

−
m+2a

y+
m+a, y−m+a, x

+
m+a, x

−
m+a

y+
m, y−m , x

+
m, x
−
m

Either k = n or k = n− 1. Note that (σγ + 1)y+
m+ka = (1− ω2)x+

m+ka.
Let us now examine the module that results from these basis elements. If we list

the x+
i first then the x−i , followed by the y+

i and then the y−i ; the Galois action is
described by the following 4k× 4k matrices over OT :

γ →

∣∣∣∣∣∣∣∣
E 0 0 E
0 −E E 0
0 0 E 0
0 0 0 −E

∣∣∣∣∣∣∣∣ σγ →

∣∣∣∣∣∣∣∣
E 0 M 0
0 −E 0 E
0 0 −E 0
0 0 0 E

∣∣∣∣∣∣∣∣
where E denotes a k×k identity matrix and M is the matrix in Jordan canonical form

associated with the minimal polynomial
(

x − (1 − ω2)
) k

. In other words, M is an
k× k matrix with 1− ω2 on the diagonal and 1 just above the diagonal.
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Upon restriction of scalars the Galois action appears essentially the same. Let p(x)
be the irreducible polynomial with 1 − ω2 as a root, and let d be the degree of p(x).
Then in this case E denotes a kd × kd identity matrix, while M denotes the kd × kd
matrix over Z2 in Jordan canonical form with minimal polynomial p(x)k. We denote
this module by

(3.13) Îk−1

(
p(x)

)
This module is part of a family of indecomposable modules identified in [Naz61,
p. 1306] in the paragraph beginning “Let n = d”. It is also listed among the modules
classified in Lemma 1 of [Naz67, p. 1310] where a proof of its indecomposability
is given. We have chosen our notation to be consistent with notation in [Eld98].
This module belongs in the same family as another module that also appears in the
decomposition of ideals. Replacing p(x) by x − 1 we find that Îk−1(x − 1) = Îk−1,
the module listed on [Eld98, p. 1040].

We now list certain other Z2[G]-modules that we will require for our main result.
Our notation is that used in [Eld98, Section 4]. Let Ĝ = Z2[G]. Note this module
occurs for each m in (3.2). Let Ẑ denote the rank one module fixed by the group
action, while for each x ∈ G let R̂x be the rank one module on which only x acts
trivially upon (all other nontrivial group elements should act via multiplication by
−1). Then the maximal order, Ẑ⊕ R̂σ ⊕ R̂γ ⊕ R̂σγ , occurs for each m in (3.6).

Let Ĉ and D̂ be rank 4 modules with Galois action described by the pairs of ma-
trices below:

Ĉ : γ →

∣∣∣∣∣∣∣∣
1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

∣∣∣∣∣∣∣∣ σ →

∣∣∣∣∣∣∣∣
1 0 1 1
0 1 1 1
0 0 −1 0
0 0 0 −1

∣∣∣∣∣∣∣∣

D̂ : γ →

∣∣∣∣∣∣∣∣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

∣∣∣∣∣∣∣∣ σ →

∣∣∣∣∣∣∣∣
1 0 1 −1
0 1 1 1
0 0 −1 0
0 0 0 −1

∣∣∣∣∣∣∣∣
Note that Ĉ occurs for each m in (3.1) and (3.6), while D̂ occurs for each m in (3.3)
and (3.7). All this is collected in the following Theorem:

Theorem 3.2 Let ω, b, t be as in (2.1), p(x) be the minimal polynomial of 1−ω2 over
Z2 and d = deg p(x). If 2t > b and 2b − t < 2e0, let a = b − t. Otherwise, let
a = 2e0 − b. Let

n :=
⌊ b i−2b−1

4 c + b 3b−i
4 c

a

⌋
.

The Z2[G]-module structure of Pi
N then, is as follows:

Pi
N
∼= X⊕ Y,

https://doi.org/10.4153/CMB-2002-020-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-020-3


178 Nigel P. Byott and G. Griffith Elder

where

X =


Ĝ(e0+d i−4b

4 e−d
i−b

4 e) f ⊕ D̂(d i−b
4 e−d

i−2b
4 e) f⊕

Ĉ(d i−3b
4 e−d

i−4b
4 e) f if b < 4e0/3

D̂(e0+d i−4b
4 e−d

i−2b
4 e) f ⊕ Ĉ(d i−3b

4 e−d
i−b

4 e) f

(Ẑ⊕ R̂σ ⊕ R̂γ ⊕ R̂σγ)(d i−b
4 e−e0−d i−4b

4 e) f otherwise

while

Y = În−1

(
p(x)

) (d i−3b
4 e−d

i−2b
4 e+(n+1)a) f

d ⊕ În

(
p(x)

) (d i−2b
4 e−d

i−3b
4 e−na) f

d

Note that dxe denotes the ceiling or least integer function.

4 Example: Quadratic Twist

Consider the class of biquadratic extensions with τ = 0 (where τ is as in (2.1)).
These are extensions N1 := K(x, y) with x2 = 1 + β and y2 = ω2 + β for some
nontrivial 2 f − 1 root of unity ω, and some β ∈ K with vK (β) = 2e0 − b, b odd and
0 < b < 2e0. To compare such an extension with one for which τ 6= 0 we introduce
the quadratic extension K(z)/K associated with the unit z2 = 1 + τ . So that K(z)/K
is truly a quadratic extension, we must have vK (τ ) = 2e0 − t with 0 ≤ t < 2e0.

Clearly N1 and N2 := K(x, yz), both biquadratic extensions, sit in the larger field
K(x, y, z). To ensure that they both have exactly one break in their Galois filtration,
we must assume 0 < t < b.

Now use Theorem 3.2 to compare the Galois structure of ideals in N1 and in N2,
and one notices something remarkable. The Galois structure of each ideal in N2 is
precisely the same as the Galois structure of the corresponding ideal in N1 if t <
b/2 or 2b − t > 2e0. Thus, if the ramification number t of K(z)/K is sufficiently
small (relative to b), each ideal of N2 has the same Galois module structure as the
corresponding ideal of N1, whereas for larger values of t this is not the case. We
would like to thank the referee for pointing out that we may view N2 as the quadratic
twist of N1 associated with the extension K(z)/K, and for suggesting the following
more general question:

Question 4.1 Given a representation V of Gal(K̄/K) with fixed field N1, and a one-
dimensional character χ of Gal(K̄/K), such that the twist V ⊗ χ of V by χ has iso-
morphic image to V , how is the Galois module structure of ideals in the fixed field
N2 of V ⊗ χ related to that of ideals in N1? In particular, if χ is, in some appropriate
sense, “not too highly ramified” (relative to V ), will the ideals of N1 and N2 have “the
same” Galois module structure?
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