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On the greatest common divisor of n and
the nth Fibonacci number, II
Abhishek Jha and Carlo Sanna

Abstract. Let A be the set of all integers of the form gcd(n, Fn), where n is a positive integer and Fn
denotes the nth Fibonacci number. Leonetti and Sanna proved that A has natural density equal to
zero, and asked for a more precise upper bound. We prove that

#(A ∩ [1, x]) ≪
x log log log x

log log x

for all sufficiently large x. In fact, we prove that a similar bound also holds when the sequence of
Fibonacci numbers is replaced by a general nondegenerate Lucas sequence.

1 Introduction

Let (un) be a nondegenerate linear recurrence with integral values. Arithmetic
relations between n and un have been studied by several authors. For example, the set
of positive integers n such that n divides un has been studied by Alba González, Luca,
Pomerance, and Shparlinski [2], assuming that the characteristic polynomial of (un)
is separable, and by André-Jeannin [3], Luca and Tron [13], Sanna [22], and Somer
[28], when (un) is a Lucas sequence. Furthermore, Sanna [24] showed that the set of
natural numbers n such that gcd(n, un) = 1 has a natural density (see [15] for a gener-
alization). Mastrostefano and Sanna [14, 23] studied the moments of log(gcd(n, un))
and gcd(n, un) when (un) is a Lucas sequence, and Jha and Nath [9] performed a
similar study over shifted primes. Part of the interest in studying gcd(n, un) resides in
the fact that this task can be considered a simpler, albeit nontrivial, case of the general
problem of studying the greatest common divisor (GCD) of terms of two linear
recurrences, a problem that led to the famous Bugeaud–Corvaja–Zannier bound [5]
and the difficult Ailon–Rudnick conjecture [1]. (See the survey of Tron [30] for an
extensive treatise on GCDs of terms of linear recurrences, especially Section 3 for
these considerations on gcd(n, un).) Furthermore, more abstractly, when (un) is a
Lucas sequence of discriminant Δu , we have that (gcd(n, un)) is the GCD sequence
naturally associated, by Silverman’s correspondence [27], with the algebraic group
Ga ×Gm(

√
Δu), which is the product of the additive group with a twist of the

multiplicative group.
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Let (Fn) be the linear recurrence of Fibonacci numbers, which is defined by
F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for every positive integer n. Sanna and Tron [26]
proved that, for each positive integer k, the set of positive integers n such that
gcd(n, Fn) = k has a natural density, which is given by an infinite series. Kim [11] and
Jha [8] obtained formally analogous results in cases of elliptic divisibility sequences
and orbits of polynomial maps, respectively. Let A be the set of numbers of the form
gcd(n, Fn), for some positive integer n. Leonetti and Sanna [12] provided an effective
method to enumerate the elements of A in increasing order. In particular, the first
elements of A are

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, . . .

(see [17, A285058] for more terms). Then they proved that

#A(x) ≫ x
log x

(1.1)

for all x ≥ 2. Their approach relied on a result of Cubre and Rouse [6], which in
turn follows from Galois theory and the Chebotarev density theorem. Later, Jha and
Sanna [10, Proposition 1.4] obtained an elementary proof as an application of related
arithmetic problem over shifted primes. Leonetti and Sanna [12] also gave the upper
bound #A(x) = o(x) as x → +∞, and asked for a more precise estimate. We prove
the following upper bound on #A(x).

Theorem 1.1 We have

#A(x) ≪ x log log log x
log log x

for all sufficiently large x.

In fact, we prove that an upper bound similar to that of Theorem 1.1 also holds
when the sequence of Fibonacci numbers is replaced by a general nondegenerate
Lucas sequence (see Theorem 3.1).

In light of the gap between the upper bound of Theorem 1.1 and the lower bound
(1.1), it is natural to wonder which is the true order of #A(x). By performing some
numerical experiments (see Section 4), we found that #A(x) appears to be asymptotic
to x/(log x)c , as x → +∞, for some constant c ≈ 0.63 (see Figure 1).

1.1 Notation

For every set of positive integers S and for every x > 0, we define S(x) ∶= S ∩ [1, x].
Throughout, we reserve the letter p for prime numbers. We employ the Landau–
Bachmann “Big Oh” and “little oh” notation O and o, as well as the associated
Vinogradov symbols ≪ and ≫. Moreover, we write f ≍ g to denote that f ≪ g and
f ≫ g. Any dependence of the implied constants is explicitly stated or indicated with
subscripts. In particular, Ou is a shortcut for Oa1 ,a2 , and similarly for ≪u , ≫u , and ≍u .
We let Li(x) ∶= ∫

x
2 (log t)−1 dt denote the integral logarithm.

https://doi.org/10.4153/S0008439522000595 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000595


On the G.C.D. of n and Fn, II 619

Figure 1: A plot of #A(x)/(x/(log x)c) for x up to 106 .

2 Preliminaries on Lucas sequences

In what follows, let (un) be a Lucas sequences, that is, a sequence of integers satisfying
u0 = 0, u1 = 1, and un = a1un−1 + a2un−2 for every integer n ≥ 2, where a1 , a2 are fixed
nonzero relatively prime integers. Furthermore, assume that (un) is nondegenerate,
which means that the ratio of the roots of the characteristic polynomial X2 − a1 X − a2
is not a root of unity. In particular, the discriminant Δu ∶= a2

1 + 4a2 is nonzero.
For each positive integer m that is relatively prime with a2, let zu(m) be the rank

of appearance of m in the Lucas sequence, that is, the smallest positive integer n such
that m divides un . It is well known that zu(m) exists (see, e.g., [20]). Furthermore, put
�u(m) ∶= lcm(m, zu(m)) and, for each positive integer n, let gu(n) ∶= gcd(n, un) and
Au ∶= {gu(n) ∶ n ∈ N}.

The next lemma collects some elementary properties of zu , �u , gu , and Au .

Lemma 2.1 For all positive integers m, n and all prime numbers p, with p ∤ a2, we
have:
(i) m ∣ un if and only if gcd(m, a2) = 1 and zu(m) ∣ n.
(ii) zu(m) ∣ zu(n) whenever gcd(mn, a2) = 1 and m ∣ n.
(iii) zu(p) ∣ p − (−1)p−1ηu(p), where

ηu(p) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+1, if p ∤ Δu and Δu ≡ x2 (mod p) for some x ∈ Z,
−1, if p ∤ Δu and Δu /≡ x2 (mod p) for all x ∈ Z,
0, if p ∣ Δu .
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(iv) zu(pn) = peu(p,n) zu(p), where eu(p, n) is some nonnegative integer less than n.
(v) �u(pn) = pnzu(p) if p ∤ Δu , and �u(pn) = pn if p ∣ Δu .
(vi) gu(m) ∣ gu(n) whenever m ∣ n.
(vii) n ∣ gu(m) if and only if gcd(n, a2) = 1 and �u(n) ∣ m.
(viii) n ∈ Au if and only if gcd(n, a2) = 1 and n = gu(�u(n)).
(ix) m ∣ n whenever gcd(mn, a2) = 1, �u(m) ∣ �u(n), and n ∈ Au .

Proof (i)–(iv) are well-known properties of the rank of appearance of a Lucas
sequence (see, e.g., [20], [21, Chapter 1], or [22, Section 2]), whereas (v)–(vii) follow
easily from (i)–(iv) and from the definitions of �u and gu . Let us prove (viii). If
n ∈ Au , then there exists a positive integer m such that n = gu(m). In particular,
n ∣ gu(m) and, by (vii), we get that gcd(n, a2) = 1 and �u(n) ∣ m. Therefore, by (vi),
we have that gu(�u(n)) ∣ n. Since n divides both �u(n) and u�u(n) (by (i)), it follows
that n ∣ gu(�u(n)). Hence, n = gu(�u(n)). The other implication is straightforward.
Finally, (ix) follows quickly from (vii) and (viii). ∎

For each positive integer d, let Pu ,d be the set of prime numbers p not dividing a2
and such that d divides zu(p). Cubre and Rouse [6] proved an asymptotic formula
for #Pd(x) in the special case in which (un) is the sequence of Fibonacci numbers.
Sanna [25] extended this result to Lucas sequences (under some mild restrictions)
and also provided an error term. In particular, as a consequence of [25, Theorem 1.1],
we have the following asymptotic formula.

Lemma 2.2 There exists a constant Bu > 0 such that for all x ≥ exp(Bud40) and for
all odd positive integers d, with 3 ∤ d if the square-free part of Δu is equal to −3, we have
that

#Pd(x) = δu(d)Li(x) + Ou(
x

(log x)12/11 ) ,(2.1)

where δu(d) is a quantity satisfying δu(d) ≍u 1/d.

Proof If Δu is not a square, then, from [25, Theorem 1.1], we have that there exists
a constant Bu > 0 such that

#Pd(x) = δu(d)Li(x) + Ou(
d

φ(d) ⋅
x (log log x)ω(d)

(log x)9/8 ) ,(2.2)

for all odd positive integers d, with 3 ∤ d if the square-free part of Δu is equal to −3,
and for all x ≥ exp(Bud40), where δu(d) ≍u 1/d, whereas φ(d) and ω(d) are the Euler
totient function and the number of prime factors of d, respectively.

If Δu is a square, then, by the Binet formula, we have that

un = αn − βn

α − β

for every positive integer n, where α ∶= (a1 −
√

Δu)/2 and β ∶= (a1 +
√

Δu)/2 are
integers. Consequently, for every prime number p not dividing a2Δu , we have that
zu(p) is equal to the multiplicative order of α/β modulo p. Then (2.2) follows from a
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result of Moree [16, Lemma 1]. (Moree did not make explicit the factor d/φ(d), but
this can be easily done [cf. [25, Lemma 6.3]].)

Note that we can assume that Bu (and consequently x) is sufficiently large. In
particular, we have that d ≤ (log x)1/40. Put ε ∶= 1/330. By the classic lower bound for
φ(d) (see, e.g., [29, Chapter I.5, Theorem 5.6]), we have that

d
φ(d) ≪ log log d ≪ log log log x ≤ (log x)ε .

Recall that ω(d) ≤ (1 + o(1)) log d/ log log d as d → +∞ (see, e.g., [29, Chapter I.5,
Theorem 5.5]). Therefore, there exists an absolute constant C > 0 such that if d > C,
then

ω(d) ≤ (1 + ε) log d
log log d

≤ ( 1
40

+ 2ε) log log x
log log log x

,

and consequently (log log x)ω(d) ≤ (log x) 1
40+2ε . Furthermore, if d ≤ C, then

(log log x)ω(d) ≤ (log x)ε .

Thus, (2.1) follows. ∎

Remark 2.3 In Lemma 2.2, the exponent 12/11 can be replaced by 11/10 + ε, for every
ε > 0, assuming that x is sufficiently large depending on ε.

We also need an upper bound for #Pu ,d(x).

Lemma 2.4 We have

#Pu ,d(x) ≪u
x

φ(d) log(x/d)
for all positive integers d and for all x > d.

Proof By Lemma 2.1(iii), we have that

#Pu ,d(x) ≤ Ou(1) + #{p ≤ x ∶ p ≡ ±1 (mod d)} ≪u
x

φ(d) log(x/d) ,

where we applied the Brun–Titchmarsh inequality [29, Chapter I.4, Theorem
4.16]. ∎

Now, we give an upper bound for the sum of reciprocals of primes in Pu ,d .

Lemma 2.5 We have

∑
p ∈Pu ,d(x)

1
p
= δu(d) log log x + Ou(

log(2d)
φ(d) )

for all odd positive integers d, with 3 ∤ d if the square-free part of Δu is equal to −3, and
for all x ≥ 3.
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Proof First, suppose that x < exp(Bud40), where Bu is the constant of Lemma 2.2.
Hence, we have that

δu(d) log log x ≪u
log log x

d
≪u

log(2d)
d

.

Moreover, by [19, Theorem 1 and Remark 1], we have that

∑
p ≤ x

p ≡±1 (mod d)

1
p
= 2 log log x

φ(d) + O( log(2d)
φ(d) ) .

This together with Lemma 2.1(iii) yields that

∑
p ∈Pu ,d(x)

1
p
≤ Ou(1)

d
+ ∑

p ≤ x
p ≡±1 (mod d)

1
p
≪u

1
d
+ log(2d)

φ(d) .

Hence, the claim follows. Now, suppose that x ≥ exp(Bud40). By partial summation,
we have that

∑
p ∈Pu ,d(x)

1
p
= #Pu ,d(x)

x
+ ∫

x

1

#Pu ,d(t)
t2 dt.

From Lemma 2.1(iii), we get easily that #Pu ,d(x)/x ≪u 1/d. Thus, it remains to bound
the integral. By Lemma 2.1(iii) again, we have that #Pu ,d(t) > 0 only if t ≥ d − 1, and
that #Pu ,d(t) ≪u 1 for t ∈ [1, 2d]. Hence, we have

∫
2d

1

#Pu ,d(t)
t2 dt ≪u ∫

2d

d−1

dt
t2 ≪ 1

d
.

By Lemma 2.4, we have that

∫
exp(Bd40)

2d

#Pu ,d(t)
t2 dt ≪u ∫

exp(Bu d40)

2d

dt
φ(d) t log(t/d)

= [ log log(t/d)
φ(d) ]

exp(Bu d40)

t = 2d
≪ log(2d)

φ(d) .

By Lemma 2.2, we have that

∫
x

exp(Bu d40)

#Pu ,d(t)
t2 dt = ∫

x

exp(Bu d40)

δu(d)Li(t)
t2 dt + Ou(∫

x

exp(Bu d40)

dt
t(log t)12/11 )

= δu(d) [log log t − Li(t)
t

]
x

t = exp(Bu d40)

+ Ou(
1

d40/11 )

= δu(d) (log log x + O( log(2d))) + Ou(
1

d40/11 )

= δu(d) log log x + Ou(
log(2d)

d
) .

Putting these together, the claim follows. ∎
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The following sieve result is a special case of [7, Theorem 7.2] (cf. [18, Lemma 2.2]).

Lemma 2.6 We have

#{n ≤ x ∶ p ∣ n ⇒ p ∉ P} ≪ x ∏
p ∈P(x)

(1 − 1
p
) ,

for all x ≥ 2 and for all sets of prime numbers P.

We also need the so-called Primitive Divisor Theorem for Lucas sequence [4].

Theorem 2.7 For every integer r ≥ 31, there exists a prime number p such that
zu(p) = r.

3 Proof of Theorem 1.1

We shall prove the following more general result, of which Theorem 1.1 is a particular
case.

Theorem 3.1 We have

#Au(x) ≪u
x log log log x

log log x
for all sufficiently large x.

Proof Let r ∶= 30∏p∣6Δu zu(p) + 1. Since r ≥ 31, it follows from Theorem 2.7 that
there exists a prime number q such that zu(q) = r. Furthermore, by Lemma 2.1(i), we
have that gcd(6Δu , ur) = 1 and so q ∤ 6Δu . Note also that gcd(6, r) = 1.

From Lemma 2.2, we know that δu(dr) ≥ Cu/d for every positive integer d with
gcd(6, d) = 1, where Cu > 0 is a constant depending only on a1 , a2. (Note that r is
completely determined by a1 , a2.) Suppose that x > 0 is sufficiently large, and put

k ∶= ⌊ 1
log q

log(min(1, Cu)
log log x

log log log x
)⌋

and d ∶= qk . Hence, we get that

d ≤ min(1, Cu)
log log x

log log log x
and so

log d
δu(dr) ≤ d

Cu
log d ≤ log log x

log log log x
log d ≤ log log x .

Therefore, we have that

(log x)δu(dr) ≥ d ≫u
log log x

log log log x
.(3.1)

We split Au into two subsets: A′u is the subset of Au consisting of integers without
prime factors in Pu ,dr , and A′′u ∶= Au ∖A′u .
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First, we give an upper bound on #A′u(x). Note that gcd(6, dr) = 1. By Lemmas
2.5 and 2.6, we get that

#A′u(x) ≪ x ∏
p ∈Pu ,dr(x)

(1 − 1
p
) ≤ x exp

⎛
⎝
− ∑

p ∈Pu ,dr(x)

1
p
⎞
⎠
≪u

x
(log x)δu(dr) ,(3.2)

where we also used the inequality 1 − x ≤ exp(−x), which holds for x ≥ 0.
Now, we give an upper bound on #A′′u (x). If n ∈ A′′u , then n has a prime factor

p ∈ Pu ,dr . Hence, we have that p ∣ n and dr ∣ zu(p). Thus, by Lemma 2.1(ii), we get
that zu(p) ∣ zu(n) and so dr ∣ �u(n). Recalling that d = qk , zu(q) = r, and q ∤ Δu ,
by Lemma 2.1(v), we have that �u(d) = dr. Hence, we get that �u(d) ∣ �u(n) and, by
Lemma 2.1(ix), it follows that d ∣ n. Thus, all the elements of A′′u are multiples of d.
Consequently, we have that

#A′′u (x) ≤ x
d

.(3.3)

Therefore, putting together (3.2) and (3.3), and using (3.1), we obtain that

#Au(x) = #A′u(x) + #A′′u (x) ≪u
x

(log x)δu(dr) +
x
d
≪u

x log log log x
log log x

,

as desired. The proof is complete. ∎

4 Numerical computations

We computed the elements of A ∩ [1, 106] by using a program written in C that
employs Lemma 2.1(viii). Note that computing g(�(n)) directly as gcd(�(n), F�(n))
would be prohibitive, in light of the exponential grown of Fibonacci numbers. Instead,
we used the fact that

g(�(n)) = gcd(�(n), F�(n) mod �(n)),

and we computed Fibonacci numbers modulo an integer by efficient matrix exponen-
tiation.

Acknowledgment The authors would like to thank the anonymous referee for
providing suggestions that improved the quality of the paper. C. Sanna is a member of
GNSAGA of INdAM and of CrypTO, the group of Cryptography and Number Theory
of the Politecnico di Torino.

References

[1] N. Ailon and Z. Rudnick, Torsion points on curves and common divisors of ak − 1 and bk − 1. Acta
Arith. 113(2004), no. 1, 31–38.

[2] J. J. Alba González, F. Luca, C. Pomerance, and I. E. Shparlinski, On numbers n dividing the nth
term of a linear recurrence. Proc. Edinb. Math. Soc. (2) 55(2012), no. 2, 271–289.

[3] R. André-Jeannin, Divisibility of generalized Fibonacci and Lucas numbers by their subscripts.
Fibonacci Quart. 29(1991), no. 4, 364–366.

[4] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer
numbers. J. Reine Angew. Math. 539(2001), 75–122, with an appendix by M. Mignotte.

https://doi.org/10.4153/S0008439522000595 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000595


On the G.C.D. of n and Fn, II 625

[5] Y. Bugeaud, P. Corvaja, and U. Zannier, An upper bound for the G.C.D. of an − 1 and bn − 1.
Math. Z. 243(2003), no. 1, 79–84.

[6] P. Cubre and J. Rouse, Divisibility properties of the Fibonacci entry point. Proc. Amer. Math. Soc.
142(2014), no. 11, 3771–3785.

[7] H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, 4,
Academic Press [Harcourt Brace Jovanovich], London–New York, 1974.

[8] A. Jha, On terms in a dynamical divisibility sequence having a fixed G.C.D. with their indices.
New York J. Math. 28(2022), 1152–1171.

[9] A. Jha and A. Nath, The distribution of G.C.D.s of shifted primes and Lucas sequences. Preprint,
2022. arXiv:2207.00825

[10] A. Jha and C. Sanna, Greatest common divisors of shifted primes and Fibonacci numbers. Res.
Number Theory 8(2022), no. 4, Article no. 65.

[11] S. Kim, The density of the terms in an elliptic divisibility sequence having a fixed G.C.D. with their
indices. J. Number Theory 207(2020), 22–41, with an appendix by M. Ram Murty.

[12] P. Leonetti and C. Sanna, On the greatest common divisor of n and the nth Fibonacci number.
Rocky Mountain J. Math. 48(2018), no. 4, 1191–1199.

[13] F. Luca and E. Tron, The distribution of self-Fibonacci divisors. In: Advances in the theory of
numbers, Fields Institute Communication, 77, Fields Institute for Research in Mathematical
Sciences, Toronto, ON, 2015, pp. 149–158.

[14] D. Mastrostefano, An upper bound for the moments of a GCD related to Lucas sequences. Rocky
Mountain J. Math. 49(2019), no. 3, 887–902.

[15] D. Mastrostefano and C. Sanna, On numbers n with polynomial image coprime with the nth term
of a linear recurrence. Bull. Aust. Math. Soc. 99(2019), no. 1, 23–33.

[16] P. Moree, On primes p for which d divides ord p(g). Funct. Approx. Comment. Math. 33(2005),
85–95.

[17] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2022, published
electronically at https://oeis.org

[18] P. Pollack, Numbers which are orders only of cyclic groups. Proc. Amer. Math. Soc. 150(2022),
no. 2, 515–524.

[19] C. Pomerance, On the distribution of amicable numbers. J. Reine Angew. Math. 293(1977),
no. 294, 217–222.

[20] M. Renault, The period, rank, and order of the (a, b) – Fibonacci sequence mod m. Math. Mag.
86(2013), no. 5, 372–380.

[21] P. Ribenboim, My numbers, my friends: popular lectures on number theory, Springer, New York,
2000.

[22] C. Sanna, On numbers n dividing the nth term of a Lucas sequence. Int. J. Number Theory
13(2017), no. 3, 725–734.

[23] C. Sanna, The moments of the logarithm of a G.C.D. related to Lucas sequences. J. Number Theory
191(2018), 305–315.

[24] C. Sanna, On numbers n relatively prime to the nth term of a linear recurrence. Bull. Malays. Math.
Sci. Soc. 42(2019), no. 2, 827–833.

[25] C. Sanna, On the divisibility of the rank of appearance of a Lucas sequence. Int. J. Number Theory
18(2022), no. 10, 2145–2156.

[26] C. Sanna and E. Tron, The density of numbers n having a prescribed G.C.D. with the nth Fibonacci
number. Indag. Math. (N.S.) 29(2018), no. 3, 972–980.

[27] J. H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture
for blowups. Monatsh. Math. 145(2005), no. 4, 333–350.

[28] L. Somer, Divisibility of terms in Lucas sequences by their subscripts. In: Applications of Fibonacci
numbers (St. Andrews, 1992). Vol. 5, Kluwer Academic Publishers, Dordrecht, 1993,
pp. 515–525.

[29] G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., Graduate
Studies in Mathematics, 163, American Mathematical Society, Providence, RI, 2015, translated
from the 2008 French edition by Patrick D. F. Ion.

[30] E. Tron, The greatest common divisor of linear recurrences. Rend. Semin. Mat. Univ. Politec.
Torino 78(2020), no. 1, 103–124.

Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase-3, New Delhi, India
e-mail: abhishek20553@iiitd.ac.in

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
e-mail: carlo.sanna@polito.it

https://doi.org/10.4153/S0008439522000595 Published online by Cambridge University Press

https://arxiv.org/abs/2207.00825
https://oeis.org
mailto:abhishek20553@iiitd.ac.in
mailto:carlo.sanna@polito.it
https://doi.org/10.4153/S0008439522000595

	1 Introduction
	1.1 Notation

	2 Preliminaries on Lucas sequences
	3 Proof of Theorem theorem11.1
	4 Numerical computations

